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Stable and unstable manifolds for quasilinear parabolic systems
with fully nonlinear boundary conditions

Yuri Latushkin, Jan Prüss and Roland Schnaubelt

Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday

Abstract. We investigate quasilinear systems of parabolic partial differential equations with fully nonlinear bound-
ary conditions on bounded or exterior domains in the setting of Sobolev–Slobodetskii spaces. We establish local
wellposedness and study the time and space regularity of the solutions. Our main results concern the asymptotic
behavior of the solutions in the vicinity of a hyperbolic equilibrium. In particular, the local stable and unstable
manifolds are constructed.

1. Introduction

In this paper we investigate the qualitative properties of a general class of nonlinear
parabolic systems by a unified approach. We consider the equations

∂tu(t)+ A(u(t))u(t) = F(u(t)), on �, t > 0,

Bj (u(t)) = 0, on ∂�, t ≥ 0, j = 1, · · · ,m, (1)

u(0) = u0, on �,

on a (possibly unbounded) domain�with compact boundary ∂�, where the solution u(t, x)
takes values in a finite dimensional spaceE = C

N . The main part of the differential equation
is given by a linear differential operator A(u) of order 2m (with m ∈ N) whose matrix–
valued coefficients depend on the derivatives of u up to order 2m − 1, and F is a general
nonlinear reaction term acting on the derivatives of u up to order 2m − 1. Therefore the
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differential equation is quasilinear. Our analysis focusses on the fully nonlinear boundary
conditions

[Bj (u)](x) := b(x, u(x),∇u(x), · · · ,∇mj u(x)) = 0, x ∈ ∂�, j = 1, · · · ,m,
for the partial derivatives of u up to ordermj ≤ 2m−1. We look for a solution u in the space
E1 = Lp([0, T ];W 2m

p (�; C
N))∩W 1

p([0, T ];Lp(�; C
N)) for a fixed finite exponent p >

n+2m. The terms of highest order are thus contained inLp spaces. Due to known embedding
theorems, a function u ∈ E1 also belongs to the spaceC([0, T ];BC2m−1(�; C

N)). Hence,
the nonlinear terms in (1) are continuous in (t, x) up to t = 0, and the initial condition can
be understood in a classical sense.

We require only local smoothness of the coefficients (e.g., the diffusion coefficients are
C1); in particular, there are no growth restrictions. The parabolicity of (1) is expressed in our
main assumption saying that the linear boundary value problems (A(v), B ′

1(v), · · · , B ′
m(v))

are normally elliptic and satisfy the Lopatinskii-Shapiro conditions for suitable functions
v and the derivatives B ′

j (v). (See Section 2 for the precise statements.) These conditions
are necessary and sufficient for the regularity properties of the linearization of (1), see
Theorem 2 and (28), which are crucial for our approach. In this sense, our hypotheses are
optimal. We note that reaction diffusion systems satisfy our assumptions, see [5] and also
Section 6.

The initial valueu0 of (1) has to fulfill the boundary conditionsBj (u0) = 0 by continuity.
Moreover, our solution space E1 is continuously embedded into C([0, T ];Xp) for the

Slobodetskii space Xp = W
2m−2m/p
p (�; C

N), and Xp is the smallest space with this
property. As a result, u0 must belong to Xp, the solution u of (1) is continuous in Xp on
[0, T ], and the norm ofXp is the natural norm for our work. So we are led to the nonlinear
phase space

M = {u0 ∈ Xp : B1(u0) = 0, · · · , Bm(u0) = 0},
which is a C1 manifold in Xp. This genuine nonlinear structure has to be respected when
solving (1) and when studying the properties of the solutions. In fact, many of the difficulties
in our analysis arise from the compatibility conditions Bj (u0) = 0.

We prove local existence and uniqueness of solutions in E1 for initial values u0 ∈ M.
We further show that the local semiflow on M solving (1) is continuously differentiable with
respect to u0 and that the equation has an additional smoothing effect in so far for t > 0 the
solution u(t) is Hölder continuous of order 1 − 1/p with values inW 2m

p (�; C
N), although

u0 ∈ Xp. These results are presented in Theorem 14. However, we are mainly interested in
the long term behavior of the solutions near an equilibrium u∗ ∈ W 2m

p (�; C
N) of (1). To

this aim, we consider the derivative A∗ of the map u �→ A(u)u−F(u) at u∗ and introduce
the restrictionA0 ofA∗ to the kernel of the boundary operatorB∗ = (B ′

1(u∗), · · · , B ′
m(u∗)).

By [14], the operator −A0 generates an analytic semigroup T (·) on Lp(�; C
N). It turns

out that the spectrum of A0 determines much of the asymptotic behavior of the solutions
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to (1) near u∗. So we show the principle of linearized stability for (1) in Proposition 16.
Assuming that iR ⊂ ρ(A0) (i.e., that u∗ is hyperbolic), in Theorem 17 we then construct
the local stable, respectively unstable, manifolds at u∗ which are C1 in Xp and tangent to
the stable, respectively unstable, subspaces of the linear operator −A0. We prove that the
stable, respectively unstable, manifolds consist precisely of the solutions to (1) which exist
and stay in a ball in Xp centered at u∗ for all t ≥ 0, respectively for all t ≤ 0. Moreover,
these solutions converge exponentially to u∗ in the norm of W 2m

p (�; C
N) as t → ∞,

respectively as t → −∞.
There is a vast literature on the well–posedness of nonlinear parabolic equations which

we cannot discuss in detail here. We refer to the recent survey [7] presenting, in particular,
the available approaches to the subject. But we want to point out that most of the existing
results impose restrictions on the structure of the boundary conditions. Many works deal
with reaction diffusion systems of second order and consider conormal boundary conditions
plus lower order terms, see e.g., [23], [39]. Other authors consider quasilinear boundary
conditions which can be absorbed into the domains of generators A0(u), see e.g., [1], [3],
[5], [8], [10], [11], [33], [37], [40], where additional lower order terms are admitted in
some papers. General boundary conditions were studied for a single equation of second
order in [9], [22], [28, Chap. XIII], [30, §8.5.3] in theCα–setting (even for a fully nonlinear
differential equation) and in [41] in our setting.

Fully nonlinear boundary conditions appear naturally in the treatment of free boundary
problems, see e.g., [9], [19] and the survey [20], and when considering diffusion through
interfaces, see e.g., [27]. The results of the present paper do not directly cover such problems,
but we think that our methods can be generalized in order to deal with moving boundaries
and transmission problems in future work.

Our approach relies on the results from [15] on the property of maximal regularity of
typeLp for linear in homogeneous initial boundary value problems, as stated in Theorem 2.
(We refer to [14], [15], [28], [30] for its prehistory.) This theorem implies that the lineariza-
tion of (1) possesses a solution in E1 if and only if the initial value and the inhomogeneities of
the linear problem belong to a certain space D defined (20). This space contains precisely
the class of data resulting from the linearization of (1), see (28). The celebrated paper
[11] by G. Da Prato and P. Grisvard initiated the approach to fully nonlinear and quasi-
linear parabolic problems via maximal regularity in a semigroup framework. Besides the
Lp–setting, there are several function spaces where one can obtain analogous properties of
maximal regularity, see e.g., [6] or [7] for a discussion. We also refer to the monograph [30]
devoted to the study and application of maximal regularity in the Hölder setting. We employ
the Lp–setting since the Lp norm in the state space is relatively simple and weak, and still
the nonlinearities and the initial conditions are understood in a classical sense. One also
obtains weaker conditions for the global solvability than in the Cα–setting, cf. Theorem 14
and [5], [33]. We note that one cannot treat fully nonlinear differential equations within the
Lp–setting.
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Our proof of local existence and uniqueness follows the lines of [41]. But we are not
aware of any proofs for the smoothing properties shown in Theorem 14 for quasilinear
equations with fully nonlinear boundary conditions. (See e.g., [3], [8], [33] for earlier
results.) Hölder regularity of fully nonlinear problems was studied in [30, §8.5.3]. The
principle of linearized stability was established for various classes of nonlinear equations
with special boundary conditions in e.g., [17], [21], [25], [29], [30], [32]. Local invariant
manifolds for parabolic problems are well understood in the semilinear case, see in particular
[26]. G. Da Prato and A. Lunardi constructed local stable, center and unstable manifolds
for fully nonlinear problems with linear boundary conditions in a Hölder setting, see [12]
and further [25], [30], [31] for related contributions. In [37] local center manifolds were
investigated for quasilinear problems with conormal boundary conditions plus lower order
terms. We are only aware of one paper, [9], dealing with invariant manifolds for fully
nonlinear boundary conditions. There the unstable manifold was constructed for a single
second order equation. In the current paper, we construct both stable and unstable manifolds,
and the proof of our Theorem 17 indicates that the nonlinear restriction expressed by M
enters only in the stable case explicitely. Other locally invariant, in particular center,
manifolds will be treated in another paper (in preparation).

We establish both the local regularity and the asymptotic behavior within the same
approach. We linearize the equations (1) at a given solution u∗ (which is a steady state in the
construction of the invariant manifolds), leading to the equations (28). The linear regularity
result Theorem 2 allows to understand (28) as a fix point problem in E1 for the solutions of
(1). This problem can be solved by means of the implicit function theorem. However, in
contrast to previous works one has to take care of the compatibility conditions. Therefore
we have to incorporate certain correction terms which guarantee that the compatibility
conditions are fulfilled, see (76) and (82). In this way we prove in Theorem 14 our regularity
results, using also the scaling technique from [8]. In Theorem 17 we solve the fix point
equation in spaces of exponentially decaying function on R±; thus obtaining solutions of
(1) with the asymptotic behavior one expects for the stable and unstable manifolds. An
additional effort is needed to show that, in fact, the initial values of the resulting decaying
solutions define the local manifolds with the desired properties.

As indicated above, the spectrum of the generator A0 = A∗|ker(B∗) determines much
of the asymptotic behavior of solutions near the steady state u∗. Observe that A0 does
not directly appear in our problem (1) and also not in the construction of its solutions in
Section 4. The relationship between A0 and (1) becomes clear by means of an approach
frequently used in boundary control theory, see e.g., [16], [36], and also [5, §11], [24], [30,
p.200], [37, §8] for related techniques. Adapting this approach to the problem at hands,
we derive in Proposition 6 a formula for the solutions of the linear problem (19) in terms
of the semigroup T (·) generated by −A0 and its extrapolation, cf. [6], [18]. Although this
formula does not help much in questions of local regularity, it does allow to invoke the
exponential dichotomy of T (·) in the study of the asymptotic behavior of the solutions to
(1), cf. (38).
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Our setting and the main concepts are described in Section 2, where also some aux-
iliary results are proved. Based on Theorem 2 and Proposition 6, we show the maximal
regularity of the linear problem on R+ and R− in Propositions 8 and 9, respectively. The
technically most demanding result is Proposition 10 which establishes the continuous differ-
entiability of the substitution (or Nemytskii) operators appearing in our fix point problems.
Here the main difficulties arise from the (rather unpleasant) fact that the boundary data of
the linear problem (19) live in the anisotropic Slobodetskii spaces defined in (14). The main
results on local existence and regularity and on the asymptotic behavior are established in
Sections 4 and 5, respectively. In Section 6 we study a reaction diffusion system in order
to illustrate the spectral condition iR ⊂ ρ(A0).

Notation. We setDk = −i∂k = −i∂/∂xk and use the multi index notation. The k–tensor
of the partial derivatives of order k is denoted by ∇k , and we let ∇ku = (u,∇u, · · · ,∇ku).
For an operator A on a Banach space we write dom(A), ker(A), ran(A), σ(A), and ρ(A)
for its domain, kernel, range, spectrum, and resolvent set, respectively. B(X, Y ) is the
space of bounded linear operators between two Banach spaces X and Y . For an open
set U with boundary ∂U , Ck(U) (resp., BCk(U), BUCk(U), Ck0 (U)) are the spaces of
k–times continuously differentiable functions u on U (such that u and its derivatives up to
order k are bounded, bounded and uniformly continuous, vanish at ∂U and at infinity (if
U is unbounded), respectively), where BCk(U) is endowed with its canonical norm. For
Ck(U), BCk(U), BUCk(U), we require in addition that u and its derivatives up to order
k have a continuous extension to ∂U . For unbounded U , we write Ck0 (U) for the space of
u ∈ Ck(U) such that u and its derivatives up to order k vanish at infinity. By Wk

p(U) we
designate the Sobolev spaces, see e.g., [2, Def.3.1]. A generic constant will be denoted by
c; by ε : R+ → R+ we denote a generic nondecreasing function with ε(r) → 0 as r → 0.
Finally, J ⊂ R is a closed interval.

2. Setting and preliminaries

Let � ⊂ R
n be an open connected set with a compact boundary ∂� of class C2m and

outer unit normal ν(x), where m ∈ N. Note that � is either bounded or an unbounded
exterior domain. Throughout this paper, we fix a finite exponent p with

p > n+ 2m. (2)

Let E = C
N with B(E) = C

N×N for some fixed N ∈ N. For a C
N–valued function

u(t) = u(t, x), t ≥ 0, x ∈ �, we investigate the quasilinear initial boundary value problem
with fully nonlinear boundary conditions given by

∂tu(t)+ A(u(t))u(t) = F(u(t)), on �, a.e. t > 0,

Bj (u(t)) = 0, on ∂�, t ≥ 0, j ∈ {1, · · · ,m}, (3)

u(0) = u0, on �.
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Here we use the maps

[A(u)v](x) =
∑

|α|=2m

aα(x, u(x),∇u(x), · · · ,∇2m−1u(x))Dαv(x), x ∈ �,

[F(u)](x) = f (x, u(x),∇u(x), · · · ,∇2m−1u(x)), x ∈ �,
[Bj (u)](x) = bj (x, u(x),∇u(x), · · · ,∇mj u(x)), x ∈ ∂�, (4)

for functions u ∈ BC2m−1(�; C
N), resp. u ∈ Cmj (�; C

N) in the last line of (4), and
v ∈ W 2m

p (�; C
N), integers mj ∈ {0, 1, . . . , 2m− 1}, and coefficients satisfying

(R) aα ∈ C1(E × En × · · · × E(n
2m−1);BC(�; B(E))) for α ∈ N

n
0 with |α| = 2m,

aα(x, 0) −→ aα(∞) in B(E) as x → ∞, if � is unbounded,
f ∈ C1(E × En × · · · × E(n

2m−1);BC(�;E)),
bj ∈ C2m+1−mj (∂�× E × En × · · · × E(n

mj );E) for j ∈ {1, · · · ,m}.

We set B = (B1, · · · , Bm). We point out that, for a fixed u0 ∈ BC2m−1(�; C
N), A(u0)

is a linear differential operator of order 2m with bounded coefficients; whereas F contains
all terms involving only derivatives of order |α| < 2m. The boundary term Bj (u0)(x)

is defined in the following way: One computes ∇ku0 in �, then one takes the trace γ at
∂� and inserts x ∈ ∂�, and finally one applies bj . Usually we do not use γ explicitly
in our notation, in particular if it is applied to a function being continuous up to ∂�. We
fix a numbering of the components of ∇k so that a partial derivative ∂βu0(x) of order
|β| = k is inserted at a fixed position called l(β, k) into the functions aα , f , and bj . Given
u0 ∈ Cmj (�; C

N), we further define

[B ′
j (u0)v](x) = (∂zbj )(x, u0(x),∇u0(x), · · · ,∇mj u0(x)) · γ∇mj v(x)

=
mj∑
k=0

(∂zkbj )(x, u0(x),∇u0(x), · · · ,∇mj u0(x)) γ∇kv(x)

=
mj∑
k=0

∑
|β|=k

ik (∂l(β,k)bj )(x, u0(x),∇u0(x), · · · ,∇mj u0(x)) γD
βv(x) (5)

for x ∈ ∂�, v ∈ Cmj (�; C
N), and j ∈ {1, · · · ,m}. Here ∂z = (∂z0 , · · · , ∂zmj ) denotes

the partial derivatives with respect to the variables z = (z0, z1, · · · , zmj ) ∈ E × En

× · · · × E(n
mj ) and ∂zkbj (x, z) ∈ B(E(nk), E) has the nk components ∂l(β,k)bj . Observe

that B ′
j (u0) is a linear differential operator of order mj with bounded coefficients acting

from a space of functions on � to a space of functions on ∂�. In Corollary 12 we show
that B ′

j (u0) is in fact the derivative of u �→ Bj (u) at u = u0 in a suitable topology. We set
B ′(u0) = (B ′

1(u0), · · · , B ′
m(u0)).
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The symbols of the principal parts of the linear differential operators are the matrix–
valued functions given by

A#(x, z, ξ) =
∑

|α|=2m

aα(x, z) ξ
α, Bj#(x, z, ξ) =

∑
|β|=mj

imj (∂l(β,mj )bj )(x, z) ξ
β

for x ∈ �, z ∈ E × · · · × E(n
2m−1) and ξ ∈ R

n, resp. x ∈ ∂�, z ∈ E × · · · × E(n
mj )

and ξ ∈ R
n. We further set A#(∞, ξ) = ∑

|α|=2m aα(∞) ξα if � is unbounded. One
defines the normal ellipticity and the Lopatinskii–Shapiro condition for A(u0) and B ′(u0)

at a function u0 ∈ C2m−1
0 (�; C

N) as follows:

(E) σ(A#(x,∇2m−1u0(x), ξ)) ⊂ {λ ∈ C : Re λ > 0} =: C+ and (if � is unbounded)
σ(A#(∞, ξ)) ⊂ C+, for x ∈ � and ξ ∈ R

n with |ξ | = 1.
(LS) Let x ∈ ∂�, ξ ∈ R

n, and λ ∈ C+ with ξ ⊥ ν(x) and (λ, ξ) = (0, 0). The function
ϕ = 0 is the only solution in C0(R+; C

N) of the ode system

λϕ(y)+ A#(x,∇2m−1u0(x), ξ + iν(x)∂y)ϕ(y) = 0, y > 0, (6)

Bj#(x,∇mj u0(x), ξ + iν(x)∂y)ϕ(0) = 0, j ∈ {1, · · · ,m}. (7)

We refer to [5], [14], [15], and the references therein for more information concerning
these conditions. In Section 6 we discuss a second order reaction–diffusion system as an
example. We note a perturbation result for (E) and (LS) which was shown in Theorem 2.1
of [5] for the case m = 1. So we only sketch its proof.

REMARK 1. Assume that (R) holds and that (E) and (LS) hold for some u0 ∈ C2m−1
0

(�; C
N). Take another function u1 ∈ C2m−1

0 (�; C
N). Then (E) is valid for u1 provided

that |u0 − u1|BC2m−1 is sufficiently small. We consider the equations in (LS) for a given
u ∈ C2m−1

0 (�; C
N) (instead of u0) and for fixed x ∈ ∂�, ξ ∈ R

n, λ ∈ C+ with ξ ⊥ ν(x)

and (λ, ξ) = (0, 0). Using (E), we may rewrite the N–dimensional differential equation
(6) of order 2m as an autonomous first order ode of dimension 2mN with corresponding
N–dimensional boundary conditions Bj (u)v

(j)(0) = 0, j ∈ {1, · · · ,m}, cf. [14, p.73].
The resulting coefficient matrix A(u) is hyperbolic by [14, Prop.6.1]. Moreover, it can be
seen as in the proof of Theorem 2.1 in [5] that A(u) has mN eigenvalues with negative
real parts. Let P(u) be the Riesz projection from C

2mN onto the stable subspace of A(u).
Hence, the equation (6) has amN–dimensional solution space inC0(R+; C

N) isomorphic to
P(u)C2mN . Observe that the Lopatinskii–Shapiro condition is equivalent to the surjectivity
of the map B(u)P (u) : C

2mN → C
mN , where B(u) = (B1(u), · · · ,Bm(u)). As a result, if

|u0 − u1|BC2m−1 is sufficiently small, then (LS) also holds for u1.

In this paper we need (E) and (LS) to obtain the maximal regularity of linearizations of
(3), see Theorem 2 below. To state this result, we have to introduce spaces of functions on
�, ∂�, J ×�, and J × ∂�, respectively. We first put

X0 = Lp(�; C
N), X1 = W 2m

p (�; C
N), Xp = W

2m(1−1/p)
p (�; C

N),
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and denote the norms of these spaces by | · |0, | · |1, and | · |p, respectively. Various equivalent
norms of the Slobodetskii spacesWs

p are discussed in [2, Chap.VII], [38, §4.4]. We use the
‘intrinsic’ norm given by

|v|Ws
p(�)

= |v|Lp(�) +
∑
|α|=k

[∂αv]Wσ
p (�)

,

[w]pWσ
p (�)

=
∫∫

�2

|w(y)− w(x)|p
|y − x|n+σp dx dy,

for s = k + σ with k ∈ N0 and σ ∈ (0, 1), see [2, Thm. 7.48], [38, Rem. 4.4.1.2].
Occasionally we use without further notice that Ws

p coincides with the real interpolation
space (Lp,Wl

p)s/l,p if l ∈ N and s ∈ (0, l) is not an integer. (In our setting this fact can be
shown as the results in [38, §4.3.1] using [2, Thm. 4.26].) We note that X1 ↪→ Xp ↪→ X0

and that

Xp ↪→ C2m−1
0 (�; C

N) (8)

by (2) and standard properties of Sobolev spaces, cf. [38, §4.6.1]. Let I ⊂ R be an interval
(maybe, not closed) containing more than a point. Then we introduce the function spaces

E0(I ) = Lp(I ;Lp(�; C
N)) = Lp(I ;X0),

E1(I ) = W 1
p(I ;Lp(�; C

N)) ∩ Lp(I ;W 2m
p (�; C

N)) = W 1
p(I ;X0) ∩ Lp(I ;X1),

equipped with the natural norms. Mostly, we deal with closed intervals which are denoted
by J instead of I .

We will look for solutions of (3) in the space E1([0, T ]). Since we want to insert
functions of the class C2m−1 into the nonlinearities, the following embedding is crucial for
our approach:

E1(I ) ↪→ BUC(I ;Xp) ↪→ BUC(I ;C2m−1
0 (�; C

N)), (9)

see [6, Thm. III.4.10.2] for the first and (8) for the second embedding. We denote by
c0 = c0(I ) the maximum of the norms of the first embedding in (9) and of E1(I ) ↪→
BUC(I ;C2m−1

0 (�; C
N)). We point out that one can choose the same c0 for intervals of

length greater than a fixed T0 > 0, see [6, Lem.III.4.10.1]. Moreover, one can choose an
I–independent constant c0 for functions vanishing at the left end point of I . (If u is given
on [0, T ], say, then reflect it at T and extent it by 0 to [2T ,∞). This extension operator is
bounded from {u ∈ E1([0, T ]) : u(0) = 0} to E1(R+) independently of T .)

We next discuss several mapping properties of traces in time and space. The trace
operator at time t = 0 is denoted by γ0. Lemma 3.7 of [15] shows that

γ0 ∈ B(E1([0, 1]),Xp) has a bounded right inverse. (10)
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Recall that the spatial trace operator γ at ∂� induces continuous maps

γ : Ws
p(�; C

N) → W
s−1/p
p (∂�; C

N) (11)

for 1/p < s ≤ 2m if s − 1/p is not an integer, and that these maps have bounded right
inverses, see [2, Thm.7.53], [38, §4.7.1]. Here the Sobolev–Slobodetskii spaces on ∂� are
defined via local charts, see [2, §7.51], [38, Def.3.6.1]. We set

Y0 = Lp(∂�; C
N), Yj1 = W

2mκj
p (∂�; C

N), Yjp = W
2mκj−2m/p
p (∂�; C

N)

for j ∈ {1, · · · ,m} and the number

κj = 1 − mj

2m
− 1

2mp
. (12)

Since 2mκj = 2m−mj − 1/p, (11) and (2) imply that

γ ∂β ∈ B(X1, Yj1) ∩ B(Xp, Yjp), |β| ≤ mj . (13)

We let Y1 = Y11 ×· · ·×Ym1 and Yp = Y1p×· · ·×Ymp. The boundary data of our linearized
equations will be contained in the spaces

Fj (J ) = W
κj
p (J ;Lp(∂�; C

N)) ∩ Lp(J ;W 2mκj
p (∂�; C

N))

= W
κj
p (J ;Y0) ∩ Lp(J ;Yj1), j ∈ {1, · · · ,m},

(14)

endowed with their natural norms, where F(J ) := F1(J )× · · · × Fm(J ). If the context is
clear, we also write E0 = E0(R±), E1 = E1(R±), and F = F(R±). Moreover,

Fj (J ) ↪→ BUC(J ;Yjp) ↪→ BUC(J × ∂�) and

γ0 ∈ B(Fj ([0, 1]), Yjp) has a bounded right inverse.
(15)

Here the second embedding follows from Sobolev’s embedding theorem using (2). For
∂� = R

n−1, the first embedding is a consequence of Proposition 3 in [34] applied to
(I − �)m. Similarly, Proposition 4 in [34] gives the asserted right inverse of γ0 in this
case. The corresponding assertions for � with compact boundary of class C2m can then
be deduced via local change of coordinates, cf. the end of Section 3 of [15]. The norms of
the embeddings in (15) depend on J as described after (9). Due to Lemma 3.5 of [15], the
spatial trace extends to a continuous operator

γ : W
1−mj/2m
p (J ;X0) ∩ Lp(J ;W 2m−mj

p (�; C
N)) → Fj (J ), (16)

with a bounded right inverse. Further, Lemma 3.8 of [15] yields the continuity of

∂β : E1(J ) → W
1−k/2m
p (J ;X0) ∩ Lp(J ;W 2m−k

p (�; C
N)), (17)
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for |β| ≤ k ≤ 2m. We note that the cited results from [15] are stated for J = R+ and
� = {x ∈ R

n : xn > 0}. From these results, the assertions (10), (16), and (17) follow
by local change of coordinates in x ∈ � and by reflection and extension in t as indicated
above.

We are now in a position to state the crucial existence and maximal regularity theorem
for the linear initial boundary value problem associated with (3). Fix T > 0, J =
[0, T ], and a function u∗ ∈ E1(J ). Assume that (R), (E), and (LS) hold at all u∗(t) ∈
C2m−1

0 (�; C
N), t ∈ J . The functions a∗

α(t, x) = aα(x,∇2m−1u∗(t, x)), |α| = 2m, belong
to BC(J × �; B(E)) and a∗

α(t, x) → aα(∞) as x → ∞ uniformly in t ∈ J , since
u∗ ∈ C(J ;C2m−1

0 (�; C
N)) due to (9). Set b∗

jβ(t, x) = ik(∂l(β,k)bj )(x,∇mj u∗(t, x)) for
k = |β| ≤ mj and j ∈ {1, · · · ,m}. (Recall the definition (5).) As in the proof of
Proposition 10 one verifies that b∗

jβ ∈ Fj (J ). Thus the differential operators

A(t) := A(u∗(t)) ∈ B(X1, X0), t ∈ J,
Bj∗(t) := B ′

j (u∗(t))) ∈ B(X1, Yj1) ∩ B(Xp, Yjp), (a.e.) t ∈ J, j ∈ {1, · · · ,m}, (18)

satisfy assumptions (E), (LS), (SD), (SB) from [15]. (The mapping properties of Bj∗(t)
follow from (13), b∗

jβ ∈ Fj (J ), [35, Thm.4.6.4.1], and (2). We note that B ′
j (u∗(t))) ∈

B(X1, Yj1) holds if b∗
jβ(t) ∈ Yj1.) So Theorem 2.1 of [15] yields the following result

(taking into account that κj > 1/p by (2)).

THEOREM 2. Let u∗ ∈ E1(J ) for J = [0, T ]. Assume that (R) holds and that (E) and
(LS) hold at all functions u∗(t) ∈ C2m−1

0 (�; C
N), t ∈ J . Define A(t) and Bj∗(t) by (18)

for t ∈ J = [0, T ] and j ∈ {1, · · · ,m}. Then there is a unique v =: S(v0, g, h) ∈ E1(J )

satisfying

∂tv(t)+ A(t)v(t) = g(t) on �, a.e. t > 0,

Bj∗(t)v(t) = hj (t) on ∂�, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on �,

(19)

if and only if

(v0, g, h) ∈ D(J ) := {(v0, g, h) ∈ Xp × E0(J )× F(J ) : B∗(0)v0 = h(0)}, (20)

where h := (h1, · · · , hm). In this case, there is a constant c1 = c1(J ) such that

‖v‖E1(J ) ≤ c1 (|v0|p + ‖g‖E0(J ) + ‖h‖F(J )). (21)

If the equivalence stated in Theorem 2 and estimate (21) hold, then we say that the initial
boundary value problem (19) has maximal regularity of typeLp on J . Using extension argu-
ments as above, one can check that c1 = c1(T0, T1) if T ∈ [T0, T1] and 0 < T0 < T1 < ∞,
and that c1 = c1(T1) if hj (0) = 0 for all j . (The continuity of the extension operator from
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F(J ) to F([0, T1]) can be shown via interpolation.) We point out that Theorem 2 gives
necessary and sufficient conditions for the regularity of data which give rise to a solution
of (19) in the desired regularity class E1. This fact forces us to use the spaces Xp and F if
we want to treat (3) in an Lp–setting.

Next, we only assume that (R) holds. Let u0, v ∈ BC2m−1(�; C
N) and w ∈ X1. In

order to linearize (3), we introduce the operators

[F ′(u0)v](x) =
2m−1∑
k=0

∑
|β|=k

ik (∂l(β,k)f )(x, u0(x),∇u0(x), · · · ,

∇2m−1u0(x)) D
βv(x),

[A′(u0)w]v(x) = A′(u0)[v,w](x)

=
∑

|α|=2m

2m−1∑
k=0

∑
|β|=k

(∂l(β,k)aα)

(x, u0(x), · · · ,∇2m−1u0(x)) [∂βv(x),Dαw(x)]

for x ∈ �, with a similar notation as in (5). Note that ∂l(β,k)aα(x, z) : E2 → E is bilinear.
For fixed u0 ∈ BC2m−1(�; C

N) and w ∈ X1, the maps F ′(u0) and A′(u0)w are linear
differential operators of order 2m−1. The matrix–valued coefficients ofF ′(u0) are bounded
due to (R) and u0 ∈ BC2m−1(�; C

N). Sobolev’s embedding theorem and (2) show that
Xp ↪→ W 2m−1

p (�; C
N). We can thus consider F ′(u0) as a bounded operator from Xp

to X0. By means of (8) and (R), we also obtain that F ′ : Xp → B(Xp,X0) is continuous
and that

|F ′(u0)|B(Xp,X0) ≤ c(r) for |u0|BC2m−1 ≤ r. (22)

Similarly, the coefficients ofA′(u0) are bounded, so that [v,w] �→ A′(u0)[v,w] is a bilinear
map from Xp ×X1 to X0 with

|A′(u0)[v,w]|0 ≤ c(|u0|BC2m−1) |v|BC2m−1 |w|1 ≤ c(|u0|BC2m−1) |v|p |w|1, (23)

employing again (8). Moreover, the map u0 �→ A′(u0) is continuous from Xp to
B(Xp,B(X1, X0)). On the other hand, using (R) and (8) one can easily check that there is
a nondecreasing function ε : R+ → R+ with ε(r) → 0 as r → 0 and

|F(u0 + v)− F(u0)− F ′(u0)v|0 ≤ ε(|v|p) |v|p,
|A(u0 + v)w − A(u0)w − [A′(u0)w]v|0 ≤ ε(|v|p) |v|p |w|1

(24)

for v ∈ Xp and fixed u0 ∈ Xp and w ∈ X1. Here ε depends on aα , f , and |u0|BC2m−1 , but
not on v or w. As a result, A′ and F ′ are in fact the Fréchet derivatives of the functions

A ∈ C1(Xp; B(X1, X0)) and F ∈ C1(Xp;X0), (25)
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respectively. We also note that A′ and F ′ are uniformly continuous on balls of Xp. We
further introduce the nondecreasing function

cu0(r) = sup{‖A′(u0 + v)‖B(Xp,B(X1,X0)) : |v|p ≤ r}.

Employing the identity [A(u0 +v)−A(u0)]w = ∫ 1
0 A

′(u0 +θv)[v,w] dθ , we can estimate

|[A(u0 + v)− A(u0)]w|0 ≤ cu0(r) |v|p |w|1 (26)

for u0, v ∈ Xp, w ∈ X1, and |v|p ≤ r.

We linearize (3) at its solution u∗ ∈ E1(J ) obtaining the linear operators

A∗(t) = A(u∗(t))+ A′(u∗(t))u∗(t)− F ′(u∗(t)) ∈ B(X1, X0),

Bj∗(t) = B ′
j (u∗(t)) ∈ B(Xp, Yjp) ∩ B(X1, Yj1), (27)

for t ∈ J , cf. (18). Set B∗(t) = (B1∗(t), · · · , Bm∗(t)). Suppose that (R) is true and that
(E) and (LS) hold for all u0 = u∗(t), t ∈ J . Then we can apply Theorem 2.1 of [15] also
to A∗(t) and B∗(t), t ∈ J , since the lower order terms A′(u∗(t))u∗(t) − F ′(u∗(t)) do not
enter into (E) and (LS) of [15] and their coefficients belong to L∞(J × �; B(E)) + Lp

(J ×�; B(E)). Thus Theorem 2 holds for A∗(t) and B∗(t), t ∈ J .
For a given function u ∈ E1([0, T ]), we set v(t) = u(t)− u∗(t) and v0 = u0 − u∗(0).

Since u∗ solves (3), the initial boundary value problem (3) for u is equivalent to the problem
for v given by

∂tv(t)+ A∗(t)v(t) = G(t, v(t)) on �, a.e. t > 0,

Bj∗(t)v(t) = Hj(t, v(t)) on ∂�, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on �. (28)

Here we have used the nonlinear maps G and H defined by

G(t, v) = (
A(u∗(t))v − A(u∗(t)+ v)v

) − (
A(u∗(t)+ v)u∗(t)− A(u∗(t))u∗(t)

−[A′(u∗(t))u∗(t)]v
) + (

F(u∗(t)+ v)− F(u∗(t))− F ′(u∗(t))v
)
, (29)

Hj(t, v) = B ′
j (u∗(t))v − Bj (u∗(t)+ v), j ∈ {1, · · · ,m}, (30)

for a given u∗ ∈ E1(J ) and all t ∈ J , v ∈ X1 and v ∈ Cmj (�; C
N), respectively. As

usual, we set H(t, v) = (H1(t, v), · · · , Hm(t, v)). The mapping properties of G and H
will be discussed in the next section. If u∗ does not depend on t , then we writeA∗ = A∗(t),
B∗ = B∗(t), G(v) = G(t, v), and H(v) = H(t, v).

DEFINITION 3. We say that a function u solves problem (3), (19) or (28) on a (possibly
noncompact) interval I containing 0 if u belongs to E1(J ) for each compact interval J ⊂ I

and satisfies the respective problem for (a.e.) t ∈ I .
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In the remainder of this section we discuss the setting for our investigations of the
asymptotic behavior of the nonlinear problem (3).

HYPOTHESES 4. (a) Condition (R) holds and (E), (LS) hold at some u∗ ∈ X1.
(b) In addition, u∗ is a steady solution of (3), i.e.,

A(u∗)u∗ = F(u∗) on �, B(u∗) = 0 on ∂�.

Assuming Hypothesis 4(a), we define A0 = A∗|ker(B∗), i.e.,

A0u = A∗u, u ∈ dom(A0) = {u ∈ X1 : Bj∗u = 0, j = 1, · · · ,m}. (31)

The operator −A0 generates an analytic semigroup T (·) in X0 due to Theorem 8.2 of [14].
We fix a real number µ such that µ+ A0 is invertible.

PROPOSITION 5. (a) Assume that Hypothesis 4(a) holds. Take (ϕ1, · · · , ϕm) ∈ Y1.
Then there is unique solution u ∈ X1 of the elliptic boundary value problem

(µ+ A∗)u = 0 on �,

Bj∗u = ϕj on ∂�, j ∈ {1, · · · ,m}. (32)

Setting N1(ϕ1, . . . , ϕm) := u, we further have N1 ∈ B(Y1, X1).
(b) Assume that (R) holds and that (E) and (LS) hold at some u0 ∈ Xp. Then there exists

a bounded right inverse Np : Yp → Xp of the operator B ′(u0) : Xp → Yp.

Proof. We first want to show that B∗ : X1 → Y1 and B ′(u0) : Xp → Yp are surjective.
First, take ϕ ∈ Y1 and a smooth scalar function χ with χ(0) = 0 and χ(t) = 1 for t ≥ 1.
Let h(t, x) = χ(t)ϕ(x), v0 = 0, and g = 0. Then there is a solution v ∈ E1([0, 2]) of
(19) for A(t) = A∗ and B∗(t) = B∗. Taking t ≥ 1 with v(t) ∈ X1, we obtain B∗v(t) = ϕ

due to (19). Second, let ϕ ∈ Yp. By (15), there exists h ∈ F([1, 2]) such that h(1) = ϕ

and ‖h‖F ≤ c |ϕ|p. Set h(t) = th(2 − t) for t ∈ [0, 1]. Then h ∈ F([0, 2]) and h(0) = 0.
Similarly, one extends u0 to a function u ∈ E1([0, 2]) such that u(1) = u0 and u(t) ∈ Xp
satisfies (E) and (LS) for t ∈ [0, 2] (use (10), Remark 1, and (9)). We consider the problem
(19) with A(t) = A(u(t)), B∗(t) = B ′(u(t)), the above h, v0 = 0, and g = 0. Now one
obtains as in the first step a function v(1) ∈ Xp with B ′(u0)v(1) = ϕ. Moreover, the map
Np : Yp → Xp given by ϕ �→ v(1) is bounded by (9) and (21).

Finally, we recall that µ + A∗ : dom(A0) → X0 is invertible and B∗ ∈ B(X1, Y1).
So we can apply Lemma 1.2 in [24] saying that X1 is the direct sum of dom(A0) and
ker(µ+ A∗) and that the restriction B∗ : ker(µ+ A∗) → Y1 is an isomorphism. Thus the
inverse N1 := [B∗|ker(µ+ A∗)]−1 ∈ B(Y1, X1) solves (32). �

We note that for smooth coefficients and N = 1 it was shown in [35, Thm.3.5.3] that
one can extend N1 to an operator in B(Yp,Xp) still solving (32). However, we do not need
such a result in this paper.
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We can now establish a representation formula of the solution to (19) which is crucial
for the study of the asymptotic behavior. The next proposition goes back to work in control
theory, see e.g., [16] or [36]. For the formulation of the result we have to introduce some
more concepts. Let X−1 denote the extrapolation space for A0, that is, the completion of
X0 with respect to the norm |u0|−1 = |(µ+A0)

−1u0|0, see e.g. [6, §V.1.3], [18, §II.5]. We
can extend A0 to an operator A−1 : X0 → X−1 generating an analytic semigroup T−1(·)
on X−1 satisfying T−1(t)|X0 = T (t). The semigroups T (·) and T−1(·) are similar via the
isomorphism µ+A−1 : X0 → X−1. We point out that A∗u = A−1u if u ∈ X1 \ dom(A0)

due to (35) below. We further employ the map

� := (µ+ A−1)N1 ∈ B(Y1, X−1). (33)

It can be seen that in our situation� has better mapping properties than in (33), but we will
not use this fact.

PROPOSITION 6. Assume that Hypothesis 4(a) holds and let v ∈ E1(J ), g ∈ E0(J ),
h ∈ Lp(J ;Y1), and v0 ∈ X0 for J = [0, T ]. Consider the equations

(a)


v̇(t)+ A∗v(t) = g(t),

B∗v(t) = h(t),

v(0) = v0,

(b)

{
v̇(t)+ A−1v(t) = g(t)+ (µ+ A−1)N1h(t),

v(0) = v0.

Then v satisfies (a) for a.e. t ∈ J if and only if it satisfies (b) for a.e. t ∈ J . If the solution
exists, it is given by

v(t) = T (t)v0 +
∫ t

0
T (t − s)g(s) ds +

∫ t

0
T−1(t − s)�h(s) ds, t ∈ J. (34)

Proof. Let u0 ∈ X1. Observe that B∗(u0 − N1B∗u0) = 0 by the definition of N1,
and thus u0 − N1B∗u0 ∈ dom(A0). Hence, (µ + A∗)u0 = (µ + A∗)(u0 − N1B∗u0) =
(µ+ A0)(u0 − N1B∗u0) = (µ+ A−1)(u0 − N1B∗u0), proving that

A−1u0 = A∗u0 + (µ+ A−1)N1B∗u0 for all u0 ∈ X1. (35)

Next, assume that v is a solution of (a). Since v ∈ E1 and N1B∗v = N1h, we can use (35)
with u0 = v(t) to conclude that v solves (b). Conversely, assume that v is a solution of (b).
Then (µ+ A−1)(v(t)− N1h(t)) = µv(t)− v̇(t)+ g(t) belongs to X0 for a.e. t ∈ J . So
we deduce v(t)−N1h(t) ∈ dom(A0), i.e., B∗(v−N1h) = 0. This fact implies the second
line in (a). To check the first line, we use (35) with u0 = v(t) again. �

HYPOTHESES 7. Assume that Hypothesis 4(a) holds and that iR ⊆ ρ(A0), where A0

is given by (31).
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Under Hypothesis 7, the semigroup T (·) has an exponential dichotomy, i.e, there exist the
(stable) projectionP ∈ B(X0) and a dichotomy exponent δ0 > 0 such that T (t)P = PT (t),
T (t) : ker(P ) → ker(P ) has an inverse denoted by TQ(−t), and

‖T (t)P ‖ , ‖TQ(−t)Q‖ ≤ ce−δ0t (36)

for t ≥ 0, where we setQ = I −P . The projectionQmapsX0 to dom(A0) ⊆ X1 because
Q is the Riesz projection corresponding to the bounded part of σ(−A0) located in the open
right half plane. (See [18] or [30].) Since P = I −Q, we have

P ∈ B(X1, X1) ∩ B(dom(A0), dom(A0)) ∩ B(Xp,Xp). (37)

Since also iR ⊂ ρ(A−1), the extrapolated semigroup T−1(·) has an exponential dichotomy
on X−1. Its dichotomy projections P−1 and Q−1 are extensions of P and Q, respectively.
Observe that Q−1 = QQ−1 ∈ B(X−1, dom(A0)).

3. The main operators

First we want to show the maximal regularity of (19) on the interval J = R+ if
Hypothesis 7 holds. Given (w0, g, h) ∈ D(R+), we define

L(w0, g, h)(t) = T (t)w0 +
∫ t

0
T (t − s)Pg(s) ds −

∫ ∞

t

TQ(t − s)Qg(s) ds (38)

+
∫ t

0
T−1(t − s)P−1�h(s) ds −

∫ ∞

t

TQ,−1(t − s)Q−1�h(s) ds

for t ≥ 0, cf. (20) and (33). Observe that TQ(t − s)Q = QTQ(t − s)Q and that Q−1� =
Q(µ + A0)QN1 is a bounded operator from Y1 into dom(A0). Taking into account (36),
we see that the Q–integrals converge even in dom(A0). We thus omit the index −1 in the
last integral. Setting

v0 = w0 −
∫ ∞

0
TQ(−s)Qg(s) ds −

∫ ∞

0
TQ(−s)Q�h(s) ds, (39)

we obtain

L(w0, g, h)(t) = T (t)v0 +
∫ t

0
T (t − s)g(s) ds +

∫ t

0
T−1(t − s)�h(s) ds (40)

for t ≥ 0. Observe that v0 ∈ Xp and B∗v0 = B∗w0 = h(0) because of ran(Q) ⊂ ker(B∗)
and (20). Therefore, due to Proposition 6 and Theorem 2, the function L(w0, g, h) =
S(v0, g, h) solves (19) on R+ with A(t) = A∗, B∗(t) = B∗, and the initial value v0. We
note that w0 belongs to ran(P ) if and only if

w0 = Pv0 or, equivalently, Qv0 = −
∫ ∞

0
TQ(−s)Q(g(s)+�h(s))ds, (41)

where v0 is defined by (39).
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PROPOSITION 8. Assume that Hypothesis 7 holds. Take g ∈ E0(R+), h ∈ F(R+), and
w0 ∈ Xp with B∗w0 = h(0). Then L(w0, g, h) ∈ Lp(R+;X0) if and only if w0 ∈ ran(P ),
i.e. (41) holds. In this case, L(w0, g, h) = L(Pv0, g, h) is the unique solution in E1(R+)
of (19) with A(t) = A∗, B∗(t) = B∗, and the initial value v0 given by (39) and, moreover,

‖L(w0, g, h)‖E1(R+) ≤ c′1 (|v0|p + ‖g‖E0(R+) + ‖h‖F(R+)). (42)

Proof. We write L(w0, g, h) = T (t)w0 + I1 + I2 + I3 + I4, where Ij are the integrals
in (38). Using (36) for T−1(t), the properties of Q and Proposition 5, one deduces that
‖I2‖E1(R+) ≤ c ‖g‖E0(R+) and ‖I4‖E1(R+) ≤ c ‖h‖Lp(R+;Y1). Proposition 6, Theorem 2,
and (40) further show that

‖L(w0, g, h)‖E1([0,2]) ≤ c1 (|v0|p + ‖g‖E0([0,2]) + ‖h‖F([0,2])).

Choose χ ∈ C∞([−1, 1]; R) with χ(−1) = 1 and χ = 0 on [−1/2, 1]. For n = 2, 3, . . . ,
set χn(s) = χ(s − n) for s ∈ [n − 1, n + 1] and hn = (1 − χn)h|[n − 1, n + 1]. For
t ∈ [n, n+ 1], we can write

I3(t) = P

∫ t

n−1
T−1(t − s)�hn(s) ds (43)

+T (t − n)T−1(
1
2 )P−1

∫ n− 1
2

n−1
T−1(n− 1

2 − s)χn(s)�h(s) ds

+T (t − n)T−1(1)
∫ n−1

0
T−1(n− 1 − s)P−1�h(s) ds

=: I31(t)+ I32(t)+ I33(t).

Due to hn(n− 1) = 0, Theorem 2 combined with Proposition 6 and (37) yields

‖I31‖E1([n,n+1]) ≤ c ‖hn‖F([n−1,n+1]) ≤ c ‖h‖F([n−1,n+1]).

We can sum the p–th power of this inequality employing

∞∑
n=2

[hj ]p
W
κj
p ([n−1,n+1];Y0)

=
∞∑
n=2

∫ n+1

n−1

∫ n+1

n−1

|hj (t)− hj (s)|pY0

|t − s|1+κjp dt ds

≤
∞∑
n=2

∫ n+1

n−1

∫ ∞

1

|hj (t)− hj (s)|pY0

|t − s|1+κjp dt ds ≤ 2 [hj ]p
W
κj
p (R+;Y0)

.

Since T−1(τ ) = T (τ/2)T−1(τ/2) : X−1 → dom(A0) for τ > 0, we further deduce from
(36) for T−1(t) that

‖I32‖E1([n,n+1]) ≤ c ‖h‖Lp([n−1,n];Y1) ,

|I33(t)|1 + |∂t I33(t)|0 ≤ c

∫ n−1

0
e−δ0(n−1−s)|h(s)|Y1 ds ≤ c

∫ t

0
e−δ0(t−s)|h(s)|Y1 ds.
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These estimates imply that ‖I3‖E1([2,∞)) ≤ c ‖h‖F(R+). In a similar way one can treat I1.
Finally, t �→ T (t)w0 belongs toLp([2,∞);X0) if and only ifw0 ∈ ran(P ). In this case we
have ‖T (·)w0‖E1([2,∞)) ≤ c |w0|0. The proposition now follows by combining the above
facts. �

We further need a modification of Proposition 8 for backward solutions of (19) on R−.
Let v0 ∈ X0, g ∈ E0(R−), and h ∈ F(R−). Assume that v ∈ E0(R−) satisfies v(0) = v0

and

v(t) = T (t − τ)v(τ )+
∫ t

τ

T (t − s)g(s) ds +
∫ t

τ

T−1(t − s)�h(s) ds (44)

for all τ < t ≤ 0. One can verify as in (43) thatv ∈ E1(J ) for each intervalJ = [a, 0] ⊂ R−
and that v solves (the analogue of) (19) on such intervals with the initial value v(a) (using
Proposition 6 and Theorem 2). We rewrite (44) as

v(t) = T (t − τ)[Pv(τ)−
∫ τ

−∞
T−1(τ − s) P−1(g(s)+�h(s)) ds]

+
∫ t

−∞
T−1(t − s) P−1(g(s)+�h(s)) ds

+T (t − τ)Qv(τ)+
∫ t

τ

T (t − s)Q(g(s)+�h(s)) ds , (45)

using (36). The last line is equal to Qv(t) due to (44), so that we derive

Pv(t) = T (t − τ)[Pv(τ)−
∫ τ

−∞
T−1(τ − s)P−1 (g(s)+�h(s)) ds]

+
∫ t

−∞
T−1(t − s)P−1 (g(s)+�h(s)) ds.

There is a sequence τn → −∞ such that v(τn) → 0 in X0. Letting τ = τn → −∞ in the
above equation and taking t = 0, we thus obtain

Pv(t) =
∫ t

−∞
T−1(t − s)P−1(g(s)+�h(s)) ds, (46)

Pv0 = Pv(0) =
∫ 0

−∞
T−1(−s)P−1(g(s)+�h(s)) ds, (47)

by means of (36). If we first set t = 0 in (45) and then replace τ by t , we deduce

Qv(0) = TQ(−t)Qv(t)+
∫ 0

t

T−1(−s)Q(g(s)+�h(s)) ds. (48)



554 Y. Latushkin, J. Prüss and R. Schnaubelt J.evol.equ.

Combining (46) and (48), we see that v(t) is equal to

L−(v0, g, h)(t) := TQ(t)Qv0 +
∫ t

−∞
T (t − s)Pg(s) ds −

∫ 0

t

TQ(t − s)Qg(s) ds

+
∫ t

−∞
T−1(t − s)P−1�h(s) ds −

∫ 0

t

TQ(t − s)Q�h(s) ds (49)

for t ≤ 0. Conversely, if (47) holds, then the function L−(v0, g, h) satisfies (44) and
L−(v0, g, h)(0) = v0. Therefore L−(v0, g, h) is a solution of (19) on R− with the final
value v0. The following result can now be proved as Proposition 8.

PROPOSITION 9. Assume that Hypothesis 7 holds. Let g ∈ E0(R−), h ∈ F(R−), and
v0 ∈ X0. Consider problem (19) on R− with A(t) = A∗, B∗(t) = B∗, and the final value
v(0) = v0. Then there is a solution v of (19) on R− belonging to Lp(R−;X0) if and only
if (47) holds. In this case, v = L−(v0, g, h) is the unique solution of (19) in E1(R−) with
the final value v0 and

‖L−(v0, g, h)‖E1(R−) ≤ c′1 (|Qv0|0 + ‖g‖E0(R−) + ‖h‖F(R−)). (50)

We will apply the above propositions mostly in ‘rescaled’ versions since we have to work
in function spaces on J = R± with exponential weight. We set eδ(t) = eδt for t ∈ R and
δ ∈ R, and introduce the spaces

Ek(R±, δ) = {v : eδv ∈ Ek(R±)} (k = 0, 1), F(R±, δ) = {v : eδv ∈ F(R±)}
endowed with the norms

‖v‖Ek(R±,δ) = ‖eδv‖Ek(R±) (k = 0, 1), ‖v‖F(R±,δ) = ‖eδv‖F(R±).

We also use the analogous norms on compact intervals J . Mostly we deal with the interval
J = R+ and abbreviate E0(R+, δ) = E0(δ) etc. Assume that Hypothesis 7 and (41) hold,
and take a solution v of (19) with A(t) = A∗ and B∗(t) = B∗. We define w(t) = eδt v(t)

for t ≥ 0, where |δ| < δ0 and δ0 is the exponential dichotomy constant, cf. (36). From
v = L(Pv0, g, h) we deduce

w = eδL(Pv0, g, h) = Lδ(Pv0, eδg, eδh), (51)

where Lδ is defined as L but for the generator −A0 + δ. Replacing F(u) by F(u)+ δu in
(R), we see that A0 − δ satisfies Hypothesis 7. Thus we can apply Proposition 8 to Lδ , so
that (51) yields

‖L(Pv0, g, h)‖E1(δ) = ‖w‖E1(R+) ≤ c2 (|v0|p + ‖g‖E0(δ) + ‖h‖E(δ)). (52)

We point out that c2 does not depend on δ with |δ| ≤ δ1 < δ0.
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We next study the Nemytskii operators G and H induced by the mapsG andH from (29)
and (30), assuming that (R) holds. For the intervals R± we take a t–independent function
u∗ ∈ X1 with B(u∗) = 0. For a compact interval J we take a function u∗ ∈ E1(J ).
For v belonging to E1(R±, δ) or E1(J ), respectively, we define G(v)(t) = G(t, v(t)) and
Hj (v)(t) = Hj(t, v(t)) for a.e. t ∈ J , setting H = (H1, · · · ,Hm) as usual. We stress the
restrictions on δ in the following result; also, the choice of +δ corresponds to R+ while the
choice of −δ corresponds to R−.

PROPOSITION 10. Assume that (R) holds, and let J be a compact interval.

(I) Let δ ≥ 0. Take u∗ ∈ X1 with B(u∗) = 0 for the intervals R±, or respectively take
u∗ ∈ E1(J ) for the compact interval J . Then the following assertions are valid.

(a) We have G ∈ C1(E1(R±,±δ),E0(R±,±δ)), respectively G ∈ C1(E1(J ),

E0(J )). Moreover, G(0) = 0, G
′(0) = 0, and

G
′(v)w = [F ′(u∗ + v)− F ′(u∗)]w + [A(u∗)− A(u∗ + v)]w (53)

+[A′(u∗)u∗ − A′(u∗ + v)(u∗ + v)]w

for v,w ∈ E1(±δ,R±), respectively v,w ∈ E1(J ).
(b) We have H ∈ C1(E1(R±,±δ),F(R±,±δ)), respectively H ∈ C1(E1(J ),F(J )).

Moreover, H
′(0) = 0 and

H
′(v)w = [B ′(u∗)− B ′(u∗ + v)]w (54)

for v,w ∈ E1(R±,±δ), respectively v,w ∈ E1(J ). Finally, H(0) = 0 if and
only if B(u∗(t)) = 0 for all t ∈ J .

(II) Take an arbitrary δ ∈ R and assume that u∗ ∈ X1 satisfies B(u∗) = 0 and that
v ∈ E1(R±, δ) with |v(t)|p ≤ r for t ∈ R±. Then there is a nondecreasing function
ε : R+ → R+ such that ε(r) → 0 as r → 0 and

‖G(v)‖E0(R±,δ) ≤ ε(r) ‖eδv‖Lp(R±;X1),

‖H(v)‖F(R±,δ) ≤ ε(r) ‖v‖E1(R±,δ),

‖eδH(v)‖Lp(R±;Y1) ≤ ε(r) ‖eδv‖Lp(R±;X1) , (55)

where ε can be chosen uniformly for δ in compact intervals.

Proof. (1) In the proof we restrict ourselves to the case J = R+. The other cases can
be treated in the same way. Also, the last assertion in (Ib) is an immediate consequence of
(30). We point out that for δ ≥ 0 we have

|w(t)|BC2m−1 ≤ c |w(t)|p ≤ c |eδtw(t)|p ≤ c ‖w‖E1(δ) , t ≥ 0, (56)
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due to (8), (9), and δt ≥ 0. In the following we always take δ ≥ 0 unless we are dealing
with part (II).

We define G
′(v) by (53) for v ∈ E1(δ). From (56), (22), (23), (24), and (26) we deduce

that G(v) ∈ E0(δ), G
′(v) ∈ B(E1(δ),E0(δ)) and that the first line of (55) holds. Further,

G
′(v) is the Fréchet derivative of G at v due to (56), (24), (26), δt ≥ 0, and the formula

G(v + w)−G(v)−G′(v)w
= (F (u∗ + v + w)− F(u∗ + v)− F ′(u∗ + v)w)

−(A(u∗ + v + w)− A(u∗ + v))w

−(A(u∗ + v + w)(u∗ + v)− A(u∗ + v)(u∗ + v)− [A′(u∗ + v)(u∗ + v)]w).

The continuity of v �→ G
′(v) follows from (56), (23), (25), and (26).

(2) We give the proof of the assertions concerning Hj for a fixed j ∈ {1, · · · ,m} which
will mostly be suppressed from the notation. We fix v ∈ E1(δ) and take w ∈ E1(δ) with
‖w‖E1(δ)

≤ r0 for a fixed, but arbitrary r0 > 0. In the following, the constants will depend
on v and r0, but not on w. Define H

′ by (54). One can verify that H(v) ∈ F(δ) and
H

′(v) ∈ B(E1(δ),F(δ)) by similar, but simpler arguments as used below. In view of (5)
and (30), we can write

−[H(t, v(t)+ w(t))−H(t, v(t))− [H′(v)w](t)](x)

= [B(u∗ + v(t)+ w(t))− B(u∗(t)+ v(t))− B ′(u∗ + v(t))w(t)](x)

= b(x,∇[u∗(x)+ v(t, x)+ w(t, x)])− b(x,∇[u∗(x)+ v(t, x)])

−(∂zb)(x,∇[u∗(x)+ v(t, x)]) · ∇w(t, x)
=: h(x,∇[u∗(x)+ v(t, x)],∇w(t, x)) (57)

where we set ∇ := ∇mj = (∇0,∇1, · · · ,∇mj ) and ∂z is the partial derivative of b with
respect to the corresponding arguments in E × En × · · · × E(n

mj ). (Recall that we have
suppressed the trace operator in front of all ∇ terms.) We set ξ = ∇[u∗(x)+ v(t, x)] and
η = ∇w(t, x) for fixed x ∈ ∂� and t ≥ 0. Then we obtain

h(x, ξ, η) = b(x, ξ + η)− b(x, ξ)− (∂zb)(x, ξ) · η, (58)

∂ξh(t, ξ, η) = (∂zb)(x, ξ + η)− (∂zb)(x, ξ)− (∂zzb)(x, ξ) · η, (59)

∂ηh(t, ξ, η) = (∂zb)(x, ξ + η)− (∂zb)(x, ξ). (60)

Assertion (R) and estimate (56) yield

|h(x, ξ, η)|, |∂ξh(x, ξ, η)| ≤ ε(|η|) |η|, |∂ηh(t, ξ, η)| ≤ c |η|, (61)

where c and ε(r) do not depend on x and are uniform for ξ, η in bounded sets. Using again
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(56) and δt ≥ 0, we derive

eδt |H(v(t)+ w(t))−H(v(t))− [H′(v)w](t)|Y0

≤ ε(|w(t)|BC2m−1) |eδtw(t)|BC2m−1 ,

‖eδ [H(v + w)− H(v)− H
′(v)w]‖Lp(R+;Y0)

≤ c ε(‖w‖E1(δ)) ‖eδw‖Lp(R+;X1) . (62)

The corresponding inequality for part (II) is shown similarly.
(3) We now consider the estimate involving Wκ

p (R+;Y0) for κ = κj , cf. (12) and (14).
We fix x ∈ ∂� and omit it in the notation. Then we can compute

h(∇(u∗ + v(t)),∇w(t))− h(∇(u∗ + v(s)),∇w(s)) (63)

=
∫ 1

0
(∂ξh)(∇(u∗ + v(s))+ θ [∇(u∗ + v(t))− ∇(u∗ + v(s))],∇w(t))dθ

·∇[u∗ + v(t)− (u∗ + v(s))]

+
∫ 1

0
(∂ηh)(∇(u∗ + v(s)),∇w(s)+ θ∇(w(t)− w(s)))dθ · ∇(w(t)− w(s))

for t, s ≥ 0. Set ϕ(t) = h(∇(u∗ + v(t)),∇w(t)) and ψ(t) = ∇[u∗ + v(t)]. Then (56),
(63), and (61) yield

|ϕ(t)− ϕ(s)|Y0 ≤ ε(|w(t)|BC2m−1) |w(t)|BC2m−1 |ψ(t)− ψ(s)|Y0

+c |w(t)|BC2m−1 |∇(w(t)− w(s))|Y0 (64)

for t, s ≥ 0. In view of (16) and (17), the map γ ∂β : E1(R+) → Wκ
p (R+;Y0) is continuous

for |β| ≤ mj . Combining this mapping property with (56), (64), Lemma 11 below, (62)
and δt ≥ 0, we derive

[eδ (H(v + w)− H(v)− H
′(v)w)]Wκ

p (R+;Y0) (65)

≤ c ε(‖w‖E1(δ)) ‖w‖E1(δ) + c ε(‖w‖BC(R+;Xp)) ‖w‖BC(R+;Xp) ‖eδ∇v‖Wκ
p (R+;Y0)

+c ‖w‖BC(R+;Xp) ‖eδ∇w‖Wκ
p (R+;Y0)

≤ c ε(‖w‖E1(δ)) ‖w‖E1(δ) ,

possibly changing ε. The corresponding estimate for (II) is shown in the same way.
(4) For the study of the space regularity we may restrict ourselves to the case � = {x ∈

R
n : xn > 0} and functions with support in the unit ball in R

n. The general case is then
deduced via local change of coordinates, see e.g., [2, §7.51]. We first consider the case
of highest order mj = 2m − 1, where Fj = Lp(R+;W 1−1/p(∂�)) ∩Wκ

p (R+;Lp(∂�)).
Since b ∈ C2 by (R), equation (58) yields

∂xh(x, ξ, η) = (∂xb)(x, ξ + η)− (∂xb)(x, ξ)− (∂z∂xb)(x, ξ) · η, (66)

|∂xh(x, ξ, η)| ≤ ε(|η|) |η|, (67)
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with c and ε having the same properties as in (61). We fix t ≥ 0 and suppress it from our
notation for a moment. Then we calculate

h(y,∇(u∗(y)+ v(y)),∇w(y))− h(x,∇(u∗(x)+ v(x)),∇w(x)) (68)

=
∫ 1

0
(∂xh)(x + θ(y − x),∇(u∗(y)+ v(y)),∇w(y))dθ · (y − x)

+
∫ 1

0
(∂ξh)(x,∇(u∗(x)+ v(x))+ θ [∇(u∗(y)+ v(y))

−∇(u∗(x)+ v(x))],∇w(y))dθ · ∇[u∗(y)+ v(y)− u∗(x)− v(x)]

+
∫ 1

0
(∂ηh)(x,∇(u∗(x)+ v(x)),∇w(x)+ θ∇(w(y)− w(x)))dθ

·∇(w(y)− w(x))

for x, y ∈ ∂�. Set ϕ(t, x) = h(x,∇(u∗(x)+v(t, x)),∇w(t, x)) andψ(t, x) = ∇[u∗(x)+
v(t, x)]. Employing only (61) and (67), we deduce from (68) that

|ϕ(t, y)− ϕ(t, x)| ≤ ε(|w(t)|BC2m−1) |w(t)|BC2m−1 (|y − x| + |ψ(t, y)− ψ(t, x)|)
+c |w(t)|BC2m−1 |∇(w(t, y)− w(t, x))| (69)

for x, y ∈ ∂�. Let K be the unit ball in R
n−1. Estimate (69) leads to

∞∫
0

epδt [ϕ(t)]p
W

1−1/p
p (∂�)

dt =
∞∫

0

∫∫
K2

epδt
|ϕ(t, y)− ϕ(t, x)|p

|y − x|n−2+p dx dy dt

≤ cε(‖w‖BC(R;BC2m−1))
p

∞∫
0

|eδtw(t)|p1∫∫
K2

|y − x|p + |∇u∗(y)− ∇u∗(x)|p
|y − x|n−2+p dx dy dt

+cε(‖w‖BC(R;BC2m−1))
p ‖w‖p

BC(R;C2m−1)

∞∫
0

epδt

∫∫
K2

|∇v(t, y)− ∇v(t, x)|p
|y − x|n−2+p dx dy dt

+c ‖w‖p
BC(R;BC2m−1)

∞∫
0

∫∫
K2

epδt
|∇w(t, y)− ∇w(t, x)|p

|y − x|n−2+p dx dy dt

≤ c ε(‖w‖E1(δ))
p ‖w‖p

E1(δ)
(1 + ‖eδv‖pLp(R+;X1)

)+ c ‖w‖p
E1(δ)

‖eδw‖p
Lp(R+;X1)
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due to (56), Sobolev’s embedding theorem, (2), (11) and the fact that δt ≥ 0. Therefore,
changing ε if needed, we arrive at

‖eδ [H(v + w)− H(v)− H
′(v)w]‖Lp(R+;Y1) ≤ c ε(‖w‖E1(δ)) ‖w‖E1(δ) . (70)

The corresponding estimate for the last line in (55) is shown in the same way.
(5) Next, we consider the space regularity case for generalmj ∈ {0, · · · , 2m−1}. Define

ϕ(x) = ϕ(x, ξ(x), η(x)) = h(x,∇mj [u∗(x)+ v(t, x)],∇mjw(t, x)) with h from (57) and
a fixed t ≥ 0. Take a multiindex β with |β| = 2m − 1 − mj . We want to verify that the
function ∂βϕ(x) is a function of the form h̃(x, ξ̃ , η̃), where ξ̃ = ∇2m−1[u∗(x) + v(t, x)]
and η̃ = ∇2m−1w(t, x), and that h̃ satisfies the analogues of (61) and (67). If this is the
case, we can check as in step (4) that (70) and the last line in (55) also hold for lower order
boundary terms. To this aim we claim that ∂γ ϕ(x)with |γ | = l ∈ {0, 1, · · · , 2m−mj −1}
is a linear combination of functions of the following type

[ψ(x, ξ(x)+ η(x))− ψ(x, ξ(x))− ∂2ψ(x, ξ(x)) · η(x)]P(ξ(x)),
[ψ(x, ξ(x)+ η(x))− ψ(x, ξ(x))]P(ξ(x))Q1(η(x)), (71)

ψ(x, ξ(x)+ η(x)) P (ξ(x))Q2(η(x)),

for (differing) functions ψ ∈ C2m+1−mj−l (∂�×E×· · ·×E(nmj );E) and products P and
Qk of partial derivatives ∂aξ(x) and ∂bη(x) having order |a|, |b| ≤ l +mj . The products
Q1, resp. Q2, contain at least 1, resp. 2, factors ∂bη(x). This assertion is easily checked
via induction over l using (R). For l = 2m− 1 −mj we thus obtain functions ψ ∈ C2 and
products P ,Qk with factors ∂αx (u∗(x)+v(t, x)) and ∂αx w(t, x) having order |α| ≤ 2m−1.
We compute the derivatives with respect to x, ξ̃ , η̃ of the functions in (71) as we did in
(59), (60), and (66). Taking into account (56) and (R), we can then derive (61) and (67) for
h̃(x, ξ̃ , η̃).

(6) Using similar arguments, one can check the continuity of the map v �→ H
′(v) from

E1(δ) to B(E1(δ),F(δ)). �

LEMMA 11. If Z is a Banach space, α ∈ (0, 1), and δ ∈ R, then

[eδf ]Wα
p (R+;Z) ≤ c ‖eδf ‖Lp(R+:Z) + c

[∫∫
|t−s|≤1

eδtp
|f (t)− f (s)|pZ

|t − s|1+αp ds dt

] 1
p

≤ c ‖eδf ‖Wα
p (R+;Z).

Proof. Let ϕ(τ) = τ−1−αp for |τ | ≥ 1 and ϕ(τ) = 0 for |τ | ≤ 1. Using Minkowski’s
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and Young’s inequalities, we calculate

[eδf ]Wα
p (R+;Z)

≤
[∫∫

|t−s|≥1

|eδtf (t)− eδsf (s)|pZ
|t − s|1+αp ds dt

] 1
p

+
[∫∫

|t−s|≤1

|eδtf (t)− eδsf (s)|pZ
|t − s|1+αp ds dt

] 1
p

≤ c ‖ϕ ∗ eδ|f |Z‖Lp(R+) +
[∫∫

|t−s|≤1
eδtp

|f (t)− f (s)|pZ
|t − s|1+αp ds dt

] 1
p

+
[∫∫

|t−s|≤1
epδs |f (s)|p |eδ(t−s) − 1|pZ

|t − s|1+αp dt ds

] 1
p

≤ c ‖eδf ‖Lp(R+;Z) + c

[∫∫
|t−s|≤1

eδtp
|f (t)− f (s)|pZ

|t − s|1+αp ds dt

] 1
p

.

The second estimate is shown in a similar way. �

COROLLARY 12. Assume that (R) holds. Then u0 �→ B(u0) belongs to C1(Xp;Yp)
with the derivative B ′(u0) given by (5).

Proof. LetR denote a bounded right inverse of γ0 ∈ B(E1([0, 1]),Xp), see (10). Define
H with u∗ = 0. Then � := γ0HR ∈ C1(Xp;Yp) and �′(u0) = B ′(0)u0 − B ′(u0) by
Proposition 10 and (15). Since B ′(0) ∈ B(Xp, Yp) by (18), the assertion follows. �

4. Local well–posedness and regularity

We start with the basic existence and uniqueness result for (3). For a single second order
equation the next proposition (and its proof) is a special case of Theorem 6.1.2 in [41].

PROPOSITION 13. Assume that condition (R) holds and that (E) and (LS) hold at a
function u0 ∈ Xp satisfying B(u0) = 0. Then there is a number T = T (u0) > 0 such that
the problem (3) has a unique solution u ∈ E1([0, T ]) ↪→ C([0, T ];Xp).

Proof. By (10) there exists a function u∗ ∈ E1(R+)with u∗(0) = u0. (We do not require
that u∗ solves (3).) Remark 1 combined with (9) gives a number T0 > 0 such that conditions
(E) and (LS) for A(u∗(t)) and B ′(u∗(t))) hold at the function u∗(t) for each t ∈ [0, T0].
Temporarily we define H(t, v) by (30) replacing u∗ in this equation by zero. Then we can
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write B ′(u∗)v − B(v) = H(v)− H
′(u∗)v for v ∈ E1([0, T0]) and the resulting Nemytskii

operator. Therefore Proposition 10 yields that

B ′(u∗)v − B(v) ∈ F([0, T0]) for v ∈ E1([0, T0]). (72)

Taking into account (9), (25), (72) and B(u0) = 0, Theorem 2 provides us with a solution
w ∈ E1([0, T0]) of the linear problem

∂tw(t)+ A(u∗(t))w(t) = F(u∗(t)) on �, a.e. t > 0,

B ′(u∗(t))w(t) = B ′(u∗(t))u∗(t)− B(u∗(t)) on ∂�, t ≥ 0, (73)

w(0) = u0, on �.

We define the space

�(T , ρ) = {v ∈ E1([0, T ]) : v(0) = u0, ‖v − w‖E1([0,T ]) ≤ ρ}
for ρ > 0 and T ∈ (0, T0]. The set �(T , ρ) is closed in E1([0, T ]). For a given u ∈
�(ρ, T ), we consider the linear problem

∂tv(t)+ A(u∗(t))v(t) = F(u(t))+ [A(u∗(t))− A(u(t))]u(t) on �, a.e. t > 0,

B ′(u∗(t))v(t) = B ′(u∗(t))u(t)− B(u(t)) on ∂�, t ≥ 0, (74)

v(0) = u0, on �.

Again, there is a solution v ∈ E1([0, T ]) of (74) thanks to Theorem 2, (9), (25), (72), and
B(u0) = 0. We define the map S : �(T , ρ) → E1([0, T ]) by setting S(u) := v. Notice
that u ∈ �(T , ρ) solves (3) if and only if u = S(u).

We want to show that S is a strict contraction on �(T , ρ) if T > 0 and ρ > 0 are small
enough. By (73) and (74), the function z = S(u)− w ∈ E1([0, T ]) satisfies

∂t z(t)+ A(u∗(t))z(t) = F(u(t))− F(u∗(t))+ [A(u∗(t))− A(u(t))]u(t) =: g(t),

B ′(u∗(t))z(t) = B ′(u∗(t))(u(t)− u∗(t))− (B(u(t))− B(u∗(t))) =: h(t),

z(0) = 0.

Observe that h(0) = 0 and h = H(u − u∗) − H(0), where H is defined via (30) with u∗
from the present proof. Using (21), (22), (26), Proposition 10, (9) and u ∈ �(ρ, T ), we
estimate

‖S(u)− w‖E1([0,T ]) ≤ c1 (‖g‖E0([0,T ]) + ‖h‖F([0,T ]))

≤ c ‖u− u∗‖Lp([0,T ];Xp) + c ‖u− u∗‖C([0,T ];Xp) ‖u‖Lp([0,T ];X1)

+c ε(‖u− u∗‖E1([0,T ])) ‖u− u∗‖E1([0,T ])

≤ c T
1
p (ρ + ‖w − u∗‖C([0,T ];Xp))+ c (ρ + ‖w − u∗‖C([0,T ];Xp))

(ρ + ‖w‖Lp([0,T ];X1))+ c ε(ρ + ‖w − u∗‖E1([0,T ])) (ρ + ‖w − u∗‖E1([0,T ])).
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Observe that the constants in the estimate above do not depend on T ∈ (0, T0] because of
h(0) = 0 and u(0)−w(0) = 0. Since w and u∗ are fixed with w(0)− u∗(0) = 0, we may
choose sufficiently small ρ1 ∈ (0, ρ0] and T1 ∈ (0, T0] such that ‖S(u)− w‖E1([0,T ]) ≤ ρ

if T ∈ (0, T1] and ρ ∈ (0, ρ1]. Consequently, S leaves �(T , ρ) invariant for T ∈ (0, T1]
and ρ ∈ (0, ρ1]. Next, take u, u ∈ �(T , ρ) and set v = S(u) and v = S(u). In view of
(74), the function z = v − v ∈ E1([0, T ]) fulfills

∂t z(t)+ A(u∗(t))z(t) = F(u(t))− F(u(t))+ [A(u∗(t))− A(u(t))](u(t)− u(t))

−[A(u(t))− A(u(t))]u(t),

B ′(u∗(t))z(t) = B ′(u∗(t))(u(t)− u(t))− (B(u(t))− B(u(t))),

z(0) = 0.

Due to H
′(0) = 0, the right hand side of the second identity is equal to

−[H(u− u∗)− H(u− u∗)− H
′(u− u∗)(u− u)] + (H′(0)− H

′(u− u∗))(u− u),

where H is defined with u∗ via (30). Now we can proceed as above and deduce that S has
the Lipschitz constant 1/2 on �(T , ρ) if we decrease T and ρ once more. As a result, we
have obtained a local solution u of (3) on [0, T ].

Assume there is a different solution û of (3) on [0, T ]. Then there are numbers t0, tn ∈
[0, T ) such that tn ↘ t0 as n → ∞, u(t) = û(t) for t ∈ [0, t0], and u(tn) = û(tn). We may
apply the above argument with some T ′, ρ′ > 0, the initial time t0, and the initial value
u(t0) =: u1 ∈ Xp satisfying B(u1) = 0. This leads to a contradiction establishing the
uniqueness assertion. �

We now introduce in a standard way the maximal existence interval for the solution with
initial value u0. Under the assumptions of Proposition 13, let t+(u0) be the supremum
of those T > 0 such that (3) has a solution u ∈ E1([0, T ]). Proposition 13 implies that
t+(u0) > 0. This solution is unique provided that (E) and (LS) hold at the function u(t)
for each t ∈ [0, t+(u0)).

Next, we establish our main well–posedness result. It says that (3) generates a local
semiflow on the nonlinear phase space

M = {u0 ∈ Xp : B(u0) = 0}, (75)

which is a C1 manifold in Xp due to Corollary 12. Moreover, the equation possesses
a smoothing effect because of the quasilinear structure. We write tu for the function
v(t) = tu(t). For a given u0 ∈ Xp, we set

X0
p = {z0 ∈ Xp : B ′(u0)z0 = 0}.

If u0 ∈ M, then X0
p is the tangent space of M at u0. Finally, if u0 ∈ Xp satisfies (E) and

(LS), then we define a projection P : Xp → X0
p by Pv0 = (I − NpB

′(u0))v0, using the
right inverse Np ∈ B(Yp,Xp) of B ′(u0) obtained in Proposition 5(b).
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THEOREM 14. Assume that condition (R) holds and that (E) and (LS) hold at a function
u0 ∈ Xp satisfying B(u0) = 0. Let u = u(·; u0) denote the unique solution of (3), and let
(E) and (LS) hold at the function u(t; u0) for each t ∈ [0, t+(u0)). Let T ∈ (0, t+(u0))

and J = [0, T ]. Then the following assertions are true.

(a) There is an open ballBρ(u0) inXp such that there exists a solutionw ∈ E1(J ) of (3)
for each initial valuew0 ∈ Bρ(u0) satisfyingB(w0) = 0. Moreover, there is an open
ballW 0 inX0

p centered at 0 and a map� ∈ C1(W 0; E1(J ))with uniformly bounded
derivative and �(0) = 0 such that w = u+�(P(w0 − u0)) for w0 ∈ Bρ(u0) with
B(w0) = 0.

(b) We have tu ∈ W 1
p(J ;X1) ∩ W 2

p(J ;X0), and thus u ∈ C1((0, T ];Xp) ∩ C2−1/p

((0, T ];X0) ∩ C1−1/p((0, T ];X1).
(c) Assume in addition that (E) and (LS) hold for all u1 ∈ Xp with B(u1) = 0. If the

number t+(u0) is finite, then ‖u‖E1([0,t+(u0))) = ∞ and u(t) does not converge in
Xp as t → t+(u0).

Proof. (a) For the solution u = u(t; u0) of (3) with the given initial value u0 we define
A∗(t), B∗(t), G(t), and H(t) for t ∈ J as in formulas (27), (29), and (30) but replacing
in these formulas u∗(t) by u(t; u0). Then w ∈ E1(J ) solves (3) with the initial value
w(0) = w0 ∈ Xp satisfying B(w0) = 0 if and only if v = w − u solves (28) with
the initial value v0 = w0 − u0 ∈ Xp satisfying B∗(0)v0 = H(0, v(0)). We recall that
S : D(J ) → E1(J ) is the solution operator of (19) with A∗(t) and B∗(t) on J given by
Theorem 2. We introduce the map

L : X0
p × E1(J ) → E1(J ); L(z0, v) = v − S(z0 + Npγ0H(v),G(v),H(v)). (76)

Observe that γ0 ∈ B(F(J ), Yp) by (15) and that H(0) = B(u) = 0. We further have
B∗(0)(z0 + Npγ0H(v)) = H(0, v(0)), i.e.,

� : X0
p × E0(J )× F(J ) −→ D(J ); �(z0, g, h) = (z0 + Npγ0h, g, h)

is a bounded linear map, cf. (20). Theorem 2 and Proposition 10 thus imply thatL(0, 0) = 0,
L ∈ C1(X0

p×E1(J ); E1(J )), and ∂2L(0, 0) = I . Therefore the implicit function theorem,

see e.g., [13, Cor.15.1], gives a ball Br0(0) in X0
p and a map � ∈ C1(Br0(0); E1(J )) such

that �(0) = 0 and L(z0,�(z0)) = 0 for z0 ∈ Br0(0). This equation, Theorem 2, and
Proposition 10 further yield

�′(z0) = S(I + Npγ0H
′(�(z0))�

′(z0),G
′(�(z0))�

′(z0),H
′(�(z0))�

′(z0)),

‖�′(z0)‖ ≤ c + c (‖G
′(�(z0))‖ + ‖H

′(�(z0))‖) ‖�′(z0)‖
(with the respective operator norms). Decreasing the radius r0 > 0, we can make the factor
in front of ‖�′(z0)‖ on the right hand side smaller than 1/2. So�′(z0) is uniformly bounded
for z0 in this smaller ball.
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If we start with a given function w0 ∈ Xp satisfying B(w0) = 0, then we set v0 =
w0 − u0 ∈ Xp and z0 = v0 − NpH(0, v0) = v0 − NpB

′(u0)v0 = Pv0. Hence, z0 ∈ X0
p

and |z0|p ≤ c |v0|p. So we can fix a number ρ > 0 such that |w0 − u0|p < ρ implies
|z0|p < r0. Then v = �(z0) ∈ E1(J ) solves (28) with the initial value v0, i.e., w = v + u

solves (3) with the initial value w0.
(b) Take numbers T > 0 and ε ∈ (0, 1) such that u is a solution of (3) on [0, T ′] with

T ′ = (1 + ε)T . Let J = [0, T ], λ ∈ (1 − ε, 1 + ε), and uλ(t) = u(λt). Then v = uλ is
the unique solution of the problem

∂tv(t)+ λA(v(t))v(t) = λF(v(t)), on �, a.e. t > 0,

B(v(t)) = 0, on ∂�, t ≥ 0, (77)

v(0) = u0, on �,

on [0, λ−1T ′]. We defineA∗(t) andB∗(t) as in part (a), and we temporarily setG(λ, t, v) =
−λA(v)v + A∗(t)v + λF(v) and H(t, v) = B∗(t)v − B(v). Then (77) is equivalent to

∂tv(t)+ A∗(t)v(t) = G(λ, t, v(t)), on �, a.e. t > 0,

B∗(t)v(t) = H(t, v(t)), on ∂�, t ≥ 0, (78)

v(0) = u0, on �.

Let G(λ, ·) and H be the Nemytskii operators forG(λ, ·) and H . As in Proposition 10, we
see that G ∈ C1((1−ε, 1+ε)×E1(J ); E0(J ))with ∂2G(1, u) = 0. Proposition 10 implies
that H ∈ C1(E1(J ); F(J )) with H

′(u) = 0, cf. (72). The function z0 = u0 − NpH(0, u0)

belongs to X0
p. Fixing this z0, we introduce the map

L0 : (1 − ε, 1 + ε)× E1(J ) → E1(J );
L0(λ, v) = v − S(z0 + Npγ0H(v),G(λ, v),H(v)),

where S is the solution operator of (19) for the operators A∗(t) and B∗(t). Since u solves
(3), we have L0(1, u) = 0. As in part (a), we see that L0 is a C1-map and ∂2L0(1, u) = I .
The implicit function theorem thus yields an ε′ ∈ (0, ε), a ball Bρ0(u) in E1(J ), and a map
� ∈ C1((1−ε′, 1+ε′); E1(J )) such that�(1) = u and�(λ) solves (78) with u0 replaced
by u0(λ) := [�(λ)](0). We further have

u0(λ) = z0 + NpH(0, u0(λ)) = u0 + Np(H(0, u0(λ))−H(0, u0)),

u0(λ)− u0 = −Np(B(u0(λ))− B(u0)− B ′(u0)(u0(λ)− u0)).

Therefore Proposition 5, Corollary 12 and (9) yield

|u0(λ)− u0|p ≤ cε(|u0(λ)− u0|p) |u0(λ)− u0|p
≤ cε(c ‖�(λ)−�(1)‖E1) |u0(λ)− u0|p
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for constants c and a function ε with ε(r) → 0 as r → 0 which do not depend on λ.
Decreasing ε′ > 0, we deduce that u0(λ) = u0, and thus�(λ) solves (77) provided |λ− 1|
is sufficiently small. So uλ = �(λ) by the uniqueness of (77).

As a result, uλ = �(λ) ∈ E1(J ) is continuously differentiable in λ with derivative
( d
dλ
uλ)(t) = t u̇(λt). Taking λ = 1, we deduce that t∂tu ∈ E1(J ). Consequently, ∂t (tu) =

t∂tu+ u ∈ E1(J ) ↪→ C(J ;Xp), and hence tu ∈ W 2
p(J ;X0) ∩W 1

p(J ;X1) ∩ C1(J ;Xp).
Assertion (b) now follows from Sobolev’s embedding theorem.

(c) Suppose that t+(u0) < ∞ and u ∈ E1([0, t+(u0))). Embedding (9) shows that
u(t) converges in Xp to some u1 as t → t+(u0), and so B(u1) = 0 follows from (R).
Proposition 13 yields a solution ū of (3) on [t+(u0), t

+(u0)+ T0] with the initial value u1

and some T0 > 0. Thus we obtain a solution w ∈ E1([0, t+(u0) + T0]) of (3) by setting
w(t) = u(t) for 0 ≤ t < t+(u0) and w(t) = ū(t) for t+(u0) ≤ t ≤ t+(u0)+ T0. This fact
contradicts the definition of t+(u0). �

In the next section we need the following quantitative version of Theorem 14(b).

PROPOSITION 15. Let Hypotheses 4 hold. Take T > 0 and ρ > 0 from Theorem 14(a)
for u∗ (instead of u0). Let u = u(·; u0) solve (3) on J = [0, T ] for the initial value
u0 ∈ Bρ(u∗) with B(u0) = 0. Then there exists ρ̂ ∈ (0, ρ] such that

‖t (u− u∗)‖W 1
p(J ;X1)

+ ‖t (u− u∗)‖W 2
p(J ;X0)

≤ c |u0 − u∗|p
if also |u0 − u∗|p < ρ̂, with a uniform constant for such u0.

Proof. Under the conditions of the current proposition, Theorem 14(a) yields ‖u −
u∗‖E1(J )

≤ cρ. We define A∗, B∗, G, H , and S by (27), (29), (30), and Theorem 2 for the
given steady state u∗. We further set v(t) = u(t)−u∗ and v0 = u0 −u∗. Then the function
vλ(t) = v(λt), t ∈ J , is the unique solution of

∂tw(t)+ A∗w(t) = λG(w(t))+ (1 − λ)A∗w(t) =: G(λ,w(t)), on �, t > 0,

B∗w(t) = H(w(t)), on ∂�, t > 0, (79)

w(0) = v0 , on �,

where we take λ ∈ (1 − ε, 1 + ε) and ε ∈ (0, 1) such that (1 + ε)T < t+(u0). Let Np

be the right inverse of B∗ = B ′(u∗) ∈ B(Xp, Yp). We now proceed as in the proof of
Theorem 14(b) using the operator

L0(λ,w) = w − S(z0 + Npγ0H(w),G(λ,w),H(w))

for λ ∈ (1 − ε, 1 + ε), w ∈ E1(J ), and z0 = v0 − NpH(v0). As above, we see that
L0 ∈ C1((1 − ε, 1 + ε)× E1(J ); E1(J )),

L0(1, v) = 0, and ∂2L0(1, v) = I − S(Npγ0H
′(v),G′(v),H′(v)).
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Possibly after decreasing ρ > 0, and thus ‖v‖E1 , Theorem 2 and Proposition 10 imply that
∂2L0(1, v) is invertible in E1(J ). So the implicit function theorem provides us with a map
� ∈ C1((1 − ε̂, 1 + ε̂); E1(J )) such that �(1) = v and L0(λ,�(λ)) = 0 for |1 − λ| ≤ ε̂

and some ε̂ ∈ (0, 1). We set v0(λ) = [�(λ)](0). As in the proof of Theorem 14(b) we then
obtain

v0(λ)− v0 = −Np(B(v0(λ)+ u∗)− B(v0 + u∗)− B ′(v0 + u∗)(v0(λ)− v0))

+Np(B
′(u∗)− B ′(v0 + u∗))(v0(λ)− v0),

and we conclude that v0(λ) = v0, and hence �(λ) = vλ, if ε̂ > 0 and ρ > 0 are small
enough. Again it follows that t∂t v = � ′(1) ∈ E1(J ). We further compute

� ′(1) = −[∂2L0(1, v)]
−1∂1L0(1, v) = [∂2L0(1, v)]

−1S(0,G(v)− A∗v, 0).

Taking into account ∂t (tv) = v + t∂t v = v +� ′(1) and v = u− u∗, we arrive at

‖∂t (t (u− u∗))‖E1(J ) ≤ c ‖u− u∗‖E1(J ) ≤ c |u0 − u∗|p.

where we also used Theorem 2, Proposition 10, and Theorem 14(a). �

5. The hyperbolic saddle

In this section we will construct the stable and unstable manifolds for (3), which are C1-
submanifolds of the phase space M defined in (75). Let u∗ ∈ X1 be a steady state solution
of (3) satisfying Hypotheses 4. Throughout this section, the maps G and H from (29) and
(30) and the corresponding Nemytskii operators G and H are defined for the given u∗. We
start with a simpler special case, proving the principle of linearized stability. Let s(−A0)

denote the spectral bound of the generator −A0 of the semigroup T (·) on X0 introduced in
(31).

PROPOSITION 16. Assume that Hypotheses 4 holds and that s(−A0) < −δ < 0. Then
there exists a constant ρ > 0 such that for all u0 ∈ Xp with |u0 −u∗|p ≤ ρ and B(u0) = 0
the solution u of (3) exists for all t ≥ 0 and satisfies |u(t)− u∗|1 ≤ ce−δt for t ≥ 1 and a
constant not depending on t and u0.

Proof. Let ρ > 0, v0 ∈ Xp, |v0|p ≤ ρ, and B∗v0 = H(v0). We set

�(ρ) = {v ∈ E1(δ) : v(0) = v0, ‖v‖E1(δ) ≤ 2c2ρ},

where c2 the constant from (52) with P = I . We define L(v) = L(v(0),G(v),H(v))
for v ∈ �(ρ), where L is given by (38) with Q = 0 (and thus w0 = v0 in (39)). Note
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that Lv(0) = v0, H(v(0)) = H(v0) = B∗v(0), and |v(t)|p ≤ c0‖v‖E1 ≤ 2c0c2ρ =: r .
Choosing ρ (and thus r) sufficiently small, we deduce from (52) and (55) that

‖Lv‖E1(δ) ≤ c2 (|v0|p + ‖G(v)‖E0(δ) + ‖H(v)‖F(δ))

≤ c2ρ + 2c2 ε(r)‖v‖E1(δ) ≤ 2c2ρ.

Take v,w ∈ �(ρ). Since H(v(0))−H(w(0)) = 0 = v(0)− w(0), the estimate (52) and
Proposition 10 imply that

‖Lv − Lw‖E1(δ) ≤ c2 (‖G(v)− G(w)‖E0(δ) + ‖H(v)− H(w)‖F(δ))

≤ 2c2η(ρ) ‖v − w‖E1(δ),

where η(ρ) is the supremum of ‖G
′(v)‖ and ‖H

′(v)‖ over v ∈ �(ρ). Since η(ρ) → 0
as ρ → 0 by Proposition 10, we can decrease ρ > 0 once more to establish that L is a
strict contraction on �(ρ). So we obtain a fix point v = Lv ∈ �(ρ), and thus a solution
u = v + u∗ of (3) on R+ with

eδt |u(t)− u∗|p ≤ ‖eδv‖BC(R+;Xp) ≤ c0‖v‖E1(δ) ≤ 2c0c2ρ

for t ≥ 0 using again (9). Proposition 15 further yields |u(t + 1)− u∗|1 ≤ c |u(t)− u∗|p
for t ≥ 0 if we decrease ρ to obtain r < ρ̂. �

We now come to the main result of our paper, assuming that iR ⊂ ρ(A0). We recall the
notation X0

p = {z0 ∈ Xp : B∗z0 = 0} and denote by Br(u0) and Bρ(u) open balls in Xp
and E1(δ), respectively. Recall that M = {u0 ∈ Xp : B(u0) = 0} is the solution manifold
of (3). Observe that the dimension of the unstable manifold constructed below is equal to
dim ran(Q).

THEOREM 17. Assume that Hypotheses 4 and 7 hold with the dichotomy constant
δ0 > 0. Fix δ ∈ (0, δ0), and let P and Q denote the stable and unstable projections on
X0 for the semigroup T (·). Then there exist constants r ≥ ρ > 0 and manifolds Ms and
Mu located in M ∩ Bρ(u∗) which are C1 in Xp and tangential to the affine subspaces
u∗ +PX0

p and u∗ +QX0, respectively, such that for all u0 ∈ M satisfying |u0 −u∗|p < ρ

the following assertions hold.

(i) If u0 ∈ Ms, then the solution u(t; u0) of (3) exists and |u(t; u0)− u∗|p ≤ r for all
t ≥ 0. Moreover, |u(t; u0)− u∗|1 ≤ c |u0 − u∗|p e−δt for all t ≥ 1.

(ii) If u0 /∈ Ms, then |u(t; u0)− u∗|p > r for some t > 0.
(iii) Ifu0 ∈ Mu, then a backward solutionu(t; u0)of (3) exists for t ≤ 0, and it is the only

backward solution staying in Br(u∗) for all t ≤ 0. Moreover, |u(t; u0)− u∗|p ≤ r

and |u(t; u0)− u∗|1 ≤ c |u0 − u∗|0 eδt for all t ≤ 0.
(iv) If u0 /∈ Mu, then any backward solution u(t; u0) either ceases to exist or leaves the

ball Br(u∗) at some t < 0.
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(The constants c do not depend on t or u0.) As a result, Ms (resp., Mu) is uniquely given as
the set of the initial values u0 ∈ M∩Bρ(u∗) of global forward (resp., backward) solutions
u(·; u0) with |u(t; u0) − u∗|p ≤ r for all t ≥ 0 (resp., t ≤ 0). Thus Ms and Mu are
invariant for (3) relative to Bρ(u∗) in the following sense: Let u0 ∈ Ms (resp., u0 ∈ Mu),
and let u(·; u0) be a solution of (3) on [0, t] if t > 0 or on [t, 0] if t < 0 staying in Bρ(u∗)
(where u(·; u0) has to be the solution from (iii) if u0 ∈ Mu and t < 0). Then u(t; u0)

belongs to Ms (resp., Mu).

Proof. Construction of the stable manifold Ms. Observe that (9) yields

|v(t)|p ≤ eδt |v(t)|p ≤ c0 ‖v‖E1(δ), t ≥ 0, (80)

since δt ≥ 0. Recall that PXp ⊂ Xp by (37). Moreover, due to P = I − Q and
ran(Q) ⊂ dom(A0), we have PX0

p ⊂ X0
p and thus PX0

p = ran(P ) ∩ Xp ∩ ker(B∗). Let
Np be the right inverse of B∗ = B ′(u∗) ∈ B(Xp, Yp) obtained in Proposition 5. Then the
operator �(z0, g, h) = (z0 + PNpγ0h, g, h) maps PX0

p × E0(δ) × F(δ) into the space
DP (δ) = {(v0, g, h) ∈ PXp × E0(δ)× F(δ) : B∗v0 = h(0)} by (15) and

B∗PNp = (B∗ − B∗Q)Np = I on Yp . (81)

Note that DP (δ) is a closed subspace of Xp × E0(δ) × F(δ) thanks to (18) and (15).
Proposition 8 and (52) say that the linear operator L defined in (38) is bounded from DP (δ)

to E1(δ). We now introduce the Lyapunov-Perron map

Ls : PX0
p × E1(δ) → E1(δ); Ls(z0, v) = v − L(z0 + PNpγ0H(v),G(v),H(v)).

(82)

Since δ > 0, we may apply Proposition 10 to deduce that Ls ∈ C1(PX0
p × E1(δ); E1(δ))

and that Ls(0, 0) = 0 and ∂2Ls(0, 0) = I −L�(0,G′(0),H′(0)) = I hold. So the implicit
function theorem, see e.g., [13, Cor.15.1], yields numbers r0, ρ0 > 0 and a C1-map �s

from PX0
p ∩Bρ0(0) ⊂ Xp to Br0(0) ⊂ E1(δ) such that�s(0) = 0 and Ls(z0,�s(z0)) = 0

for each z0 ∈ PX0
p∩Bρ0(0) and, moreover, v = �s(z0) is the only solution of the equation

Ls(z0, v) = 0 satisfying z0 ∈ Bρ0(0) and v ∈ Br0(0). Due to Proposition 8 and (39), the
function v = �s(z0) solves problem (28) with the initial value

v0 := v(0) = z0 + PNpH(v(0))−
∫ ∞

0
TQ(−s)Q(G(v(s))+�H(v(s)))ds, (83)

where v(0) ∈ Xp and B∗v(0) = H(v(0)) by (81). Therefore the function u(t; u0) :=
v(t)+ u∗ solves (3) on R+ with the initial value u0 = v0 + u∗ ∈ M.

In view of decomposition (83), we define the map φs : PX0
p ∩Bρ0(0) → ran(Q) by the

formula

φs(z0) = −
∫ ∞

0
TQ(−s)Q(G(�s(z0)(s))+�H(�s(z0)(s)))ds, (84)
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and the map ϑs : PX0
p ∩ Bρ0(0) → PXp by the formula

ϑs(z0) = PNpγ0H(�s(z0)). (85)

So we can introduce the stable manifold

Ms = {u∗ + z0 + ϑs(z0)+ φs(z0) : z0 ∈ PX0
p, |z0|p < ρ},

where ρ ∈ (0, ρ0] is fixed later. We have already checked that Ms ⊂ M. The map �s is
C1 from PX0

p to E1(δ) so that Proposition 10 and the properties of the linear operators in

(84) and (85) show that the maps φs and ϑs areC1 from PX0
P to dom(A0) and PXp ⊂ Xp,

respectively. The identities φs(0) = ϑs(0) = 0 and φ′
s(0) = ϑ ′

s(0) = 0 follow from
�s(0) = 0, G(0) = 0, G

′(0) = 0, H(0) = 0, and H
′(0) = 0. As a result, Ms is a C1

manifold in Xp being tangent to PXp0 at u∗.
Proof of assertion (i). Let u0 ∈ Ms, v0 = u0 − u∗ = z0 + ϑs(z0) + φs(z0), and

v = �s(z0). As noted above, u(t; u0) = v(t)+ u∗ solves (3) on R+ with the initial value
u0. Estimate (80) further yields |u(t; u0)−u∗|p ≤ c0‖v‖E1(δ) e

−δt for t ≥ 0. Observe that
z0 = P(v0−NpH(v0)) = P(v0−NpB∗v0) and thus |z0|p ≤ c |v0|p by (37), Proposition 5,
and (18). From �s(0) = 0 we infer that

‖v‖E1(δ) ≤ ‖�s(z0)−�′
s(0)z0‖E1(δ) + ‖�′

s(0)z0‖E1(δ) ≤ c |z0|p ≤ c′ |v0|p . (86)

If |v0|p < ρ1, then the above inequalities yield

|u(t; u0)− u∗|p ≤ c0c
′ |u0 − u∗|p e−δt ≤ c0c

′ρ1 =: r1

for t ≥ 0. As in Proposition 16 one deduces the exponential estimate inX1, where one may
choose a small ρ1 so that one can apply Proposition 15.

Proof of assertion (ii). Take an initial value u0 ∈ M with the corresponding solution
u = u(·; u0) of (3), and assume that

|u0 − u∗|p < ρ and |u(t; u0)− u∗|p ≤ r for t ≥ 0 (87)

and some numbers ρ ∈ (0, ρ1] and r ∈ (0, r1]. We want to find sufficiently small ρ3 ∈
(0, ρ1] and r3 ∈ (0, r1] such that (87) with ρ = ρ3 and r = r3 implies that u0 ∈ Ms. We
let v(t) = u(t; u0)− u∗ for t ∈ R+ so that v solves (28) for the initial value v0 = u0 − u∗
satisfying B∗v0 = H(v0). Let us assume for a moment that Claim 18 below is true. Then
Propositions 8 and 10 yield v = L(Pv0,G(v),H(v)) if ρ ∈ (0, ρ2] and r ∈ (0, r2].
We further set z0 = P(v0 − NpH(v0)) = P(v0 − NpB∗v0) . Then z0 ∈ PX0

p and
|z0|p ≤ cρ by Proposition 5, (18), (37), and (81). Decreasing ρ if necessary, we thus
obtain |z0|p < ρ0 and hence there is a zero w = �(z0) ∈ E1(δ) of Ls , i.e., w = L(z0 +
PNpH(w(0)),G(w),H(w)) and w(0) + u∗ ∈ Ms. Possibly after choosing a smaller
ρ > 0, we also have‖w‖E1(R+) ≤ r due to (86). Moreover,B∗(P v0−z0−PNpH(w(0))) =
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H(v(0))−H(w(0)) by (81). Propositions 8 and 10 and formulas (39) and (15) now imply
that

‖v − w‖E1 ≤ c (|P(v(0)− w(0))+Q(v(0)− w(0))|p + ‖G(v)− G(w)‖E0

+‖H(v)− H(w)‖F)

≤ c (|H(v(0))−H(w(0))|Yp + ‖G(v)− G(w)‖E0 + ‖H(v)− H(w)‖F)

≤ cη(r) ‖v − w‖E1 ,

where η(r) is the supremum of ‖G
′(φ)‖ in B(E1,E0) and ‖H

′(φ)‖ in B(E1,F) over φ
with ‖φ‖E1(R+) ≤ r . Decreasing r > 0 once more in (87), we see that v = w and so
u∗ + v0 = u∗ +w(0) ∈ Ms. Thus we have obtained the desired numbers ρ3 ∈ (0, ρ1] and
r3 ∈ (0, r1] .

CLAIM 18. There are ρ2 ∈ (0, ρ1] and r2 ∈ (0, r1] such that each solution u of (3)
satisfying (87) for some ρ ∈ (0, ρ2] and r ∈ (0, r2] already belongs to E1(R+).

Proof of the claim. We take σ ∈ (0, δ] and T ≥ 1, and we set J = [0, T ]. The constants
below do not depend on σ and T , unless explicitly stated. The function v = u− u∗ solves
(28), and thus

Pv = T (·)P v0 + T (·)P ∗ G(v)+ T−1(·)P ∗�H(v)

due to (34). Employing B∗v0 = H(v(0)) and (37), we can argue as in the proof of
Proposition 8 in order to estimate

‖Pv‖E1(J,−σ) ≤ c (|Pv0|p + ‖G(v)‖E0(J,−σ) + ‖H(v)‖F(J,−σ)). (88)

Using the extension v(t) = 0 for t ≥ 2T and v(t) = (2 − t/T )v(2T − t) for T ≤ t ≤ 2T ,
one obtains the estimates from (55) also on J with the weight e−σ and a function ε not
depending on T ≥ 1. We then deduce from (88), (87), (37), (55) that

‖Pv‖E1(J,−σ) ≤ cρ + cε(r) ‖v‖E1(J,−σ)
≤ cρ + cε(r) (‖Pv‖E1(J,−σ) + ‖Qv‖E1(J,−σ)).

Since ε(r) → 0 as r → 0, we can take a small r to infer

‖Pv‖E1(J,−σ) ≤ cρ + cε(r) ‖Qv‖E1(J,−σ). (89)

We recall that Q maps X0 in dom(A0) ⊂ X1 and thus |Qv(t)|1 ≤ cr by (87), so that
e−σQv ∈ Lp(R+;X1). Proposition 6 further implies that

e−σQv̇ = e−σQ(−A−1v +�H(v))+ e−σQG(v)

= −A0Qe−σ v + (µ+ A0)QN1e−σH(v)+Qe−σG(v). (90)
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By means of A0Q ∈ B(X0), |v(t)|p ≤ r , Proposition 5 and (55), we estimate

‖Qv̇‖E0(J,−σ) ≤ c (‖e−σ v‖E0(J ) + ‖e−σH(v)‖Lp(J ;Y1) + ‖e−σG(v)‖E0(J ))

≤ c(σ )r + cε(r) ‖e−σ v‖Lp(J ;X1)

≤ c(σ )r + cε(r) ‖e−σPv‖Lp(J ;X1) . (91)

Inserting this inequality into (89) and choosing a small r > 0 (not depending on J and σ ),
we arrive at the inequality ‖Pv‖E1(J,−σ) ≤ cρ+c(σ )r . Hence, Pv ∈ E1(R+,−σ) and, by
(91), Qv̇ ∈ E0(R+,−σ). As a result, v ∈ E1(R+,−σ) if r ≤ r ′2, for a number r ′2 ∈ (0, r0]
independent of σ . Now (89) yields

‖Pv‖E1(R+,−σ) ≤ cρ + cε(r) ‖Qv‖E1(R+,−σ). (92)

Observe that the shifted operator −A0 − σ satisfies Hypothesis 7. Thus we can transform
(34) into (38) with w0 = Pv0 from (39) (where g = G(v) and h = H(v)), and hence

Qv(t) = −
∫ ∞

t

TQ(t − s)Q(G(v(s))+�H(v(s))) ds,

thanks to (36), (87), and (55). This formula combined with (36), (55) and (92) leads to the
estimates

‖Qv‖E1(−σ) ≤ c ‖Qv‖E0(−σ) + ‖Qv̇‖E0(−σ) (93)

≤ c (‖Qv‖E0(−σ) + ‖G(v)‖E0(−σ) + ‖e−σH(v)‖Lp(R+;Y1))

≤ c (‖G(v)‖E0(−σ) + ‖e−σH(v)‖Lp(R+;Y1))

≤ cε(r) ‖e−σQv‖Lp(R+;X1) + cε(r) ‖e−σPv‖Lp(R+;X1)

≤ cρ + cε(r) ‖Qv‖E1(−σ) .

Taking a small r > 0 independent of σ ∈ (0, δ], we see that supσ ‖Qv‖E1(−σ) is finite.
Fatou’s lemma then yields Qv ∈ E1(R+), and so Pv ∈ E1(R+) by (92). �

Construction of the unstable manifold Mu. The arguments for the unstable part are
similar and somewhat simpler, so that we can omit some details. This time we employ the
Lyapunov Perron map

Lu : ran(Q)× E1(R−,−δ) → E1(R−,−δ); Lu(z0, v) = v − L−(z0,G(v),H(v)),

cf. (49). Propositions 9 and 10 then imply that Lu is a C1 map, Lu(0, 0) = 0, and
∂2Lu(0, 0) = I. Hence, by the implicit function theorem, there exist balls Bρ′

0
(0)∩ ran(Q)

and Br ′0(0) ⊆ E1(R−,−δ) and a C1 map �u : Bρ′
0
(0) → Br ′0(0) such that v = �u(z0)

is the unique solution of the equation Lu(z0, v) = 0 for z0 and v in these balls. Thus
u = �u(z0)+ u∗ is the unique function in Br ′0(u∗) solving (3) on R− with the final value
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u0 = v0 +u∗, see Proposition 9. We further define the map φu : ran(Q)∩Bρ′
0
(0) → PXp

by φu(z0) = γ0�u(z0)− z0; that is,

φu(z0) =
∫ 0

−∞
T−1(−s)P−1(G(�u(z0)(s))+�H(�u(z0)(s)))ds.

Therefore v(0) = �u(z0)(0) = z0 +φu(z0), φu isC1 due to (9), φu(0) = 0, and φ′
u(0) = 0.

We now introduce the unstable manifold

Mu = {u∗ + z0 + φu(z0) : z0 ∈ ran(Q), |z0|p < ρ}
for ρ ∈ (0, ρ′

0] to be fixed later. Clearly, Mu is a C1 manifold in Xp tangential to u∗ +
ran(Q).

Proof of assertion (iii). Let u0 ∈ Mu, z0 = Q(u0 − u∗), and v = �u(z0). Then
u(t; u0) = v(t)+u∗ solves (3) on R− with the final value u0. As in part (i), we can deduce
that |u(t; u0) − u∗|p ≤ c |u0 − u∗|0 eδt for t ≤ 0, using (9), (86), and Q ∈ B(X0, X1).
Proposition 15 further yields |u(t; u0)−u∗|1 ≤ c |u(t−1; u0)−u∗|p for t ≤ 0 (possibly after
decreasing ρ). This fact implies assertion (iii) for all numbers ρ ∈ (0, ρ4] and r ∈ (0, r4]
and some ρ4 ∈ (0, ρ3] and r4 ∈ (0, r3].

Proof of assertion (iv). Let u be a backward solution of (3) on R− with |u(t)−u∗|p ≤ r

for t ≤ 0 and |u0 − u∗|p < ρ. As in part (ii) we have to show that v = u− u∗ ∈ E1(R−)
provided that r, ρ > 0 are small enough. We take 0 < σ ≤ δ and T ≤ −2 and set
J = [T + 1, 0]. In what follows, the constants do not depend on σ and T unless otherwise
stated. The formula (34) yields

Pv(t) = T (t − T )Pv(T )+
∫ t

T

T (t − s)PG(v(s)) ds

+
∫ t

T

T−1(t − s)P−1�H(v(s)) ds

for T ≤ t ≤ 0. Arguing as in (43) and using (55), we estimate

‖Pv‖E1(J,σ ) ≤ c(r + ‖G(v)‖E0(J,σ ) + ‖H(v)‖F(J,σ ))

≤ cr + cε(r) ‖Pv‖E1(J,σ ) + cε(r) ‖Qv‖E1(J,σ ) ,

‖Pv‖E1(J,σ ) ≤ cr + cε(r) ‖Qv‖E1(J,σ ) , (94)

taking a small r independent of J and σ . We further have |Qv(t)|1 ≤ cr for t ≤ 0, and so
eσQv ∈ Lp(R−;X1). As in (90) and (91), one obtains

‖eσQv̇‖Lp(J ;X0) ≤ c(σ )r + cε(r) ‖eσPv‖Lp(J ;X1).

So we conclude that v ∈ E1(R−, σ ) if 0 < r ≤ r5 where 0 < r5 ≤ r4 is sufficiently small
and does not depend on σ . Thus we can transform (34) into the form (49) with Pv0 from
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(47), and so

Qv(t) = TQ(t)Qv0 −
∫ 0

t

TQ(t − s)Q(G(v(s))+�H(v(s))) ds,

thanks to (36), |v(t)|p ≤ r , and (55). We argue as in (93) in order to deduce

‖Qv‖E1(R−,σ ) ≤ cρ + cr + cε(r)‖Qv‖E1(R−,σ ).

Taking a small σ–independent r6 ∈ (0, r5], we obtain a σ–independent bound on
‖Qv‖E1(R−,σ ). So Fatou’s lemma yields Qv ∈ E1(R−), and (94) implies Pv ∈ E1(R+).
The theorem follows fixing sufficiently small ρ ∈ (0, ρ4] and r ∈ (0, r6]. �

6. A reaction diffusion system

In this section we study a quasilinear reaction diffusion system for two species u1 and u2

on a bounded domain� ⊂ R
n with C2 boundary ∂� and outer unit normal ν. The validity

of (E) and (LS) was established in [5] for large classes of reaction diffusion systems of
second order. Here we concentrate on a simple situation where we can give more explicit
criteria for the hyperbolicity condition iR ⊂ ρ(A0) from Hypothesis 7. For the unknown
function u(t, x) = (u1(t, x), u2(t, x)) ∈ R

2 we consider the problem

∂tui(t, x)− div[di(u(t, x))∇ui(t, x)] = ri(u(t, x)), t > 0, x ∈ �, i = 1, 2,

di(u(t, x))∂νui(t, x)− qi(ui(t, x)) = b0
i (x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ ∂�,

u(0, x) = u0(x), x ∈ �, (95)

where di ∈ C2(R2; R), qi ∈ C2(R; R), ri ∈ C1(R2; R), and b0
i ∈ C2(∂� × R

2 ×
R

2n; R) for i = 1, 2. We work with real valued functions in this section, considering
the complexification if necessary (in particular when applying the results of the previous
sections). We assume that there is a vector u∗ = (u∗1, u∗2) ∈ R

2 such that

di(u∗) > 0, ri(u∗) = qi(u∗) = b0
i (x, u∗, 0) = 0, ∂(2,3)b

0
i (x, u∗, 0) = 0

for i = 1, 2 and x ∈ ∂�. Thus the constant function u∗ is a steady state solution of
(95). Moreover, (95) contains conormal boundary conditions combined with the nonlinear
source terms qi(ui) and the additional fully nonlinear perturbations b0

i which vanish at the
equilibrium. Let d = diag(d1, d2), r = (r1, r2), q = (q1, q2), b0 = (b0

1, b
0
2). Then we can

transform (95) into the form (3) by setting

A(u)v = −d(u)�u, b(u) = d(u)(ν · ∇u1, ν · ∇u2)− q(u)− b0(·, u,∇u),

F (u) = r(u)+
[ n∑
j=1

(d ′
i (u) · ∂ju) ∂jui

]
i=1,2

,



574 Y. Latushkin, J. Prüss and R. Schnaubelt J.evol.equ.

where x · y denotes the standard scalar product in R
2. Since ∇u∗ = 0, we obtain

A∗ = −d(u∗)�− r ′(u∗) and B∗ = d(u∗)∂ν − q ′(u∗),

cf. (27). It is clear that (R) holds. Moreover A(u∗) and B∗ = B ′(u∗) satisfy (E) and
(LS) due to [5, Prop.4.3] (or a straightforward direct calculation). Setting di(u∗) = δi ,
q ′
i (u∗i ) = βi , and r ′(u∗) = [rkl] for i = 1, 2, the operator A0 = A∗|ker(B∗) in X0 is given

by

−A0 =
(
δ1�+ r11 r12

r21 δ2�+ r22

)
, dom(A0) = D1 × D2,

Di = {v ∈ W 2
p(�) : ∂νv = βiδ

−1
i v}, i = 1, 2.

We now want to study the spectrum ofA0 in terms of the operatorsCi(λ) = δi�+rii−λ
in X0 with domain Di , where i = 1, 2 and λ ∈ C. Since the case r21 = 0 is rather simple
we restrict ourselves to the case r21 = 0. Observe that A0 has compact resolvent. Suppose
that λ is an eigenvalue of −A0 with eigenvector (v1, v2) ∈ dom(A0). Then we have v2 = 0,
C2(λ)v2 = −r21v1 ∈ D1, and

r21C1(λ)v1 + r21r12v2 = 0, r21C1(λ)v1 + C1(λ)C2(λ)v2 = 0.

As a result, C1(λ)C2(λ)v2 = r12r21v2. Conversely, let v2 ∈ dom(C1(λ)C2(λ)) = {v ∈
D2 : C2(λ)v ∈ D1} be an eigenvector of C1(λ)C2(λ) with the eigenvalue r12r21, for some
λ. Then we set v1 = −r−1

21 C2(λ)v2 ∈ D1, obtaining an eigenvector (v1, v2) of −A0 for the
eigenvalue λ. So we have shown that

σ(−A0) = {λ ∈ C : r12r21 ∈ σp(C1(λ)C2(λ))}.
This equation becomes much simpler if we assume in addition that D1 = D2 =: D. For

instance, this equality is true if q ′
1(u∗1) = q ′

2(u∗2) = 0. Let µn, n ∈ N0, be the distinct
eigenvalues of the Laplacian �D with the domain D and set

Mn =
(
δ1µn + r11 r12

r21 δ2µn + r22

)
.

Note that the spectrum of A0 on X0 = Lp(�)
2 does not depend on p ∈ (1,∞) since the

resolvent is compact. Moreover,�D is self adjoint onL2(�), so thatµn is real,µn → −∞,
and µn+1 < µn. Then one easily obtains that

σ(−A0) =
⋃

n∈N0
σ(Mn).

In order to satisfy Hypothesis 7, we thus have to ensure that none of the matrices Mn,
n ∈ N0, has an eigenvalue on iR. One obtains a purely imaginary eigenvalue of Mn if
and only if either detMn = 0 for some n ∈ N0, or trMn = 0 and detMn > 0 for some
n ∈ N0. Moreover, there is an eigenvalue of −A0 with strictly positive real part if and only
if s(M0) > 0.
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Equations and their Applications.’ Collège de France Seminar, Vol. XI (Paris, 1989–1991), Longman Sci.
Tech., Harlow, 1994, pp. 97–117.

[23] Giaquinta, M. and Modica, G., Local existence for quasilinear parabolic systems under nonlinear bound-
ary conditions. Ann. Mat. Pura Appl. 149 (1987), 41–59.

[24] Greiner, G., Perturbing the boundary conditions of a generator. Houston J. Math. 13 (1987), 213–229.
[25] Guidetti, D., Convergence to a stationary state and stability for solutions of quasilinear parabolic equa-

tions. Ann. Mat. Pura Appl. 151(4) (1988), 331–358.
[26] Henry, D., Geometric Theory of Nonlinear Parabolic Equations. Lect. Notes Math. 840, Springer-Verlag,

New York, 1981.



576 Y. Latushkin, J. Prüss and R. Schnaubelt J.evol.equ.

[27] Kotschote, M., Strong Well–Posedness of a Model for an Ionic Exchange Process. Ph.D. thesis, Martin–
Luther–Universität Halle, 2003.

[28] Lieberman, G., Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996.
[29] Lunardi, A., Asymptotic exponential stability in quasilinear parabolic equations. Nonlinear Anal. 9 (1985),

563–586.
[30] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progr. Nonlin. Diff.

Eqns. Appl. 16, Birkhäuser, Basel, 1995.
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