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Entropy formulation for fractal conservation laws

Nathaël Alibaud

Abstract. Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an
entropy formulation for fractal conservation laws with pure fractional diffusion of order λ ∈]0, 1]. This allows to
show the existence and the uniqueness of a solution in the L∞ framework. We also establish a result of controled
speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally
let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates
for BV initial conditions as Kuznecov (1976) for λ = 2 and Droniou (2003) for λ ∈]1, 2].

1. Introduction

We study the fractal conservation law{
∂tu(t, x)+ div(f (u))(t, x)+ g[u(t, .)](x) = 0 t > 0, x ∈ R

N,

u(0, x) = u0(x) x ∈ R
N,

(1.1)

where f = (f1, . . . , fN) is locally Lipschitz-continuous from R to R
N , u0 ∈ L∞(RN) and

g is the fractional power of order λ/2 of the Laplacian with λ ∈]0, 1]. That is to say, g is
the non-local operator defined through the Fourier transform by

F(g[u(t, .)])(ξ) = |ξ |λF(u(t, .))(ξ).
REMARK 1.1. We could also very well study equations with source term h and such

that f and h depend on (t, x, u). All the methods used in this paper would apply, but this
would lead to more technical difficulties and for the sake of clarity, we have chosen to
present only the framework above.

The well-posedness of the pure scalar conservation law, namely the Cauchy problem{
∂tu(t, x)+ div(f (u))(t, x) = 0 t > 0, x ∈ R

N,

u(0, x) = u0(x) x ∈ R
N,

(1.2)
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is well-known since the work of Kruzhkov [11], thanks to the notion of entropy solution.
In this paper, we define a notion of entropy solution for (1.1) that allows to solve (1.1) in
the L∞ framework. We then consider the problem{

∂tu
ε(t, x)+ div(f (uε))(t, x)+ εg[uε(t, .)](x) = 0 t > 0, x ∈ R

N,

uε(0, x) = u0(x) x ∈ R
N

(1.3)

and we show that uε converges, as ε → 0, to the (entropy) solution u of (1.2).
The interest of Equation (1.1) was pointed out to us by two papers of Droniou et al. [7, 6]

which deal with the case λ ∈]1, 2] (the results of these papers are recalled below). One of
their motivations was a preliminary study of equations involved in the theory of detonation
in gases [3, 4]. In fact, λ depends on the unknown in the realistic models and is probably not
bounded from below by any λ0 > 1. Thus, the case λ = 1 is also of interest. Moreover, the
general case λ ∈]0, 1] has many other applications to hydrodynamics, molecular biology,
etc [1, 2].

Equation (1.1) constitutes an extension of the classical parabolic equation

∂tu+ div(f (u))− �u = 0, (1.4)

which corresponds (up to a multiplicative constant) to the case λ = 2. In this case, it
is well-known that the Cauchy problem is well-posed and that the operator ∂t − � has a
regularizing effect; (1.3) then is called the parabolic regularization of (1.2) and the use
of such a regularization allows to prove the Kruzhkov result. Depending on the value of
λ, (1.1) should share properties of (1.4) and/or the non-linear hyperbolic equation (1.2).
Most of the studies (well-posedness, asymptotic behaviour, etc) are concerned with the
range of exponent λ ∈]1, 2] (see [1, 2, 7, 6, 8, 10]). In this case, the operator ∂t + g[.]
still has a regularizing effect. The first results on this subject are probably due to Biler
et al. [1] and these results have recently been strengthened in [7], where the existence
and the uniqueness of a smooth solution is proved. Let us also refer the reader to [9, 8]
for the case of Hamilton-Jacobi equations. For λ ∈]0, 1], the order of the diffusive part
is lower than the order of the hyperbolic part; hence, we do not expect any regularizing
effect, since it is natural to think that (1.1) could behaves as (1.2). Let us recall that the
possibilities of loss of regularity in finite time and of non-uniqueness of weak solutions of
the Cauchy problem (1.2) led to the notion of entropy solution of Kruzhkov. The numerical
computations of Clavin et al. [3, 4] lead to think that the solutions of (1.1) may also
loose some regularity; but, this point is still an open question whose answer does not seem
obvious. Neither there is answer to the question of non-uniqueness of weak solutions in
a general framework. To our best knowledge, there is only one existence and uniqueness
result for (1.1) with λ ≤ 1. It appears in a paper of Biler et al. [1] which deals also with
asymptotic behaviour of solutions. They have established the local-in-time (or global with
small initial data) existence and uniqueness of a weak solution of the monodimensional
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fractal Burgers equation (N = 1 and f = |.|2) with λ ∈]1/2, 1] and u0 ∈ H 1(R). The
proof does not seem adaptable to other dimensions, parameters λ or other initial conditions
less regular, since the Sobolev imbeddings and the interpolations used to derive the needed
energy estimates would be no longer true.

Following these comments, a good formulation for (1.1), with λ ∈]0, 1], is probably
an entropy formulation, which we have to define. Let us mention that Carrillo [5] has
also used an entropy formulation to study a scalar conservation law perturbed by a local
degenerate diffusion operator (of the form −�(b(u))). In our case, the operator g is non-
local. Because of this, the inequality (4.16), already mentioned in [8, Lemma 4.1], seems
lead to a too weak formulation, namely (4.17). We discuss this issue in Remark 4.2. To
find a good formulation (see Definition 2.3), we have used an integral formula for g (see
papers of Imbert [9] and of Droniou and Imbert [8] or Theorem [8] or Theorem 2.1 below).

This notion of entropy solution has allowed to prove the following results for (1.1):
well-posedness in the L∞ framework, maximum principle, controled speed of propagation
(see Theorem 3.2 which generalizes the finite propagation speed result of scalar conserva-
tion laws), L1 contraction, non-increase of the L1 norm and the BV semi-norm, etc. The
existence is proved by a splitting method, as in [7, 6] for λ ∈]1, 2], and the convergence of
this method is proved for general u0 ∈ L∞(RN) (in [7], the convergence of the splitting
method has been established only for u0 ∈ L∞(RN) ∩ L1(RN) ∩ BV (RN)). Note that
the classical parabolic regularization could also work. As far as the non-local vanishing
viscosity method to (1.2) is concerned, the convergence of uε is obtained in the general case
and optimal error estimates are stated for BV initial conditions, as in [12] for the parabolic
regularization of (1.2) and as in [6] for λ ∈]1, 2]. Let us also refer the reader to [9, 8], which
derive same error estimates (in an appropriate topology) for Hamilton-Jacobi equations.

The rest of the paper is organized as follow. The entropy formulation is given in Section 2
and the main results are stated in Section 3. These results are finally proved in Sections 4-6
(uniqueness and existence for (1.1) and convergence for (1.3), respectively).

2. Entropy formulation

To present our formulation for (1.1), we have to recall the following result on g.

THEOREM 2.1. (Droniou, Imbert 2005) There exists a constant cN(λ) > 0 that only
depends on N and λ and such that for all ϕ ∈ S(RN), all r > 0 and all x ∈ R

N ,

g[ϕ](x) = −cN(λ)
∫

|z|≥r
ϕ(x + z)− ϕ(x)

|z|N+λ dz

−cN(λ)
∫

|z|≤r
ϕ(x + z)− ϕ(x)− ∇ϕ(x).z

|z|N+λ . (2.1)

Moreover, when λ ∈]0, 1[ one can take r = 0.
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REMARK 2.2. In the sequel, g : C∞
b (R

N) → C∞
b (R

N) is defined by this formula.

For a proof of this result, see [8, Theorem 2.1]. Here is our entropy formulation for (1.1).

DEFINITION 2.3. Let u0 ∈ L∞(RN). We define an entropy solution to (1.1) as
a function u ∈ L∞(]0,∞[×R

N) and such that for all r > 0, all non-negative ϕ ∈
C∞
c ([0,∞[×R

N), all smooth convex function η : R → R and all φ = (φ1, . . . , φN)

such that φ′
i = η′f ′

i (i = 1, . . . , N)(1) ,∫ ∞

0

∫
R
N
(η(u)∂tϕ + φ(u).∇ϕ)

+ cN(λ)
∫ ∞

0

∫
R
N

∫
|z|≥r

η′(u(t, x))u(t, x + z)− u(t, x)

|z|N+λ ϕ(t, x)dzdxdt

+ cN(λ)
∫ ∞

0

∫
R
N

∫
|z|≤r

η(u(t, x))
ϕ(t, x + z)− ϕ(t, x)− ∇ϕ(t, x).z

|z|N+λ dzdxdt

+
∫

R
N
η(u0)ϕ(0, .) ≥ 0. (2.2)

REMARK 2.4. i) Notice that (2.2) for r > 0 implies (2.2) for all r ′ > r , but not
necessarily for 0 < r ′ < r;

ii) when λ ∈]0, 1[, the gradient in the third integral term above can be taken out and
this gives an equivalent formulation.

Here are some properties of entropy solutions.

PROPOSITION 2.5. i) Classical solutions to (1.1) are entropy solutions;
ii) entropy solutions to (1.1) are weak solutions in the sense that∫ ∞

0

∫
R
N
(u∂tϕ + f (u).∇ϕ − ug[ϕ])+

∫
R
N
u0ϕ(0, .) = 0,

for all ϕ ∈ C∞
c ([0,∞[×R

N);
iii) entropy solutions are continuous with values in L1

loc(R
N) (i.e. u is a.e. equal to a

function belonging to C([0,∞[;L1
loc(R

N)));
iv) if u is an entropy solution of (1.1) then u(0, .) = u0.

The proofs of ii) and iv) are similar to those used for the pure scalar conservation laws
(see [11]), thanks to Theorem 2.1 to treat the fractal part and thanks to iii) to deduce iv).
Hence, these proofs are left to the reader. The item iii) will be needed to prove uniqueness
in Section 4. For a first reading, this item could be assumed in Definition 2.3, since an

1Let us recall that such a couple (η, φ) is called an entropy-flux pair.)
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approximating sequence that converges in C([0, T ];L1
loc(R

N)) (for all T > 0) will be
constructed in Section 5. Actually, the formulation allows to find item iii) back without
the use of this sequence. For the reader’s interest, the proof is given in Appendix B. Let
us conclude this section with giving the proof of i), which explains how we obtained our
formulation (see also Remark 4.2 about the treatment of the fractal part).

Proof of i). Let us assume that u0 is smooth and that u ∈ C∞
b ([0,∞[×R

N) satisfies
(1.1). Since η is convex, η(b)− η(a) ≥ η′(a)(b − a). Hence,

η(u(t, x + z))− η(u(t, x))− ∇(η(u))(t, x).z ≥ η′(u(t, x))
(u(t, x + z)− u(t, x)− ∇u(t, x).z)

and

η′(u(t, x))g[u(t, .)](x) ≥ −cN(λ)η′(u(t, x))
∫

|z|≥r
u(t, x + z)− u(t, x)

|z|N+λ dz

−cN(λ)
∫

|z|≤r
η(u(t, x + z))− η(u(t, x))− ∇(η(u))(t, x)).z

|z|N+λ dz.

Let us multiply (1.1) by η′(u(t, x)) to get the following entropy inequality:

∂t (η(u))(t, x)+ div(φ(u))(t, x)− cN(λ)η
′(u(t, x))

∫
|z|≥r

u(t, x + z)− u(t, x)

|z|N+λ dz

−cN(λ)
∫

|z|≤r
η(u(t, x + z))− η(u(t, x))− ∇(η(u))(t, x)).z

|z|N+λ dz ≤ 0, t > 0, x ∈ R
N.

Let us multiply by ϕ(t, x) and, thanks to an integration by parts, let us put the derivatives
on this function. Then,

∫ ∞

0

∫
R
N
(η(u)∂tϕ + φ(u).∇ϕ)

+ cN(λ)
∫ ∞

0

∫
R
N

∫
|z|≥r

η′(u(t, x))u(t, x + z)− u(t, x)

|z|N+λ ϕ(t, x)dzdxdt

+ cN(λ)
∫ ∞

0

∫
R
N

∫
|z|≤r

η(u(t, x + z))− η(u(t, x))− ∇(η(u))(t, x).z
|z|N+λ

ϕ(t, x)dzdxdt

+
∫

R
N
η(u0)ϕ(0, .) ≥ 0. (2.3)
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Let us now put the fractional derivative on ϕ. We let I denote the third term of (2.3). By
Taylor’s Formula,

I = cN(λ)

∫ 1

0

∫ ∞

0

∫
R
N

∫
|z|≤r

(1 − τ)D2(η(u))(t, x + τz)z.z

|z|N+λ ϕ(t, x)dzdxdtdτ,

= cN(λ)

∫ 1

0

∫ ∞

0

∫
|z|≤r

(1 − τ)|z|−N−λ
(∫

R
N
D2(η(u))(t, x + τz)z.z ϕ(t, x)dx

)
dzdtdτ.

Note that D2(η(u))z.z = divx(F ) where F = (z1∇(η(u)).z, . . . , zn∇(η(u)).z) (here, we
let zi denote the coordinates of zw.r.t. the canonic basis of R

N ). So, an integration by parts
gives

I = −cN(λ)
∫ 1

0

∫ ∞

0

∫
|z|≤r

(1 − τ)|z|−N−λ

(∫
R
N

∇(η(u))(t, x + τz).z ∇ϕ(t, x).zdx
)
dzdtdτ,

= −cN(λ)
∫ 1

0

∫ ∞

0

∫
R
N

∫
|z|≤r

(1 − τ)|z|−N−λ∇(η(u))(t, x + τz).z ∇ϕ(t, x).z
dzdxdtdτ. (2.4)

Let us change the variables by (τ, t, x, z) → (τ, t, x + τz,−z) to get

I = −cN(λ)
∫ 1

0

∫ ∞

0

∫
R
N

∫
|z|≤r

(1 − τ)|z|−N−λ∇(η(u))(t, x).z
∇ϕ(t, x + τz).z dzdxdtdτ.

Computing I backward from (2.4) to (2.3) (exchanging the role of η(u) and ϕ) leads finally
to (2.2).

3. Main results

Here is our existence and uniqueness result for (1.1).

THEOREM 3.1. If u0 ∈ L∞(RN), then there exists a unique entropy solution u to (1.1).

The uniqueness derives from a more precise result which generalizes the finite propagation
speed for pure scalar conservation laws. To present it, we have to introduce the kernel of g:
K(t, .) := F−1(e−t |.|λ) (defined for t > 0). Let us recall that any solution of ∂tu+g[u] = 0
can be written by the convolution product u(t, .) = K(t, .) ∗ u(0, .). The most important
property of K is its non-negativity, which gives a maximum principle for the preceding
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equation. Such a result is well-known since the work of Lévy [14]. Using
∫

R
N K(1, .) =

F(K(1, .))(0) = 1 and the homogeneity property K(t, .) = t−N
λ K(1, t− 1

λ .), for all t > 0,
we then see that (K(t, .))t>0 is an approximate unit as t → 0. Another important property
that will be needed in this paper is the semi-group property: K(t+ s, .) = K(t, .)∗K(s, .),
for all t > 0 and all s > 0. Then, we have the following result.

THEOREM 3.2. Let u0, v0 ∈ L∞(RN). Consider u and v entropy solutions to (1.1)
with initial conditions u0 and v0, respectively. Then, for all x0 ∈ R

N , all t > 0 and all
R > 0,∫

B(x0,R)

|u(t, .)− v(t, .)| ≤
∫
B(x0,R+Lt)

K(t, .) ∗ |u0 − v0|, (3.1)

whereL is a Lipschitz constant of f on [−m,m], withm = max{‖u0‖L∞(RN), ‖v0‖L∞(RN)},
and B(x, r) denotes the open ball in R

N of center x and radius r .

REMARK 3.3. i) Notice that this result still holds true for λ ∈]1, 2];
ii) the infinite propagation speed produced by g then can be measured the following

way: if supp(u0) is compact then
∫
B(x,1) |u(1, .)| = O(dist(x, supp(u0))

−λ) (this

can be computed by using that K(1, x) ∼ |x|−N−λ, up to a multiplicative constant,
as |x| → +∞).

Here are other properties of entropy solutions to (1.1), that will be seen in the course of our
study.

PROPOSITION 3.4. i) For all t ≥ 0, ||u(t, .)||L∞(RN) ≤ ||u0||L∞(RN);

ii) if u0 ∈ L∞(RN) ∩ L1(RN), then so does u(t, .), for all t > 0, and u is continuous
with values in L1(RN);

iii) (L1 contraction) if u0 and v0 belong toL∞(RN) and u0 −v0 ∈ L1(RN), then for all
t > 0, u(t, .)− v(t, .) ∈ L1(RN) and ||u(t, .)− v(t, .)||L1(RN) ≤ ||u0 − v0||L1(RN);

iv) ifu0 ∈ L∞(RN)∩BV (RN), then so doesu(t, .), for all t > 0, with |u(t, .)|BV (RN) ≤
|u0|BV (RN).

REMARK 3.5. On the one hand, all these properties are consequences of (3.1), except
i) which derives from a more precise inequality, where the absolute values are replaced by
positive (or negative) parts (this can be seen with the help of semi-entropies of Kruzhkov,
namely entropies of the form η+

k = (. − k)+ and η−
k = (. − k)−). In fact, this last result

allows to establish more generally a comparison principle between entropy solutions to
(1.1). On the other hand, as noticed in Remark 5.1, items i)–iv) also are consequences of
the splitting method used to prove existence.
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Let us conclude this section with our convergence result for (1.3).

THEOREM 3.6. Let u0 ∈ L∞(RN). As ε → 0, the entropy solution to (1.3) converges
in C([0, T ];L1

loc(R
N)), for all T > 0, to the entropy solution of (1.2). If moreover

u0 ∈ L1(RN) ∩ BV (RN), we have the following error estimates: for all T > 0,

||uε − u||
C([0,T ];L1(R

N
))

=
{

O(ε) if λ ∈]0, 1[,
O(ε| ln(ε)|) if λ = 1.

REMARK 3.7. As remarked in [6] for λ ∈]1, 2] and in [8] for Hamilton-Jacobi equa-
tions, if we take f = 0 then the solution to (1.3) is K(ε., .) ∗x u0, where ∗x denotes the
convolution product w.r.t. the space variable. Then choosing u0 = 1[−1,1]N , the properties
of K allow to see that the error estimates above are optimal.

4. Uniqueness of the solution

This section is devoted to the proof of Theorem 3.2.. We use the doubling variables
technique of Kruzhkov [11].

4.1. Doubling variables technique

Consider u and v as functions of the (t, x)- and the (s, y)-variables, respectively. Let us
recall that the technique consists in combining the equations on u and v and, choosing
test functions which forces (s, y) to be closed to (t, x), deducing another equation on
|u − v|. Define sign := 1[0,+∞[ − 1]−∞,0]. Let us consider entropy and flux of the form
ηk(a) = |a− k| and φk(a) = ∫ a

k
sign(τ − k)f ′(τ )dτ . Although ηk and φk are not smooth,

it can be used in Definition 2.3. Indeed, there exists a sequence of smooth entropies (ηnk )n
which converges to ηk locally uniformly on R and such that, the sequence of derivatives
converges to a → sign(a−k) pointwise on R and stays bounded by 1. The associated fluxes
a → ∫ a

k
(ηnk )

′(τ )f ′(τ )dτ tend to φk pointwise on R, thanks to the dominated convergence
theorem, and

∣∣∫ a
k
(ηnk )

′(τ )f ′(τ )dτ
∣∣ ≤ ∫ a

k
|f ′|(τ )dτ , for all a ∈ R. The limit n → +∞ in

(2.2), thanks again to the dominated convergence theorem, then implies that the entropy-
flux pair (ηk ,φk) can be used in Definition 2.3. Let ψ ∈ C∞

c ([0,∞[×[0,∞[×R
N × R

N)

be non-negative. Let us fix (s, y). Let us take ϕ(t, x) = ψ(t, s, x, y) and η = ηk with
k = v(s, y) in (2.3.) and let us integrate w.r.t. s and y. We get∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|∂tψ(t, s, x, y)
+F(u(t, x), v(s, y)).∇xψ(t, s, x, y)dydxdsdt
+ cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

sign(u(t, x)− v(s, y))
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u(t, x + z)− u(t, x)

|z|N+λ ψ(t, s, x, y)dzdydxdsdt

+ cN(λ)
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤r

|u(t, x)− v(s, y)|
ψ(t, s, x + z, y)− ψ(t, s, x, y)− ∇xψ(t, s, x, y).z

|z|N+λ dzdydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− v(s, y)|ψ(0, s, x, y)dydxds ≥ 0, (4.1)

where F(a, b) := φb(a) = f (max(a, b)) − f (min(a, b)) is symmetric. Same operations
for v, with k = u(t, x), imply that

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|∂sψ(t, s, x, y)
+ F(u(t, x), v(s, y)).∇yψ(t, s, x, y)dydxdsdt
+ cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

sign(v(s, y)− u(t, x))

v(s, y + z)− v(s, y)

|z|N+λ ψ(t, s, x, y)dzdydxdsdt

+ cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤r

|u(t, x)− v(s, y)|
ψ(t, s, x, y + z)− ψ(t, s, x, y)− ∇yψ(t, s, x, y).z

|z|N+λ dzdydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v0(y)|ψ(t, 0, x, y)dydxdt ≥ 0. (4.2)

Since the function sign is odd, the sum of the second terms of each inequalities above is
equal to

cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

ψ(t, s, x, y)

sign(u(t, x)− v(s, y))
(u(t, x + z)− v(s, y + z))− (u(t, x)− v(s, y))

|z|N+λ dzdydxdsdt.

Since sign(b)(a − b) ≤ |a| − |b|, this expression is bounded from above by

cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

ψ(t, s, x, y)

|u(t, x + z)− v(s, y + z)| − |u(t, x)− v(s, y)|
|z|N+λ dzdydxdsdt.



154 Nathaël Alibaud J.evol.equ.

The sum of (4.1) and (4.2) then implies that∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|(∂t + ∂s)ψ(t, s, x, y)

+ F(u(t, x), v(s, y)).(∇x + ∇y)ψ(t, s, x, y)dydxdsdt
+ cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

ψ(t, s, x, y)

|u(t, x + z)− v(s, y + z)| − |u(t, x)− v(s, y)|
|z|N+λ dzdydxdsdt

+ cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤r

|u(t, x)− v(s, y)|

ψ(t, s, x + z, y)+ ψ(t, s, x, y + z)

−2ψ(t, s, x, y)− (∇x + ∇y)ψ(t, s, x, y).z
|z|N+λ dzdydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− v(s, y)|ψ(0, s, x, y)dydxds

+
∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v0(y)|ψ(t, 0, x, y)dydxdt ≥ 0. (4.3)

An integrability argument immediately implies that the third term of (4.3) tends to 0 as
r → 0. We let Ir denote the second term of (4.3). To pass to the limit in Ir , we have to
first put the fractional derivative on ψ .

Ir = cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

|u(t, x + z)

−v(s, y + z)|ψ(t, s, x, y)|z|N+λ dzdydxdsdt

−cN(λ)
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

|u(t, x)− v(s, y)|ψ(t, s, x, y)|z|N+λ dzdydxdsdt

and changing the variables by (x, y, z) → (x + z, y + z,−z) in the first integral,

Ir = cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

|u(t, x)

−v(s, y)|ψ(t, s, x + z, y + z)

|z|N+λ dzdydxdsdt

−cN(λ)
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

|u(t, x)− v(s, y)|ψ(t, s, x, y)|z|N+λ dzdydxdsdt

= cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

|u(t, x)− v(s, y)|
ψ(t, s, x + z, y + z)− ψ(t, s, x, y)

|z|N+λ dzdydxdsdt.
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For r ≤ 1, let us cut the integral above, according as |z| ≤ 1 or not, and let us subtract from
it

cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
r≤|z|≤1

|u(t, x)

−v(s, y)| (∇x + ∇y)ψ(t, s, x, y).z
|z|N+λ dzdydxdsdt.

Note that this integral equals 0, since its integrand is odd w.r.t. z. So

Ir = cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥1

|u(t, x)− v(s, y)|
ψ(t, s, x + z, y + z)− ψ(t, s, x, y)

|z|N+λ dzdydxdsdt

+ cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
r≤|z|≤1

|u(t, x)− v(s, y)|
ψ(t, s, x + z, y + z)− ψ(t, s, x, y)− (∇x + ∇y)ψ(t, s, x, y).z

|z|N+λ dzdydxdsdt.

Again by an integrability argument,

lim
r→0

Ir = cN(λ)

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥1

|u(t, x)− v(s, y)|
ψ(t, s, x + z, y + z)− ψ(t, s, x, y)

|z|N+λ dzdydxdsdt

+cN(λ)
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤1

|u(t, x)− v(s, y)|
ψ(t, s, x + z, y + z)− ψ(t, s, x, y)− (∇x + ∇y)ψ(t, s, x, y).z

|z|N+λ dzdydxdsdt

and thanks to Fubini’s Theorem,

lim
r→0

Ir =
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|
cN(λ)

∫
|z|≥1

ψ(t, s, x + z, y + z)

−ψ(t, s, x, y)
|z|N+λ dz

+ cN(λ)
∫

|z|≤1

ψ(t, s, x + z, y + z)− ψ(t, s, x, y)

−(∇x + ∇y)ψ(t, s, x, y).z
|z|N+λ dz


 dydxdsdt.
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Passing to the limit as r → 0 in (4.3),∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|(∂t + ∂s)ψ(t, s, x, y)

+ F(u(t, x), v(s, y)).(∇x + ∇y)ψ(t, s, x, y)dydxdsdt

+
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|


cN(λ)

∫
|z|≥1

ψ(t, s, x + z, y + z)

−ψ(t, s, x, y)
|z|N+λ dz

+ cN(λ)

∫
|z|≤1

ψ(t, s, x + z, y + z)− ψ(t, s, x, y)

−(∇x + ∇y)ψ(t, s, x, y).z
|z|N+λ dz


 dydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− v(s, y)|ψ(0, s, x, y)dydxds

+
∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v0(y)|ψ(t, 0, x, y)dydxdt ≥ 0. (4.4)

Let us take ψ(t, s, x, y) = θν(s − t)ρµ(y − x)φ(t, x), where θν ∈ C∞
c (]0, ν[) and ρµ ∈

C∞
c (Bµ) (where we let Bµ denote the ball B(0, µ)) are two approximate units and φ ∈
C∞
c ([0,∞[×R

N) is non-negative. Simple computations imply that

(∂t + ∂s)ψ(t, s, x, y) = θν(s − t)ρµ(y − x)∂tφ(t, x),

(∇x + ∇y)ψ(t, s, x, y) = θν(s − t)ρµ(y − x)∇φ(t, x)
and, thanks to (2.1),

cN(λ)

∫
|z|≥1

ψ(t, s, x + z, y + z)− ψ(t, s, x, y)

|z|N+λ dz

+ cN(λ)
∫

|z|≤1

ψ(t, s, x + z, y + z)− ψ(t, s, x, y)− (∇x + ∇y)ψ(t, s, x, y).z
|z|N+λ dz

= −θν(s − t)ρµ(y − x)g[φ(t, .)](x). (4.5)

Moreover, θν is equal to 0 on ] − ∞, 0] and ψ(t, 0, x, y) = 0. By (4.4),∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|θν(s − t)ρµ(y − x)∂tφ(t, x)

+ F(u(t, x), v(s, y)).θν(s − t)ρµ(y − x)∇φ(t, x)
− |u(t, x)− v(s, y)|θν(s − t)ρµ(y − x)g[φ(t, .)](x)dydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− v(s, y)|θν(s)ρµ(y − x)φ(0, x)dydxds ≥ 0.
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We have

F(u(t, x), v(s, y)) = f (max(u(t, x), v(s, y)))− f (min(u(t, x), v(s, y)))

≤ L|u(t, x)− v(s, y)|,
where L is a Lipschitz constant of f on [−m,m] withm = max{||u||L∞(RN), ||v||L∞(RN)}.
Then∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)− v(s, y)|θν(s − t)ρµ(y − x)

(∂tφ(t, x)+ L|∇φ(t, x)| − g[φ(t, .)](x)) dydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− v(s, y)|θν(s)ρµ(y − x)φ(0, x)dydxds ≥ 0. (4.6)

We let Iν,µ and Jν,µ respectively denote the first and the second term of (4.6). Define

 := ∂tφ + L|∇φ| − g[φ] and ω1(ν, µ) =∣∣Iν,µ − ∫ ∞

0

∫
R
N |u − v|
∣∣. Let us recall that∫

R
N ρµ = 1 and that for all t ≥ 0,

∫ ∞
0 θν(s − t)ds = 1; hence, Fubini’s Theorem gives∫ ∞

0

∫
R
N

|u− v|
 =
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|u(t, x)
−v(t, x)|θν(s − t)ρµ(y − x)
(t, x)dydxdsdt.

Since
∣∣|a| − |b|∣∣ ≤ |a − b|,

||u(t, x)− v(s, y)|θν(s − t)ρµ(y − x)
(t, x)

−|u(t, x)− v(t, x)|θν(s − t)ρµ(y − x)
(t, x)|
≤ |v(t, x)− v(s, y)|θν(s − t)ρµ(y − x)|
(t, x)|

for all (t, s, x, y) ∈ [0,∞[×[0,∞[×R
N × R

N and

ω1(ν, µ) ≤
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|v(t, x)
−v(s, y)|θν(s − t)ρµ(y − x)|
(t, x)|dydxdsdt.

Let us change the variables by (t, x, s′, y′) = (t, x, s − t, y − x). Then

ω1(ν, µ) ≤
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|v(t, x)− v(t + s′, x + y′)|θν(s′)ρµ(y′)|
(t, x)|dy′ds′dxdt

=
∫ ∞

0

∫
R
N

||(v − T(−s′,−y′)v)
||L1(]0,∞[×R
N)θν(s

′)ρµ(y′)dy′ds′, (4.7)

where we have first integrated w.r.t.(t, x) and we let Thϕ denote the translated function
ϕ(.− h). Let us prove that the function

(s′, y′) ∈ [0,∞[×R
N → ‖(v − T(−s′,−y′)v)
‖L1(]0,∞[×R

N)
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is continuous. Recalling that v ∈ L∞(]0,∞[×R
N) ⊆ L1

loc(]0,∞[×R
N), the continuity of

the translation inL1 implies that (s′, y′) ∈ [0,∞[×R
N → T(−s′,−y′)v ∈ L1

loc(]0,∞[×R
N)

is continuous. Moreover, Taylor’s Formula and Fubini’s Theorem applied to (2.1) give

||g[φ]||L1(]0,∞[×R
N) ≤ cN(λ)

∫ ∞

0

∫
R
N

∫
z≥r

|φ(t, x + z)| + |φ(t, x)|
|z|N+λ dzdxdt

+ cN(λ)

∫ 1

0

∫ ∞

0

∫
R
N

∫
z≤r

(1 − τ)|D2φ(t, x + τz)|
|z|N−2+λ dzdxdtdτ.

Integrating first w.r.t. (t, x),

||g[φ]||L1(]0,∞[×R
N) ≤ C||φ||L1(]0,∞[×R

N) + C||D2φ||
L1(]0,∞[×R

N)
N2 , (4.8)

where C is any constant that only depends on N and λ. We deduce that g[φ] ∈
L1(]0,∞[×R

N) and a fortiori 
 ∈ L1(]0,∞[×R
N). Similar arguments allow to prove

that 
 ∈ L∞(]0,∞[×R
N) and this completes the proof of the continuity of (s′, y′) →

‖(v − T(−s′,−y′)v)
‖L1(]0,∞[×R
N). By (4.7) and classically results on approximate units,

limν,µ→0 ω1(ν, µ) = 0 and we have proved that

lim
ν,µ→0

Iν,µ =
∫ ∞

0

∫
R
N

|u− v| (∂tφ + L|∇φ| − g[φ]) .

As far as Jν,µ is concerned,

Jν,µ ≤
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− v0(x)|θν(s)ρµ(y − x)φ(0, x)dydxds

+
∫ ∞

0

∫
R
N

∫
R
N

|v0(x)− v0(y)|θν(s)ρµ(y − x)φ(0, x)dydxds

+
∫ ∞

0

∫
R
N

∫
R
N

|v0(y)− v(s, y)|θν(s)ρµ(y − x)φ(0, x)dydxds

≤
∫

R
N

|u0 − v0|φ(0, .)+ ω2(µ)+ ω3(ν, µ), (4.9)

where

ω2(µ) =
∫

R
N

||(v0 − T−y′v0)φ(0, x)||L1(RN)ρµ(y
′)dy′ → 0, as µ → 0,

and ω3(ν, µ) =
∫ ∞

0
||(v0 − v(s, .))ρµ ∗ φ(0, .)||L1(RN)θν(s)ds.

By Proposition 2.5 items iii) and iv),

ω3(ν, µ) → 0 as (ν, µ) → (0, 0) (4.10)

and the limit (ν, µ)→(0, 0) in (4.6) implies that for all non-negativeφ ∈ C∞
c ([0,∞[×R

N),∫ ∞

0

∫
R
N

|u− v| (∂tφ + L|∇φ| − g[φ])+
∫

R
N

|u0 − v0|φ(0, .) ≥ 0. (4.11)
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4.2. Conclusion

Let T > 0, x0 ∈ R
N , M > LT , 0 < δ < M−LT

L
and γ ∈ C∞

c (R
+) non-negative,

non-increasing and equal to 1 on [0,M]. Let� ∈ C∞
c ([0, T + δ[) be non-negative. Define

φ(t, x) = �(t)K(T + δ − t, .) ∗ γ (|.− x0| + Lt)(x) if 0 ≤ t < T , φ(t, x) = 0 if not.

REMARK 4.1. The use of the parameter δ and the test-function � of (4.13) will be
necessary when proving the item iii) of Proposition 2.5 in Appendix B. The reader who has
admitted this property in a first reading can consider that δ = 0 and that � is defined by
�(t) = ∫ ∞

t
θν(T − s)ds.

Note that γ (|.− x0| + L.) ∈ C∞
c ([0, T + δ] × R

N) since it equals 1 on a neighbour-
hood of [0, T + δ] × {x0}. By Lemma A.1 and the non-negativity of K , φ belongs
to C∞

b ([0,∞[×R
N) and is non-negative. On the one hand, let us prove that φ can

be used in (4.11) although its support is not compact. By the properties of K , φ ∈
C([0,∞[;L1(RN)) ∩ L1(]0,∞[;W 2,1(RN)) and by Lemma A.1,

∂tφ(t, x)− L�(t)K(T + δ − t, .) ∗ γ ′(|.− x0| + Lt)(x)− g[φ(t, .)](x)

= �′(t)K(T + δ − t, .) ∗ γ (|.− x0| + Lt)(x), (4.12)

for all t ∈ [0, T + δ[ and all x ∈ R
N . Estimate (4.8), derived before, still holds true for all

φ ∈ C∞
b ([0,∞[×R

N) ∩ L1(]0,∞[;W 2,1(RN)). We deduce that ∂tφ ∈ L1(]0,∞[×R
N),

thanks to (4.12), and that g is continuous fromC∞
b ([0,∞[×R

N)∩L1(]0,∞[;W 2,1(RN)),
endowed with the norm of L1(]0,∞[;W 2,1(RN)), into L1(]0,∞[×R

N). The density of
C∞
c ([0,∞[×R

N) in

E = {w : w ∈ C([0,∞[;L1(RN)) ∩ L1(]0,∞[;W 2,1(RN))

and ∂tw ∈ L1(]0,∞[×R
N)}

then implies that φ can be used in (4.11). On the other hand,

|∇φ(t, x)| =
∣∣∣∣�(t)K(T + δ − t, .) ∗

(
.− x0

|.− x0|γ
′ (|.− x0| + Lt)

)
(x)

∣∣∣∣
≤ −�(t)K(T + δ − t, .) ∗ γ ′ (|.− x0| + Lt) (x)

because γ is non-increasing and by (4.12),

∂tφ(t, x)+ L|∇φ(t, x)| − g[φ(t, .)](x) ≤ �′(t)K(T + δ − t, .) ∗ γ (|.− x0| + Lt)(x),

for all t ∈ [0, T + δ[ and all x ∈ R
N . Let us take

�(t) =
∫ ∞

t

θν(s − T )ds, (4.13)
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where θν is an approximate unit as before with 0 < ν ≤ δ (in order that supp(�) ⊆
[0, T + δ[). We get�(0) = 1, for ν sufficiently small, and�′(t) = −θν(t−T ). By (4.11),∫ T+δ

0
θν(t − T )

(∫
R
N

|u(t, .)− v(t, .)|K(T + δ − t, .) ∗ γ (|.− x0| + Lt)

)
dt

≤
∫

R
N

|u0 − v0|K(T + δ, .) ∗ γ (|.− x0|). (4.14)

By the properties ofK , t ∈ [0, T + δ[→ K(T + δ− t, .) ∗ γ (|.− x0| +Lt) ∈ L∞(RN) is
continuous and supt∈[0,T+δ[ ||K(T + δ − t, .) ∗ γ (|.− x0| + Lt)||L1(RN\BR) → 0 as R →
+∞. By Proposition 2.5 item iii), the limit as ν → 0 in (4.14) gives∫

R
N

|u(T , .)− v(T , .)|K(δ, .) ∗ γ (|.− x0| + LT )

≤
∫

R
N

|u0 − v0|K(T + δ, .) ∗ γ (|.− x0|) . (4.15)

Since K is an approximate unit, the limit as δ → 0 gives∫
R
N

|u(T , .)− v(T , .)|γ (|.− x0| + LT ) ≤
∫

R
N

|u0 − v0|K(T , .) ∗ γ (|.− x0|) ,

=
∫

R
N
γ (|.− x0|)K(T , .) ∗ |u0 − v0|.

The last equality is obtained by using Fubini’s Theorem and the parity of K(T , .). For
any real R > 0, we take M = R + LT . The characteristic function 1B(x0,R+LT ) can be
approximated, in L1(RN), by functions of the form γ (|. − x0|), where γ ∈ C∞

c (R
+) is

non-negative, non-increasing and equal to 1 on [0,M]. Passing to the limit in the inequality
above, we get (3.1) with m = max{||u||L∞(RN), ||v||L∞(RN)}. In fact, this result suffices to
prove the uniqueness of an entropy solution to (1.1), and (3.1) with the best constant will
be a consequence of Remark 5.1.

REMARK 4.2. Observe that

if u is smooth then for all entropy η, η′(u)g[u] ≥ g[η(u)]. (4.16)

This leads to the following formulation for (1.1) which is more simple than (2.2): for all
non-negative ϕ ∈ C∞

c ([0,∞[×R
N) and all entropy-flux pair (η, φ),∫ ∞

0

∫
R
N
(η(u)∂tϕ + φ(u).∇ϕ + η(u)g[ϕ])+

∫
R
N
η(u0)ϕ ≥ 0. (4.17)

Let us explain why we do not have used this formulation that will be called intermediate. It
is immediate that “classical ⇒ entropy ⇒ intermediate ⇒ weak” (the second implication
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derives from the limit r → +∞ in (2.2)). Conversely, the question of the implication “inter-
mediate ⇒ entropy” is open. It is relied with the possible non-uniqueness of intermediate
solutions to (1.1). From a technical viewpoint, (4.17) seems to be unappropriate to use the
doubling variable technic. Indeed, the term (gx +gy)[ψ] corresponding to (4.5) behaves as
g[ρµ] (this is easy to see if u and v are in L1 and φ = 1). Then we can not pass to the limit
as µ → 0. In the case of a local degenerate diffusion of the form −�(b(u)), this problem
can be resolved by putting a gradient operator on test-functions, thanks to an integration by
parts (see [5]). In our case, this is no tractable since ((−�x)

λ/4 + (−�y)
λ/4)ψ behaves

as (−�)λ/4ρµ. Thus, we should put the operator g on η(u), but this need some regularity
on η(u). Even if η(u) is regular enough, the non-locality of g and the doubling variable
technique give us a diffusive term in (4.11) which is computed from |u(x) − v(y)| and
which can non-vanish even if u = v.

5. Existence of the solution

We construct here an entropy solution to (1.1), thus concluding Theorem 3.1. We use a
splitting method, as in [7, 6] for λ ∈]1, 2]. For δ > 0, let us construct uδ : [0,∞[×R

N → R

the following way: we let uδ(0, .) = u0 and, for all even p and all odd q, we define by
induction

(a) uδ on ]pδ, (p+1)δ]×R
N as the solution to ∂tuδ+2g[uδ] = 0 with initial condition

uδ(pδ, .), that is to say uδ(t, x) = K(2(t − pδ), .) ∗ uδ(pδ, .)(x);
(b) uδ on ]qδ, (q + 1)δ] × R

N as the entropy solution to ∂tuδ + 2 div
(
f (uδ)

) = 0 with
initial condition uδ(qδ, .).

It is well-known that both equations above do not increase the L∞ norm and that
their solutions are continuous with values in L1

loc(R
N). We thus have defined

uδ ∈ C([0,∞[;L1
loc(R

N)) such that

||uδ(t, .)||L∞(RN) ≤ ||u0||L∞(RN), (5.1)

for all δ > 0 and all t > 0.

5.1. Compactness result on the sequence (uδ)δ>0

Let us prove that {uδ : δ > 0} is relatively compact in C([0, T ];L1
loc(R

N)) (for all T > 0).
The starting point is the following approximate generalized propagation speed property for
uδ: for all h ∈ R

N and all R > 0,∫
BR

|uδ((p + 1)δ, .)− Th(uδ((p + 1)δ, .))|

≤
∫
BR+Lpδ

K((p + 2)δ, .) ∗ |u0 − Thu0|, (5.2)
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for all even p and∫
BR

|uδ((q + 1)δ, .)− Th(uδ((q + 1)δ, .))|

≤
∫
BR+L(q+1)δ

K((q + 1)δ, .) ∗ |u0 − Thu0|, (5.3)

for all odd q, where L is defined as in Theorem 3.2 (with v0 = Thu0). The proofs of (5.2)
and (5.3) are very similar and we give only the proof of (5.2). It is immediate that (5.2)
holds true for p = 0 and in what follows, we assume that p ≥ 2. For all integer n such that
0 ≤ 2n ≤ p, define

I (n) =
∫
BR+L2nδ

K(2(n+ 1)δ, .) ∗ |uδ((p − 2n)δ, .)− Th(uδ((p − 2n)δ, .))|.

The finite propagation speed for scalar conservation laws and (5.1) imply that for all y ∈ R
N

and all 0 ≤ 2(n+ 1) ≤ p,∫
BR+L2nδ

|uδ((p − 2n)δ, x − y)− uδ((p − 2n)δ, x − y − h)|dx

≤
∫
BR+L2nδ+L2δ

|uδ((p − 2n− 1)δ, x − y)− uδ((p − 2n− 1)δ, x − y − h)|dx.

Multiplying by K(2(n+ 1)δ, y) ≥ 0 and integrating w.r.t. y, Fubini’s Theorem gives∫
BR+L2nδ

K(2(n+ 1)δ, .) ∗ |uδ((p − 2n)δ, .)− Th(uδ((p − 2n)δ, .))|

≤
∫
BR+L2(n+1)δ

K(2(n+ 1)δ, .) ∗ |uδ((p − 2n− 1)δ, .)− Th(uδ((p − 2n− 1)δ, .))|.

Since

uδ((p − 2n− 1)δ, .)− Th(uδ((p − 2n− 1)δ, .))

= K(2δ, .) ∗ (uδ((p − 2(n+ 1))δ, .)− Th(uδ((p − 2(n+ 1))δ, .))),

the semi-group property of K gives I (n) ≤ I (n + 1), for all 0 ≤ 2(n + 1) ≤ p. Conse-
quently, I (0) ≤ I (p/2). Since uδ satisfies the fractal equation on ]pδ, (p + 1)δ] × R

N ,∫
BR

|uδ((p + 1)δ, .)− Th(uδ((p + 1)δ, .))| ≤ I (0)

and the proof of (5.2) is complete.
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The rest of the proof is based on the following lemma.

LEMMA 5.1. Let E be a Banach space. Let A ⊂ E. If, for every µ > 0, there exists
Aµ ⊂ E relatively compact such that A ⊆ Aµ + B(0, µ), then A is relatively compact in
E.

This lemma is classical and for instance it is used in the proof of Kolmogorov’s Theorem.
Let T > 0 and R > 0. For all µ > 0, we define uδµ(t, x) = uδ(t, .) ∗ ρµ(x), where ρµ is
any approximate unit as before. Let us use the lemma above with E = C([0, T ];L1(BR)),
A = {uδ : δ > 0} and Aµ = {uδµ : δ > 0}. Let us begin by the proof of the relative

compactness of Aµ in E. By (5.1) and Young’s Inequalities, uδµ(t, .) ∈ C∞
b (R

N) and all
its derivatives are bounded independently on t and δ. Moreover, the associativity of the
convolution product implies that

uδµ(t, x) = K(2(t − δp), .) ∗ uδµ(pδ, .)(x), (t, x) ∈]pδ, (p + 1)δ] × R
N,

for all even p. Thus by Lemma A.1, uδµ is a classical solution to the fractal equation on

]pδ, (p + 1)δ] × R
N . By the continuity of g from W 2,∞(RN) into Cb(RN), the time

derivative of uδµ is bounded, independently on t and δ, on each interval where the fractal
equation is satisfied. Moreover, it is well-known that the entropy solution to the hyperbolic
equation satisfies this equation in the distribution sense. In particular, ∂tuδµ = −f (uδ) ∗x
∇ρµ in D′(]qδ, (q + 1)δ[×R

N), for all odd q. Estimate (5.1) and Young’s Inequalities
thus give us a bound on the time derivative, independently on t and δ, on each interval
where the hyperbolic equation is satisfied. To sum-up, we have proved that the family Aµ
is bounded in Cb([0, T ] × BR) and equilipschitz-continuous on [0,∞[×R

N . By Ascoli-
Arzela’s Theorem, Aµ is relatively compact in Cb([0, T ] × BR) and a fortiori in E. Now,
we define ω(µ) = supδ>0 ||uδ − uδµ||E . The set A ⊂ Aµ + B(0, ω(µ)) and it suffices to
prove that limµ→0 ω(µ) = 0 in order to use the lemma above. By (5.2), (5.3), Lemma A.2
and the finite propagation speed for scalar conservation laws (to estimate the translations
for all t ≥ 0),

lim
h→0

sup
δ>0

sup
t∈[0,T ]

∫
BR

|uδ(t, .)− Th(uδ(t, .))| = 0 (5.4)

and classically with approximate units, limµ→0 ω(µ) = 0. The proof of the relative
compactness of A in E and thus of {uδ : δ > 0} in C([0, T ];L1

loc(R
N)) (for all T > 0) is

now complete.

5.2. Entropy inequality for uδ

Recalling that uδµ is a classical solution to the fractal equation (thus of (1.1) for f = 0 and
g replaced by 2g), it is already proved in Section 2. (see the proof of Proposition 2.5. i))
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that∫ (p+1)δ

pδ

∫
R
N
η(uδµ)∂tϕ

+ 2cN(λ)
∫ (p+1)δ

pδ

∫
R
N

∫
|z|≥r

η′(uδµ(t, x))
uδµ(t, x + z)− uδµ(t, x)

|z|N+λ ϕ(t, x)dzdxdt

+ 2cN(λ)
∫ (p+1)δ

pδ

∫
R
N

∫
|z|≤r

η(uδµ(t, x))
ϕ(t, x + z)− ϕ(x)− ∇ϕ(t, x).z

|z|N+λ dzdxdt

+
∫

R
N
η(uδµ(pδ, .))ϕ(pδ, .)−

∫
R
N
η(uδµ((p + 1)δ, .))ϕ((p + 1)δ, .) ≥ 0 (5.5)

for all r > 0, all smooth entropy η and all non-negative ϕ ∈ C∞
c ([0,∞[×R

N) (note that
ϕ is not necessarily null for t = (p + 1)δ and we get a new boundary term). Moreover,
uδµ converges to uδ as µ → 0 a.e. on ]pδ, (p + 1)δ[×R

N and by (5.1), uδµ stays bounded
by ||u0||L∞(RN). The limit µ → 0 in (5.5), thanks to the continuity of η and η′ and to the
dominated convergence theorem, then gives

∫ (p+1)δ

pδ

∫
R
N
η(uδ)∂tϕ

+ 2cN(λ)
∫ (p+1)δ

pδ

∫
R
N

∫
|z|≥r

η′(uδ(t, x))u
δ(t, x + z)− uδ(t, x)

|z|N+λ ϕ(t, x)dzdxdt

+ 2cN(λ)
∫ (p+1)δ

pδ

∫
R
N

∫
|z|≤r

η(uδ(t, x))
ϕ(t, x + z)− ϕ(x)− ∇ϕ(t, x).z

|z|N+λ dzdxdt

+
∫

R
N
η(uδ(pδ, .))ϕ(pδ, .)−

∫
R
N
η(uδ((p + 1)δ, .))ϕ((p + 1)δ, .) ≥ 0, (5.6)

for all even p. Consider now any flux φ associated to η. Let us recall that, as far as the
hyperbolic equation is concerned, the following inequality is taken as definition of entropy
solution.2∫ (q+1)δ

qδ

∫
R
N
η(uδ)∂tϕ + 2

∫ (q+1)δ

qδ

∫
R
N
φ(uδ)∇ϕ

+
∫

R
N
η(uδ(qδ, .))ϕ(qδ, .)−

∫
R
N
η(uδ((q + 1)δ, .))ϕ((q + 1)δ, .) ≥ 0, (5.7)

for all odd q. Summing now (5.6) and (5.7) for all even p and all odd q (notice that since
ϕ(t, .) = 0 for t sufficiently large, these sums are finite and we keep only the boundary

2The presence of the boundary term for t = (q + 1)δ, that generally not appears in the definition, is obtained

by the continuity with values in L1
loc(R

N
) of the solution.
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term for t = 0),∫ ∞

0

∫
R
N
η(uδ(t, x))∂tϕ(t, x)+ φ(uδ(t, x))ϕ(t, x)2(1 − χδ(t))dxdt

+ cN(λ)

∫ ∞

0

∫
R
N

∫
|z|≥r

η′(uδ(t, x))u
δ(t, x + z)− uδ(t, x)

|z|N+λ ϕ(t, x)2χδ(t)dzdxdt

+ cN(λ)

∫ ∞

0

∫
R
N

∫
|z|≤r
η(uδ(t, x))

ϕ(t, x + z)− ϕ(t, x)− ∇ϕ(t, x).z
|z|N+λ 2χδ(t)dzdxdt

+
∫

R
N
η(u0))ϕ(0, .) ≥ 0, (5.8)

where χδ := ∑
even p 1]pδ,(p+1)δ].

5.3. Passing to the limit as δ → 0

Since uδ converges as δ → 0 to u in C([0, T ];L1
loc(R

N)) (for all T > 0), up to a sub-
sequence, the convergence still holds true in L1

loc(]0,∞[×R
N) and a fortiori a.e. on

]0,∞[×R
N , up to a subsequence. Using again (5.1) and the continuity of η′, the domi-

nated convergence theorem implies that∫
R
N

∫
|z|≥r

η′(uδ(., x))u
δ(., x + z)− uδ(., x)

|z|N+λ ϕ(., x)dzdx

→
∫

R
N

∫
|z|≥r

η′(u(., x))u(., x + z)− u(., x)

|z|N+λ ϕ(., x)dzdx in L1(]0,∞[),

as δ → 0. Classically 2χδ → 1 in L∞(]0,∞[) weak-∗ and the second term of (5.8)
converges to the second term of (2.2), as δ → 0. Similar arguments allow to pass to the
limit in the other terms and deduce that u is an entropy solution to (1.1). The proof of
Theorem 3.1 is now complete.

REMARK 5.1. Since the solutions to both the hyperbolic and the fractal equations sat-
isfy the properties of Proposition 3.4, it is quite obvious that uδ also satisfies these properties
and thus so does u.

6. Vanishing viscosity method

We conclude this work by the proof of the convergence results of Theorem 3.6.

6.1. Error estimates

We begin with the case u0 ∈ L∞(RN) ∩ L1(RN) ∩ BV (RN). We use again the doubling
variable technique, as in [12] for λ = 2 and in [6] for λ ∈]1, 2]. In the sequel, we let C
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denote any non-negative constant that only depends on T ,N, λ and the L1 ∩ BV norm of
u0. Let us recall that by definition,∫ ∞

0

∫
R
N
(η(u)∂tϕ + φ(u).∇ϕ)+

∫
R
N
η(u0)ϕ(0, .) ≥ 0

for all entropy-flux pair (η, φ) and all non-negative ϕ ∈ C∞
c ([0,∞[×R

N). Arguing as in
Subsection 4.1, we get∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|uε(t, x)− u(s, y)|(∂t + ∂s)ψ(t, s, x, y)

+F(uε(t, x), u(s, y)).(∇x + ∇y)ψ(t, s, x, y)dydxdsdt

+Cε
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

ψ(t, s, x, y)

sign(uε(t, x)− u(s, y))
uε(t, x + z)− uε(t, x)

|z|N+λ dzdydxdsdt

+Cε
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤r

|uε(t, x)− u(s, y)|
ψ(t, s, x + z, y)− ψ(t, s, x, y)− ∇xψ(t, s, x, y).z

|z|N+λ dzdydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− u(s, y)|ψ(0, s, x, y)dydxds

+
∫ ∞

0

∫
R
N

∫
R
N

|uε(t, x)− u0(y)|ψ(t, 0, x, y)dydxdt ≥ 0.

We take ψ(t, s, x, y) = θν(s− t)ρµ(y− x)�(t). In fact, uε and u are in L1 and there is no
integrability problem. Note that, as in Subsection 4.2,�will be chosen as a primitive of an
approximate unit and we still let C denote some constants also depending on

∫ ∞
0 � ≤ T ,∫ ∞

0 |�′| = 1 and �(0) = 1. We have∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|uε(t, x)− u(s, y)|θν(s − t)ρµ(y − x)�′(t)dydxdsdt

+Cε
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

θν(s − t)ρµ(y − x)�(t)

sign(uε(t, x)− u(s, y))
uε(t, x + z)− uε(t, x)

|z|N+λ dzdydxdsdt

+Cε
∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤r

|uε(t, x)− u(s, y)|θν(s − t)�(t)

ρµ(y − x − z)− ρµ(y − x)+ ∇ρµ(y − x).z

|z|N+λ dzdydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− u(s, y)|θν(s)ρµ(y − x)�(0)dydxds ≥ 0. (6.1)
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We let Ir and Jr denote respectively the second and the third term of (6.1). We have

Ir ≤ Cε

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≥r

θν(s − t)ρµ(y − x)�(t)

|uε(t, x + z)− uε(t, x)|
|z|N+λ dzdydxdsdt,

= Cε

∫ ∞

0

∫
R
N

∫
|z|≥r

�(t)
|uε(t, x + z)− uε(t, x)|

|z|N+λ dzdxdt.

Integrating first w.r.t. x,

Ir ≤ Cε

∫ ∞

0

∫
|z|≥r

�(t)|z|−N−λ||T−z(uε(t, .))− uε(t, .)||L1(RN)dzdt. (6.2)

By Proposition 3.4 iii) and iv),

||T−z(uε(t, .))− uε(t, .)||L1(RN) ≤ 2||u0||L1(RN)

and ||T−z(uε(t, .))− uε(t, .)||L1(RN) ≤ ||uε(t, .)||BV (RN)|z| ≤ |u0|BV (RN)|z|,
for all t > 0. For 0 < r ≤ 1, let us cut the integral term of (6.2) in two pieces according
as |z| ≥ 1 or not. Let us use both last estimates on each of one part, respectively. We get

Ir ≤ Cε

∫ ∞

0

∫
|z|≥1

�(t)|z|−N−λdzdt,

+Cε
∫ ∞

0

∫
r≤|z|≤1

�(t)|z|−N−λ+1dzdt ≤ Cε + Cε

∫ 1

r

dτ

τλ
. (6.3)

Let us now bound from above Jr . By Taylor’s Formula and Fubini’s Theorem,

Jr = Cε

∫ 1

0

∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

∫
|z|≤r

|uε(t, x)− u(s, y)|(1 − τ)θν(s − t)�(t)

D2ρµ(y − x − τz)z.z

|z|N+λ dzdydxdsdtdτ,

= Cε

∫ 1

0

∫ ∞

0

∫ ∞

0

∫
R
N

∫
|z|≤r

(1 − τ)θν(s − t)�(t)|z|−N−λ

(∫
R
N

|uε(t, x)− u(s, y)|D2ρµ(y − x − τz)z.z dx

)
dzdydsdtdτ.

By Lemma A.3, |uε(t, .)− u(s, y)| ∈ BV (RN) and an integration by parts gives

Jr = Cε

∫ 1

0

∫ ∞

0

∫ ∞

0

∫
R
N

∫
|z|≤r

(1 − τ)θν(s − t)�(t)|z|−N−λ

(∫
R
N

∇ρµ(y − x − τz).z d(D(|uε(t, .)− u(s, y)|))(x).z
)
dzdydsdtdτ,
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where the integral is taken w.r.t. the bounded borel measure D(|uε(t, .) − u(s, y)|).z. By
Fubini’s Theorem,

Jr = Cε

∫ 1

0

∫ ∞

0

∫ ∞

0

∫
|z|≤r

(1 − τ)θν(s − t)�(t)|z|−N−λ

(∫
R
N

(∫
R
N

∇ρµ(y − x − τz).z d(D(|uε(t, .)− u(s, y)|))(x).z
)
dy

)
dzdsdtdτ.

(6.4)

By Lemma A.3 |D(|uε(t, .)− u(s, y)|)| ≤ |Duε(t, .)| and the term in parenthesis above is
lower than |z|2 ∫

R
N

(∫
R
N |∇ρµ(y − x − τz)| d(|Duε(t, .)|)(x)) dy. Note that |Duε(t, .)| is

finite and its tensor product by the Lebesgue measure satisfies the hypothesis of Fubini’s
theorem. Then, this integral is well-defined and we can moreover first integrate w.r.t. y to
bound it from above by

|z|2|uε(t, .)|BV (RN)||∇ρµ||L1(RN) ≤ |z|2|u0|BV (RN)||∇ρµ||L1(RN).

With smoothing kernel of the form ρµ = µ−Nρ(µ−1.), we have ||∇ρµ||L1(RN) ≤ Cµ−1.
Then

Jr ≤ Cεµ−1
∫ 1

0

∫ ∞

0

∫ ∞

0

∫
|z|≤r

(1 − τ)θν(s − t)�(t)|z|−N+2−λdzdsdtdτ,

= Cεµ−1r2−λ.

Using (6.1) and (6.3),∫ ∞

0

∫ ∞

0

∫
R
N

∫
R
N

|uε(t, x)− u(s, y)|θν(s − t)ρµ(y − x)�′(t)dydxdsdt

+
∫ ∞

0

∫
R
N

∫
R
N

|u0(x)− u(s, y)|θν(s)ρµ(y − x)�(0)dydxds

≥ −Cε − Cε

∫ 1

r

dτ

τλ
− Cεµ−1r2−λ.

Recalling (4.7) and (4.9) derived in Subsection 4.1,∫ ∞

0

∫
R
N

|uε − u|�′ ≥ −ω1(ν, µ)− ω2(µ)− ω3(ν, µ)

−Cε − Cε

∫ 1

r

dτ

τλ
− Cεµ−1r2−λ, (6.5)

where the role of u and v are now played by uε and u, respectively. By Fubini’s Theorem,

ω1(ν, µ) ≤
∫ ∞

0
θν(s

′)
(∫

R
N

∣∣∣∣(u− T(−s′,−y′)u)�
′∣∣∣∣
L1(]0,∞[×R

N)
ρµ(y

′)dy′
)
ds′.
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Since u ∈ L∞(]0,∞[;L1(RN)) and �′ ∈ C∞
c ([0,∞[), the term (T(−s′,−y′)u)�′ is con-

tinuous w.r.t. (s′, y′) from [0,∞[×R
N into L1(]0,∞[×R

N). Since ρµ ∈ C∞
c (R

N),

s′ ∈ [0,∞[→
∫

R
N

∣∣∣∣(u− T(−s′,−y′)u)�
′∣∣∣∣
L1(]0,∞[×R

N)
ρµ(y

′)dy′

is continuous. Consequently,

lim sup
ν→0

ω1(ν, µ) ≤
∫

R
N

∣∣∣∣(u− T(0,−y′)u)�
′∣∣∣∣
L1(]0,∞[×R

N)
ρµ(y

′)dy′,

=
∫ ∞

0

∫
R
N

||u(t, .)− T−y′(u(t, .))||L1(RN)�
′(t)ρµ(y′)dy′dt,

≤ C

∫ ∞

0

∫
R
N

|�′(t)||y′|ρµ(y′)dy′dt,

≤ Cµ,

since supp(ρµ) ⊂ Bµ and theBV semi norm ofu is non-increased. Moreover,ω2(µ) ≤ Cµ

and recalling that limν→0 ω3(ν, µ) = 0 (for all µ > 0), the limit ν → 0 in (6.5) gives∫ ∞

0

∫
R
N

|u− uε|�′ ≥ −Cµ− Cε − Cε

∫ 1

r

dτ

τλ
− Cεµ−1r2−λ.

We take � as in Remark 4.1 of Subsection 4.2. Then∫ ∞

0

(∫
R
N

|u(t, .)− uε(t, .)|
)
θν(T − t)dt ≤ Cµ+ Cε + Cε

∫ 1

r

dτ

τλ
+ Cεµ−1r2−λ

and letting ν → 0,
∫

R
N |u(T , .) − uε(T , .)| ≤ Cµ + Cε + Cε

∫ 1
r
dτ
τλ

+ Cεµ−1r2−λ. The
limits in order r → 0 and µ → 0, for λ ∈]0, 1[, and an optimization w.r.t. r and µ (which
gives r = µ = ε), for λ = 1, then give the error estimates of Theorem 3.6.

6.2. Convergence for u0 only L∞

Let us approximate u0 in L1
loc(R

N) by un0 ∈ L∞(RN) ∩ L1(RN) ∩ BV (RN) bounded by
||u0||L∞(RN). Recalling that K(ε., .) is the kernel of the fractal operator εg, the classical
and generalized finite propagation speed results imply that for all T ,R > 0,

||uε − u||C([0,T ];L1(BR))

≤ ||uε − uεn||C([0,T ];L1(BR))
+ ||uεn − un||C([0,T ];L1(BR))

+ ||un − u||C([0,T ];L1(BR))
,

≤ sup
t∈[0,T ]

∫
BR+Lt

K(εt, .) ∗ |u0 − un0| + Cnω(ε)+ ||un0 − u0||L1(BR+LT ), (6.6)

where Cn and ω(ε) derive from the last Subsection. We have proved that Cn does not
depend on ε and that limε→0 ω(ε) = 0. By (A.3),

lim sup
ε→0

sup
t∈[0,T ]

∫
BR+Lt

K(εt, .) ∗ |u0 − un0| ≤ ||u0 − un0||L1(BR+LT+r ),
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for all r > 0. The limit r → 0 then gives

lim sup
ε→0

sup
t∈[0,T ]

∫
BR+Lt

K(εt, .) ∗ |u0 − un0| ≤ ||u0 − un0||L1(BR+LT ).

Recalling (6.6), lim supε→0 ||uε − u||C([0,T ];L1(BR))
≤ 2||u0 − un0||L1(BR+LT ) and the limit

n → +∞ completes the proof. �

A Technical results

LEMMA A.1. Let T > 0 and ϕ ∈ C∞
c ([0, T ] × R

N). Define w = K ∗x ϕ. Then,
w ∈ C∞

b ([0, T ] × R
N) and

∂tw(t, x)−K(t, .) ∗ ∂tϕ(t, .)(x)+ g[w(t, .)](x) = 0, 0 < t ≤ T , x ∈ R
N.

Let us now assume that ϕ does not depend on t and only belongs to C∞
b (R

N). Then
w ∈ C∞

b ([0,∞[×R
N) andw is a classical solution to the fractal equation ∂tw+g[w] = 0

on ]0,∞[×R
N .

Proof of Lemma A.1. Let T > 0 and ϕ ∈ C∞
c ([0, T ] × R

N). By Fourier transform,

w(t, x) = F−1(e−t |.|λ) ∗ ϕ(t, .)(x) = F−1(e−t |.|λF(ϕ(t, .)))(x).

By the theorem of derivation under the integral sign, we immediately get that w is smooth
with all its derivatives bounded. Moreover,

∂tw(t, x) = −F−1(|.|λe−t |.|λF(ϕ(t, .)))(x)+ F−1(e−t |.|λF(∂tϕ(t, .)))(x),
= −B +K(t, .) ∗ ∂tϕ(t, .)(x), (A.1)

where B = F−1(e−t |.|λ(|.|λF(ϕ(t, .))))(x). Next,

B = K(t, .) ∗ F−1(|.|λF(ϕ(t, .)))(x) = K(t, .) ∗ g[ϕ(t, .)](x).

Since ϕ(t, .) ∈ S(RN), Theorem 2.1 can be applied. By Fubini’s Theorem, we get

B = −cN(λ)
∫

R
N

∫
|z|≥r

K(t, y)
ϕ(t, x − y + z)− ϕ(t, x − y)

|z|N+λ dzdy

−cN(λ)
∫

R
N

∫
|z|≤r

K(t, y)
ϕ(t, x − y + z)− ϕ(t, x − y)− ∇ϕ(t, x − y).z

|z|N+λ dzdy,

= −cN(λ)
∫

|z|≥r
w(t, x + z)− w(t, x)

|z|N+λ dz

−cN(λ)
∫

|z|≤r
w(t, x + z)− w(t, x)−K(t, .) ∗ ∇ϕ(t, .)(x).z

|z|N+λ dz,
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where we have first integrated w.r.t. y to get the last equality. We complete the proof of
Lemma A.1 for ϕ ∈ C∞

b ([0, T ] × R
N) by using ∇w(t, x) = K(t, .) ∗ ∇ϕ(t, .)(x).

Let us now assume that ϕ does not depend on t and only belongs to C∞
b (R

N). Consider
ϕn ∈ C∞

c (R
N) such that all its derivatives converge to all the derivatives of ϕ locally

uniformly on R
N and stay bounded independently on n. Definewn(t, x) = K(t, .)∗ϕn(x).

By the preceding step,wn is a classical solution to the fractal equation. By the homogeneity
property of K ,

sup
t∈[0,T ]

∫
R
N\Br

K(t, .) ≤
∫

R
N\B

T−1/λr

K(1, .), (A.2)

for all T > 0 and all r > 0 and the family {K(t, .) : 0 < t ≤ T } is equi-integrable at the
infinity. By similar cutting of approximate units as in the proof of the next lemma, one can
see that all the spacial derivatives of wn converge locally uniformly on [0,∞[×R

N to all
the derivatives of w and stay bounded independently on n. By (2.1), so do the fractional
(spatial) derivatives (see [8, Proposition 2.1] for more details) and by the fractal equation,
so do the first temporal derivative. Moreover, the theorem of the derivation under the
integral sign implies that all the derivatives of wn satisfy the fractal equation. Arguing by
induction, all the derivatives (classical and fractional) of wn converge to all the derivatives
ofw locally uniformly on [0,∞[×R

N and stay bounded independently on n. In particular,
w ∈ C∞

b ([0,∞[×R
N) and the limit in the fractal equation completes the proof. �

LEMMA A.2. Let w ∈ L∞(RN). Then for all L,R, T , r, ε > 0,

sup
t∈[0,T ]

∫
BR+Lt

K(εt, .) ∗ |w|

≤ ||w||L1(BR+LT+r ) + ||w||L∞(RN) mes (BR+LT )
∫

R
N\B

(εT )−1/λr

K(1, .). (A.3)

Proof of Lemma A.2. Still using (A.2),∫
BR

K(εt, .) ∗ |w|

=
∫
BR+Lt

K(εt, y)

(∫
BR+Lt

|w(x − y)|dx
)
dy

+
∫

R
N\Br

K(εt, y)

(∫
BR+Lt

|w(x − y)|dx
)
dy,

≤ ||w||L1(BR+Lt+r ) + ||w||L∞(RN)mes(BR+Lt )
∫

R
N\B

(εT )−1/λr

K(1, .).

Let us then take the supremum w.r.t. t ∈ [0, T ] to complete the proof. �

LEMMA A.3. Letw ∈ L1
loc(R

N)∩BV (RN) and η : R → R Lipschitz-continuous, with
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a Lipschitz constant equal to 1. Then, η(w) ∈ BV (RN) and its total variation satisfies
|D(η(w))| ≤ |Dw|.

Proof of Lemma A.3. Consider ϕµ = ρµ ∗w, where ρµ is an approximate unit as before.
The smooth functions ϕµ converge tow asµ → 0 and inL1

loc(R
N), with gradients bounded

in L1 norm by |w|BV (RN). Since η(ϕµ) → η(w) in L1
loc(R

N) and a fortiori in D′(RN),
the gradients converge in D′(RN,RN). Moreover, ∇(η(ϕµ)) = η′(ϕµ)∇ϕµ. Then,
||∇(η(ϕµ))||(L1(R

N
))N

≤ |w|BV (RN) and Banach-Alaoglu-Bourbaki’s Theorem implies

that ∇(η(ϕµ)) converges to any ϑ ∈ Mb(R
N,RN), up to a subsequence, for the weak

convergence of measures. Identifying the limit in D′(RN,RN), ϑ = D(η(w)) and we
already know that η(w) ∈ BV (RN). Moreover, for all F ∈ C0(R

N,RN)∫
R
N
F.∇(η(ϕµ)) ≤

∫
R
N

|F ||∇ϕµ|.

Since ∇ϕµ = ρµ ∗ Dw, |∇ϕµ| ≤ ρµ ∗ |Dw| and the limit µ → 0 implies that for all
F ∈ C0(R

N,RN),
∫

R
N FdD(η(w)) ≤ ∫

R
N |F |d|Dw|. The proof is now complete. �

B Proof of Proposition 2.5 item iii)

The following proof is based on the continuity of η(u)with values inL∞(RN), endowed
with the weak-� topology, for all entropy η and the doubling variables technique. Let us
also refer the reader to another method used for the pure scalar conservation laws by Martin-
Vovelle.

We begin by a technical lemma that will be needed.

LEMMA B.1. Let u ∈ L∞(]0,∞[×R
N) and θν be an approximate unit as before. Let

us assume that θν is of the form θν = ν−1θ(ν−1.). Then, for a.e. t ∈]0,∞[

i) u(t, .) is a measurable function essentially bounded by ||u||L∞(]0,∞[×R
N);

ii) for all γ ∈ C∞
c (R

N), limν→0
∫ ∞

0

∫
R
N u(s, x)θν(s − t)γ (x)dxds = ∫

R
N u(t, .)γ .

Proof. Let D be a countable dense subset of C∞
c (R

N) for the topology of the L1-norm.
The lemma above, with ii) satisfied for all γ ∈ D, is an immediate consequence of Fubini’s
Theorem (in particular, for the measurability mentioned in i)) and of the existence of the
Lebesgue’s points of the locally integrable functions s → ∫

R
N u(s, .)γ (for all γ ∈ D). For

γ ∈ C∞
c (R

N) and any sequence (γn)n ⊆ D which converges to γ in L1(RN), we have∫ ∞

0

∫
R
N
u(s, x)θν(s − t)γn(x)dxds →

∫ ∞

0

∫
R
N
u(s, x)θν(s − t)γ (x)dxds

as n → +∞ and independently on ν > 0. The theorem of inversion of the limits then
implies ii) for all γ ∈ C∞

c (R
N) and this completes the proof of Lemma B.1. �
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Let us return to the proof of Proposition 2.5 item iii). In the sequel, we let dom u denote
the set of t ∈]0,∞[ such that the items i) and ii) of the lemma above hold true.

FIRST STEP. Let us prove that u is Lipschitz-continuous on [0,∞[ with values in
L∞(RN), endowed with the weak-� topology. Let t1 and t2 belong to domu. Let us assume
without loss of generality that t2 > t1. Consider test-functions of the form

ϕ(t, x) =
(∫ t

0
θν(s − t1)− θν(s − t2)ds

)
γ (x).

Let us take ϕ in the weak formulation of Proposition 2.5 item ii) and, thanks to Lemma B.1
ii), let us pass to the limit as ν → 0. We get∫

R
N
(u(t2, .)− u(t1, .))γ

=
∫ t2

t1

∫
R
N
(f (u).∇γ − ug[γ ]) ≤ C||γ ||W 2,1(RN)(t2 − t1), (B.4)

where C is any constant that only depends on the L∞-norm of u and the flux f (in the
sequel, we still let C denote such a constant). Taking the supremum w.r.t. γ ∈ C∞

c (R
N)

such that ||γ ||W 2,1(RN) ≤ 1, we deduce that

||u(t2, .)− u(t1, .)||
W 2,1

′
(RN)

≤ C|t2 − t1|,

for all t1, t2 ∈ dom u. Then, u can be continuously extended in a unique way as a contin-

uous function from [0,∞[ into W 2,1
′
(RN) since it is a Lipschitz-continuous function on

a dense subset (indeed, the Lebesgue measure of [0,∞[\dom u is null). Banach-Aloaglu-
Bourbaki’s Theorem then implies that this extension is with values in L∞(RN) and is
continuous on [0,∞[ for the weak-� topology.

SECOND STEP. Let us prove that u : {0}∪(domu∩domu2) → L1
loc(R

N) is continuous
from the right. Let us now assume that ti belongs to domu∩domu2 (i = 1, 2) with t2 > t1.
Consider the entropy η = |.|2 and φ any flux associated to η. As noted in Remark 4.2.,
the entropy solution u of (1.1) is a fortiori an intermediate solution and arguing as in the
preceding step by using (4.17), we get∫

R
N
u2(t2, .)γ ≤

∫
R
N
u2(t1, .)γ + C||γ ||W 2,1(RN)(t2 − t1), (B.2)

for all nonnegative γ ∈ C∞
c (R

N). Simple computations then show that∫
R
N
(u(t2, .)− u(t1, .))

2γ =
∫

R
N
u2(t2, .)γ +

∫
R
N
u2(t1, .)γ − 2

∫
R
N
u(t2, .)u(t1, .)γ,
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for all nonnegative γ ∈ C∞
c (R

N). Since u(t1, .)γ ∈ L1(RN), the preceding step and
(B.2) implies that u(t2, .) converges to u(t1, .) in L2

loc(R
N) as dom u∩ dom u2 � t2 → t+1 .

Moreover, similar arguments with test-functions of the formϕ(t, x) = ∫ ∞
t
θν(s−T )dsγ (x)

(T ∈ dom u∩ dom u2) allow to prove that u(T , .) converges to u0 in L1
loc(R

N) as dom u∩
dom u2 � T → 0.

Conclusion. Let us prove that {u(t, .) : t ∈ dom u ∩ dom u2} is relatively compact in
L1

loc(R
N), thus concluding that u ∈ C([0,∞[;L1

loc(R
N)) with the help of the first step.

We can argue exactly as in Section 4 to establish (3.1) for all entropy solutions u and v of
(1.1) and all t ∈ domu∩ dom v. Indeed, the continuity property of the second step suffices
to prove (4.10) and (4.15), only points where the continuity with values in L1

loc(R
N) of

entropy solutions has been used. Then, arguing as for deriving (5.4) Then, we can get an
estimate on the translations of u(t, .) and by the essentially bound mentioned in the item
i) of Lemma B.1, Kolmogorov’s Theorem implies that {u(t, .) : t ∈ dom u ∩ dom u2} is
relatively compact in L1

loc(R
N). Thus, the proof of Proposition 2.5. iii) is complete.
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[1] Biler, P., Funaki, T. and Woyczyński, W. A., Fractal Burgers Equations, Journal of Differenial
Equations 148(1) (1998), 9–46.
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