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Ergodicity for a weakly damped stochastic non-linear
Schrödinger equation

Arnaud Debussche and Cyril Odasso

Abstract. We study a damped stochastic non-linear Schrödinger (NLS) equation driven by an additive noise. It is
white in time and smooth in space. Using a coupling method, we establish convergence of the Markov transition
semi-group toward a unique invariant probability measure. This kind of method was originally developed to prove
exponential mixing for strongly dissipative equations such as the Navier-Stokes equations. We consider here a
weakly dissipative equation, the damped nonlinear Schrödinger equation in the one-dimensional cubic case. We
prove that the mixing property holds and that the rate of convergence to equilibrium is at least polynomial of any
power.

Introduction

The non-linear Schrödinger (NLS) equation models the propagation of non-linear
dispersive waves in various areas of physics such as hydrodynamics [24], [25], optics,
plasma physics, chemical reaction [16]. . .

When studying the propagation in random media, a noise can be introduced. For instance
in [9], [10], the cubic nonlinear Schrödinger equation with additive white noise and damping
is introduced. There, the propagation of waves over very long distance is studied. Damping
effect cannot be neglected in this case and has to be counterbalanced by amplifiers. The
white noise is a model for the description of the randomness in these amplifiers. Such model
is valid if the distance between amplifiers is small compared to propagation distance.

Our aim in this work is to study ergodicity for this type of equation. We consider the
one-dimensional case with cubic focusing nonlinearity. It has the form

du+ αu dt − i�u dt − i|u|2u dt = bdW,

u(t, x) = 0, for x ∈ {0, 1}, t > 0,
u(0, x) = u0(x), for x ∈ [0, 1],

(0.1)
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where α > 0. The unknown u is a complex valued process depending on x ∈ [0, 1] and
t ≥ 0. Dirichlet boundary conditions are considered but we could also use Neumann or
periodic boundary condition.

Existence and uniqueness of solutions for (0.1) is not very difficult to prove using straight-
forward generalization of deterministic arguments. Note that the damping term is necessary
to have an invariant measure. Indeed, if α = 0 and b �= 0 then the L2 (0, 1) norm grows
linearly in time.

The Complex Ginzburg-Landau (CGL) is also a form of dissipative NLS equation. The
exponential mixing of the stochastic CGL equation has been establish in [14] in a particular
case and in [26] in the general case. The method was inspired by the so-called coupling
method. This method has been introduced in [3], [14], [19], [20], [21], [23] and [27]. In
all these articles, a strongly dissipative stochastic partial differential equations driven by
a noise which may be degenerate is considered. Due to the possible degeneracy of the
noise Doob Theorem cannot to be applied (see [5] for the theory of ergodicity when Doob
Theorem can be applied). Indeed, it requires the strong Feller property, which can be proved
only when the noise lives in a space of spatially irregular functions, which is clearly not
true for a degenerate noise. The main idea is to compensate the degeneracy of the noise by
dissipativity arguments, the so-called Foias-Prodi estimates. Roughly speaking, the process
can be decomposed into the sum of a strongly dissipative process and another one driven
by a non-degenerate noise. The strongly dissipative part is treated as in [4] Section 11.5,
while the non-degenerate part is treated thanks to probabilistic arguments. The difficulty
is of course in the fact that the two parts of the process do not evolve independently so
that the two methods have to be used simultaneously. The probabilistic part can be treated
either by a generalization of Doob Theorem (see [8], [15], [18]) or by coupling argument
(see [19], [20], [21], [23]). Each method has its advantages. The first one allows treating
very degenerate noises while the coupling method proves also exponential convergence to
equilibrium.

In the case of the NLS equation, it seems hopeless to use Doob Theorem. Indeed, due
to the lack of smoothing effect of the deterministic part of equations, only spatially smooth
noises can be treated (see [6], [7]). Note that this equation is not strongly dissipative,
indeed the eigenvalues of the linear part do not grow to infinity. However, it is known that
Foias-Prodi type estimates hold for the deterministic damped NLS equation (see [13]) and
we will see that these can be generalized to the stochastic case and it is reasonable to think
that the above ideas can be generalized.

In this article, we show that the method based on coupling argument is applicable.
However it requires substantial adaptations. For instance, contrary to the strongly dissipative
case treated in the above-mentioned articles, we are only able to prove a weaker form of the
Foias-Prodi estimates. Indeed, here, we prove that it holds in average and not path-wise.
This causes many technical difficulties when trying to use the coupling method. Moreover,
another important ingredient in the argument is an exponential estimate on the growth of
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the solution, which we are unable to prove in our case. This is due to the fact that the
Lyapunov structure is more complicated here. It is not a quadratic functional. We only
prove polynomial estimate on the growth of the solutions and it results that we can only
prove that convergence to equilibrium holds with polynomial speed at any order. Thus, we
develop a general result, which gives sufficient conditions for polynomial mixing.

Note also that a crucial step in [21] is the fact that the probability that a solution enters
a ball of small radius is controlled precisely. This fact is still true for the damped NLS
equation considered here. However, its proof is more difficult than in the case of the
Navier-Stokes equations (see Proposition (2.6) and Section 4 hereafter).

The remaining of the article is divided into four parts. First, we give the notations, and
state our main result. Its proof is given in Section 2. Section 3, 4 and 5 are devoted to the
proofs of intermediate results.

1. Notation and Main result

We set

A = −�, D(A) = H 1
0 (0, 1) ∩H 2(0, 1)

and write problem (0.1) in the form

du+ αu dt + iAu dt − i|u|2u dt = bdW, (1.1)

u(0) = u0, (1.2)

whereW is a cylindrical Wiener process on L2(0, 1) and b is a linear operator on L2(0, 1).
We denote by (µn)n the increasing sequence of eigenvalues ofA and by (en)n∈N the asso-

ciated eigenvectors. Also, PN andQN are the eigenprojectors onto the space Sp(ek)1≤k≤n
and onto its complementary space. Recall that for s ≥ 0, D(As/2) is a closed subspace of
Hs(0, 1) and that ‖ · ‖s = |As/2 · |L2(0,1) is equivalent to the usual Hs(0, 1) norm on this
space. Moreover

D(As/2) =
{
u =

∑
k∈N

ukek ∈ L2(0, 1)

∣∣∣∣∣ ∑
n∈N

µsku
2
k < ∞

}
and ‖u‖s =

∑
n∈N

µsku
2
k.

We denote by | · |, | · |p, ‖·‖ the norms of L2(0, 1), Lp(0, 1), H 1
0 (0, 1).

The operator b is supposed to commute with A, therefore it is diagonal in the basis
(en)n∈N and we have

ben = bnen.
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We assume that b is Hilbert-Schmidt from L2(0, 1) with values in D(A3/2). For any
s ∈ [0, 3], we set

Bs = |b|2L2(L
2(0,1),D(As/2)) =

∞∑
n=0

µsnb
2
n.

To study ergodic properties, we assume that there exists N∗ such that

bn > 0, for n ≤ N∗. (1.3)

The Hamiltonian plays an important role in the study of the nonlinear Schrödinger
equation. It is a conserved quantity in the absence of noise and damping. It is given by

H∗(v) = 1

2
‖v‖2 − 1

4
|v|44, v ∈ H 1

0 (0, 1).

In our study, it is the basic tool to derive a priori estimates. Recall that the Gagliardo-
Nirenberg inequality gives a constant c0 > 0 such that

|v|44 ≤ 1

4
‖v‖2 + c0

2
|v|6, v ∈ H 1

0 (0, 1).

It follows that, setting

H = 1

2
‖·‖2 − 1

4
| · |44 + c0| · |6,

we have

H(v) ≥ 1

4
‖v‖2 + 1

4
|v|44 + c0

2
|v|6, v ∈ H 1

0 (0, 1). (1.4)

In our computations, we will also use the following quantities which involve the kth

power of the energy:

Eu,k(t, s) = H(u(t))k + αk

∫ t

s

H(u(σ ))kdσ, t ≥ s,

when there is no ambiguity we set Eu,k(t) = Eu,k(t, s).
In the following, α, Bs for s ∈ [0, 3] are fixed. All the constants appearing below may

depend on them as well as on A, b.
Well-posedness of equations (1.1), (1.2) is easily proved. Indeed, let S(t) = e−iAt−αt ,

t ∈ R, be the group generated by the linear equation. We look for a mild solution, that is
a process u with paths in C(R+;H 1

0 (0, 1)) satisfying

u(t) = S(t)u0 + i
∫ t

0
S(t − s)|u(s)|2u(s)ds +

∫ t

0
S(t − s)bdW(s).
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Since (S(t))t≥0 is a contraction semi-group on H 1
0 (0, 1) and the linear term is locally

Lipschitz, local in time existence and uniqueness is straightforward. Note that
∫ t

0 S(t − s)

bdW(s) lives in D(A
3
2 ). An a priori estimate is obtained thanks to Ito formula applied to

H and thanks to (1.4). This use of Ito formula is not rigorous since Au is not sufficiently
smooth. However, an approximation argument can be used to prove rigorously this point.
For instance, the initial data can be approximated by a sequence inD(A) and it is classical
that if the initial data is in D(A) then the solution is continuous with values in D(A).

Note that in the following and especially in Section 4 and 5, several computations are not
rigorous due to the lack of regularity of the solutions. The same approximation argument
should be applied.

By classical arguments, the solutions are strong Markov processes. We denote by
(Pt )t∈R+ the Markov transition semi-group associated to the solutions of (1.1).

Also, given a Banach spaceE, the space Lipb(E) consists of all the bounded and Lipschitz
real valued functions on E. Its norm is given by

‖ϕ‖L = ‖ϕ‖∞ + Lϕ, ϕ ∈ Lipb(E),

where ‖ ·‖∞ is the sup norm andLϕ is the Lipschitz constant of ϕ. The space of probability
measures on E is denoted by P(E). It can be endowed with the metric defined by the total
variation

‖µ‖var = sup {|µ(�)| | � ∈ B(E)} ,
where we denote by B(E) the set of the Borelian subsets of E. It is well known that ‖.‖var

is the dual norm of |.|∞. We can also use a Wasserstein type norm

‖µ‖W = sup
ϕ∈Lipb(E), ‖ϕ‖L≤1

∣∣∣∣∫
E

ϕ(u)dµ(u)

∣∣∣∣
which is the dual norm of ‖ · ‖L. We also use the notation D(Z) for the distribution of a
random variable Z.

The aim of this article is to establish the following result

THEOREM 1.1. There exists N0 such that, if (1.3) holds with N∗ ≥ N0, then there
exists a unique stationary probability measure ν of (Pt )t∈R+ on H 1

0 (0, 1). Moreover, for
any p ∈ N\{0}, ν satisfies∫

H 1
0 (0,1)

‖u‖2p dν(u) < ∞, (1.5)

and there exists Cp > 0 such that for any µ ∈ P(H 1
0 (0, 1))

‖P∗
t µ− ν‖W ≤ Cp (1 + t)−p

(
1 +

∫
H 1

0 (0,1)
‖u‖2 dµ(u)

)
. (1.6)
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REMARK 1.2. Note that the existence of a stationary measure is a byproduct of the proof
of the mixing property. It could be proved directly by the standard argument involving the
Krylov-Boboliubov theorem. However, this would require more a priori estimates on the
solutions of the stochastic nonlinear Schrödinger equation.

REMARK 1.3. Given a polish space (E, dE), a common definition for the family
(Wp(·, ·))p∈[1,∞) of Wasserstein metrics is as follows

Wp(µ, λ) = inf

(∫
E2
dE(x, y)

p
P(dx, dy)

) 1
p

for any p ∈ [1,∞),

where the infimum is taken over all probability measures P on E2 whose marginals are λ
and µ.

When (E, ‖·‖E) is a separable Banach space, we can define a metric onE by dE(x, y) =
‖x − y‖E ∧ 1. Then (E, dE) is a polish space. In this case W1 is equivalent to ‖·‖W . We
have chosen not to use the notation W1 because it might lead to some confusion with the
usual notation W for a Wiener process.

The proof of our result is based on coupling arguments. These arguments have initially
been used in the context of stochastic partial differential equations in [19], [20], [21], [23] .
The main difficulty here is that the nonlinear Schrödinger equation is not strongly dissipative
and several modifications are needed.

The strategy is the following. If the noise is non-degenerate, we observe that starting
from different initial data u1

0, u2
0, Girsanov transform can be used to show that there exists

a coupling (u1, u2) of the law of the solutions u(·, u1
0), u(·, u2

0) such that, for some time T ,
u1(T ) = u2(T )with positive probability. Iterating this argument, exponential convergence
to equilibrium follows (see Section 1.1 in [26]). Here, as well as in the references above,
the noise is assumed to be non-degenerate in the low modes only ek , 1 ≤ k ≤ N∗ and
this argument gives a coupling such that PN∗u1(T ) = PN∗u2(T ) with positive probability.
Another ingredient is used. It is based on the observation that if two solutions are such that
their low modes have been equal for a long time then they are very close (see Section 1.1 in
[26]). In the case of a parabolic equation, this is known as Foias-Prodi estimate. This can
be generalized to dispersive equations such as the Schrödinger equation considered here.
In [13] this has been used to prove a property of asymptotic smoothing in the deterministic
case.

The main difference with the result in the parabolic case is that we are not able to prove a
path-wise Foais-Prodi estimate, we only prove that this property holds in average. We need
to introduce a substantial change in the construction of the coupling. (See Remark 2.12).
Moreover, here we only get polynomial convergence to equilibrium. This comes from the
fact that the Lyapunov functional adapted to the nonlinear Schrödinger equation is more
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complicated, it is not a quadratic functional. We are not able to get exponential estimates
on the growth of the solutions.

2. Proof of Theorem 1.1

We define G by

D(G) = D(A), Gv = αv + iAv,

and set

X = PN∗u, Y = QN∗u, β = PN∗W, η = QN∗W,
σl = PN∗bPN∗ , σh = QN∗bQN∗ ,
f (X, Y ) = −iPN∗(|X + Y |2(X + Y )),

g(X, Y ) = −iQN∗(|X + Y |2(X + Y )).

Then the nonlinear Schrödinger equation has the form
dX +GXdt + f (X, Y )dt = σldβ,

dY +GYdt + g(X, Y )dt = σhdη,

X(0) = x0, Y (0) = y0.

(2.1)

Clearly (1.3) states that σl is invertible. We set

σ0 = ‖σ−1
l ‖−1

L(PN∗L2(0,1))
> 0. (2.2)

Given two initial data ui0 = (xi0, y
i
0), i = 1, 2, we will construct a coupling (u1, u2) =

((X1, Y1), (X2, Y2)) of the laws of the two solutions u(·, ui0) = (X(·, ui0), Y (·, ui0)),
i = 1, 2, of (2.1). Recall that (u1, u2) is a coupling of the laws of u(·, ui0), i = 1, 2,
if the distribution of ui is the distribution of u(·, ui0).

In fact we are going to construct a coupling (V1, V2) = ((u1,W1), (u2,W2)) of
{D((u(·, ui0),W))}i=1,2 such that Xi = PN∗ui , ηi = QN∗Wi satisfy good properties.
More precisely, we want that X1 = X2 and η1 = η2 for as many trajectories as possi-
ble. Clearly, we obtain a coupling of D(u(·, u1

0)) and D(u(·, u2
0)) . Since the noise may

degenerate in the equation for Y , we are not able to require that u1 = u2. The difference
between Y1 = QN∗u1 and Y2 = QN∗u2 will be controlled thanks to a Foias-Prodi estimate.
Note that W is a cylindrical process in L2(0, 1) and does not live in L2(0, 1). This is not
a problem. Indeed, it is well-known that W ∈ C(R+;H−1(0, 1)) a.s. and we consider its
distribution in this space.

We define an integer valued random process l0 which is particularly convenient when
deriving properties of the coupling:

l0(k) = min{l ∈ {0, . . . , k} |Pl,k holds},
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where min ∅ = ∞ and

(Pl,k)


X1(t) = X2(t), η1(t) = η2(t), ∀ t ∈ [lT , kT ],
Hl ≤ d0,

Eui,4(t, lT ) ≤ κ + 1 + d4
0 + d8

0 + B(t − lT ), ∀ t ∈ [lT , kT ], i = 1, 2,

where we have set

Hk = H(u1(kT ))+ H(u2(kT )).

We say that (X1, X2) are coupled at kT if l0(k) ≤ k, in other words if l0(k) �= ∞.
The coupling constructed below will be such that, for any q ∈ N\{0}, the following two

properties hold{∃ d0, κ, B, Tq > 0 such that for any l ≤ k , T ≥ Tq,

P (l0(k + 1) �= l | l0(k) = l) ≤ 1
2 (1 + (k − l)T )−q . (2.3)

This says that the probability that the trajectories decouple is small. Moreover, the longer
they have been coupled, the smaller this probability is.

The second property is that, for any R0, d0 > 0,{∃ T ∗(R0, d0) > 0 and p−1(d0) > 0 such that for any T ≥ T ∗(R0, d0)

P (l0(k + 1) = k + 1 | l0(k) = ∞, Hk ≤ R0) ≥ p−1(d0).
(2.4)

In other words, inside a ball, the probability that two trajectories get coupled is bounded
below.

The construction can be done by induction. At each step, we construct a probability space
(�0,F0,P0) and a measurable couple of functions (ω0, u

1
0, u

2
0) → (Vi(·, u1

0, u
2
0))i=1,2 such

that, for any (u1
0, u

2
0), (Vi(·, u1

0, u
2
0))i=1,2 is a coupling of {D((u(·, ui0),W))}i=1,2 on [0, T ].

Recall that the processes (Vi)i=1,2 live in the spaceC(0, T ;H 1
0 (0, 1))×C(0, T ;H−1(0, 1)).

We first set

ui(0) = ui0, Wi(0) = 0, i = 1, 2.

Assuming that we have built (ui,Wi)i=1,2 on [0, kT ], then we take (Vi)i=1,2 as above
independent of (ui,Wi)i=1,2 on [0, kT ] and set

(ui(kT + t),Wi(kT + t)) = Vi(t, u1(kT ), u2(kT ))

for any t ∈ [0, T ].
The construction of (Vi)i=1,2 depends on whether l0(k) ≤ k or l0(k) = ∞. The two

cases are treated separately in Section 2.5. We first state and prove the Foias-Prodi estimates
and give some a priori estimates. We then recall some results on coupling and give a general
result implying polynomial mixing. Sections 3, 4 and 5 are devoted to the proof of some
results used in the course of the proof.
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2.1. The Foias-Prodi estimates

We define for any (u1, u2, r) ∈ H 1
0 (0, 1)

J∗(u1, u2, r) = 1

2
‖r‖2 − 1

4

∫
[0,1]

((|u1|2 + |u2|2)|r|2 + (�((u1 + u2)r̄))
2)dx,

where �(z) is the real part of the complex number z, and

J (u1, u2, r) = J∗(u1, u2, r)+ c1

(
2∑
i=1

H(ui)
)

|r|2.

We infer from the Sobolev Embedding H 1(0, 1) ⊂ L∞(0, 1) that there exists c > 0 such
that∫

[0,1]
((|u1|2 + |u2|2)|r|2 + (�((u1 + u2)r̄))

2)dx ≤ c(‖u1‖2 + ‖u2‖2)|r|2.

Therefore, by (1.4), there exists c1 > 0 such that

J (u1, u2, r) ≥ 1

4
‖r‖2 .

We set

l(u1, u2) = 1 +
2∑
i=1

H(ui)4.

For N ≥ 1, given u1, u2, two solutions of (1.1), we define JNFP = JNFP(u1, u2) by

JNFP(t) = J (u1(t), u2(t), r(t)) exp

2αt − 

µ
1
8
N+1

∫ t

0
l(u1, u2)ds

 ,
where r = u1 − u2. The following result will be proved in Section 5. It is the Foias-Prodi
estimates adapted to the nonlinear Schrödinger equation. It states that two solutions having
the same low modes are close. The main difference with similar results in the parabolic
case is that we are not able to derive a path-wise estimate. Moreover, we introduce a slight
generalization to allow the perturbation of the Wiener process by a drift in the low modes.
This generalization is essential in our argument below.

PROPOSITION 2.1. For any κ0 > 0, there exists  > 0 depending only on κ0 such
that for any N ∈ N\{0}, we have the following property:
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Let W1, W2 be two cylindrical Wiener processes and h be an adapted process with
continuous paths in PNL2(0, 1). Let u1 be a solution in C(0, T ;H 1

0 (0, 1)) of{
du1 + αu1 dt + iAu1 dt − i|u1|2u1 dt = bdW1 + hdt,

u1(0) = u1
0,

and u2 be the solution of (1.1), (1.2) for u0 = u2
0 and W = W2. Let τ be a stopping time

and assume that

PNu1 = PNu2, QNW1 = QNW2 on [0, τ ], (2.5)

and

‖h(t)‖2 ≤ κ0l(u1(t), u2(t))
3/4 on [0, τ ], (2.6)

then we have

E(JNFP(u1, u2)(t ∧ τ)) ≤ J (u1
0, u

2
0, r0), t > 0, (2.7)

where r0 = u1
0 − u2

0.

We deduce a very useful Corollary.

COROLLARY 2.2. For any B, d0, κ0 > 0, there exists N1(B, κ0) and C∗(d0) such
that, with the notations of Proposition (2.1.), if (2.5) and (2.6) hold with N ≥ N1, and for
some ρ > 0,

Eui,4(t) ≤ ρ + 1 + d4
0 + d8

0 + Bt on [0, τ ], for i = 1, 2, (2.8)

then for any u1
0, u

2
0 such that d0 ≥ ∑2

i=1 H(ui0) and for any a ∈ R,

P

(
‖r(T )‖ > C∗ (d0) exp

(
a − α

4
T + ρ

)
and T ≤ τ

)
≤ exp

(
−a − α

4
T
)
.

Moreover, there exists c > 0 such that

C∗(d0) ≤ cd0e
cd8

0 .

Then, integrating (2.7) in Proposition (2.1) and applying the inequality

1 + x ≤ Cδe
δx for any x ≥ 0,

we obtain the following result which, in Section 3, ensures that the Novikov condition holds
and allows the use of the Girsanov Formula.
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LEMMA 2.3. For any B, d0, κ0 > 0 and any a ∈ R, there exists N2(B, κ0, a) and
C∗∗(d0, B) such that, with the notations of Proposition (2.1), if (2.5) and (2.6) hold with
N ≥ N2 and (2.8) holds for some ρ > 0, we obtain that for any T

P

(∫ τ

T

l(u1(s), u2(s)) ‖r(s)‖2 ds > C∗∗(d0, B) exp
(
a − α

2
T + ρ

)
and T ≤ τ

)
≤ exp

(
−a − α

2
T
)
.

provided d0 ≥ ∑2
i=1 H(ui0) holds. Moreover, there exists c > 0 such that

C∗∗(d0, B) ≤ C(B)d0e
cd8

0 .

We set

N0 = max(N1, N2). (2.9)

2.2. A priori estimates

We first give an estimate proven in Section 4 on the growth of the solutions of the stochastic
nonlinear Schrödinger equation.

PROPOSITION 2.4. Assume that u is a solution of (1.1), (1.2) associated with a Wiener
process W . Then, for any (k, p) ∈ (N\{0})2, there exists C′

k and Kk,p depending only on
k and p such that for any ρ > 0 and 0 ≤ T < ∞

P( sup
t∈[0,T ]

(Eu,k(t)− C′
kt) ≥ H(u0)

k + ρ(H(u0)
2k + T )) ≤ Kk,pρ

−p,

P( sup
t∈[T ,∞)

(Eu,k(t)− C′
kt) ≥ H(u0)

k + H(u0)
2k + 1 + ρ) ≤ Kk,p(ρ + T )−p.

The following result uses the Hamiltonian as a Lyapunov functional and is also proven
in Section 4.

LEMMA 2.5. There exists Ck > 0 such that for any k ∈ N\{0}, for any t ∈ R
+ and for

any stopping time τ{
E
(H(u(t, u0))

k
) ≤ H(u0)

ke−αkt + Ck
2 ,

E
(H(u(τ, u0))

k1τ<∞
) ≤ H(u0)

k + CkE(τ1τ<∞).
The following result states that we control the probability of entering a small ball.

PROPOSITION 2.6. For any R0, R1 > 0, there exists T−1(R0, R1) ≥ 0 and
π−1(R1) > 0 such that

P(H(u(t, u1
0))+ H(u(t, u2

0)) ≤ R1) ≥ π−1(R1),

provided H(u1
0)+ H(u2

0) ≤ R0 and t ≥ T−1(R0, R1).
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2.3. Basic properties of couplings.

Let (µ1, µ2) be two distributions on a same space (E, E). Let (�,F,P) be a probability
space and let (Z1, Z2) be two random variables (�,F) → (E, E). Recall that (Z1, Z2) is
a coupling of (µ1, µ2) if µi = D(Zi) for i = 1, 2 and that we have denoted by D(Zi) the
law of the random variable Zi .

Let µ, µ1 and µ2 be three probability measures on a space (E, E) such that µ1 and µ2

are absolutely continuous with respect to µ. We set

d(µ1 ∧ µ2) =
(
dµ1

dµ
∧ dµ2

dµ

)
dµ.

This definition does not depend on the choice of µ and we have

‖µ1 − µ2‖var = 1

2

∫
E

∣∣∣∣dµ1

dµ
− dµ2

dµ

∣∣∣∣ dµ.
Remark that if µ1 is absolutely continuous with respect to µ2, we have

‖µ1 − µ2‖var ≤ 1

2

√∫ (
dµ1

dµ2

)2

dµ2 − 1. (2.10)

Next result is a fundamental result in the coupling methods, the proof is given for instance
in the Appendix of [26].

LEMMA 2.7. Let (µ1, µ2) be two probability measures on (E, E). Then

‖µ1 − µ2‖var = min P(Z1 �= Z2).

The minimum is taken over all couplings (Z1, Z2) of (µ1, µ2). There exists a coupling
which reaches the minimum value. It is called a maximal coupling and has the following
property:

P(Z1 = Z2, Z1 ∈ �) = (µ1 ∧ µ2)(�) for any � ∈ E .

We also use the following result which is lemma D.1 of [23].

LEMMA 2.8. Let µ1 and µ2 be two probability measures on a space (E, E). Let A be
an event of E. Assume that µA1 = µ1(A ∩ .) is equivalent to µA2 = µ2(A ∩ .). Then for
any p > 1 and C > 1∫

A

(
dµA1

dµA2

)p+1

dµ2 ≤ C < ∞ implies (µ1 ∧ µ2) (A) ≥
(

1 − 1

p

)(
µ1(A)

p

pC

) 1
p−1

.
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Next result is a refinement of Lemma 2.7 used in [23] (see also Proposition 1.7
in [26]).

PROPOSITION 2.9. Let E and F be two Polish spaces, f0 : E → F be a measurable
map and (µ1, µ2) be two probability measures on E. We set

νi = f ∗
0 µi, i = 1, 2.

Then there exist a coupling (V1, V2) of (µ1, µ2) such that (f0(V1), f0(V2)) is a maximal
coupling of (ν1, ν2).

2.4. Sufficient conditions for polynomial mixing

We now state and prove a general result which allows to reduce the proof of polynomial
convergence to equilibrium to the verification of some conditions. This result is a polynomial
version of Theorem 1.8 of subsection 1.3 in [26] which gives sufficient conditions for
exponential mixing.

We are concerned with v(·, (u0,W0)) = (u(·, u0),W(·,W0)) a couple of strongly
Markov processes defined on Polish spaces (E, dE) and (F, dF ). We denote by (Pt )t∈I the
Markov transition semigroup associated to u, where I = R

+ or TN = {kT , k ∈ N}. We
are also given a real valued function H defined on E.

We consider for any couple of initial conditions (v1
0, v

2
0) a coupling (v1, v2) of

{D(v(·, v1
0)),D(v(·, v2

0))}. We write vi = (ui,Wi). Let l0 : N → N ∪ {∞} be a ran-
dom integer valued process which has the following properties

l0(k + 1) = l implies l0(k) = l, for any l ≤ k,

l0(k) ∈ {0, 1, 2, . . . , k} ∪ {∞},
l0(k) depends only of v1|[0,kT ] and v2|[0,kT ],

l0(k) = k implies Hk ≤ d0,

(2.11)

where

Hk = H(u1(kT ))+ H(u2(kT )), H : E → R
+,

and d0 > 0.
We now give four conditions on the coupling. The first condition states that when (v1, v2)

have been coupled for a long time then the probability that (u1, u2) are close is high. It will
be a consequence of the Foias-Prodi estimate.{

There exist c0 and q > 0 such that for any t ∈ [lT , kT ] ∩ I
P(dE(u1(t), u2(t)) > c0(t − lT )−q and l0(k) ≤ l) ≤ c0(t − lT )−q, (2.12)
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The next two properties are exactly (2.3) and (2.4).
∃ (pk)k∈N, c1 > 0, q0 > 1 + q such that,
P(l0(k + 1) = l | l0(k) = l) ≥ pk−l , for any l ≤ k,

1 − pk ≤ c1((k + 1)T )−q0 , pk > 0 for any k ∈ N.

(2.13)

{
There exist p−1 > 0, R0 > 0 such that
P (l0(k + 1) = k + 1 | l0(k) = ∞, Hk ≤ R0) ≥ p−1.

(2.14)

The last ingredient is the so-called Lyapunov structure and follows from Lemma 2.5. It
allows the control of the probability to enter the ball of radius R0. It states that there exist
K1 andK ′ constants such that for any initial data v0 and any stopping time τ ′ taking values
in {kT , k ∈ N} ∪ {∞}{

EH(v(t, v0)) ≤ e−αtH(v0)+ K1
2 , t ≥ 0,

E(H(v(τ ′, v0))1τ ′<∞) ≤ K ′(H(v0)+ E(τ ′1τ ′<∞)).
(2.15)

The process V = (v1, v2) is said to be l0–Markov if the laws of V (kT + ·) and of
l0(k+ ·)− k on {l0(k) ∈ {k,∞}} conditioned by FkT only depend on V (kT ) and are equal
to the laws of V (·, V (kT )) and l0, respectively.

In this article, we construct a coupling (ui,Wi)i=1,2 of two solutions which is l0–Markov
but not Markov. We could modify the construction so that it is Markov at discrete times
TN = {kT , k ∈ N}. However, it does not seem to be possible to modify the coupling to be
Markov at any times. As shown below, the following result implies Theorem 1.1. Its proof
is given in Section 3.

THEOREM 2.10. Assume that for any (u1
0,W

1
0 ), (u

2
0,W

2
0 ) there exists a coupling

V = (v1, v2) of the laws of (u(·, u1
0),W(·,W 1

0 )) and (u(·, u2
0),W(·,W 2

0 )) which is l0–
Markov and satisfies (2.11), (2.12), (2.13), (2.14) and (2.15) with R0 > 4K1 and R0 ≥ d0.
Then there exists c4 > 0 such that, for any ϕ ∈ Lipb(E) and any u1

0, u
2
0 ∈ E,

|Eϕ(u(t, u1
0))− Eϕ(u(t, u2

0))| ≤ c4 (1 + t)−q ‖ϕ‖L(1 + H(u1
0)+ H(u2

0)). (2.16)

COROLLARY 2.11. Under the same assumptions as Theorem 2.10, there exists a
unique stationary probability measure ν of (Pt )t∈I on E. It satisfies,∫

E

H(u)dν(u) ≤ K1

2
. (2.17)

Moreover for any µ ∈ P(E)

‖P∗
t µ− ν‖W ≤ 2c4 (1 + t)−q

(
1 +

∫
E

H(u)dµ(u)
)
. (2.18)
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To prove Theorem 2.10, we first note that it is sufficient to prove that, for any initial data
u1

0 and u2
0, the coupling satisfies

P(dE(u1(t), u2(t)) > c3(1 + t)−q) ≤ c3(1 + t)−q(1 + H(u1
0)+ H(u2

0)) (2.19)

where, as above, vi = (ui,Wi). Indeed we have, since (u1, u2) is a coupling of
{D(u(·, u1

0)),D(u(·, u2
0)},

|Eϕ(u(t, u1
0))− Eϕ(u(t, u2

0))| = |Eϕ(u1(t))− E(ϕ(u2(t)))|
≤ Lϕc3(1 + t)−q + 2‖ϕ‖∞P(dE(u1(t), u2(t)) > c3(1 + t)−q)
≤ Lϕc3(1 + t)−q + 2‖ϕ‖∞c3(1 + t)−q(1 + H(u1

0)+ H(u2
0))

so that (2.16) follows. The existence and uniqueness of a stationary measure is then straight-
forward. Moreover, (2.18) is an easy consequence of (2.16) and (2.17) follows from (2.15).

2.5. Construction of the coupling

We first state the following result.

PROPOSITION 2.12. There exists a measurable map

� : C((0, T );PN∗H
1
0 (0, 1))× C((0, T );QN∗H

−1(0, 1))

× H 1
0 (0, 1) → C((0, T );QN∗H

1
0 (0, 1)),

such that for any (u,W) solution of (1.1) and (1.2)

Y = �(X, η, u0) on [0, T ], where X = PN∗u, Y = QN∗u, η = QN∗W.

Moreover � is a non-anticipative functions of (X, η).

To prove this result, we note that the equation

y(t) = S(t)y0 −
∫ t

0
S(t − s)g(x(s), y(s))ds +

∫ t

0
S(t − s)dz(s),

can be solved by a fixed point argument inC(0, T ;H 1
0 (0, 1)) for any deterministic functions

x ∈ C(0, T ;PN∗H
1
0 (0, 1)) and z ∈ C(0, T ;D(A 3

2 )). The last term is defined thanks
to an integration by part. Clearly y = �(x, z, y0) for a measurable function �. Thus
Y = �(X, σhη,QN∗u0). We set �(x, z̃, u0) = �(x, σh̃z,QN∗u0) for z̃ such that σh̃z ∈
C(0, T ;D(A 3

2 )) and 0 otherwise. It is clear that � is not anticipative.
As already explained, the coupling (u1, u2) is constructed by induction and we start

by constructing a coupling for two solutions u(·, ui0), i = 1, 2 on an interval [0, T ].
In fact, we construct three different couplings. At time kT , we choose between these



332 A. Debussche and C. Odasso J.evol.equ.

depending on whether l0(k) = ∞ and H(u1(kT ))+H(u2(kT )) ≤ R0 (case a) or l0(k) ≤ k

(case b). In this latter case, PN∗u1(kT ) = PN∗u2(kT ). In the third case, l0(k) = ∞ and
H(u1

0)+ H(u2
0) > R0, we choose the trivial coupling.

CASE a: l0(k) = ∞ and H(u1
0) + H(u2

0) ≤ R0. We construct a coupling such that
(2.4) holds.

In this case, we consider u1
0, u

2
0 such that H(u1

0) + H(u2
0) ≤ R0. The construction of

the coupling is done in two steps. We set

µi = D((u(·, ui0),W)), on [0, T1], i = 1, 2.

STEP 1. We first prove that, for any d0 > 0, there exist T1(d0) > 0, R1 = R1(d0) >

0 and a coupling (Ṽi(·, u1
0, u

2
0))i=1,2 of (µ1, µ2) such that for any (u1

0, u
2
0) satisfying∑2

i=1 H(ui0) ≤ R1 we have

P

(
X̃1(T1, u

1
0, u

2
0) = X̃2(T1, u

1
0, u

2
0),

2∑
i=1

H(̃ui(T1, u
1
0, u

2
0)) ≤ d0

)
≥ 1

2
, (2.20)

where

Ṽi(·, u1
0, u

2
0) = (̃ui(·, u1

0, u
2
0), W̃i(·, u1

0, u
2
0)), X̃i(·, u1

0, u
2
0)

= PN∗ ũi (·, u1
0, u

2
0), i = 1, 2.

To construct Ṽi such that (2.20) holds, we take R1, T1 > 0 and we set

E = C((0, T );H 1
0 (0, 1))× C((0, T );H−1(0, 1)),

F = C((0, T );PN∗H
1
0 (0, 1))× C((0, T );QN∗H

−1(0, 1)),
f0 (u,W) = (PN∗u,QN∗W) = (X, η),

µ̂1 = D((u(·, u1
0)+ T1−·

T1
PN∗(u

2
0 − u1

0),W)) on [0, T1],
νi = f ∗

0 µi, ν̂1 = f ∗
0 µ̂1.

We apply Proposition 2.9 to (E, F, f0, (µ̂1, µ2)) and obtain (V̂1(·, u1
0, u

2
0), Ṽ2(·, u1

0, u
2
0)) a

coupling of
(
µ̂1, µ2

)
. Moreover, setting

(X̃2, η̃2) = f0(Ṽ2(·, u1
0, u

2
0)), (X̂1, η1) = f0(V̂1(·, u1

0, u
2
0)),

((X̃2, η̃2), (X̂1, η1)) is a maximal coupling of
(
ν̂1, ν2

)
.

Finally, we set

Ṽ1 =
(
û1 − T1 − ·

T1
PN∗(u

2
0 − u1

0),W1

)
on [0, T1], where V̂1 = (û1,W1).

We also write

β1 = PN∗W1, Ṽ1 = (̃u1,W1) , Ṽ2 = (̃u2,W2) .
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To prove (2.20) we first remark that since û1(T1) = ũ1(T1) and X̂1 = PN∗ û1, X̃i = PN∗ ũi ,
then

P(X̃1(T1) = X̃2(T1) and
2∑
i=1

H(̃ui(T1))
6 ≤ κ ′(ρ, T1, R1))

≥ P(X̂1 = X̃2 on [0, T1] and
2∑
i=1

Eũi,6(t) ≤ κ ′(ρ, t, R1) on [0, T1]), (2.21)

where

κ ′(ρ, t, R1) = 2(R6
1 + C′

6t + ρ(R12
1 + t)), t > 0,

ρ to be chosen below.
Let us consider X̄1 the unique solution of{
dX̄1 +GX̄1dt − δ(t)+ 1t≤τ f (X̄1 − δ̂, �(X̄1 − δ̂, η1, u

1
0))dt = σldβ1,

X̄1(0) = x2
0 ,

(2.22)

where δ(t) = ( T1−t
T1

− 1
T1
G)PN∗(u

2
0 − u1

0), δ̂(t) = T1−t
T1
PN∗(u

2
0 − u1

0), and τ = τ1 ∧ τ2

where{
τ1 = inf{t ∈ [0, T1] | E

X̄1−δ̂+�(X̄1−δ̂,η1,u
1
0),6
(t) > κ ′(ρ, t, R1)},

τ2 = inf{t ∈ [0, T1] | EX̄1+�(X̄1,η1,u
2
0),6
(t) > κ ′(ρ, t, R1)}.

Clearly, X̄1 = X̂1 = PN∗ ũ1 + δ̂ on [0, τ ]. We denote by λ1 the distribution of (X̄1, η1)

under the probability P. We set β̃1(t) = β1(t)+ ∫ t
0 d(s)dt where

d(t) = δ(t)+ 1t≤τ σ−1
l

(
f (X̄1(t)− δ̂(t),�(X̄1 − δ̂, η1, u

1
0)(t))

−f (X̄1(t),�(X̄1, η1, u
2
0)(t))

)
. (2.23)

Then X̄1 is a solution of{
dX̄1 +GX̄1dt + 1t≤τ f (X̄1,�(X̄1, η1, u

2
0))dt = σldβ̃1,

X̄1(0) = x2
0 .

(2.24)

It is not difficult to see that since σl is bounded below and by the definition of τ , the Novikov
condition is satisfied:

E

(
exp

(∫ T

0
|d(t)|2dt

))
< ∞

and the Girsanov formula can be applied. Then we set

dP̃ = exp

(∫ T

0
d(s)dW(s)− 1

2

∫ T

0
|d(s)|2dt

)
dP
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and deduce that P̃ is a probability under which (β̃1, η1) is a cylindrical Wiener process. We
denote by λ2 the law of (X̄1, η1) under P̃.

We prove below that

P(X̂1(t) �= X̃2(t) or
2∑
i=1

Eũi,6(t) > κ ′(ρ, t, R1) for some t < T1)

≤ ‖λ1 − λ2‖var + P

(
Eũ1,6(τ ) ≥ 1

2
κ ′(ρ, τ, R1)

)
+ P

(
Eũ2,6(τ ) ≥ 1

2
κ ′(ρ, τ, R1)

)
(2.25)

We choose

ρ = 8K6,1

in the definition of κ ′(ρ, t, R1) and deduce from Proposition 2.4 that

P

(
Eũ1,6(τ ) ≥ 1

2
κ ′(ρ, τ, R1)

)
+ P

(
Eũ2,6(τ ) ≥ 1

2
κ ′(ρ, τ, R1)

)
≤ 1

4
. (2.26)

Moreover using (2.10), we obtain

‖λ1 − λ2‖var ≤ 1

2

√
E exp

(
c

∫ T

0
|d(s)|2dt

)
− 1,

and then, for T1, R1 sufficiently small,

‖λ1 − λ2‖var ≤ 2(R1 (T1 + 1) (1 + R2
1)+ κ ′(ρ, T1, R1)).

We choose

T1 = R1,

and deduce

‖λ1 − λ2‖var ≤ cR1(1 + R11
1 ). (2.27)

Taking into account (2.21), (2.25), (2.26) and (2.27), we can choose R0
1 > 0 sufficiently

small such that for any R1 ≤ R0
1

P

(
X̃1(T1) = X̃2(T1) and

2∑
i=1

H(̃ui(T1))
6 ≤ κ ′(ρ, R1, R1)

)
≥ 1

2
. (2.28)

Remark that there exists R1(d0) ∈ (0, R0
1) such that R1 ≤ R1(d0) implies{

2∑
i=1

H(̃ui(T1))
6 ≤ κ ′(ρ, R1, R1)

}
⊂
{

2∑
i=1

H(̃ui(T1)) ≤ d0

}
,

so that (2.20) follows.
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It remains to prove (2.25). We write

P

(
X̂1(t) �= X̃2(t) or

2∑
i=1

Eũi,6(t) > κ ′(ρ, t, R1) for some t < T1

)

= P

(
X̂1|[0,τ ] �= X̃2|[0,τ ] or

2∑
i=1

Eũi,6(τ ) = κ ′(ρ, τ, R1)

)

≤ P(X̂1|[0,τ ] �= X̃2|[0,τ ])+ P

(
Eũ1,6(τ ) ≥ 1

2
κ ′(ρ, τ, R1)

)
+ P

(
Eũ2,6(τ ) ≥ 1

2
κ ′(ρ, τ, R1)

)
.

Let X̄2 is the solution of equation (2.24) where β1 is replaced by β2 = PN∗W2 then, with
the probability P, X̄2 has the same law as X̄1 under the probability P̃ and

P(PN∗ û1|[0,τ ] �= PN∗ ũ2|[0,τ ]) ≤ P(X̄1 �= X̄2).

Thus, (2.25) would follow if ((X̄1, η1), (X̄2, η2)) was a maximal coupling of (λ1, λ2)

(here, we have set η2 = QN∗W2). However, we only know that ((X̂1, η1), (X̃2, η̃2)) is
a maximal coupling of

(
ν̂1, ν2

)
. It is not difficult to remedy this problem. Indeed, the

above result holds for any coupling of
(
ν̂1, ν2

)
. Thus, instead of ((X̂1, η1), (X̃2, η̃2)), we

choose another coupling such that the processes constructed as ((X̄1, η1), (X̄2, η2)) above
is a maximal coupling of (λ1, λ2). Then, the right hand side is equal to the right hand side of
(2.25) while, by Lemma (2.7.), the left hand side is larger than the left hand side of (2.25).

STEP 2. Construction of the coupling under the assumptions of case a. Thanks to
Proposition 2.6, we know that there exists T−1(R0, R1) > 0 and π−1(R1) > 0 such that

P

(
2∑
i=1

H(u(θ, ui0)) ≤ R1

)
≥ π−1(R1), (2.29)

provided
∑2
i=1 H(ui0) ≤ R0 and θ ≥ T−1(R0, R1).

We set T ∗(R0, d0) = T−1(R0, R1(d0))+ T1(d0) and assume that T ≥ T ∗(R0, d0). We
also write θ = T − T1. Then on [0, θ ], we take the trivial coupling which we denote by
(V ′

1, V
′
2). Finally, we consider (Ṽ1, Ṽ2) as above independent of (V ′

1, V
′
2) and we set

V ai (t, u
1
0, u

2
0) =

{
V ′
i (t, u

1
0, u

2
0) if t ≤ θ,

Ṽi(t − θ, V ′
1(θ, u

1
0, u

2
0), V

′
2(θ, u

1
0, u

2
0)) if t ≥ θ.

Combining (2.20) and (2.29) and setting

p−1(d0) = 1

2
π−1(R1(d0)),
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we obtain, for any u1
0, u

2
0 such that H(u1

0)+ H(u2
0) ≤ R0,

P

(
Xa1 (T , u

1
0, u

2
0) = Xa2 (T , u

1
0, u

2
0),

2∑
i=1

H(uai (T , u1
0, u

2
0)) ≤ d0

)
≥ p−1(d0), (2.30)

where now

V ai (·, u1
0, u

2
0) = (uai (·, u1

0, u
2
0),W

a
i (·, u1

0, u
2
0)),

Xai (·, u1
0, u

2
0) = PN∗u

a
i (·, u1

0, u
2
0), i = 1, 2.

Clearly, (2.30) implies (2.4).

CASE b: l0(k) ≤ k. We now construct a coupling so that (2.3) holds. Since (2.3)
depends on the whole history of the coupling and not only on the latest step, (2.3) is proved
afterwards when the coupling is constructed on [0,∞).

In this case, we have PN∗u
1
0 = PN∗u

2
0. We write x = PN∗u

1
0 = PN∗u

2
0, y1 = QN∗u

1
0

and y2 = QN∗u
2
0.

We apply Proposition 2.9 to

E = C((0, T );H 1
0 (0, 1))× C((0, T );H−1(0, 1)),

F = C((0, T );PN∗H
1
0 (0, 1))× C((0, T );QN∗H

−1(0, 1)),
f0(u,W) = (PN∗u,QN∗W) = (X, η),

µi = D((u(·, ui0),W)), on[0, T ].

We set νi = f ∗
0 µi = D (

(X(·, ui0), η)
)

on [0, T ]. We obtain (V bi (·, u1
0, u

2
0))i=1,2 =

(ubi (·, u1
0, u

2
0),W

b
i (·, u1

0, u
2
0))i=1,2, a coupling of (µ1, µ2) such that if we set

(Xbi , η
b
i ) = f0(V

b
i ), i = 1, 2.

Then (Xbi , η
b
i )(·, u1

0, u
2
0))i=1,2 is a maximal coupling of (ν1, ν2). We define Ybi = QN∗u

b
i ,

βbi = PN∗W
b
i

Let τ be a stopping time associated to the process (X, η).
We wish to estimate ‖‖var. This enables us to use Lemma 2.7 and to obtain an estimate

which will be crucial to prove 2.3.
Let X̃b1 be the unique solution of the truncated equation{
dX̃b1 +GX̃b1dt + 1t≤τ f (X̃b1,�(X̃

b
1, η

b
1, (x, y1)))dt = σldβ

b
1 ,

X̃b1(0) = x.
(2.31)

Clearly X̃b1 = Xb1 on [0, τ ]. We denote by λ1 the distribution of (X̃b1, η) under the
probability P.

Let β̃b1 (t) = βb1 (t)+ ∫ t
0 d(s)dt where

d(t) = 1t≤τ (σl)−1(f (X̃b1(t),�(X̃
b
1, η

b
1, (x, y2))(t))−f (X̃b1(t),�(X̃b1, ηb1, (x, y1))(t))).
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We take below a stopping time τ such that∫ T

0
|d(t)|2dt ≤ M, (2.32)

for a constant M . Thus Novikov condition holds and Girsanov formula applies. Setting

dP̃ = exp

(∫ T

0
d(s)dW(s)− 1

2

∫ T

0
|d(s)|2dt

)
dP,

we know that P̃ is a probability under which (β̃, η) is a cylindrical Wiener process.
Furthermore, with such a stopping time τ , X̃b1 is the solution of{
dX̃b1 +GX̃b1dt + 1t≤τ f (X̃b1, �̃(X̃

b
1, η

b
1, (x, y2)))dt = σldβ̃,

X̃b1(0) = x.
(2.33)

We denote by λ2 the law of (X̃b1, η) under P̃. As in the case a, it is not difficult to see that

‖λ1 − λ2‖var ≤ 1

2

√
E exp

(
c

∫ T

0
|d(s)|2dt

)
− 1. (2.34)

This will be helpful to estimate ‖ν1 − ν2‖var.

Definition of the coupling on [0,∞). We first set

ui(0) = ui0, Wi(0) = 0, i = 1, 2.

Assuming that we have built (ui,Wi)i=1,2 on [0, kT ], then we take (V ai )i and (V bi )i as
above independent of (ui,Wi)i=1,2 on [0, kT ] and set for any t ∈ [0, T ]

(ui(kT + t),Wi(kT + t)) =
V ai (t, u1(kT ), u2(kT )) if l0(k) = ∞ and H(u1

0)+ H(u2
0) ≤ R0,

V bi (t, u1(kT ), u2(kT )) if l0(k) ≤ k,

V 0
i (t, u1(kT ), u2(kT )) if l0(k) = ∞ and H(u1

0)+ H(u2
0) > R0,

(2.35)

where V 0
i (t, u1(kT ), u2(kT )) is the trivial coupling. In other words, we take a cylindrical

Wiener process W independent of (ui,Wi)i=1,2 on (0, kT ) and set

V 0
i (t, u1(kT ), u2(kT )) = ((u(t − kT , u1

0),W), (u(t − kT , u2
0),W)).

Remark that, when l0(k) = ∞ and H(u1
0)+ H(u2

0) > R0, the choice of the coupling is not
very important.

Clearly, (ui,Wi)i=1,2 is a coupling of (u(·, ui0))i=1,2 which is l0–Markov. In the follow-
ing, we write

Xi = PN∗ui, Yi = QN∗ui, βi = PN∗Wi, ηi = QN∗Wi, i = 1, 2.
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It remains to prove that (2.3) holds.

Proof of 2.3
We are in the situation where the coupling on [kT , (k + 1)T ] has been constructed in

case b. We use the notation used in the construction of the coupling.
Let us define for i = 1, 2

τ̂ ik,l = inf{t ∈ [0, T ]|Eûi,4(kT + t, lT ) > κ + 1 + d4
0 + d8

0 + C′
4(t + (k − l)T )},

where C′
4 is given in Proposition 2.1, and

τ̂ 3
k,l = inf

{
t ≤ T

∣∣∣∣∣
∫ kT+t∧τ̂ 1

k,l∧τ̂ 2
k,l

kT

l(û1(s), û2(s))‖r̂(s)‖2ds > C∗(d0)e
a− α

2 (k−l)T
}
,

where a, d0, κ are chosen below, C∗(d0) = C∗∗(C′
4, d0) is given in Lemma 2.3 and

ûi = ui on [0, kT ], ûi(kT + ·) = X̃b1 +�(X̃b1, η
b
1, ui(kT )) on [kT , (k + 1)T ],

r̂ = û1 − û2.

We also take B = C′
4 in the definition of l0(k).

Note that, with the notation of case b, û1 (resp. û2) is a solution of a truncated NLS
equation under the the probability P (resp. P̃). It follows that when (X̃b1, η

b
1) has law λ1

(resp. λ2) then û1 (resp. û2) is a solution in law of a truncated NLS equation. But if
(X̃b1, η

b
1) has law λ1, û2 is a solution of a truncated NLS equation with a drift term.

We wish to use the construction described in case b with the stopping time τ = τk,l

given by

τk,l = τ̂ 1
k,l ∧ τ̂ 2

k,l ∧ τ̂ 3
k,l .

Then

|d(t)| ≤ 1t≤τk,l σ−1
0 |f (X̃b1(t),�(X̃b1, ηb1, (x, y2))(t))

−f (X̃b1(t),�(X̃b1, ηb1, (x, y1))(t))|
and it is not difficult to see that

|d(t)|2 ≤ cσ−2
0 1t≤τk,l l(û1(t), û2(t))‖r̂(t)‖2.

So that, by the definition of τk,l , we get∫ T

0
|d(t)|2dt ≤ C∗(d0)σ

−2
0 exp

(
a − α

2
(k − l)T

)
. (2.36)

Hence the Novikov condition is satisfied and (2.10) holds.



Vol. 5, 2005 Ergodicity for the weakly damped stochastic non-linear Schrödinger equations 339

Moreover, using the same argument as in the proof of (2.25), we obtain

P((Xb1, η
b
1) �= (Xb2, η

b
2) or τ < T ) ≤ ‖λ1 − λ2‖var

+ ν1(Â
c
1)+ ν1(Â

c
3)+ ν2(Â

c
2). (2.37)

where

Âi = {(X, η) | τ̂i = T }, i = 1, 2, 3.

It can be seen that for i = 1, 2

νi(Â
c
i )

= P( sup
t∈[0,T ]

(Eui,4(kT + t, lT )− C′
4(t + (k − l)T )) > κ + 1 + d4

0 + d8
0 | FkT ).

(2.38)

The third term ν1(Â
c
3) cannot be written in terms of u1 and u2. Indeed, when (X̃b1, η

b
1) has

law ν1, û2 is a solution of an equation with a drift term.

REMARK 2.13. We remark here that Proposition 2.1 is not the Foias-Prodi estimate
which is usually used in the coupling method. Here, we have also a drift term h. This
modification is introduced precisely to treat the term ν1(Â

c
3). We take h(·) = bd(kT +·) =

σld(kT + ·). This additional term is due to the fact that we introduce a term depending on
r in the truncation. In the preceding papers using this kind of coupling method, this was
not necessary and the Foias-Prodi estimate was used to get (2.36). However, this requires
a path-wise Foias-Prodi estimate and we do not know if it holds in our situation.

By (2.38), we have

ν1(Â
c
1)+ ν1(Â

c
3)+ ν2(Â

c
2) ≤ 3P(Bl,k

∣∣FkT )
with

Bl,k =


supt∈[0,T ](Eui,4(kT + t, lT )− C′

4(t + (k − l)T ))

> κ + 1 + d4
0 + d8

0 , i ∈ {1, 2}
or
∫ kT+τk,l
kT (

∑2
i=1 H(ûi(s))2)‖r̂(s)‖2ds ≥ C∗(d0)e

2κ− α
4 (k−l)T

 .
Let us write

P(Bl,k|l0(l) = l)

≤
∑
i=1,2

P( sup
t∈[0,T ]

(Eui,4(kT + t, lT )− C′
4(t + (k − l)T ))

> κ + 1 + d4
0 + d8

0

∣∣ l0(l) = l)

+ P

(∫ kT+τk,l

kT

(
2∑
i=1

H(ûi(s))2
)

‖r̂(s)‖2ds ≥ C∗(d0)e
2κ− α

4 (k−l)T
∣∣ l0(l) = l

)
.
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Using Proposition (2.4.) with κ = ρ and solutions starting at lT and replacing T by kT
we get, since l0(l) = l implies H(ui(lT ) ≤ d0,

P( sup
t∈[0,T ]

(Eui,4(kT + t, lT )− C′
4(t + (k − l)T )) > κ + 1 + d4

0 + d8
0

∣∣FlT )
≤ P( sup

t∈[0,T ]
(Eui,4(kT + t, lT )− C′

4(t + (k − l)T ))

> κ + 1 + H(ui(lT )4)+ H(ui(lT )8
∣∣FlT )

≤ K4,q+1(κ + (k − l)T ))−q−1.

It follows

P( sup
t∈[0,T ]

(Eui,4(kT + t, lT )− C′
4(t + (k − l)T )) > κ + 1 + d4

0 + d8
0 | l0(l) = l)

≤ K4,q+1(κ + (k − l)T ))−q−1.

Similarly, by Lemma (2.3.), with h(t) = σld(kT + t)1t≤τ which clearly satisfies (2.6)
and ρ = a = κ , we have

P

(∫ kT+τk,l

kT

(
2∑
i=1

H(ûi(s))2
)

‖r̂(s)‖2ds ≥ C∗(d0)e
2κ− α

4 (k−l)T | l0(l) = l

)
≤ e−κ−

α
2 (k−l)T

≤ c (κ + (k − l)T ))−q−1 .

Gathering these estimates, we obtain

P(Bl,k
∣∣ l0(l) = l) ≤ c (κ + (k − l)T ))−q−1 .

By (2.37), (2.10), and (2.36), we obtain for k ≥ l and on l0(k) = l

P((X1, η1) �= (X2, η2) on [kT , (k + 1)T ] or Bk,l | FkT )
≤ ‖λ1 − λ2‖var + 3P(Bl,k

∣∣FkT )
≤
√

E exp

(
c

∫ T

0
|d(s)|2dt

)
− 1 + 3P(Bl,k

∣∣FkT )
≤ C∗(d0)σ

−1
0 eκ−

α
4 (k−l)T + 3P(Bl,k|FkT ).

We have

{l0(k) = l} ∩ {(X1, η1) = (X2, η2) on [kT , (k + 1)T ]} ∩ Bcl,k ⊂ {l0(k + 1) = l}.
Therefore, integrating over l0(k) = l gives for T ≥ T1(d0) and for k > l

P (l0(k + 1) �= l, l0(k) = l | l0(l) = l) ≤ C∗(d0)σ
−1
0 eκ−

α
4 (k−l)T + 3P(Bl,k | l0(l) = l).
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Which implies that there exists κ > 0 sufficiently large and d0 > 0 sufficiently small such
that for any T > 0

P(l0(k + 1) �= l, l0(k) = l | l0(l) = l) ≤ 1

4
(1 + (k − l)T )−q . (2.39)

Remark that

P (l0(k) �= l|l0(l) = l) ≤
k−1∑
n=l

P (l0(n+ 1) �= l, l0(n) = l | l0(l) = l) ,

so that, applying (2.39), we obtain

P (l0(k) �= l|l0(l) = l) ≤ 1

4
+ 1

T q+1/2

∞∑
n=1

1

kq
≤ 1

4
+ Cq

1

T q
,

which implies that there exists Tq > 0 such that for T ≥ Tq

P (l0(k) = l|l0(l) = l) ≥ 1

2
, (2.40)

Combining (2.39) and (2.40), we establish (2.3).

2.6. Conclusion

We have just shown that the coupling constructed in Section 2.5 satisfies (2.3) and (2.4)
which are precisely (2.13) and (2.14). The constants used in (2.3) have been chosen
in the preceeding subsection. The random variables l0(k) clearly satisfy (2.11) and, as
already mentioned, (2.15) is implied by Lemma 2.5. Finally, (2.12) is a consequence of
Proposition 2.1 with h = 0 and Tchebychev inequality.

We deduce that Theorem 2.9 can be applied. Moreover (1.5) is a consequence of
Lemma 2.5. This ends the proof of Theorem 1.1.

3. Proof of Theorem 2.9

3.1. Reformulation of the problem

We already noticed that it is sufficient to establish (2.19).
Let us denote by k the unique integer such that t ∈ (2(k − 1)T , 2kT ]. Then

P(dE(u1(t), u2(t)) > c0 (1 + t − (k − 1)T )−q) ≤ P(l0(2k) ≥ k)

+ P(dE(u1(t), u2(t)) > c0 (1 + t − (k − 1)T )−q and l0(2k) < k).

Thus applying (2.12), using 2(t − (k − 1)T ) > t , it follows

P(dE(u1(t), u2(t)) > 2qc0(1 + t)−q) ≤ P(l0(2k) ≥ k)+ 2qc0(1 + t)−q . (3.1)
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In order to estimate P(l0(2k) ≥ k), we introduce the following notation

l0(∞) = lim sup l0.

Taking into account (2.11), we obtain that for l < ∞
{l0(∞) = l} = {l0(k) = l, for any k ≥ l}.

We deduce

P(l0(2k) ≥ k) ≤ P(l0(∞) ≥ k). (3.2)

Taking into account (3.1), (3.2) and using a Chebyshev inequality, it is sufficient to obtain
that there exist c5 > 0 such that

E(l0(∞)q) ≤ c5(1 + H(u1
0)+ H(u2

0)). (3.3)

3.2. Definition of a sequence of stopping times

Let

τ = min {t ∈ TN | H(u1(t))+ H(u2(t)) ≤ R0} .
Then, the Lyapunov structure (2.15) implies that there exist δ0 > 0 and c6 > 0 such that

E(exp(δ0τ)) ≤ c6(1 + H(u1
0)+ H(u2

0)). (3.4)

For a proof, see the proof of (1.56) at the end of the subsection 1.4 of [26].
We set

σ̂ = min {k ∈ N\{0} | l0(k) > 1} , σ = σ̂ T .

Clearly σ̂ = 1 if the two solutions do not get coupled at time 0 or T . Otherwise, they get
coupled at 0 or T and remain coupled until σ .

From now, we fix q1 ∈ (q, q0 − 1). Let us assume for the moment that there exists p∞
such that if H0 ≤ R0, then{

E (σ q1 1σ<∞) ≤ K,

P (σ = ∞) ≥ p∞ > 0.
(3.5)

The proof is given at the end of this section.
Now we build a sequence of stopping times

τ0 = τ,

σ̂k+1 = min {l ∈ N\{0} | lT > τk and l0(l)T > τk + T } , σk+1 = σ̂k+1 T

τk+1 = σk+1 + τoθσk+1 ,
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where (θt )t is the shift operator. The idea is the following. We wait the time τk to enter
the ball of radius R0. Then, if we do not start coupling at time τk , we try to couple at time
τk + T . If we fail to start coupling at time τk or τk + T we set σk = τk + T else we set
σk the time the coupling fails (σk = ∞ if the coupling never fails). Then if σk < ∞, we
retry to couple after entering in the ball of radius R0. The fact that R0 ≥ d0 implies that
l0(τk) ∈ {τk,∞}.

Note that we clearly have l0(τk) ∈ {τk,∞} and l0(σk) ∈ {σk,∞}, and the l0–Markov
property implies the strong Markov property when conditioning with respect to Fτk or Fσk .

We infer from the l0–Markov property of V that

σk+1 = τk + σoθτk ,

which implies

τk+1 = τk + ρoθτk , where ρ = σ + τoθσ .

3.3. Polynomial estimate on ρ

We first establish that there exist K0 such that for any V0 such that H0 ≤ R0

EV0(ρ
q1 1ρ<∞) ≤ K0. (3.6)

Notice that for any V0 such that H0 ≤ R0,

EV0(ρ
q1 1ρ<∞) ≤ c(EV0(σ

q1 1σ<∞)+ E((τoθσ )
q1 1τoθσ<∞1σ<∞)). (3.7)

Applying the l0–Markovian property and (3.4), we obtain

E((τoθσ )
q1 1τoθσ<∞1σ<∞|Fσ ) ≤ c6 (1 + H(u1(σ ))+ H(u2(σ ))) 1σ<∞,

which implies by applying the Lyapunov structure (2.15)

E((τoθσ )
q1 1τoθσ<∞) ≤ c6(1 + 2K ′(R0 + E(σ1σ<∞)). (3.8)

Applying (3.5) and (3.8) to (3.7), we obtain (3.6).

3.4. Conclusion

Applying a convexity inequality, we obtain

E(τ
q1
k 1τk<∞) ≤ (k + 1)(q1−1)+

(
Eτq1 +

k−1∑
n=0

E(ρoθτn)
q1 1ρoθτn<∞

)
.
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Combining the l0–Markov property, (3.4) and (3.6) gives

E(τ
q1
k 1τk<∞) ≤ C(k + 1)1∨q1(1 + H(u1

0)+ H(u2
0)). (3.9)

Now, we are able to estimate E(l0(∞)q)

E(l0(∞)q) ≤ c

(
1 +

∞∑
n=0

E(τ
q
n 1τn<∞1k0=n)

)
,

where

k0 = inf{k ∈ N | σk+1 = ∞}.
Then, applying an Holder inequality, we obtain

E(l0(∞))q ≤ c

(
1 +

∞∑
n=0

E(τ
pq
n 1τn<∞)

1
p (P (k0 = n))

1
p′
)
.

Using the second inequality of (3.5) and τ < ∞, we obtain from the l0–Markov property
that

P (k0 > n) ≤ (1 − p∞)n . (3.10)

It follows that k0 < ∞ almost surely and that

l0(∞) ∈ {τk0 , τk0 + 1}.
Therefore l0(∞) < ∞ almost surely and applying (3.9), we obtain that if pq = q1

E (l0(∞))q ≤ C

( ∞∑
n=0

(n+ 1)
1
p

∨q
(1 − p∞)

n
p′
)
(1 + H(u1

0)+ H(u2
0)).

Thus (3.3) is established and we can conclude.

3.5. Proof of 3.5

Now we establish (3.5). There are two cases. The first case is l0(0) = 0. Then, applying
(2.13), we obtain that

P(σ = ∞) ≥ ∞
�
k=0

P(l0(k + 1) = 0|l0(k) = 0) ≥ ∞
�
k=0

pk.

The second case is l0(0) = ∞. Then

P (σ = ∞) ≥ P (l0(1) = 1)
∞
�
k=1

P (l0(k + 1) = 1|l0(k) = 1) .
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Since H0 ≤ R0, then applying (2.13) and (2.14)

P (σ = ∞) ≥ ∞
�

k=−1
pk.

Since pk > 0 and 1 − pk decreases to 0 faster than k−q0 with q0 > 1, then the product
converges and in the two cases

P (σ = ∞) ≥ p∞ = ∞
�

k=−1
pk > 0. (3.11)

Notice that (2.13) implies

P (σ = n) ≤ P (l0(n+ 1) �= n | l0(n) = 0)+ P (l0(n+ 1) �= n | l0(n) = 1) ,
≤ 2c1 (1 + (n− 1)T )−q0 ,

which gives the first inequality of (3.5) and allows to conclude because q1 < q0 − 1.

4. Proof of the a priori estimates

As already mentioned, the various computations made in this section are not rigorous.
Indeed, the solutions are not smooth enough to apply Ito formula. A suitable approximation
could be used to justify the result rigorously.

Ito Formula for |u|6

Applying Ito Formula to |u|6, we obtain

d|u|6 + 6α|u|6dt = 6|u|4(u, bdW)+ 12|u|2|b∗u|2dt + 3B0|u|4dt.
Since b∗ is a bounded operator on L2(0, 1),

12|u|2|b∗u|2 ≤ 12B0|u|4.
We deduce

12|u|2|b∗u|2 + 3B0|u|4 ≤ α|u|6 + C,

and

d|u|6 + 5α|u|6dt ≤ 6|u|4(u, bdW)+ Cdt. (4.1)

Ito Formula for H.

Applying Ito Formula to H∗, we obtain

dH∗(u)+ α(‖u‖2 − |u|44)dt = dM∗ + B1dt + I∗dt, (4.2)
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where

dM∗ = (Au− |u|2u, bdW),
I∗ = −

∞∑
n=1

b2
n

∫
[0,1]

(2�(u(t, x)en(x))2 + |en(x)|2|u(t, x)|2)dx.

Note that, since b∗A is a bounded operator fromL2(0, 1) toH 1
0 (0, 1),M∗ is well defined.

Recalling that |en|∞ = 1, we obtain

I∗ ≤ 3B0|u|2 ≤ αc0|u|6 + C.

Recalling that | · |44 ≤ 1
4 ‖·‖2 + c0| · |6, we infer from (4.1), (4.2) and the last inequality that

dH(u)+ 3

2
αH(u)dt ≤ dM1 + C1dt, (4.3)

where

dM1 = dM∗ + 6c0|u|4(u, bdW).
Ito Formula for Hk .

Applying Ito Formula to Hk for k ∈ N\{0}, we obtain similarly as above

dH(u)k + 3

2
αkH(u)kdt ≤ dMk + kH(u)k−1C1dt + k(k − 1)

2
H(u)k−2d 〈M1〉, (4.4)

where

dMk = kH(u)k−1dM1.

Note that, since b∗A is a bounded operator from L2(0, 1) toH 1
0 (0, 1) and b∗ is bounded

from L1(0, 1) to L2(0, 1),

|b∗(Au− |u|2u)|2 ≤ 4B1‖u‖2 + cB1|u|63,
it follows from a Gagliardo-Nirenberg inequality

|b∗(Au− |u|2u)|2 ≤ cB1(‖u‖2 + |u|10).

Now, we write

d 〈M1〉 ≤ 2|b∗(Au− |u|2u)|2 + 72c2
0|u|8|b∗u|2,

and deduce that

d 〈M1〉 ≤ cB1(‖u‖2 + |u|10),
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and

d 〈M1〉 ≤ cB1(1 + H(u) 5
3 ). (4.5)

Gathering (4.4) and (4.5) and using once more an arithmetico-geometric inequality, we
obtain

dH(u)k + αkH(u)kdt ≤ dMk + C′′
k dt. (4.6)

Proof of Lemma (2.5)
Multiplying (4.6) by eαkt yields

d(eαktH(u)k) ≤ eαktdMk + eαktC′′
k dt.

By integration we obtain

eαktH(u(t))k ≤ H(u0)
k +

∫ t

0
eαksdMk(s)+ C′′

k

αk
eαkt

and

H(u(t))k ≤ H(u0)
ke−αkt +

∫ t

0
e−αk(t−s)dMk(s)+ C′′

k

αk
,

which yields, by taking the expectation, the first inequality of Lemma 2.5.
Let M > 0 and τ ≤ M be a bounded stopping time. Then, integrating (4.6) between

0 and τ and taking the expectation yields

E(H(u(τ ))k) ≤ H(u0)
k + C′′

kE(τ ),

which is the second inequality of Lemma 2.5 for bounded stopping times.
Assume now that τ is a general stopping time. We consider the second inequality of

Lemma 2.5 for the stopping time τ ∧M and we take the limit whenM → ∞. The second
inequality of Lemma 2.5 for τ follows from Fatou Lemma.

Proof of Proposition 2.4
We first note that

d 〈Mk〉 = k2H(u)2(k−1)d 〈M1〉,
so that, taking into account (4.5),

d 〈Mk〉 ≤ ck(1 + H(u)2k)ds (4.7)

Taking the expectation of (4.6), we obtain for any k ≥ 1

E

∫ t

0
H(u(s))kdt ≤ Ck(H(u0)

k + t). (4.8)
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Hence, for any p ≥ 1,

E 〈Mk〉p (t) ≤ Ck,p(H(u0)
2kp + tp). (4.9)

Applying the maximal martingale inequality and taking into account (4.6), we infer from
(4.9) the first inequality of Proposition 2.4.

Applying the maximal martingale inequality on [n, n+ 1], n ≥ 0, we have

P( sup
[n,n+1]

Mk > a + H(u0)
2k + n+ 1) ≤ cp

E 〈Mk〉p+1 (n+ 1)

(a + H(u0)2k + n+ 1)2p+2
.

It follows from (4.9) that

P( sup
[n,n+1]

Mk > a + H(u0)
2k + n+ 1) ≤ cpC

′
k,p+1

(a + H(u0)2k + n+ 1)p+1
. (4.10)

Now, summing (4.10) over n ≥ T , for T integer, we obtain that for any (p, k) ∈ (N\{0})2
there exists Kk,p such that

P( sup
t∈[T ,∞)

Mk(t) > 1 + a + H(u0)
2k + t) ≤ Kk,p(a + T )−p, T > 0. (4.11)

Taking into account (4.6), this implies the second inequality of Proposition 2.4.

Proof of Proposition 2.6. Combining Lemma 2.5 applied to τ = t and Chebyshev’s
inequality, we obtain

LEMMA 4.1. Let (ui,Wi)i=1,2 be a couple of solutions of (1.1), (1.2) such thatW1 and
W2 are two cylindrical Wiener process on L2([0, 1]). If R0 ≥ (

∑2
i=1 H(ui0)) ∨ C1, then

P (H(u1(t))+ H(u2(t)) ≥ 4C1) ≤ 1

2
,

provided t ≥ θ1(R0) = 1
α

ln R0
C1

.

It follows from Lemma 4.1 that it is sufficient to establish Proposition 2.6 for R0 = 4C1

and t = T−1(R0, R1) (instead of t ≥ T−1(R0, R1)). From now on, we only consider the
case R0 = 4C1.

Let T , δ > 0. Applying Chebyshev inequality, we obtain N−2 = N−2(T , δ) ∈ N such
that

P

(
sup
t∈[0,T ]

‖bQN−2W(t)‖3 >
δ

2

)
≤ 2

δ

∑
n>N2

µ3
nb

2
n ≤ 1

2
.
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Moreover PN−2W is a finite dimensional brownian motion and it is classical that

π−3(T , δ,N−2) = P

(
sup
t∈[0,T ]

|PN−2W(t)| ≤ δ

2
‖b‖−1

L2(L2(D),H
3(D))

)
> 0.

Writing

P( sup
t∈[0,T ]

‖bW(t)‖3 ≤ δ) ≥ P

(
sup
t∈[0,T ]

∥∥bQN−2W(t)
∥∥

3 ≤ δ

2

)
π−3(T , δ,N−2),

it follows

π−2(T , δ) = P( sup
t∈[0,T ]

‖bW(t)‖3 ≤ δ) > 0. (4.12)

It thus suffices to prove that there exists T−1(R1), δ−1(R1) > 0 such that

{ sup
t∈[0,T−1]

‖bW(t)‖3 ≤ δ−1} ⊂
{
H(u(T−1, u0)) ≤ 1

2
R1

}
, (4.13)

provided H(u0) ≤ R0.

Proof of (4.13)
Let us set

v = u(·, u0)− bW,

then

dv

dt
+ αv + iAv − i| bW + v |2(bW + v) = − (α + iA) bW. (4.14)

Taking the scalar product between (4.14) and 2v, we obtain

d|v|2
dt

+ 2α|v|2 = 2(v, i| bW + v |2(bW + v)− (α + iA)bW).

Since

(v, i | bW + v|2v) = 0,

applying Hölder inequalities and Sobolev Embedding H 1(D) ⊂ L∞(0, 1), we deduce

d|v|2
dt

+ 2α|v|2 ≤ c ‖bW‖3 (1 + ‖bW‖2
3)(1 + ‖v‖3).

Applying Ito Formula to |v|6, we deduce

d|v|6
dt

+ 6α|v|6 ≤ c ‖bW‖3 (1 + ‖bW‖2
3)(1 + ‖v‖9). (4.15)
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Taking the scalar product between (4.14) and Av − |v|2v, we obtain

dH∗(v)
dt

+ α ‖v‖2 = −(Av − |v|2v, (α + iA) bW)+ α(| v + bW |2(v + bW), v).

Since

I1 = α((| v + bW |2(v + bW), v)− |v|44) = α(| v + bW |2(v + bW)− |v|2v, v),
we obtain

dH∗(v)
dt

+ α(‖v‖2 − |v|44) = I1 + I2, (4.16)

where

I2 = −(Av − |v|2v, (α + iA)bW).

Recalling that for any z, h ∈ C
2

|| z+ h |2(z+ h)− |z|2z| ≤ |h|(|z|2 + |h|2),
and applying Hölder inequality and the Sobolev EmbeddingH 1(D) ⊂ L∞(0, 1) , we obtain

I = I1 + I2 ≤ c ‖bW‖3 (1 + ‖v‖3)(1 + ‖bW‖2
3).

It follows from (4.15), (4.16) and the last inequality that

dH(v)
dt

+ 2αH(v) ≤ c ‖bW‖3 (1 + ‖bW‖2
3)(1 + H(v)5). (4.17)

Let T , δ,M > 0 and assume that

sup
t∈[0,T ]

‖bW(t)‖3 ≤ δ.

We set

τ = inf {t ∈ [0, T ] | H(v) ≤ 3R0} .
Integrating (4.17), we obtain

H(v(t)) ≤ e−2αtR0 + c

2α
δ(1 + δ2)(1 + R5

0), (4.18)

provided t ≤ τ .
Now we choose δ ≤ δ−2(R

′
1) > 0 such that

c

2α
δ(1 + δ2)(1 + R5

0) ≤ R′
1 ∧ R0.
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It follows from (4.18) that

τ = T ,

and that

H(v(T )) ≤ 2R′
1,

provided

T ≥ 1

2α
ln

(
R′

1

R0

)
.

In order to conclude, we remark that

H(u(T )) ≤ c (H(bW(T ))+ H(v(T ))) ≤ c(δ2(1 + δ4)+ R′
1).

Then, choosing δ and R′
1 sufficiently small, we obtain (4.13).

5. Proof of the Foias-Prodi estimates

The aim of this section is to establish Proposition 2.1.

L2 estimates.
Taking into account (2.5), we deduce that the difference of the two solutions r = u1 − u2

satisfies the equation

dr

dt
+ αr + iAr = iQN(|u1|2u1 − |u2|2u2). (5.1)

Applying Ito Formula to |r|2, we obtain

d|r|2
dt

+ 2α|r|2 = 2(ir, |u2|2u2 − |u1|2u1).

Since

||u2|2u2 − |u1|2u1| ≤ c

(
2∑
i=1

|ui |2
)

|r|,

it follows

d|r|2
dt

+ 2α|r|2 ≤ c

∫
[0,1]

(
2∑
i=1

|ui |2
)

|r|2dx.
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Using the Sobolev Embedding H 1(0, 1) ⊂ L∞(0, 1), we obtain

d|r|2
dt

+ 2α|r|2 ≤ c

(
2∑
i=1

H(ui)
)

|r|2. (5.2)

We deduce as in the proof of (4.3)

dH(ui)+ 3

2
αH(ui)dt ≤ dMi

1 + C1dt + 1i=1(G, h)dt,

where{
dMi

1 = (Aui − |ui |2ui, bdWi)+ 6c0|ui |4(ui, bdWi),

G = Au1 − |u1|2u1 + 6c0|u1|4L2u1.

It follows from Sobolev Embeddings and Hölder inequalities that

‖G‖−1 ≤ c (1 + H(u1))
5
6 .

Hence we deduce from (2.6) that

(G, h) ≤ c (1 + H(u1)+ H(u2))
4 .

Taking into account (5.2), it follows

dZ1 + 2αZ1dt ≤ c

(
1 +

2∑
i=1

H(ui)4
)

|r|2dt + |r|2dM#, (5.3)

where

Z1 =
(

2∑
i=1

H(ui)
)

|r|2

and

dM# = dM1
1 + dM2

1 .

Ito Formula for J .

Now we rewrite (5.1) in the form

dr

dt
+ αr + iAr = −i

1

2
QN((|u1|2 + |u2|2)r + �((u1 + u2)r̄)(u1 + u2)). (5.4)

Applying Ito Formula to J∗(u1, u2, r), we obtain

dJ∗ + 2αJ∗dt = g(u1, u2, r)dt + g(u2, u1, r)dt + ψ(u1, u2, r)(bdW1)

+ψ(u1, u2, r)(h(t))dt + ψ(u2, u1, r)(bdW2)+ I1(r)dt + dI2(r, dt),
(5.5)
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where

g(u1, u2, r) =
{

2
∫

[0,1](�(ū1(αu1 + iAu1 − i|u1|2u1))|r|2)dx
+ 2

∫
[0,1] �(r̄(u1 + u2))�(r̄(αu1 − iAu1 + i|u1|2u1))dx

,

ψ(u1, u2, r)(h) = 2
∫

[0,1]
(�(ū1h)|r|2)dx + 2

∫
[0,1]

�(r̄(u1 + u2))�(r̄h)dx,

I1(r) = −
∞∑
n=1

b2
n

∫
[0,1]

(|en|2|r|2 + �(enr̄)2)dx,

dI2(r, t) = −
∞∑

p,q=1

bpbq

((∫
[0,1]

�(epr̄)�(eq r̄)dx
)
d〈(W1, ep), (W2, eq)〉

)
.

Applying an integration by part to Au1, Hölder inequality and the Sobolev Embedding

H
3
4 (0, 1) ⊂ L∞(0, 1), we obtain

g(u1, u2, r) ≤
(

1 +
2∑
i=1

‖ui‖6

)
‖r‖ ‖r‖ 3

4
. (5.6)

We deduce from Hölder inequality that

ψ(u1, u2, r)(h(t)) ≤
(

2∑
i=1

|ui |∞
)

|h(t)||r|24.

Taking into account (2.6) and applying the Sobolev EmbeddingsH 1(0, 1) ⊂ L∞(0, 1) and

H
1
2 (0, 1) ⊂ L4(0, 1), we obtain

ψ(u1, u2, r)(h(t)) ≤ cκ0

(
1 +

2∑
i=1

H(ui)
7
2

)
‖r‖2

1
2
. (5.7)

Recalling that |en|∞ = 1, we obtain

I1(r) ≤ 3B0|r|2. (5.8)

Note that we have no information on the law of the couple (W1,W2). Hence, we cannot
compute d

〈
(W1, ep), (W2, eq)

〉
. However we know that

d| 〈(W1, ep), (W2, eq)
〉 | ≤ dt.

Hence

d|I2(r, t)| =
∫

[0,1]
�
( ∞∑
n=1

(bnen) r̄

)2

dx

 dt.
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Applying the following Schwartz inequality( ∞∑
n=1

bn

)2

≤
( ∞∑
n=1

µnb
2
n

)( ∞∑
n=1

1

µn

)
≤ cB1,

we deduce from |en|∞ = 1 that

d|I2(r, t)| ≤ cB1|r|2dt. (5.9)

Combining (5.5), (5.6), (5.7), (5.8), and (5.9) , we obtain

dJ∗ + 2αJ∗dt ≤ c

(
1 +

2∑
i=1

H(ui)4
)

‖r‖ ‖r‖ 3
4
dt + dM##, (5.10)

where

dM## = (ψ(u1, u2, r)(bdW1)+ ψ(u2, u1, r)(bdW2)) .

Summing (5.3) and (5.10), we obtain

dJ + 2αJdt ≤ c

(
1 +

2∑
i=1

H(ui)4
)

‖r‖ ‖r‖ 3
4
dt + dM, (5.11)

where

dM = dM## + c1|r|2dM#.

Conclusion

Since ‖r‖ 3
4

≤ µ
− 1

8
N+1 ‖r‖ then there exists  > 0 such that

dJ +
2α − 

µ
1
8
N+1

l(u1, u2)

 Jdt ≤ dM. (5.12)

Multiplying (5.12) by exp(2αs −µ
− 1

8
N+1

∫ s
0 l(u1(s

′), u2(s
′))ds′), we obtain that

JNFP(t ∧ τ) ≤
∫ t∧τ

0
exp

(
3

2
αs −µ

− 1
8

N+1

∫ s

0
l(u1(s

′), u2(s
′))ds′

)
dM(s). (5.13)

Fatou Lemma allows to conclude.
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