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Weak solutions to stochastic porous media equations

Giuseppe Da Prato and Michael Röckner

Abstract. A stochastic version of the porous medium equation is studied. The corresponding Kolmogorov equation
is solved in a space L2(H, ν) where ν is an invariant measure. Then a weak solution, that is a solution in the sense
of the corresponding martingale problem, is constructed.

1. Introduction

The porous medium equation

∂X

∂t
= �(Xm), m ∈ N, (1.1)

on a bounded open set D ⊂ R
d has been studied extensively. We refer to [1] for both the

mathematical treatment and the physical background and also to [2, Section 4.3] for the
general theory of equations of such type.

In this paper we are interested in a stochastic version of (1.1). Throughout this paper we
assume

(H1) m is odd, m ≥ 3.

Furthermore, we consider Dirichlet boundary conditions for the Laplacian �. So, the
stochastic partial differential equation we would like to solve for suitable initial conditions
is the following:

dX(t) = (α�X(t) + �(Xm(t)))dt + √
C dW(t), t ≥ 0, (1.2)

where α ≥ 0. As in [3], where similar equations were studied (but with x → xm replaced
by some β : R → R of linear growth, satisfying, in particular, β ′ ≥ c > 0), it turns out that
the appropriate state space is H−1(D), i.e. the dual of the Sobolev space H 1

0 := H 1
0 (D).

Below we shall use the standard L2(D) dualization 〈·, ·〉 between H 1
0 (D) and H = H−1(D)

induced by the embeddings

H 1
0 (D) ⊂ L2(D)′ = L2(D) ⊂ H−1(D) = H
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without further notice. Then for x ∈ H

|x|2H =
∫

D

((−�)−1x)(ξ) x(ξ)dξ

and for the dual H ′ of H we have H ′ = H 1
0 . We equip H with its Borel σ -algebra B (H).

(Wt )t≥0 is a cylindrical Brownian motion in H and C is a positive definite bounded
operator on H of trace class. To be more concrete below we assume:

(H2) There exists λk, k ∈ N, such that for the eigenbasis {ek|k ∈ N} in H of � (with
Dirichlet boundary conditions) we have

Cek = √
λk ek for all k ∈ N.

(H3) For αk := supξ∈D |ek(ξ)|2, k ∈ N, we have

K :=
∞∑

k=1

αkλk < +∞.

Our aim is to construct a strong Markov weak solution for (1.2), i.e. a solution in the sense
of the corresponding martingale problem (see [13] for the finite dimensional case), at least
for a large set H of starting points in H which is left invariant by the process, that is
with probability one Xt ∈ H for all t ≥ 0. We follow the strategy first presented in [10]
(and already carried out in the more dissipative cases in [5]). That is, first we construct
a solution to the corresponding Kolmogorov equations and then a strong Markov process
with continuous sample paths having transition probabilities given by that solution to the
Kolmogorov equations. As in [5] we also prove that this process is for µ-a.e. starting point
x ∈ H the (in distribution) unique continuous Markov process whose transition semigroup
consists of continuous operators on L2(H, µ) which is e.g. the case if µ is a sub-invariant
measure.

Applying Itô’s formula (on a heuristic level) to (1.2) one finds what the corresponding
Kolmogorov operator, let us call it N0, should be, namely

N0ϕ(x) = 1

2

∞∑
k=1

λkD
2ϕ(ek, ek) + Dϕ(x)(�(αx + xm)), x ∈ H, (1.3)

where Dϕ, D2ϕ denote the first and second Fréchet derivatives of ϕ : H → R. So, we
take ϕ ∈ C2

b (H).
In order to make sense of (1.3) one needs that �(xm) ∈ H at least for “relevant” x ∈ H .

Here one clearly sees the difficulties since xm is, of course, not defined for any Schwartz
distribution in H = H−1, not to mention that it will not be in H 1

0 (D). So, a way out of
this is to think about “relevant” x ∈ H. Our approach to this is first to look for an invariant
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measure for the solution to equation (1.2) which can now be defined “infinitesimally”
(cf. [4]) without having a solution to (1.2) as the solution to the equation

N∗
0 µ = 0 (1.4)

with the property that µ is supported by those x ∈ H for which xm makes sense and
�(xm) ∈ H . 1.4 is a short form for

N0ϕ ∈ L1(H, µ) and
∫

H

N0ϕdµ = 0 for all ϕ ∈ C2
b (H). (1.5)

Any invariant measure for any solution of (1.2) in the classical sense will satisfy (1.4). Then
we can analyze N0, with domain C2

b (H) in L2(H, µ), i.e. solve the Kolmogorov equation

dv

dt
= N0v (1.6)

for the closure N0 of N0 on L2(H, µ). This means, we have to prove that N0 generates a
C0-semigroup Tt = etN0 on L2(H, µ). Subsequently, we have to show that (Tt )t≥0 is given
by a semigroup of probability kernels (pt )t≥0 (i.e. ptf is a µ-version of Ttf ∈ L2(H, µ)

for all t ≥ 0, f : H → R, bounded, measurable) and such that there exists a strong
Markov process with continuous sample paths in H whose transition function is (pt )t≥0.

By definition this Markov process then will solve the martingale problem corresponding
to (1.2).

The organization of this paper is as follows. In §2 we construct a solution µ to (1.4) and
prove the necessary support properties of µ, more precisely, that for all M ∈ N, M ≥ 2

µ({x ∈ L2(D)|xM ∈ H 1
0 }) = 1,

so that N0 in (1.3) is µ-a.e. well defined for all ϕ ∈ C2
b (H). In §3 we prove that N0, which

is automatically closable in L2(H, µ), is essentially maximal dissipative in L2(H, µ), i.e.
its closure N := N0 generates a C0-semigroup in L2(H, µ). In both §2 and §3 we rely on
results in [3] in essential way, which we apply to suitable approximations, i.e. the function
x �→ xm is replaced by

βε(x) := xm

1 + εxm−1
+ (α + ε)x, ε ∈ (0, 1]

to which the results in [3] apply.
In §4 we construct the semigroup (pt )t≥0 of probability kernels and the corresponding

Markov process. The technique to this is to prove that the capacity determined by N (defined
in §2.1 below) is tight. So, since C2

b (H) is a core of N which is an algebra, a general result
from [12] implies the existence of (pt )t≥0 and the Markov process.

In the recent paper [6] we already constructed solutions to (1.4) in the case α = 0 and
m = 3. In this paper we extend this result to α ∈ (0, +∞) and arbitrary odd m ∈ N. We
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emphasize that all further steps described above we can only perform if α > 0. For the
convenience of the reader we include the case α = 0 in §2, thus recalling all relevant results
from [6]. Starting from §3, however, we need α > 0. We shall point out in detail why this
is needed in the proof of Theorem 3.2.

2. Existence of an infinitesimal invariant measure

Throghout this section (H1)-(H3) are still in force. So, we first consider the following
approximations for the Kolmogorov operator N0. For ε ∈ (0, 1] we define for ϕ ∈ C2

b (H),
x ∈ L2(D) such that βε(x) ∈ H 1

0

Nεϕ(x) := 1

2

∞∑
k=1

λkD
2ϕ(x)(ek, ek) + Dϕ(x)(�βε(x)), (2.1)

where

βε(r) := rm

1 + εrm−1
+ (α + ε)r, r ∈ R. (2.2)

We note that βε is Lipschitz continuous and recall the following result from [3] which
is crucial for our further analysis, see [3, Theorems (3.1), (3.9), Remark 3.1]. To avoid
confusion and for the reader’s convenience we note that for ϕ ∈ C2

b (H), x ∈ H , what is
denoted Dϕ(x) in [3] is the image in H of our Dϕ(x) ∈ H 1

0 via the embedding H 1
0 ⊂

L2(D) ⊂ H, i.e. corresponds to �(Dϕ(x)).

THEOREM 2.1. Let ε ∈ (0, 1]. Then there exists a probability measure µε on H such
that

µε(H
1
0 ) = 1, (2.3)

∫
H

|x|2
H 1

0
µε(dx) < +∞, (2.4)

∫
H

|βε|2H 1
0

dµε =
∫

H

|�βε|2H dµε < +∞ (2.5)

and∫
H

Nεϕdµε = 0 for all ϕ ∈ C2
b (H). (2.6)

REMARK 2.2. (i). In [3] only

µε({x ∈ L2(D)|βε(x) ∈ H 1
0 }) = 1
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was proved. But since βε(0) = 0, βε(R) = R, and

β ′
ε(r) = rm−1 m + εrm−1

(1 + εrm−1)2
+ α + ε ≥ α + ε for all r ∈ R, (2.7)

it follows that the inverse β−1
ε of βε is Lipschitz with β−1

ε (0) = 0, so βε(x) ∈ H 1
0 is

equivalent to x ∈ H 1
0 and (2.4) follows from (2.5), since

|∇x| = |∇β−1
ε (βε(x))| ≤ (α + ε)−1|∇βε(x)|.

We thank V. Barbu for pointing this out to us.
(ii) By Theorem 2.1 we have that Nεϕ(x) is well defined for µε-a.e. x ∈ H .

For N ∈ N we define

PNx =
N∑

k=1

〈x, ek〉kek, x ∈ H.

Note that, since {ek|k ∈ N} is the eigenbasis of the Laplacian we have that the respective
restriction PN is also an orthogonal projection on L2(D) and H 1

0 and on both spaces
(PN)N∈N also converges strongly to the identity.

The following result was proved for α = 0 in [6]. The proof for α ∈ [0, +∞) is almost
the same. To make this paper self-contained we include the proof in this general case.

PROPOSITION 2.3. {µε, ε ∈ (0, 1]} is tight on H . For any weak limit point µ

∫
H

|x|2
L2(D)

µ(dx) ≤
∫

D

(α + 1) dξ + 1

2
Tr C.

In particular, µ(L2(D)) = 1.

Proof. For n ∈ N let χn ∈ C∞(R), χn(x) = x on [−n, n], χn(x) = (n + 1) sign x, for
x ∈ R\[−(n + 2), n + 2], 0 ≤ χ ′

n ≤ 1 and supn∈N|χ ′′
n | < +∞. Define for n, N ∈ N

ϕN,n(x) := 1

2
χn(|PNx|2H ).

Then ϕN,n ∈ C2
b (H) and for x ∈ H

NεϕN,n(x) = 1

2

N∑
k=1

λk[2χ ′′
n (|PNx|2H )〈PNx, ek〉2

H + χ ′
n(|PNx|2H )]

+ χ ′
n(|PNx|2H )〈PNx, �βε(x)〉H .
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Hence integrating with respect to µε, by (2.6) we find∫
H

χ ′
n(|PNx|2H )〈PNx, βε(x)〉L2(D)µε(dx)

= 1

2

N∑
k=1

λk

∫
H

[2χ ′′
n (|PNx|2H )〈PNx, ek〉2

H + χ ′
n(|PNx|2H )]µε(dx)

≤ 1

2

N∑
k=1

λk + sup
k∈N

λk

∫
H

|χ ′′
n (|PNx|2H )| |PNx|2H µε(dx).

For all n ∈ N the integrand in the left hand side is bounded by

1{|PNx|2H ≤n+2} |PNx|H |βε(x)|H 1
0
,

and similar bounds for the integrand in the right hand side hold. Therefore, (2.5) and
Lebesgue’s dominated convergence theorem allow us to take N → ∞ and obtain∫

H

χ ′
n(|x|2H )〈x, βε(x)〉L2(D)µε(dx)

≤ 1

2

∞∑
k=1

λk + sup
k∈N

λk

∫
H

|χ ′′
n (|x|2H )| |x|2H µε(dx).

≤ 1

2

∞∑
k=1

λk + sup
k∈N

λk

∫
{|x|2H ≥n}

|x|2H µε(dx).

Hence taking n → ∞ by (2.4) and using the definition (2.2) of βε we arrive at
∫

H

∫
D

(
xm+1(ξ)

1 + εxm−1(ξ)
+ (α + ε)x2(ξ)

)
dξµε(dx) ≤ 1

2
Tr C.

Since m is odd and ε ∈ (0, 1], this implies
∫

H

|x|2
L2(D)

µε(dx) ≤
∫

H

∫
D

(
α + 1 + xm+1(ξ)

1 + xm−1(ξ)

)
dξµε(dx)

≤
∫

D

(α + 1) dξ + 1

2
Tr C. (2.8)

Since L2(D) ⊂ H is compact, this implies that {µε|ε ∈ (0, 1]} is tight on H . Since the
map x → |x|2

L2(D)
is lower semicontinuous and nonnegative in H all assertions follow. �

Later we need better support properties of µ. Therefore, our next aim is to prove the
following:

THEOREM 2.4. Let (H1)-(H3) hold and assume that either α = 0, m = 3 or α > 0,
m ≥ 3, m odd. Then:
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(i) For all M ∈ N, M ≥ 2, there exists a constant CM = CM(D, K) > 0 such that

sup
ε∈(0,1]

∫
H

∫
D

x2(M−1)(ξ)|∇x(ξ)|2dξµε(dx) ≤ CM.

If α > 0 this also holds for M = 1.
(ii) For all M ∈ N, M ≥ 2, and any limit point µ as in Proposition (2.3)

∫
H

∫
D

|∇(xM)(ξ)|2dξµ(dx) ≤ CM.

In particular, setting

H 1
0,M := {x ∈ L2(D)|xM ∈ H 1

0 }
we have

µ(H 1
0,M) = 1 for all M ≥ 2.

If α > 0, this also holds for M = 1.

In order to prove Theorem 2.4 we need some preparation, i.e. more precise information
about the µε, ε ∈ (0, 1]. This can be deduced from (2.6), i.e. from the fact that µε is an
infinitesimally invariant measure for Nε. So, we fix ε ∈ (0, 1] and for the rest of this section
we assume that (H1)-(H3) hold.

We need to apply (2.6) with ϕ replaced by ϕM : L2M(D) → [0, +∞), M ∈ N, given
by

ϕM(x) =
∫

D

x2M(ξ) dξ, x ∈ L2M(D).

Clearly, such functions are not in C2
b (H) so we have to construct proper approximations.

So, define for δ ∈ (0, 1]

fM,δ(r) := r2M

1 + δr2
, r ∈ R. (2.9)

Then for r ∈ R

f ′
M,δ(r) = (1 + δr2)−2[2Mr2M−1 + 2δ(M − 1)r2M+1] (2.10)

and

f ′′
M,δ(r) = 2(1 + δr2)−3[M(2M − 1)r2M−2 + δ(4M2 − 6M − 1)r2M

+ δ2(M − 1)(2M − 3)r2M+2]. (2.11)
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We have chosen this approximation since below (cf. Lemma 2.7) it will be crucial that f ′′
M,δ

is nonnegative if M ≥ 2. More precisely we have

0 ≤ fM,δ(r) ≤ 1

δ
|r|2M−2

0 ≤ f ′
M,δ(r) ≤ 2M

δ
|r|2M−3

0 ≤ f ′′
M,δ(r) ≤ 16M2 |r|2M−4 inf{r2, 1/δ}. (2.12)

REMARK 2.5. The following will be used below: if x ∈ H 1
0 is such that for M ∈ N

∫
H

x2(M−1)(ξ)|∇x(ξ)|2dξ < ∞, (2.13)

then xM ∈ H 1
0 and xM−1∇x = 1

M
∇xM , or using the notation introduced in

Theorem 2.4.-(ii) equivalently x ∈ H 1
0,M. The proof is standard by approximation. So,

we omit it. We also note that by Poincaré’s inequality, H 1
0,M ⊂ L2M(D). More precisely,

there exists C(D) ∈ (0, ∞) such that

C(D)

∫
D

x2M(ξ)dξ ≤
∫

D

|∇xM(ξ)|2dξ = M2
∫

D

x2(M−1)(ξ)|∇x(ξ)|2dξ, (2.14)

for all x as above.

The following lemma is a consequence of (2.6) and crucial for our analysis of {µε, ε ∈
(0, 1]} and their limit points. For α = 0, m = 3 its proof can be found in [6]. We include
the general case here for the reader’s convenience.

LEMMA 2.6. Let M ∈ N, δ ∈ (0, 1]. Assume that
∫

H

∫
D

x2(M−2)(ξ)|∇x(ξ)|2dξµε(dx) < ∞ if M ≥ 3. (2.15)

Then

1

2

∞∑
k=1

λk

∫
H

∫
D

f ′′
M,δ(x(ξ))e2

k(ξ)dξµε(dx)

=
∫

H

∫
D

f ′′
M,δ(x(ξ))β ′

ε(x(ξ))|∇x(ξ)|2dξµε(dx). (2.16)

Proof. We first note that (2.15) holds for M = 2 by (2.3). For κ ∈ (0, 1] we define

fM,δ,κ (r) := fM,δ(r)e
− 1

2 κr2
, r ∈ R if M ≥ 2
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and f1,δ,κ = f1,δ . Then (2.10) and (2.11) imply that fM,δ,κ ∈ C2
b (R). Define

ϕM,δ,κ (x) :=
∫

D

fM,δ,κ (x(ξ))dξ, x ∈ L2(D).

Then it is easy to check that ϕM,δ,κ is twice Gateaux differentiable on L2(D) and that for
all y, z ∈ L2(D)

ϕ′
M,δ,κ (x)(y) =

∫
D

f ′
M,δ,κ (x(ξ))y(ξ)dξ, (2.17)

ϕ′′
M,δ,κ (x)(y, z) =

∫
D

f ′′
M,δ,κ (x(ξ))y(ξ)z(ξ)dξ. (2.18)

Hence

ϕM,δ,κ ◦ PN ∈ C2
b (H)

and for all x ∈ H 1
0 (hence βε(x) ∈ H 1

0 ),

Nε(ϕM,δ,κ ◦ PN)(x) = 1

2

N∑
k=1

λk

∫
D

f ′′
M,δ,κ (PNx(ξ))e2

k(ξ)dξ

+
∫

D

f ′
M,δ,κ (PNx(ξ))PN(�βε(x))(ξ)dξ.

Since PN� = �PN , integrating by parts we obtain

Nε(ϕM,δ,κ ◦ PN)(x) = 1

2

N∑
k=1

λk

∫
D

f ′′
M,δ,κ (PNx(ξ))e2

k(ξ)dξ

−
∫

D

f ′′
M,δ,κ (PNx(ξ))〈∇(PNx)(ξ), ∇(PNβε(x))(ξ)〉

R
d dξ.

Since (PN)N∈N strongly converges to the identity in H 1
0 , we conclude by (H3) that

lim
N→∞ Nε(ϕM,δ,κ ◦ PN)(x) = 1

2

∞∑
k=1

λk

∫
D

f ′′
M,δ,κ (x(ξ))e2

k(ξ)dξ

−
∫

D

f ′′
M,δ,κ (x(ξ))β ′

ε(x)(ξ)|∇x(ξ)|2dξ.

Since βε is Lipschitz, by (2.3)–(2.5) and (H3) this convergence also holds in L1(H, µε).
Hence (2.6) implies that

1

2

∞∑
k=1

λk

∫
H

∫
D

f ′′
M,δ,κ (x(ξ))e2

k(ξ)dξµε(dx)

=
∫

H

∫
D

f ′′
M,δ,κ (x(ξ))β ′

ε(x)(ξ)|∇x(ξ)|2dξµε(dx). (2.19)
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So, for M = 1 the assertion is proved. If M ≥ 2, an elementary calculation shows that by
(2.12) there exists a constant C(M, δ) > 0 (only depending on M and δ) such that

|f ′′
M,δ,κ (x)| ≤ C(M, δ)r2(M−2), r ∈ R. (2.20)

Hence by (H3), Remark 2.5 and assumption (2.15) we can apply Lebesgue’s dominated
convergence theorem to (2.19) and letting κ → 0 we obtain the assertion. �

LEMMA 2.7. Let M ∈ N and assume that (2.15) holds if M ≥ 3.

(i) We have

K

2

∫
H

∫
D

x2(M−1)(ξ)dξµε(dx)

≥
∫

H

∫
D

x2(M−1)(ξ)

(
xm−1(ξ)

1 + xm−1(ξ)
+ α + ε

)
|∇x(ξ)|2dξµε(dx). (2.21)

(ii) If α = 0 and m = 3 then for M ≥ 2

K

2

∫
H

∫
D

(
x2(M−1)(ξ) + x2(M−2)(ξ)

)
dξµε(dx)

≥
∫

H

∫
D

x2(M−1)(ξ) |∇x(ξ)|2dξµε(dx)

= 1

M2

∫
H

∫
D

|∇xM(ξ)|2dξµε(dx),

and∫
H

∫
D

|∇x(ξ)|2dξµε(dx) ≤ K

2ε
. (2.22)

(iii) If α > 0, then

K

2

∫
H

∫
D

x2(M−1)(ξ)dξµε(dx)

≥ α

∫
H

∫
D

x2(M−1)(ξ) |∇x(ξ)|2dξµε(dx). (2.23)

Proof. (i) By (H3) the left hand side of (2.16) is dominated by

K

2

∫
H

∫
D

f ′′
M,δ(x(ξ))dξµε(dx).

If M ≥ 2, by assumption (2.15) and Remark 2.5 we know that
∫

H

∫
D

x2(M−1)(ξ)dξµε(dx) < ∞
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which trivially also holds for M = 1. So, by (2.11), (2.12) and Lebesgue’s dominated
convergence theorem we obtain that for M ≥ 2

K

2

∫
H

∫
D

2M(2M − 1)x2(M−1)(ξ)dξµε(dx)

≥ lim inf
δ→0

∫
H

∫
D

f ′′
M,δ(x(ξ))β ′

ε(x(ξ))|∇x(ξ)|2dξµε(dx).

Since f ′′
M,δ ≥ 0 for M ≥ 2 and

β ′
ε(r) ≥ rm−1

1 + rm−1
+ α + ε ≥ 0 for all r ∈ R,

we can apply Fatou’s lemma to prove the assertion. If M = 1 we conclude in the same
way by (2.3) and Lebesgue’s dominated convergence theorem which applies since β ′

ε is
bounded and |f ′′

1,δ| ≤ 3/2 (as follows from (2.12)) for all δ ∈ (0, 1].

(ii) See [6, Lemma 2.7-(ii) and (iii)].
(iii) Since m − 1 is even, the assertion follows by (i).

�

By an induction argument we shall now prove that the integrals in (2.22) are all finite and
at the same time prove the bounds claimed in Theorem 2.4.

Proof of Theorem 2.4. For the case α = 0, m = 3 we refer to [6]. We only give the proof
for α > 0, m ≥ 3. If M = 1 then the assertion holds by Lemma 2.7-(iii). Furthermore, by
Remark (2.5)∫

H

∫
D

x2(M−1)(ξ)|∇(x(ξ))|2dξµε(dx) = 1

M2

∫
H

∫
D

|∇(xM(ξ))|2dξµε(dx)

≥ C(D)2

M2

∫
H

∫
D

x2M(ξ)dξµε(dx). (2.24)

Now assertion (i) follows from Lemma 2.7-(iii) by induction.
To prove (ii) we start with the following

CLAIM. For all M ∈ N

�M(x) = 1H 1
0,M

(x)

∫
D

|∇xM(ξ)|2dξ + ∞ · 1H\H 1
0,M

(x), x ∈ H (2.25)

is a lower semi-continuous function on H .

Since µ is a weak limit point of {µε| ε ∈ (0, 1]} and �M ≥ 0, the claim immediately
implies assertion (ii).
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To prove the claim let α > 0 and xn ∈ {�M ≤ α}, n ∈ N such that xn → x in H as
n → ∞. By Poincaré’s inequality {xn|n ∈ N} is a bounded set in L2M(D). So xn → x

in H as n → ∞ also weakly in L2(D), in particular x ∈ L2(D). Since {xM
n |n ∈ N} is

bounded in H 1
0 , there exists a subsequence (xM

nk
)k∈N and y ∈ H 1

0 such that xM
nk

→ y in H

as k → ∞ weakly in H 1
0 and∫

D

|∇y(ξ)|2dξ ≤ α.

Since the embedding H 1
0 ⊂ L2(D) is compact, xM

nk
→ y in H as k → ∞ in L2(D).

Selecting another subsequence if necessary, this convergence is dξ -a.e., hence

xnk
→ y

1
M dξ -a.e.

Since (selecting another subsequence if necessary) we also know that the Cesaro
mean of (xnk

)k∈N has a subsequence which converges dξ -a.e. to x, hence xM = y, so
x ∈ {�M ≤ α}.

As a consequence from the previous proof we obtain:

COROLLARY 2.8. Let M ∈ N. Then �M has compact level sets in H.

Proof. We already know from the previous proof that �M is lower semicontinuous. The
relative compactness of their level sets is, however, clear by Poincaré’s inequality since
L2M(D) ⊂ H is compact. �

Since for M ∈ N and x ∈ H 1
0,M

|�xM |H =
∫

D

|∇xM(ξ)|2dξ, (2.26)

so �xM ∈ H , we can define the Kolmogorov operator in (1.3) rigorously for x ∈ H 1
0 ∩H 1

0,m.

So, for ϕ ∈ C2
b (H), α ∈ [0, ∞)

N0ϕ(x) := 1

2

∞∑
k=1

λkD
2ϕ(x)(ek, ek) + Dϕ(x)(�(αx + xm)), (2.27)

where we assume m = 3 if α = 0. We note that by Theorem 2.4.-(ii) and (2.26), N0ϕ ∈
L2(H, µ) for any weak limit point µ of {µε|ε ∈ (0, 1]} on H . Now we can prove our main
result, namely that any such µ is an infinitesimally invariant measure for N0 in the sense of
[4], i.e. satisfies (1.4).

THEOREM 2.9. Assume that (H1)-(H3) hold and that either α = 0, m = 3 or α > 0,
m ≥ 3, m odd. Let µ as in Proposition 2.3. Then∫

H

N0ϕdµ = 0 for all ϕ ∈ C2
b (H).
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Proof. For α = 0, m = 3 the assertion was proved in [6]. So, we only prove the case
α > 0, m ≥ 3, m odd. Let ϕ ∈ C2

b (H). For N ∈ N define ϕN := ϕ ◦ PN . Then for
x ∈ H 1

0,M

N0ϕN(x) = 1

2

∞∑
k=1

λkD
2ϕ(PNx)(ek, PNek) + DϕN(x)(�(αx + xm))

= 1

2

N∑
k=1

λkD
2ϕ(PNx)(ek, ek) + Dϕ(PNx)(PN(�(αx + xm))).

If we can prove that

∫
H

N0ϕNdµ = 0 for all N ∈ N, (2.28)

the same is true for ϕ by Lebesgue’s dominated convergence theorem. So, fix N ∈ N. Then
by (2.6)

∫
H

N0ϕNdµ = lim
ε→0

∫
H

1

2

N∑
k=1

λkD
2ϕN(x)(ek, ek)µε(dx)

+
∫

H

DϕN(x)(�(αx + xm))µ(dx)

= − lim
ε→0

∫
H

DϕN(x)(�βε(x))µε(dx)

+
∫

H

Dϕ(PNx)(PN(�(αx + xm)))µ(dx)

= lim
ε→0

N∑
i=1

∫
H

[Dϕ(PNx)(ei)〈ei, �(αx + xm)〉H µ(dx)

−Dϕ(PNx)(ei)〈ei, �βε(x)〉H µε(dx)]. (2.29)

For i ∈ {1, . . . , N} fixed we have
∣∣∣∣
∫

H

Dϕ(PNx)(ei)〈ei, �(αx + xm)〉H µ(dx)

−
∫

H

Dϕ(PNx)(ei)〈ei, �βε(x)〉H µε(dx)

∣∣∣∣
≤

∣∣∣∣
∫

H

Dϕ(PNx)(ei)〈ei, �(αx + xm)〉H (µ − µε)(dx)

∣∣∣∣
+

∣∣∣∣
∫

H

Dϕ(PNx)(ei)〈ei, �(αx + xm − βε(x))〉H µε(dx)

∣∣∣∣ . (2.30)
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The right hand side’s second summand is bounded by

|ei |L2(D) sup
x∈H

|Dϕ(x)|H 1
0

∫
H

(∫
D

|αx(ξ) + xm(ξ) − βε(x(ξ))|2 dξ

)1/2

µε(dx). (2.31)

We have

|αr + rm − βε(r)| =
∣∣∣∣ εr2m−1

1 + εrm−1
− εr

∣∣∣∣ ≤ ε(|r|2m−1 + |r|), r ∈ R.

So, the term in (2.31) is dominated by

ε|ei |L2(D) sup
x∈H

|Dϕ(x)|H 1
0

∫
H

(||x|2m−1|L2(D) + |x|L2(D))µε(dx),

which by Theorem 2.4-(i) and Remark 2.5 converges to 0 as ε → 0.
Now we estimate the first summand in the right hand side of (2.30). So, we define

f (x) := Dϕ(PNx)(ei)〈ei, �(αx + xm)〉H .

Then since 〈ei, �(αx + xm)〉H = 〈ei, αx + xm〉L2(D), it follows by the proof of the lower
semicontinuity of �m that f is continuous on the level sets of �m (with �m defined as in
(2.25)). Furthermore, since

|f (x)| ≤ sup
x∈H

|Dϕ(x)|H 1
0

|αx + xm|L2(D),

it follows that

lim
R→∞ sup

�m≥R

|f (x)|
1 + �m(x)

= 0.

Furthermore, by Corollary 2.8 the function 1 + �m has compact level sets. Hence by
[11, Lemma 2.2], there exists fn ∈ Cb(H), n ∈ N, such that

lim
n→∞ sup

x∈H

|f (x) − fn(x)|
1 + �m(x)

= 0. (2.32)

But∣∣∣∣
∫

H

Dϕ(PNx)(ei)〈ei, �(αx + xm)〉H (µ − µε)(dx)

∣∣∣∣
≤

∫
H

|f (x) − fn(x)|(µ + µε)(dx) +
∣∣∣∣
∫

H

fn(x)(µ − µε)(dx)

∣∣∣∣ .
For fixed n the second summand tends to 0 as ε → 0 and the first one is dominated by

sup
x∈H

|f (x) − fn(x)|
1 + �m(x)

sup
ε>0

∫
H

(1 + �m)d(µ + µε),

which in turn by Theorem 2.4 and (2.32) tends to zero as n → ∞. So, also the first
summand in (2.30) tends to 0 as ε → 0. Hence the right hand side of (2.29) is zero and
(2.28) follows which completes the proof. �
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3. Essential m-dissipativity of N0

In this section we assume that α > 0 and m ≥ 3 is odd. We still assume (H1)-(H3) to
hold. Let µ be a weak limit point of {µε|ε ∈ (0, 1]} (cf. Proposition 2.3).

We already know that N0ϕ ∈ L2(H, µ) for all ϕ ∈ C2
b (H). We would like to consider

(N0, C
2
b (H)) as an operator on L2(H, µ). For this we need to check that N0 respects

µ-classes.

LEMMA 3.1. Let ϕ ∈ C2
b (H) such that ϕ = 0 µ-a.e.. Then N0ϕ = 0 µ-a.e..

Before we prove this lemma, we emphasize that we do not know whether µ(U) > 0 for
any non-empty open set U ⊂ H, so two functions in C2

b (H) may be not identically equal
if they are equal µε-a.e. So, Lemma 3.1. is really essential. Its proof is due to Z. Sobol.
Then we have for all ϕ, ψ ∈ C2

b (H), x ∈ H 1
0 ∩ H 1

0,m

N0(ϕψ)(x) = ϕ(x) N0ψ(x) + ψ(x) N0ϕ(x) +
∞∑

k=1

λkDϕ(x)(ek)Dψ(x)(ek). (3.1)

Proof of Lemma 3.1. Since µ(H 1
0 ∩ H 1

0,m) = 1, by (3.1) applied with ψ = ϕ it follows
by Theorem 2.9 that

∞∑
k=1

λk(Dϕ(x)(ek))
2 = 0 µ-a.e..

Hence for all ψ ∈ C2
b (H) again by (3.1) and Theorem 2.9

∫
H

ψ N0ϕ dµ = 0,

since ϕ = 0 µ-a.e.. But C2
b (H) is dense in L2(H, µ), so N0ϕ = 0 µ-a.e.

So, we can consider (N0, C̃2
b (H)) as an operator on L2(H, µ) where (N0, C̃2

b (H))

denotes the µ-classes determined by C2
b (H). For notational convenience we shall also

write C2
b (H) for the set of these classes if there is no confusion possible. It is well known

and easy to see that (3.1) implies that (N0, C
2
b (H)) is dissipative, so in particular closable,

on L2(H, µ). Let (N2, D(N2)) denote its closure.

THEOREM 3.2. Assume that (H1)-(H3) hold and that α > 0, m ≥ 3, m odd. Let µ be
a weak limit point of {µε|ε ∈ (0, 1]}. Then (N0, C

2
b (H)) is essentially m-dissipative (i.e.

(N2, D(N2)) is m-dissipative) on L2(H, µ). Hence (N2, D(N2)) generates a C0-semigroup
(etN2 , t ≥ 0) of linear contractions on L2(H, µ). Furthermore, (etN2)t≥0 is Markovian,
i.e. etN2 1 = 1 and etN2f ≥ 0 for all nonnegative f ∈ L2(H, µ) and all t > 0.
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Proof. Let λ > 0. We have to show that

(λ − N0)C
2
b (H) is dense in L2(H, µ).

Let ε ∈ (0, 1], f ∈ C2
b (H). Define for δ, ε ∈ (0, 1], x ∈ H

βε,δ(x) := (β−1
ε + δ�)−1x + δx

It was proved in [3, Proof of Theorem 4.1] that there exists ϕε,δ ∈ C2
b (H) such that for all

x ∈ H

λϕε,δ(x) − 1

2

∞∑
k=1

λkD
2ϕε,δ(x)(ek, ek) + Dϕε,δ(x)(�βε,δ(x)) = f (x) (3.2)

and

|Dϕε,δ(x)|H 1
0

≤ 1

λ
‖f ‖C1

b (H) for all x ∈ H. (3.3)

(We note that β in [3] corresponds to our smooth βε. Therefore, an additional regularization
of β as done in [3] is not necessary). Furthermore, it follows from [3, estimate (4.13) and
the estimate preceding (4.12)] that for all x ∈ H 1

0

|Dϕε,δ(x)(�(βε(x) − βε,δ(x)))| ≤ 2

λ
‖f ‖C1

b (H) (|�(βε(x))|H + |�x|H ) (3.4)

and by [3, (4.12)] that for all x ∈ H 1
0

lim
ε→0

|Dϕε,δ(x)(�(βε(x) − βε,δ(x)))| = 0. (3.5)

We note that by (3.2) for all x ∈ H 1
0 ∩ H 1

0,m

λϕε,δ(x) − N0ϕε,δ(x) = f (x) + Dϕε,δ(x)(�(βε,δ(x) − αx − xm))

= f (x) − Dϕε,δ(x)(�(βε(x) − βε,δ(x)))

− εDϕε,δ(x)

(
�

(
x2m−1

1 + εxm−1
− x

))
. (3.6)

Here we emphasize that this equality only holds µ-a.e. if α > 0, because only in this case
we know that in addition to µ(H 1

0,m) = 1, we also have that µ(H 1
0 ) = 1. So, the following

only makes sense if α > 0. �

CLAIM.

lim
ε→0

lim
δ→0

(λϕε,δ − N0ϕε,δ) = f in L2(H, µ). (3.7)
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This will imply the assertion, by the Lumer-Phillips theorem since C2
b (H) is dense in

L2(H, µ). To prove (3.7) in view of (3.3)–(3.5) it is enough to show that∫
H

(|�(βε(x))|2H + |�x|2H )µ(dx) < ∞ for all ε ∈ (0, 1] (3.8)

and that

∫
H

∣∣∣∣�
(

x2m−1

1 + εxm−1
− x

)∣∣∣∣
2

H

µ(dx) < ∞. (3.9)

To prove (3.8) we note that by (2.7) that for every x ∈ H 1
0

|�(βε(x))|2H = |∇βε(x)|2
L2(D)

= |β ′
ε(x)|∇x||2

L2(D)

≤ 2
∫

D

(m2x2(m−1)(ξ) + (α + ε)2)|∇x(ξ)|2)dξ

which is in L2(H, µ) by Theorem 2.4-(ii). Since |�x|2H = |∇x|2
L2(D)

, (3.8) follows.
To prove (3.9) note that

∣∣∣∣�
(

x2m−1

1 + εxm−1
− x

)∣∣∣∣
2

H

=
∫

D

∣∣∣∣∇
(

x2m−1(ξ)

1 + εxm−1(ξ)
− x(ξ)

)∣∣∣∣
2

dξ

=
∫

D

(
(2m − 1)x2m−2(ξ) − mεx3m−3(ξ)

(1 + εxm−1(ξ))2
− 1

)2

|∇x(ξ)|2dξ.

Since for r ∈ R

(2m − 1)r2m−2 − mεr3m−3

(1 + εrm−1)2
≤ (2m − 1)r2m−2

1 + εrm−1
≤ (2m − 1)r2m−2,

we obtain that
∣∣∣∣�

(
x2m−1

1 + εxm−1
− x

)∣∣∣∣
2

H

≤ 2(2m − 1)2
∫

D

x4m−4(ξ)|∇x(ξ)|2dξ

+ 2
∫

D

|∇x(ξ)|2dξ.

Hence (3.9) follows by Theorem 2.4-(ii) (which as stressed above now also holds for
M = 1). The last assertion follows from [7 Appendix B, Lemma 1.9]

4. Existence of weak solutions

In this section we assume that α > 0 and m ≥ 3, m odd. We shall construct weak
solutions to the stochastic porous medium equation (1.2) in the sense that they solve the
corresponding martingale problem. More precisely, we shall prove the following.
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THEOREM 4.1 (Existence). (i) There exists a conservative strong Markov process
M = (�, F , (F t )t≥0, (Xt )t≥0, (Px)x∈H ) on H with continuous sample paths and
with invariant measure µ such that for its transition semigroup (pt )t≥0 defined by

ptf (x) :=
∫

H

f (Xt )dPx, t ≥ 0, x ∈ H,

f : H → R, bounded B (H)-measurable, we have that ptf is a µ-version of
etN2f, t > 0.

(ii) There exists H ∈ B (H) such that µ(H) = 1, for all x ∈ H

Px[Xt ∈ H ∀ t ≥ 0] = 1,

and for all probability measures ν on (H, B (H)) with ν(H) = 1

ϕ(Xt ) −
∫ t

0
N0ϕ(Xs)ds, t ≥ 0,

is an (F t )-martingale under Pν := ∫
H

Pxν(dx) for all ϕ ∈ C2
b (H) and

Pν ◦ X−1
0 = ν.

THEOREM 4.2 (Uniqueness). Suppose that

M
′ = (�′, F ′, (F ′

t )t≥0, (X
′
t )t≥0, (P

′
x)x∈H )

is a continuous Markov process on H whose transition semigroup (p′
t )t≥0 consists of

continuous operators on L2(H, µ) (which is e.g. the case if µ is sub-invariant for (p′
t )t≥0).

If M
′ satisfies assertion (ii) of Theorem 4.1 for ν := µ, then for µ-a.e. x ∈ H p′

t (x, dy) =
pt (x, dy) for all t ≥ 0 (where pt is as in Theorem 4.1-(i)), i.e. M

′ has the same finite
dimensional distributions as M for µ-a.e. starting point.

We shall only prove Theorem 4.1-(i). The remaining parts are proved in exactly the same
way as Theorem 7.4-(ii), Proposition 8.2 and Theorem 8.3 in [5] with the only exception
that because we do not know whether (pt )t≥0 is Feller, all statements can only be proved
µ-a.e.. So we do not want to repeat them here.

Our proof of Theorem 4.1-(i) is based on the theory of generalized Dirichlet forms
developed in [12]. Indeed, by the last part of Theorem 3.2 (N2, D(N2)) is a Dirichlet
operator in the sense of [9], [12]. Hence by [12, Proposition I. 4.6]

E (u, v) :=
{
(u, v)L2(H,µ) − (N2u, v)L2(H,µ), u ∈ D(N2), v ∈ L2(H, µ),

(u, v)L2(H,µ) − (N∗
2 v, u)L2(H,µ), u ∈ L2(H, µ), v ∈ D(N∗

2 ),

is a generalized Dirichlet form on L2(H, µ) in the sense of [12, Definition I. 4.8] with

F := (D(N2), ‖N2 · ‖L2(H,µ) + ‖ · ‖L2(H,µ))

and with coercive part A identically equal to 0.
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We emphasize here that the theory of generalized Dirichlet forms, in contrast to earlier
versions (cf. e.g. [8], [9]), does not require any symmetry or sectoriality of the underlying
operators. We refer to [12] for a beautiful exposition. As is well known to experts on
potential theory on L2-spaces (and as is clearly presented in [12]) the following two main
ingredients are needed.

(a) There exists a core C of (N2, D(N2)) which is an algebra consisting of functions
having (quasi) continuous µ-versions.

(b) The capacity determined by (N2, D(N2)) is tight.

(a) follows fron the essential m-dissipativity of N0 on C2
b (H) proved in the previous section,

so we can take C := C2
b (H). This is exactly why essential m-dissipativity is so important

for probability theory, in particular, Markov processes. Before we prove (b) we recall the
necessary definitions.

Let

G
(2)
λ := (λ − N2)

−1, λ > 0,

be the resolvent corresponding to N2. A function u ∈ L2(H, µ) is called 1-excessive if
u ≥ 0 and λG1+λu ≤ u for all λ > 0. For an open set U ⊂ H define

eU := inf{u ∈ L2(H, µ)|u 1-excessive, u ≥ 1U , µ-a.e.},
(cf. [12, Proposition III 1.7 (ii)]), and the 1-capacity of U by

Cap U :=
∫

H

eUdµ.

(cf. [12, Definition III 2.5 with ϕ ≡ 1]). Cap is called tight if there exist increasing compact
sets Kn, n ∈ N, such that for Kc

n := H \Kn

lim
n→∞ Cap(Kc

n) = 0.

Once we have proved this, i.e. have proved (b), Theorem 4.1-(i) follows from one of the
main results of ([12, Theorem IV 2.2]). Indeed, in our situation the requirement in ([12,
Theorem IV 2.2]) that quasi-regularity holds is equivalent to (b) and condition D3 in ([12,
Theorem IV 2.2]) by ([12, Proposition IV 2.1]) follows from (a).

REMARK 4.3. We mention here that in Theorem 4.1 we do not state all facts known
about M; e.g. it is also proved in [12, Theorem IV 2.2, see also Definition IV 1.4] that all
“µ-a.e.” statements can be replaced by “quasi everywhere” (w.r.t. Cap) statements and that

x �→
∫ +∞

0
e−λtptf (x)dt
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is Cap-quasi-continuous. Furthermore, [12, Theorem IV 2.2] only claims that M has cadlag
paths, but a similar proof as that in [9, Chapter V, Sect. 1] gives indeed continuous paths
because N2 is a local operator.

To prove (b) it is enough to find a 1-excessive function u : H → R
+ with compact level

sets

Kn := {u ≤ n}, n ∈ N,

because then eKc
n

≤ 1
n

u, hence

Cap (Kc
n) ≤ 1

n

∫
H

udµ → 0, as n → ∞.

So, the proof of Theorem 4.1-(i) is completed by the following proposition, since closed
balls in L2(D) are compact in H .

PROPOSITION 4.4. There exists C ∈ (0, +∞) such that

u(x) := |x|2
L2(D)

+ C, x ∈ H, (4.1)

(with |x|2
L2(D)

:= +∞ for x ∈ H\L2(D)) is 1-excessive with respect to the resolvent
of N2.

The idea to prove Proposition 4.4 is to show that for some C ∈ (0, +∞) and ϕ(x) :=
|x|2

L2(D)
we have

N2ϕ ≤ C

and take u := ϕ + C.
Though we know by Theorem 2.4. and Poincaré’s inequality that ϕ ∈ Lp(H, µ) for all

p ∈ [1, +∞), it is not clear whether ϕ ∈ D(N2). But below we shall prove the following

LEMMA 4.5. Let (N1, D(N1)) be the closure of (N0, C
2
b (H)) on L1(H, µ). Then

ϕ ∈ D(N1) and

N1ϕ ≤ K

∫
D

1dξ. (4.2)

We note that since N∗
0 µ = 0, (N0, C

2
b (H)) is also dissipative on L1(H, µ) (cf. e.g.

[7, Appendix B, Lemma 1.8]), hence closable. We recall that (λ − N0)(C
2
b (H)) is dense

in L2(H, µ) (by the proof of Theorem 3.2 above), hence also dense in L1(H, µ), so analo-
gously (N1, D(N1)) generates a C0 semigroup (etN1)t≥0 of contractions on L1(H, µ) and
we can consider the corresponding resolvent

G
(1)
λ := (λ − N1)

−1, λ > 0,
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Clearly, G
(1)
λ = G

(2)
λ on (λ − N0)(C

2
b (H)), hence

G
(1)
λ f = G

(2)
λ f for all λ > 0, f ∈ L2(H, µ).

Therefore, for λ > 0 and u := ϕ + K
∫
D

1dξ

λG
(2)
1+λu = λG

(1)
1+λu = λG

(1)
1+λG

(1)
1 (1 − N1)u

= G
(1)
1 (1 − N1)u − G

(1)
1+λ(1 − N1)u

= u − G
(1)
1+λ(1 − N1)u ≤ u,

since (1 − N1)u ≥ 0 by (4.2). So, u is 1-excessive with respect to the resolvent of N2.
Therefore, to prove Proposition 4.4 we only have to prove Lemma 4.5.

Proof of Lemma 4.5. Define for δ ∈ (0, 1)

fδ(r) := f1,δ(r) = r2

1 + δr2
, r ∈ R,

ϕδ(r) :=
∫

D

fδ(x(ξ))dξ, x ∈ L2(D).

(cf. (2.9)). Then as in the proof of Lemma 2.6 we see that ϕδ ◦ PN ∈ C2
b (H) and for

x ∈ H 1
0 ∩ H 1

0,m

N0(ϕδ ◦ PN)(x) = 1

2

N∑
k=1

λk

∫
D

f ′′
δ (PNx(ξ))e2

k(ξ)dξ

−
∫

D

f ′′
δ (PNx(ξ))〈∇(PNx)(ξ), ∇(PN(αx + xm))(ξ)〉

R
d dξ.

Since (PN)N∈N strongly converges to the identity in H 1
0 and since |f ′′

δ | ≤ 3/2, we conclude
by (H3) that

lim
N→∞ N0(ϕδ ◦ PN)(x) = 1

2

∞∑
k=1

λk

∫
D

f ′′
δ (x(ξ))e2

k(ξ)dξ

−
∫

D

f ′′
δ (x(ξ))〈∇x(ξ), ∇(αx + xm)(ξ)〉

R
d dξ (4.3)

and by Theorem 2.4 this convergence also holds in L1(H, µ). By exactly the same argu-
ments we can take δ ↓ 0 and conclude that the right hand side of (4.3) converges in L1(H, µ)

and for all x ∈ H 1
0 ∩ H 1

0,m to

∞∑
k=1

λk

∫
D

e2
k(ξ)dξ − 2(m − 1)

∫
D

xm−1(ξ)|∇x(ξ)|2
R

d dξ − α

∫
D

|∇x(ξ)|2
R

d dξ,
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which for x ∈ H 1
0 ∩ H 1

0,m ∩ H 1
0, m+1

2
is equal to

∞∑
k=1

λk

∫
D

e2
k(ξ)dξ − 8(m − 1)

(m + 1)2

∫
D

|∇x
m+1

2 (ξ)|2
R

d dξ − α

∫
D

|∇x(ξ)|2
R

d dξ. (4.4)

Since ϕδ → ϕ as δ ↓ 0 in L1(H, µ), we conclude that ϕ ∈ D(N1) and that N1ϕ equals the
expression in (4.4), since µ(H 1

0 ∩ H 1
0,m ∩ H 1

0, m+1
2

) = 1 by Theorem 2.4. Hence by (H3)

N1ϕ ≤ K

∫
D

1dξ.
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