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Oscillatory boundary conditions for acoustic wave equations
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Dedicated to the memory of Philippe Bénilan

1. Introduction

In the textbook literature on theoretical acoustics, it was traditional to use the Robin
boundary condition with the wave equation. But it was recognized that this was not the
physically correct boundary condition. “Acoustic Boundary Conditions” (or ABC) were
introduced in the monograph by Morse and Ingard [13, p. 263]. The presentation in [13] is
not the usual approach to the wave equations, since the authors treat waves having definite
frequency. The time dependent version of ABC was first formulated by Tom Beale and
Steve Rosencrans [1] in a very interesting and original paper. ABC will be explained in
detail in Section 2.

In the theory of Markov diffusion processes, one studies heat equations of the form

∂u

∂t
= Lu

where L is a second order linear elliptic operator (e.g L = �). A. D. Wentzell [15] intro-
duced boundary conditions involving second derivatives as well as lower order (Robin type)
terms. These parabolic problems were usually studied in spaces of continuous functions.
But Favini, Goldstein, Goldstein and Romanelli [8] introduced a new approach to this
problem, involving weighted Lp spaces and using the boundary as well as the domain.

For a specific example, consider the heat equation

∂u

∂t
= c2�u in � ⊂ Rn

with boundary condition

c2�u + β1
∂u

∂n
+ γ1u = 0 on ∂� (1.1)
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where β1, γ1 ∈ C (∂�) with β1 > 0, γ1 ≥ 0 on ∂�. The natural Lp space for this problem
turns out to be

Xp = Lp(�, dx) ⊕ Lp

(
∂�,

c2

β1
dS

)
, 1 ≤ p < ∞.

On X2 the semigroup generator G for this problem (i.e. a suitable realization of c2�) is
selfadjoint and nonpositive. The corresponding wave equation

utt = Gu

is governed by a unitary group on a four component space, based on H 1(�) × L2(�) and

two copies of L2(∂�, c2

β1
dS). The energy space bears a formal resemblence to the four

component energy space that Beale and Rosencrans associated with the wave equation with
ABC.

Our goal in this paper is to show that these two versions of the wave equation are closely
connected. We shall use these connections to derive new results about both wave equations.
Interestingly, the form of the wave equation with ABC most closely associated with the
energy conserving wave equation with boundary conditions (1.1) is a nonenergy conserving
version; this will be explained in detail in the sequel. Furthermore, a new extension of the
boundary condition (1.1) makes the resulting wave equation equivalent to the one with
ABC.

The main results are contained in Theorems 1 and 2 (of Section 4) and 4 (of Section 5).

2. Acoustic Boundary Conditions

In this section we explain some of the results of Beale [2]. (The papers [2], [3] expand
and develop the work begun in [1].)

Let � be a smooth bounded domain in Rn, n ≥ 1. (The paper [2] restricts n to be 3.
For general n see Gal [11].). Fluid filling � is at rest except for acoustic wave motion. Let
ϕ : �̄ × R → R be the velocity potential, so that −∇ϕ(x, t) is the particle velocity. Thus
ϕ satisfies the wave equation

∂2ϕ

∂t2
= c2�ϕ in � × R (2.1)

where c > 0 is the (constant) speed of propagation.
Each point x of ∂� is assumed to react to the excess pressure of the acoustic wave like

a resistive harmonic oscillator or spring. The normal displacement δ (x, t) of the boundary
into the domain satisfies

m (x) δtt (x, t) + d (x) δt (x, t) + k (x) δ (x, t) + ρϕt (x, t) = 0 (2.2)
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on ∂� × R, where ρ is the fluid density and m, d, k ∈ C(∂�) with m > 0, k > 0, d ≥ 0.

If the boundary is impenetrable, continuity of the velocity on ∂� implies the compatibility
condition

δt (x, t) = ∂ϕ

∂n
(x, t) (2.3)

on ∂�×R , where n = n (x) is the unit outer normal to ∂� at x. The energy of the solution
is

E(t) =
∫
�

(
ρ |∇ϕ|2 + ρ

c2
|ϕt |2

)
dx +

∫
∂�

(k |δ|2 + m |δt |2)dS.

Moreover,

dE

dt
= −2

∫
∂�

d |δt |2 dS ≤ 0,

and energy is conserved when the springs are all frictionless, i.e d ≡ 0.

The energy (Hilbert) space for this problem is

H = H 1 (�) ⊕ L2 (�) ⊕ L2 (∂�) ⊕ L2 (∂�) . (2.4)

Its norm is determined by

‖u‖2 =
∫
�

(
ρ |∇ϕ|2 + ρ

c2
|ϕt |2

)
dx +

∫
∂�

(
k |δ|2 + m |δt |2

)
dS, (2.5)

where u = (u1,u2, u3, u4) = (ϕ, ϕt , δ, δt ). The wave equation with (ABC), (2.1) − (2.3)

is equivalent to u(t) ∈ D (A) and ut = Au, where

A


u1

u2

u3

u4

 =


u2

c2�u1

u4

− 1
m

(ρu2 + ku3 + du4)

 (2.6)

and D(A) = {u ∈ H : �u1 ∈ L2(�), u2 ∈ H 1(�), ∂u1
∂n

= u4 on ∂�}. Here in (Au)4,

u2|∂� makes sense as a member of H
1
2 (∂�) (in the trace sense) and ∂u1

∂n
= u4 is interpreted

to mean:∫
�

((�u1) ψ + ∇u1 · ∇ψ) dx =
∫
∂�

(u4ψ) dS

for all ψ ∈ H 1 (�) . The operator A is densely defined in H and dissipative:

Re 〈Au, u〉 = −
∫
∂�

d |u4|2 dS ≤ 0,
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and A generates a (C0) contraction semigroup on H, which is a unitary group when d ≡ 0.

The generator A has interesting spectral properties. Now let n ≥ 3. (In [2] only n = 3 was
considered; see Gal [11] for the extension.). Let∑

:= {λ ∈ C :m (x) λ2 + d(x)λ + k (x) λ = 0 for some x ∈ ∂�}.∑
is compact and symmetric about the real axis. Let R be the unbounded component of

C \ ∑; note that 0 ∈ R. Beale proved that λ −→ (λ − A)−1 is meromorphic on R.

Suppose that m, d and k are constants. Then
∑

consists of two points (unless d2 = 4mk),
namely

λ± = 1

2m

(
−d ±

√
d2 − 4mk

)
.

Then the essential spectrum of A is
∑

and the point spectrum σP (A) consists of eigenvalue
sequences (1) {λn} with Im λn → ∞, Re λn → 0, (2){λ̄n}, (3) {µ±

n } with µ±
n → λ±, and

(4) finitely many additional eigenvalues. In particular, (λ − A)−1 is not a compact operator
when n ≥ 2. This is remarkable; most linear problems involving the Laplacian on bounded
domains have generators with compact resolvents.

The operator A described by (2.6) has the matrix representation

A1 =


0 I 0 0

c2� 0 0 0
0 0 0 I

0 − ρ
m

J − k
m

I − d
m

I


where I is the identity operator (i.e. I (u) = u for any u) and J means restriction to
the boundary: Ju = u|∂�. Using the compatibility condition (2.3), we can equally well
represent A as the operator matrix

A2 =


0 I 0 0

c2� 0 0 0
0 0 0 I

− d
m

∂
∂n

− ρ
m

J − k
m

I 0

 . (2.7)

Again, this is just a restatement of (2.6) together with ∂u1
∂n

= u4. (See the definition of
D(A).)

3. General Wentzell Boundary Conditions

Consider the heat equation

∂u

∂t
= c2�u in � × [0, ∞)
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with the general Wentzell boundary condition (or GWBC)

�u + β
∂u

∂n
+ γ u = 0 on ∂� × [0, ∞),

where β, γ ∈ C (∂�) with β > 0, γ ≥ 0 on ∂�. This problem is governed by an analytic
contraction semigroup on Xp, 1 ≤ p ≤ ∞, where

Xp = Lp (�, dx) ⊕ Lp

(
∂�,

1

β
dS

)
, 1 ≤ p < ∞ and X∞ = C(�̄),

with norm, for u ∈ C(�̄) ⊂ Xp :

‖u‖p
Xp

=
∫
�

|u (x)|p dx +
∫
∂�

|u (x)|p dS

β(x)
, 1 ≤ p < ∞,

‖u‖X∞ = lim
p→∞ ‖u‖Xp

= ‖u‖L∞(�) .

This is proved in [8], except for the analyticity when p = 1, ∞, which is discussed in [9].
Let G be the generator of this semigroup on X2 and let G0 be G restricted to C2(�̄) ⊂ X2.

Then G0 is essentially selfadjoint on X2. This follows as a very special case of the adjoint
calculation in [9]. Here we explain it briefly. For u, v ∈ D(G0),

1

c2
〈G0u, v〉X2

=
∫
�

(�u) v dx +
∫
∂�

(�u) v̄
dS

β(x)

= −
∫
�

(∇u) · (∇v̄)dx +
∫
∂�

(
∂u

∂n

)
v̄ dS +

∫
∂�

(�u) v
dS

β

=
∫
�

u�̄v dx −
∫
∂�

u
∂v̄

∂n
dS −

∫
∂�

γ uv̄
dS

β

since �u + β ∂u
∂n

+ γ u = 0 on ∂�, so

1

c2
〈G0u, v〉X2

=
∫
�

u�̄v dx +
∫
∂�

u�̄v
dS

β
= 1

c2
〈u, G0v〉X2

since the GWBC holds for v as well.
So let us consider the wave equation with GWBC:

∂2u

∂t2
= c2�u in � × R, (3.1)

�u + β
∂u

∂n
+ γ u = 0 on ∂�. (3.2)

Note that this boundary condition is identical to (1.1) when β1 = c2β and γ1 = c2γ .
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As usual, the wave equation (3.1), (3.2) can be written as

Ut =
(

0 I

G 0

)
U = BU

(this defines B), where

G = c2
(

� 0
−β ∂

∂n
−γ

)
;

G acts on X2 = L2 (�) ⊕ L2
(
∂�, dS

β

)
and

(
0 I

G 0

)
acts on

D((−G)
1
2 ) ⊕ X2 = Ĥen.

The norm in the energy Hilbert space Ĥen is given on D(G0) × D(G0) by∥∥∥∥∥∥∥∥


w1

w2

w3

w4


∥∥∥∥∥∥∥∥

2

Ĥen

=
∥∥∥∥(−G)

1
2

(
w1

w2

)∥∥∥∥2

X2

+
∥∥∥∥(

w3

w4

)∥∥∥∥2

X2

(3.3)

=
〈
(−G)

(
w1

w2

)
,

(
w1

w2

)〉
X2

+
〈(

w3

w4

)
,

(
w3

w4

)〉
X2

=
c2 〈−�w1, w1〉L2(�) +

〈
β

∂w1

∂n
, w2

〉
L2

(
∂�, dS

β

) +

+ 〈γw2, w2〉
L2

(
∂�, dS

β

) + ‖w3‖2
L2(�)

+ ‖w4‖2
L2

(
∂�, dS

β

)
}

.

Here w1 = u|�, w2 = u|∂�, w3 = ∂u
∂t

|� and w4 = ∂u
∂t

|∂�.

Thus

B


w1

w2

w3

w4

 =


w3

w4

c2�w1

−β ∂w1
∂n

− γw2

 . (3.4)

Define ŵ =


ŵ1

ŵ2

ŵ3

ŵ4

 =


w1

w3

w2

w4

 where w =


w1

w2

w3

w4

 is in Ĥen.
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This enables us to identify Ĥen with H. Write Bw = v and define B1 by B1ŵ = v̂, i.e.
(Bw)j = vj , for 1 ≤ j ≤ 4 and

v̂ =


v1

v3

v2

v4

 .

Then

B1ŵ =


w3

c2�w1

w4

−β ∂w1
∂n

− γw2

 =


ŵ2

c2�ŵ1

ŵ4

−β ∂ŵ1
∂n

− γ ŵ3

 .

An operator representation of B1 is

B2 =


0 I 0 0

c2� 0 0 0
0 0 0 I

−β ∂
∂n

QJ −γ I −Q

 (3.5)

where Q is any multiplication operator acting on the boundary and Ju = u|∂�, as before.
Here B2 acts on a Hilbert space Hen which is a closed subspace of H, and the components
of ŵ ∈ D(B2) are given by ŵ = (u1, u2, u1|∂�, u2|∂�). More precisely,

Hen = {u = (u1, u2, u3, u4) ∈ H : u3 = u1 |∂�} . (3.6)

Since u1 is in H 1(�), it has a trace u1|∂� in H
1
2 (∂�), and this determines u3. Note that Hen

coincides with a subspace of the space we previously called H, except for the rearrangement
of the components of its vectors.

If u is a solution of the wave equation with GWBC, then the fourth component of B2ŵ

is

(B2ŵ)4 = −β
∂u

∂n
|∂� + (Qu)|∂� − γ u|∂� − Qu|∂�

=
(

−β
∂u

∂n
− γ u

)
|∂�,

since Q is a multiplication operator. This a compatibility condition for the problem
(analogous to (2.3)).
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Note that Hen is a proper closed subspace of H. Let

B3 = B2|Hen
⊕ 0|H⊥

en
.

Then B3 is densely defined on H and generates a (C0) semigroup on H.
Moreover, B3 has the same matrix representation (3.5) as does B2, except that it acts on

a bigger domain.
Rather than compare A and B, which are defined on different spaces, we compare a

unitarily equivalent version of A with a unitarily equivalent version of (an extension of) B.
This enables us to compare A with B, even though D(A) and D(B) are quite different.

4. Comparing The Boundary Condition

While B2 is defined on Hen ⊂ H, (3.5) enables us to extend B2 and view its extension
B3 as a densely defined operator on H.

We want to make the norm in (3.3) look as much as possible like the norm in (2.4), and
make the operator B in (3.4) look as much like the operator A in (2.6) as possible.

The easiest way to do this is to compare the matrix representation A2 for A in (2.7) and
B3 for B in (3.5) (also on H). So we replace B1 by B3 so that B3 and A2 are both densely
defined operators on H. By making the identifications

β = d

m
, γ = k

m
, Q = − ρ

m
, (4.1)

we see that

B3 − A2 = K =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Q


where Q = − ρ

m
is a continuous negative function on ∂�. Clearly K has operator norm

equal to

‖K‖ =
∥∥∥ ρ

m

∥∥∥
∞

=
∥∥∥ ρ

m

∥∥∥
C(∂�)

and K is compact when n = 1 since L2 (∂�) is 2 dimensional. Finally K is a nonpositive
selfadjoint operator on the energy Hilbert space H; the norms are given by

‖U‖2
H,ABC =

∫
�

(
ρ |∇ϕ|2 + ρ

c2
|ϕt |2

)
dx +

∫
∂�

(k |δ|2 + m |δt |2) dS, (4.2)

‖U‖2
Hen,GWBC =

∫
�

(
|∇u1|2 + 1

c2
|u2|2

)
dx +

∫
∂�

(|u3|2 + |u4|2)dS

β
, (4.3)
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where we identify U = (u1, u2, u3, u4) = (u|�, ut |�, u|∂�, ut |∂�) for the wave equation
with GWBC with

U =
(

√
ρϕ,

√
ρϕt ,

√
k

d

m
δ,

√
dδt

)
(4.4)

for the wave equation with ABC.
The norm of (4.3) is well defined for u ∈ H. Our two problems are governed by

(C0) contraction semigroups S = {S(t) : t ≥ 0} on H and T = {T (t) : t ≥ 0} on
Hen, respectively. Let T̂ on H be the extension of T described above. The respective
infinitesimal generators GA of S and GW (= B3) of T̂ differ by an operator K given in the
discussion following (4.1). When we make these identifications, we assume that d > 0.

We summarize now what the reductions have achieved.

THEOREM 1. Consider the wave equation

utt = c2�u

associated with the acoustic boundary condition

mδtt + dδt + kδ + ρϕt = 0, δt = ∂ϕ

∂n
,

and the wave equation with general Wentzell boundary condition

�u + β
∂u

∂n
+ γ u = 0.

Let (4.1) hold. These problems are governed by (C0) contraction semigroups S on H and
T on Hen, respectively; let T̂ , with generator B3(= GW), be the extension of T to Hen

described above. Then the generators GA(= A2) of S and GW of T̂ differ by an operator
which is selfadjoint and bounded on H and is compact when the dimension of the underlying
bounded set � ⊂ Rn is one.

By our construction, B3 is an extension of GA + K, since in extending B2 to B3, we
got rid of the restriction that u3 = u1|∂� in the domain of B2. But for λ real and large,
λ ∈ ρ(B3) ∩ ρ(GA + K), and so B3 = GA + K.

Our construction of B3 was rather complicated. Associated with A is the compatibility
condition (2.3), and this leads to many possible (operator) matrix representations of A.
Similarly for B, since there are many choices for the Q in (3.5). Thus our conclusion
above is that (a suitable matrix representation of) A is unitarily equivalent to a bounded
perturbation of a proper extension of a matrix representation of B.

By semigroup perturbation theory, B3 generates a (C0) semigroup T̂ on H (with norm
given by (4.2)) satisfying ‖T̂ (t)‖ ≤ eωt , where ω ≤ ‖K‖, for t > 0. Note that, by
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construction, B2 generates a (C0) contraction semigroup T on Hen and that T (t) is the
restriction of T̂ (t) to Hen; equivalently T̂ (t) is an extension of T (t) to H.

We can make GW = GA if we make our wave equation utt = c2�u have the modified
GWBC given by

�u + β
∂u

∂n
+ γ u + ρ

m

∂u

∂t
= 0 on ∂�. (4.5)

Let us interpret the GWBC

�u + β
∂u

∂n
+ γ u = 0 on ∂�

as

1

c2
utt + β

∂u

∂n
+ γ u = 0 on ∂�

where utt = c2�u is assumed to hold on �̄. It seems natural to add to this a term involving
∂u
∂t

|∂�; this is precisely what we did in (4.5). In this case we can identify the δ (in the ABC
problem) with a multiple of u |∂� in GWBC problem incorporating (4.5).

When m = k and d = ρ, then δ can be identified exactly with the restriction of u to the
boundary.

THEOREM 2. Suppose that m = k and d = ρ. Then Hen is an invariant subspace of
H for the wave equation with acoustic boundary conditions. Thus the solution at time t

satisfies

ϕ(t, ·)|∂� = δ (t, ·) for all t ≥ 0 if it holds at t = 0.

Thus δ really is ϕ on the boundary in many cases in the Beale-Rosencrans theory.

5. Compactness Issues

Let A be a closed linear operator on a Banach space with nonempty resolvent set ρ (A) ;
and we let R (λ, A) = (λI − A)−1 denote the resolvent operator of A for λ ∈ ρ (A) .

Then A is called resolvent compact if R (λ, A) is compact for some λ ∈ ρ (A) iff
R(λ, A) is compact for all λ ∈ ρ (A) . The equivalence follows from the resolvent identity

R (λ, A) − R (µ, A) = (µ − λ) R (λ, A) R (µ, A)

for all λ, µ ∈ ρ (A) .

LEMMA 3. Let A2 = A1 − P where P is a bounded operator. Suppose ρ (A1) ∩
ρ (A2) �= ∅. Then A2 is resolvent compact iff A1 is.
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Proof. We can derive the following identity

R (λ, A2) = R (λ, A1) − R (λ, A1) PR (λ, A2) (5.1)

for λ ∈ ρ (A1) ∩ ρ (A2) . To prove this simply multiply

(λI − A1) = (λI − A2) − P

on the left by R (λ, A1) and on the right by R(λ, A2).
Now suppose R (λ, A1) is compact. For λ ∈ ρ (A2) and P bounded, the right hand side

of (5.1) (which equals R (λ, A2)) is compact. The equivalence in the lemma now follows
by interchanging the indices 1 and 2. �

Let G0W [resp. GA] be the generator of the (C0) contraction semigroup governing
the wave equation with general Wentzell [resp. acoustic] boundary conditions. Recall that
GW = B3 is the generator of the semigroup T̂ on H extending T = {etG0W : t ≥ 0}. Then
by the results of Section 4,

GW − GA = K

where K is a bounded operator. Moreover, K is compact when the dimension n is one and
ρ(GW) ∩ ρ(GA) �= ∅ since each resolvent set contains a right half plane.

THEOREM 4. GW and GA are both resolvent compact when n = 1. Neither GW nor
GA is resolvent compact when n ≥ 2.

Proof. Binding, Brown and Watson [4]-[7] proved that � = d2

dx2 with GWBC is resolvent
compact when n = 1. The corresponding eigenvalue problem is

u
′′ = λu in �̄ = [0, 1] ,

λu + (−1)j+1 βju
′ + γju = 0 at x = j ∈ {0, 1} .

(Recall that ∂
∂n

= (−1)j+1 d
dx

at x = j for j = 0, 1.) Binding, Brown and Watson made
a systematic study of such Sturm-Liouville problems with eigenparameter λ in both the
equation and the boundary condition. They established an orthonomal basis of eigenvectors
in the space

H = L2 (0, 1) ⊕ C2

with norm

‖u‖2
H =

∫ 1

0
|u (x)|2 dx +

1∑
j=0

|u (j)|2
βj
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and the real eigenvalues tend to −∞. Thus AW , the 1− dimensional Laplacian with
GWBC, is selfadjoint and resolvent compact. The corresponding wave equation with the
same GWBC is governed by a skewadjoint operator having an orthonormal basis of eigen-
vectors with eigenvalues iµ±

n with µ±
n real and µ±

n → ±∞ as n → ∞.

Thus G0W is resolvent compact. The same conclusion (namely that the operator called G

in Section 3 is resolvent compact) was reached independently by Kramar, Mugnolo and
Nagel [12] who proved the compactness by a different method on Xp (and not just X2)
when the dimension n is one. In one dimension, the resolvent of GW is a finite rank
extension of the resolvent of G0W ; hence it is compact. By Lemma 3, GA is compact in
one dimension.

For n = 3, Beale and Rosencrans [1] − [3] showed that GA is not resolvent compact.
In fact, let∑

:= {λ ∈ C :m (x) λ2 + d (x) λ + k (x) λ = 0 for some x ∈ ∂�}.
Thus GW has eigenvalue sequences converging to ±i∞ and to

∑
. Explicit calculations

were given when m, d, k are constants and � is a ball, so that
∑

consists of two points
ω1, ω2. Then both ω1, ω2 are limit points of eigenvalues of GA and R(λ, GA), which is
meromorphic on C \∑

, has essential singularities at both ω1 and ω2. C. Gal [11] extended
the Beale-Rosencrans results to dimension n ≥ 2.

Independently of Gal’s work [11] , using a different method, Delio Mugnolo [14] recently
showed that GA is not resolvent compact in two or more dimensions. Mugnolo dealt with
variable coefficients and worked in a very general context involving operator matrices.

So our conclusion is that GA is not resolvent compact when n ≥ 2. Neither is GW by
Lemma 3. �

We conjecture that G0W is not resolvent compact in dimension two or more.
We thank Liang Jin, Xiao Ti-Jun and an anonymous referee for their helpful comments

on our first draft of this paper.
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