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The heat equation with generalized
Wentzell boundary condition

Angelo Favini, Gisèle Ruiz Goldstein,
Jerome A. Goldstein and Silvia Romanelli

Abstract. Let � be a bounded subset of RN , a ∈ C1(�) with a > 0 in � and A be the operator defined by
Au := ∇ · (a∇u) with the generalized Wentzell boundary condition

Au + β
∂u

∂n
+ γu = 0 on ∂�.

If ∂� is in C2, β and γ are nonnegative functions in C1(∂�), with β > 0, and � := {x ∈ ∂� : a(x) > 0} �= ∅,
then we prove the existence of a (Co) contraction semigroup generated by A, the closure of A, on a suitable Lp

space, 1 ≤ p < ∞ and on C(�). Moreover, this semigroup is analytic if 1 < p < ∞.

1. Introduction

Of concern is the heat equation

∂u

∂t
= Au for t ≥ 0, in � (1.1)

with the generalized Wentzell boundary condition

Au + β
∂u

∂n
+ γu = 0 on ∂�, (1.2)

where � is a bounded subset of RN with a sufficiently regular boundary (∂� in C2 will
do), Au = ∇ · (a∇u), a ∈ C1(�), a > 0 in �, β, γ are nonnegative functions in C1(∂�)

with β strictly positive and n(x) is the unit outer normal at x. Moreover, we assume that
� := {x ∈ ∂� : a(x) > 0} �= ∅. We shall show that the corresponding Cauchy problem
is governed by a strongly continuous contraction semigroup on a suitable Lp space, for
1 ≤ p < ∞ and on C(�); and the semigroup is analytic for 1 < p < ∞.

In the one dimensional (linear and nonlinear) case in C[0, 1] the problem of generation
of a semigroup associated to (1.1), (1.2) was investigated for the first time in [9].

For the Robin boundary condition (i.e. β ∂u
∂n

+ γu = 0 on ∂�), the relevant space is
Lp(�, dx). Classical results along these lines go back to Agmon, Douglis and Nirenberg
[1]; see also e.g. Lunardi [24] and Taira [32] and, more recently, Colombo and Vespri [5]
and Daners [7]. We refer to [4] and [25] and to the references contained therein for the
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motivations and the study of general Wentzell boundary conditions in the theory of partial
differential equations.

The surprising aspect of our results and proofs is that the natural Lp space is Lp(�, dµ),
where

dµ := dx

∣∣∣∣
�

⊕ a dS

β

∣∣∣∣
�

, (1.3)

dx denotes the Lebesgue measure on � and a dS
β

denotes the natural surface measure dS on
� := {x ∈ ∂� : a(x) > 0} with weight a

β
, and we assume � �= ∅. It is easy to see that

Lp(�, dµ) may be identified with

Lp(�, dx) × Lp

(
�,

a dS

β

)
, 1 ≤ p < ∞. (1.4)

The identification is an isometric isomorphism if the product in (1.4) is given the “ lp-sum
norm”.

If we plug (1.1) into (1.2), the boundary condition becomes

∂u

∂t
+ β

∂u

∂n
+ γu = 0.

Hence the term Au corresponds to introduce a dynamic condition on the boundary. At the
resolvent level,

λu − Au = h in �,

Au + β
∂u

∂n
+ γu = 0 on ∂�

becomes

λu − Au = h in �,

β
∂u

∂n
+ (γ + λ)u = h on ∂�,

which is an inhomogeneous elliptic equation with an inhomogeneous boundary condition.
There is a large literature on solving such problems. But the semigroup approach requires
a solution with appropriate estimates. This is where the space defined by (1.4) enters the
picture.

We could replace A by a more general elliptic differential operator of order 2m, in
divergence form with corresponding suitable boundary conditions. This would introduce
additional complications. Hence we keep the elliptic operator simple in order to concentrate
on the effect of the nontrivial boundary condition (1.2).

Various authors have used spaces of the form Lp(�, dµ1)×Lp(∂�, dµ2) in the study of
elliptic or parabolic boundary value problems with nonhomogeneous boundary conditions.
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The present paper is the first one, to our knowledge, to use spaces incorporating specifically
function spaces on the boundary (i.e. the spaces Xp we shall introduce in Section 2, rather
than Lp(�) or W1,p(�)) for problems with homogeneous boundary conditions.

2. The basic calculations and spaces

Let A represent the operator ∇ · (a∇) acting on functions defined on �, where � is
a bounded subset of RN with a smooth enough boundary so that the divergence theorem
holds on � and a ∈ C(�) with a > 0 in �. We consider the elliptic equation

λu − Au = h in �, (2.1)

with Re λ > 0 and h : � → C given, with the generalized Wentzell boundary condition

Au + β
∂u

∂n
+ γu = 0 on ∂�. (2.2)

Here β, γ, h are sufficiently smooth functions (β, γ on ∂�, h on �) with γ nonnegative and
β ≥ εo > 0. In the expression ∂u

∂n
, n = n(x) refers to the unit outer normal to ∂� at x.

From (2.1) we have Au = λu − h; plugging this into (2.2) gives

β
∂u

∂n
+ (γ + λ)u = h on ∂�. (2.3)

(To be more precise, we should replace h by h|∂� in (2.3), etc., but the meaning of (2.3)

should be clear.)
To solve the elliptic boundary value problem (2.1), (2.3), we shall use a weak formulation

and the Riesz representation theorem. The equation itself together with elliptic boundary
value theory gives us a unique solution u ∈ C2(� ∪ �), if a, h, γ, β and ∂� are smooth
enough, and u ∈ C2(�) if � = ∂�; see e.g. Gilbarg and Trudinger [14] or Lunardi [24] for
elliptic theory in the uniformly elliptic case. But we wish to find explicit bounds describing
how the solution depends on λ, and these bounds come naturally from energy methods.

Multiply (2.1) by v ∈ H1(�) and integrate over �. The result is

λ

∫
�

uv dx −
∫

�

(∇ · (a∇u))v dx =
∫

�

hv dx, (2.4)

which by the divergence theorem gives

λ

∫
�

uv dx +
∫

�

∇u · ∇v a dx −
∫

∂�

∂u

∂n
v a dS =

∫
�

hv dx.

Using ∂u
∂n

= (h−(γ+λ)u)
β

(from (2.3)) and noting β ≥ εo > 0, we deduce

λ

∫
�

uv dx +
∫

�

∇u · ∇v a dx +
∫

�

(λ + γ)uv a
dS

β

=
∫

�

hv dx +
∫

�

hv a
dS

β
, (2.5)
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where � = {x ∈ ∂� : a(x) > 0}. Let L(u, v) be the left hand side of (2.5), and let F(v) be
the corresponding right hand side. (Here h is fixed.) Let H be the completion of C1(�) in
the norm

‖u‖H :=
(∫

�

|u|2 dx +
∫

�

|∇u|2 a dx +
∫

�

|u|2 a dS

β

) 1
2

.

Thus L is a bounded sesquilinear form on H, and F is a bounded conjugate linear functional
on H:

|L(u, v)| ≤ max{|λ|, 1}‖u‖H‖v‖H
+(|λ| + ‖γ‖∞)‖u‖

L2(�, adS
β

)
‖v‖

L2(�, adS
β

)

≤ C1(λ)‖u‖H‖v‖H,

|F(v)| ≤ ‖h‖H‖v‖H,

provided h ∈ H. Also,

Re L(u, u) ≥ Re λ‖u‖2
L2(�)

+ ‖∇u‖2
L2(�,adx)

+Re λ‖u‖2
L2(�, adS

β
)

≥ C2(λ)‖u‖2
H.

By the Riesz representation theorem (or the Lax-Milgram lemma), for all h ∈ H there is
a unique u ∈ H such that L(u, v) = F(v) holds for all v ∈ H. That is, (2.5) holds, and
this u is our weak solution of (2.1), (2.2). As before, u ∈ C2(� ∪ �) if a, γ, β, h, ∂� are
smooth enough. Let us also notice that, if a > 0 on � and β = a|∂�, then, according to
Daners [7, p. 4213], the existence of weak solutions is assured even if a is only bounded
and measurable on � and ∂� is Lipschitz.

Let U := (u, v) where u : � → C and v : ∂� → C are measurable functions such that∫
�

|u|p dx +
∫

�

|v|pa
dS

β
< ∞.

Let us define the ‖ · ‖∗
p norm of U as follows

‖U‖∗
p :=

[∫
�

|u|p dx +
∫

�

|v|p a
dS

β

] 1
p

for 1 ≤ p < ∞, and observe that the Lp(�, dµ) norm and the ‖ · ‖∗
p norm are the same.

From now on denote this norm by ||| · |||p. Moreover, if we identify every u ∈ C(�) with
U = (u|�, u|∂�) ∈ C(�)×C(∂�), we define Xp to be the completion of C(�) in the norm
||| · |||p. But one can easily show that

Xp = Lp(�, dµ)
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(indeed C(�) is densely injected in Lp(�, dx) × C(∂�) and Lp(�, dx) × C(∂�)

is densely injected in Lp(�, µ) and Xp contains elements of the form (0, g) where
0 �= g ∈ Lp(�, adS

β
), since � �= ∅). Still, we expect all solutions u of the heat equa-

tion with generalized Wentzell boundary conditions to satisfy u(·, t) ∈ C(�) for all t > 0,
and so we can identify u(·, t) with U(·, t) = (u(·, t)|�, u(·, t)|∂�) ∈ Xp. We shall return to
this point later.

Taking X∞ to be the completion of C(�) in the ||| · |||∞ norm, which is defined in the
obvious way, for every U ∈ X∞ we have that

|||U|||∞ = lim
p→∞ |||U|||p = ‖U‖L∞(�),

and so X∞ is C(�).

We next study (2.1), (2.2) in an Xp context with 1 < p < ∞.

In the following we will be interested only to find estimates, hence we will not care if
p ≥ 2 or not. Multiply (2.1) by v where v := |u|p−2uχ{u�=0} (so that v = 0 wherever
u = 0) and integrate over �. The result is

λ

∫
�

|u|p dx −
∫

�

(∇ · (a∇u))v dx =
∫

�

hv dx. (2.6)

The right hand side of (2.6) satisfies∣∣∣∣∫
�

hv dx

∣∣∣∣ ≤ ‖h‖Lp(�)‖v‖Lp′
(�)

= ‖h‖Lp(�)‖u‖p−1
Lp(�) (2.7)

where 1
p

+ 1
p′ = 1. Next,

−
∫

�

(∇ · (a∇u))v dx =
∫

�

∇u · ∇v a dx −
∫

�

∂u

∂n
v a dS := T − T̃ .

Note that

∂

∂xi

|u|2 = 2|u|∂|u|
∂xi

= ∂

∂xi

(uu) = 2Re

(
u

∂u

∂xi

)
,

whence

∇|u| = Re(u∇u)

|u| .

This implies

∇|u|q = q|u|q−1∇|u| = q|u|q−2Re(u∇u). (2.8)

For T we obtain:

T =
∫

�

∇u · ∇(|u|p−2u) a dx

=
∫

�

∇u · (∇u)|u|p−2 a dx +
∫

�

(∇u)u(p − 2)|u|p−4Re(u∇u) a dx



6 A. Favini, G. Ruiz Goldstein, J. A. Goldstein and S. Romanelli J.evol.equ.

by (2.8). Since

Re(u∇u)Re(u∇u) = [Re(u∇u)]2 ≥ 0,

we have

Re T ∈ [k1δ, k2δ],

where

k1 : = min{1, p − 1}, k2 := max{1, p − 1},
δ : =

∫
�

|∇u|2|u|p−2 a dx.

By (2.6) and the above calculations, for v := |u|p−2uχ{u�=0},

λ

∫
�

|u|p dx +
∫

�

∇u · ∇v a dx −
∫

�

∂u

∂n
v a dS =

∫
�

hv dx,

or, using (2.3),

λ

∫
�

|u|p dx + T + λ

∫
�

|u|pa
dS

β
+

∫
�

γ|u|pa
dS

β

=
∫

�

hv dx +
∫

�

hv a
dS

β
. (2.9)

Arguing as in (2.7),∣∣∣∣∫
�

hv
adS

β

∣∣∣∣ ≤ ‖h‖
Lp(�, adS

β
)
‖u‖p−1

Lp(�, adS
β

)
. (2.10)

Now take the real part of (2.9); this implies

Reλ |||u|||pp + [≥ 0] ≤ (‖h‖Lp(�) + ‖h‖
Lp(�, adS

β
)
)|||u|||p−1

p

≤ 21− 1
p |||h|||p|||u|||p−1

p , (2.11)

whence

(Re λ)|||u|||p ≤ 21− 1
p |||h|||p.

Here we have used

(a + b)p ≤ 2p−1(ap + bp)

for a, b > 0 and p > 1. Rewrite (2.11) in the more precise form

Re λ |||u|||pp + Re T +
∫

�

γ|u|p a
dS

β
≤ 21− 1

p |||h|||p|||u|||p−1
p . (2.12)
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By [29, p. 216], if a > 0 in � (for the uniformly elliptic case),

|Im T | ≤ Co(p)Re T, (2.13)

where

Co(p) := M
|p − 2|√

p − 1
, (2.14)

and

M := max

{
‖a‖∞,

∥∥∥∥1

a

∥∥∥∥∞

}
.

Despite the assumption of a Dirichlet boundary condition in [29, pp. 215–216], the calcu-
lation given there allows the conclusion (2.13).

Now in (2.9) taking the imaginary part implies

|Im λ| |||u|||pp − |Im T | ≤ 21− 1
p |||h|||p |||u|||p−1

p . (2.15)

Multiply (2.12) by Co(p) (see (2.14)) and add (2.15) to it; taking into account (2.13), the
result is

(Co(p) Re λ + |Im λ|)|||u|||p + [≥ 0] ≤ C1(p)|||h|||p
which implies

|||u|||p ≤ C2(p)

|λ| |||h|||p (2.16)

whenever Re λ > 0, h ∈ Xp, 1 < p < ∞, and u is the weak solution of (2.1),(2.2). Our
ultimate interpretation of this calculation will be that the closure of A (with generalized
Wentzell boundary conditions) generates an analytic semigroup on Xp, for 1 < p < ∞
(see Theorem 3.1 below).

Our “discovery” of the norm ||| · |||p is actually a rediscovery. Maz’ja [26], [27] intro-
duced similar notions in 1960. His main result was

‖u‖2

L
2n

n−1 (�)

≤ C(n, Vol(�))(‖∇u‖2
L2(�)

+ ‖u|∂�‖2
L2(∂�)

)

(see [27, Corollary 4.11.1/2]), so that the norm on the right hand side is equivalent to the
H1(�) norm (see also [7, Section 2]) and to the H norm when a > 0 in �.

In the positive operator ∇ · (a∇) we could let a be a positive definite symmetric matrix
rather than a positive function. The proofs would still work with some reasonably obvious
modifications. In order to keep this exposition rather simple, we shall give the arguments
only in the case of the function a, or from a different point of view, a times the identity
matrix.
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3. Generation and analyticity in Xp

In the degenerate case, when � = {x ∈ ∂� : a(x) > 0} �= ∂�, the space Xp and
its norm only contain boundary information on �, not on all of ∂�, and so the boundary
condition Au+β ∂u

∂n
+ γu = 0 on S needs only be stated for S = � rather than for S = ∂�.

Let us define C2
BC by

C2
BC :=

{
u ∈ C2(� ∪ �) ∩ C(�) : ∇ · (a∇u) + β

∂u

∂n
+ γu = 0 on �

}
and observe that if we identify each element u ∈ C2

BC with (u|�, u|∂�), where u ∈ C2(�)

and u|∂� ∈ C2(∂�), then C2
BC is densely injected in Xp, hence Xp coincides also with the

completion of C2(�) with respect to the norm ||| · |||p, 1 ≤ p < ∞. Identify u ∈ C(�)

with U = (u|�, u|∂�) = (w, v) in Xp. Then the problem (2.1), (2.3) becomes

λ

(
w

v

)
−

( ∇ · (a∇) 0
− β ∂

∂n
−γ

) (
w

v

)
=

(
k

l

)
, (3.1)

where, for h ∈ C(�), (h|�, h|∂�) = (k, l) ∈ Xp, for Re λ > 0. In (2.1) we had used A in
place of ∇ · (a∇u). The generator G is given formally by the matrix( ∇ · (a∇) 0

− β ∂
∂n

−γ

)
.

This gives the action of G and

C2
BC ⊂ D(G) ⊂

{
u ∈ W

2,p

loc (�) ∩ Xp : Au exists in the sense of traces

as well defined member of Lp

(
�, a

dS

β

)
,

and ∇ · (a∇u) + β
∂u

∂n
+ γu = 0 on �

}
. (3.2)

Here every u ∈ C2(�) is identified with U = (u|�, u|∂�) ∈ W2,p(�).

The main result of this paper is expressed in the following theorem.

THEOREM 3.1. Let � be a bounded subset of RN with boundary ∂� of class C2. Let
a ∈ C1(�) with a > 0 in �, Au := ∇ · (a∇u), � := {x ∈ ∂� : a(x) > 0}, and assume
that � �= ∅. If β, γ are nonnegative functions in C1(∂�) with β > 0, then G, the closure of
the operator

G =
(

A 0
− β ∂

∂n
−γ

)
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with domain

Dp(G) :=
{
u ∈ C2(� ∪ �) ∩ C(�) : Au ∈ Lp(�, dx),

Au + β
∂u

∂n
+ γu = 0, on �

}
,

generates a (Co) contraction semigroup on Xp, for 1 ≤ p ≤ ∞. This semigroup is analytic
for 1 < p < ∞.

Proof. Note that from u ∈ W2,p(�) it follows that ∂u
∂n

∈ Lp(�, adS
β

) for 1 < p < ∞.

Let 1 < p < ∞ and q = p
p−1 . We denote the pairing between Xp and Xq by 〈·, ·〉.

Here is the dissipative calculation of G on Xp, 1 < p < ∞. Let Ju := |u|p−2uχ{u�=0}
be the duality map of Xp (modulo a constant multiple which depends on |||u|||p). To show
that G is dissipative, it suffices to show

Re 〈Gu, Ju〉 ≤ 0

for u ∈ Dp(G). We have

〈Gu, Ju〉 =
∫

�

Gu(|u|p−2u) dµ

=
∫

�

Au(|u|p−2u) dx −
∫

�

β
∂u

∂n
|u|p−2u

adS

β
−

∫
�

γu|u|p−2u
adS

β

= −
∫

�

∇u · ∇(|u|p−2u) a dx −
∫

�

γ|u|p adS

β

by the divergence theorem. Since β, γ ≥ 0 and

−
∫

�

∇u · ∇(|u|p−2u) a dx = −T

(see the lines following (2.8)) has real part nonpositive, it follows that

Re〈Gu, Ju〉 ≤ 0.

Note that G is closable since G is dissipative, and its closure G is dissipative. The solution
of (3.1) satisfies (2.1) and (2.3), or, equivalently, (2.1) and (2.2). Given h ∈ Xp ∩H, there
is a solution u ∈ H of (3.1) by the Lax-Milgram lemma from Section 2. For h ∈ C1,ε(�),

elliptic regularity shows that u ∈ D(G). Under our assumptions, in the uniformly elliptic
case (when a > 0 on �), this follows from Colombo and Vespri [5, Theorem 2.1] or
directly from Gilbarg and Trudinger [14, Theorem 6.31, p. 128] when β, γ ∈ C1,ε(�)

and ∂� ∈ C2,ε. But in the degenerate case of � �= ∂� an additional argument is needed,
involving local regularity of the solutions to the problem λu−Au = h. We omit the details.
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In fact, u ∈ H ∩ Xp follows from (2.11). Then the closure G of (G, Dp(G)) is densely
defined and m-dissipative on Xp, 1 < p < ∞. Thus by the Hille-Yosida theorem (cf. e.g.
[8], [16], [29]), G generates a (Co) contraction semigroup (Tp(t))t≥0 on Xp.

Let Gp be the version of G acting on Xp, 1 ≤ p ≤ ∞. Then G∗
p = Gq and Tp(t)∗ = Tq(t)

for 1 < p < ∞ and 1
p

+ 1
q

= 1. Also G∗
p ⊃ Gq and Tp(t)∗ ⊃ Tq(t) for p ∈ {1, ∞} and

1
p

+ 1
q

= 1. Thus the problems associated to Gp are selfadjoint ones. It is sufficient to

prove that Gp is m-dissipative on Xp for 2 ≤ p < ∞; the case of 1 < p < 2 then follows
by duality. Thus some of the above calculations could be restricted to the case of p ≥ 2.

Observe that for p = 2, the operators G2 and T2(t) are selfadjoint on X2, whence the
operator T2(t) − I can be identified by etm − 1, where m is a suitable real measurable
function, m ≤ 0. Then ‖T2(t) − I‖ ≤ 1 for each t > 0. Hence, as a consequence of the
M. Riesz interpolation theorem (or the Stein interpolation theorem), we have that

lim sup
t→0+

‖Tp(t) − I‖ < 2,

for any p satisfying 1 < p < 2 or 2 < p < ∞. Using Neuberger’s theorem (see e.g. [16,
Exercise 5.10.5, p. 38] and [29, Corollary 5.7, p. 68]), exactly as in the paper [15], we have
that (Tp(t))t≥0 is an analytic semigroup for 1 < p < ∞.

Notice that, if a > 0 on �, then the analyticity for (Tp(t))t≥0, 1 < p < ∞, follows
directly from (2.16).

This completes the proof for 1 < p < ∞. �

The cases p = 1 and p = ∞ will be treated in the next section.

4. The cases of X1 and X∞

In this section we deal with the proof of Theorem 3.1, when p = 1 or p = ∞. Let us
remark that, in (2.16), C2(p) → ∞ as p → 1 and as p → ∞. Thus there is no easy proof
that the semigroup T generated by G (or rather its closure) on X1 or on X∞ = C(�) is
analytic. However, we show that G generates a (Co) contraction semigroup on these spaces.
Using quite different techniques, we are able to show, in a paper in preparation [13], that
T is analytic on X1 and is a differentiable semigroup on X∞, provided that a > 0 on �.

But we shall not give the (nontrivial) arguments here.
Note that Xp ⊂ Xr if 1 ≤ r ≤ p ≤ ∞. If we solve u′ = Gu with u(0) = f ∈ Xp,

1 ≤ p, then u(t) ∈ ⋂∞
m=1 D(Gm) ⊂ C2(�) for each t > 0. Thus there is no ambiguity in

interpreting the meaning of the boundary condition for all positive times.
Let u be real and satisfy (2.1), (2.3) for λ > 0. Multiply (2.1) by sign u+ and integrate

over �. The result is

λ‖u+‖L1(�) −
∫

[u>0]∩�

∇ · (a∇)u dx =
∫

[u>0]∩�

h dx. (4.1)
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Next, by the divergence theorem,∫
[u>0]∩�

Au dx =
∫

�o

∂u

∂n
a dS

where �o := ∂[u > 0] ∪ (∂� ∩ [u > 0]). Thus �o = �1 ∪ �2 where �1 ∩ ∂� = ∅ and
u = 0 on �1, so that ∂u

∂n
≤ 0 on �1 while �2 ⊂ ∂�. Hence∫

�o

∂u

∂n
a dS = [≤ 0] +

∫
�2

∂u

∂n
a dS

≤ −
∫

�2

(
γ + λ

β

)
u a dS +

∫
�2

ha
dS

β

≤ −λ

∫
�2

ua
dS

β
+

∫
�2

ha
dS

β
,

since γ ≥ 0, β > 0 and u ≥ 0 on �2. Since �2 ⊂ {u > 0}, the above calculations combine
to give

λ‖u+‖L1(�) + λ

∫
∂�

u+ a
dS

β
≤

∫
[u>0]∩�

h+ dx +
∫

[u>0]∩∂�

h+
adS

β
. (4.2)

The same reasoning applied to u− = (−u)+ gives

λ‖u−‖L1(�) + λ

∫
∂�

u−
adS

β
≤

∫
[u<0]∩�

h− dx +
∫

[u<0]∩∂�

h−
adS

β
. (4.3)

Adding (4.2) and (4.3) yields

λ|||u|||1 ≤ |||h|||1. (4.4)

Thus G is dissipative on X1. The range condition follows as before (indeed (I − G)

(D(G)) ⊃ X2, which is dense in X1). This leads to the definition of the semigroup (T(t))t≥0

on real functions in X1. For the complex case we simply take

T(t)(f + ig) = T(t)f + iT(t)g.

In order to prove the assertion for p = ∞, take λ > 0. Letting p → ∞ in

λ|||u|||p ≤ |||h|||p
gives

λ‖u‖∞ ≤ ‖h‖∞,

since limp→∞ |||v|||p = ‖v‖L∞(�). Since C2(�) ⊂ D(G), D(G) is dense in C(�).
If h ∈ C(�), λ > 0 and λu − Gu = h, then u ∈ ⋂

1<p<∞(Xp ∩ D(G)). Thus u ∈
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1<p<∞ W2,p(�) and Au ∈ C(�). This defines the natural domain for G on C(�), and

no additional regularity is required of β and γ .
Let us remark that the range condition is essentially p− independent, since it suffices to

solve (2.1), (2.2) for h ∈ C∞(�), and that the closure of G generates a Feller semigroup
on C(�), by using standard approximation arguments.

5. The one-dimensional case

In one dimension, with � being the unit interval (0, 1), the normal derivative becomes

∂u

∂n
(j) = (−1)j+1u′(j) = (−1)j+1 du

dx
(j)

for j = 0, 1. The Xp-norm becomes

|||f |||p =
(∫ 1

0
|f(x)|p dx + a1|f(1)|p

β1
+ ao|f(0)|p

βo

) 1
p

for 1 ≤ p < ∞, where aj := a(j) ≥ 0, a2
o + a2

1 > 0 and βj := β(j) > 0, j = 0, 1. The
closure of the operator

G =
(

d
dx

(a d
dx

) 0

−β ∂
∂n

−γ

)
generates a contraction semigroup on

Xp =
Lp[0, 1], dx

∣∣∣∣∣∣
(0,1)

⊕ adS

β

∣∣∣∣∣∣{0,1}


for 1 ≤ p < ∞, and on X∞ = C[0, 1], where dS is the Dirac measure at both endpoints.
Moreover, the semigroup is analytic when 1 < p < ∞.

The Cauchy problem governed by this operator and the corresponding semigroup is

∂u

∂t
= ∂

∂x

(
a
∂u

∂x

)
, t ≥ 0, x ∈ (0, 1),

u(x, 0) = f(x), x ∈ (0, 1),

(aux)x(j, t) + (−1)j+1βjux(j, t) + γju(j, t) = 0, j = 0, 1, t ≥ 0,

where βj > 0 and γj := γ(j) ≥ 0 for j = 0, 1.

In our earlier paper [9], we established this result in C[0, 1] = X∞, using slightly
different notation; we provided the (−1)j+1 coefficient in the first order term at the end-
points, so that the coefficient of ux(j, t) had different signs for j = 0, 1. We had observed
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that the operator was not dissipative on Lp(0, 1) for 1 < p < ∞ and therefore we focussed
on the supremum norm. If dS denotes point evaluation, it is now clear that

Xp = Lp

(
[0, 1], dx

∣∣∣∣
(0,1)

⊕ adS

β

∣∣∣∣{0,1}

)
,

in which Lp(0, 1) sits as a subspace of codimension 2, is the right space for this problem.
In the special case of p = ∞, the two norms (i.e. the X∞-norm and the C[0, 1]-norm)

coincide.
We illustrate briefly why dissipativity fails in L2(0, 1). Let ε > 0, u ∈ C2[0, 1]∩D2(G)

be real and fixed on [ε, 1] and assume that a does not vanish at both endpoints. We modify
u on [0, ε] so that u(0) = 1 is fixed and compute

〈Gu, u〉 =
∫ 1

0
(au′)′(x)u(x) dx = −

∫ 1

0
a(x)(u′(x))2 dx + [au′u]1

0.

By the boundary conditions

u′(j) = (−1)j
(au′)′(j) + γju(j)

βj

at j = 0, 1, we deduce that

〈Gu, u〉 = −‖u′‖2
L2((0,1), adx)

+
[
au

(
s((au′)′ + γu)

β

)]1

0

where s(j) = (−1)j. By suitable varying u on [0, ε], ‖u′‖2
L2((0,1), adx)

will only change
slightly, and all other terms will be constant except for

−a(0)u(0)s(0)(au′)′(0)

β(0)
= −a(0)(au′)′(0)

β(0)
,

which we can make arbitrarily large by making (au′)′(0) negative with modulus large
enough. Thus an inequality of the form Re 〈Gu, u〉 ≤ ω‖u‖2

2 will not hold for any ω ∈ R.

6. Connections with representation formulas

Let X, Y be Banach spaces of functions on � to C such that Y ↪→ X, and let Z be a
Banach space of functions from ∂� to C. Consider

u′(t) = Lu(t) + h(t), t ≥ 0,

u(0) = f,

Bu(t) = ϕ(t),

(6.1)

where L ∈ B(Y, X) (= the bounded linear operators from Y to X), and B ∈ B(Y, Z). We
also impose the compatibility condition

Bf = ϕ(0), (6.2)
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obtained by setting t = 0 in (6.1). We make the hypotheses:

(H1) L0 = L|N(B)(= L|KerB) generates a (Co) semigroup (S(t))t≥0 on X,
(H2) For some real number λ and each ψ ∈ Z there exists a unique solution w = Dλψ

satisfying (L − λI)w = 0, Bw = ψ with Dλ ∈ B(Z, Y).

Here Dλ is called the Dirichlet operator. Using (H1), (H2), we shall derive a representation
formula for the solution u of (6.1). This is well-known; cf. [2], [17]–[19] and [23] and the
many references contained therein. See also the references in [23] to the earlier work of
Lasiecka and Triggiani.

Here we shall relate this representation formula (6.3) to the solution of (2.1), (2.2); this
is a new result. For specific examples of the spaces X, Y , Z in a concrete problem see the
example in [17]. Let the solution u of (6.1) be u = v + w where w(t) = Dλϕ(t), t ≥ 0.

Then v satisfies

v′ = u′ − w′ = Lu + h − Dλϕ
′,

v(0) = f − Dλϕ(0), Bv = 0.

Thus v satisfies

v′ = L0v + Lw + h − Dλϕ
′ = L0v + h + Dλ(λϕ − ϕ′),

v(0) = f − Dλϕ(0).

Consequently (using (H1), (H2) and the variation of parameters formula for v),

u(t) = S(t)(f − Dλϕ(0)) + Dλϕ(t)

+
∫ t

0
S(t − s)[Dλ(λϕ(s) − ϕ′(s)) + h(s)] ds. (6.3)

Denote by û(ξ) the Laplace transform

û(ξ) =
∫ ∞

0
e−ξtu(t) dt, at ξ > 0.

Then û ′(ξ) = ξû(ξ) − u(0), and so{
ξû(ξ) = Lû(ξ) + f + ĥ(ξ),

Bû(ξ) = ϕ̂(ξ).
(6.4)

In (2.1), (2.3) write ξ in place of λ and write ũ for u; the result is{
ξũ(ξ) = Aũ(ξ) + h,

β ∂ũ
∂n

(ξ) + (γ + ξ)ũ(ξ) = h.
(6.5)

We can identify (6.4) with (6.5) if we fix ξ > 0, identify h (from (2.1)) with f + ĥ(ξ) (from
(6.4)) as well as with ϕ̂(ξ) (on ∂�), and we identify B with

v �→ Bv = β
∂v

∂n
+ (γ + ξ)v =: Bξv. (6.6)
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Let us take h ≡ 0 in (6.1) (and hence in (6.3) also); then taking f (in (6.1)) equal to the
h in (2.1) makes the first equations in (6.4), (6.5) agree when we identify û with ũ and L

with A (or G). We make the second equations in (6.4), (6.5) agree by also taking

ϕ(t) = hδ0(t);
but then we need B to depend on ξ as in (6.6). This B is a Robin type operator.

Now consider the parabolic problem

∂u

∂t
= Au for (x, t) ∈ � × [0, ∞),

u(x, 0) = f(x) for x ∈ �,

Au + β
∂u

∂n
+ γu = 0 for (x, t) ∈ ∂� × [0, ∞).

Let ũ(ξ) be the Laplace transform of the solution u, evaluated at ξ > 0. By fixing ξ and
taking h = f , then (6.5) holds. Since we identified this with (6.4), we take the Laplace
transform of the representation formula (6.3) evaluated at ξ; this gives us a formula for
ũ(ξ) which is an explicit formula (involving S(t) and Dλ). But its dependence on ξ is very
complicated and it cannot be easily inverted to get a formula for u(t).

Note that, for

ut = Au + h(t) in �,

Au + β
∂u

∂n
+ γu = 0 on ∂�,

the boundary condition becomes

ut + β
∂u

∂n
+ γu = h(t) on ∂�.

This is a dynamic boundary condition involving motion on the boundary. Such conditions
arise in the applications and have been studied by Amann [2], Amann and Escher [3],
Grobbelaar-Van Dalsen and Sauer [20]–[21], Sauer [30], and Hintermann [22].

7. Historical and other concluding remarks

In the 1930’s John von Neumann determined all selfadjoint extensions of symmetric
operators on a Hilbert space H. He did this with the aid of the Cayley transform. This
work was later extended by Mark Krein and Ralph Phillips who showed how to find all
m-dissipative extensions of dissipative (linear) operators on H, and this work was put into
final form by M. Crandall and R. Phillips [6]. A more complicated space than H is C(K),
where K is a compact Hausdorff space. For instance, one may consider K = [0, 1]. Let
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A be a dissipative linear operator on C(K) such that A1 = 0 and (λI − A)−1 is a positive

operator for each λ > 0. (For instance, take A := d2

dx2 acting on the smooth functions with
compact support in (0, 1), plus the constants.) The problem is to find all extensions of A

which generate positive contraction (Co) semigroups on C(K). This problem is still open.
But it was in the context of this problem that Wentzell and generalized Wentzell boundary
conditions first arose. These conditions make sense in C(K) spaces. Our earlier paper [9]
illustrates this in K = [0, 1].

One of our main discoveries in the present paper is that, when one extends this theory
properly to an Lp setting, one must replace Lp(�, dx) by Lp(�, dµ) which is a “bigger
space”, incorporating a weighted Lp space on (a portion of) the boundary. The weight
function is important and plays a role in the dissipative calculation. Thus, for instance,
consider the heat equation

ut = uxx, x ∈ [0, 1],

with boundary conditions

uxx(j) + (−1)j+1βjux(j) + γju(j) = 0, j = 0, 1,

where β and γ are defined on {0, 1} with β(j) := βj > 0 and γ(j) := γj ≥ 0 for
j = 0, 1. Let

G :=
( ∂2

∂x2 0

− β ∂
∂n

−γ

)
(where ∂u(j)

∂n
= (−1)j+1 ∂u(j)

∂x
for j = 0, 1), on X2 := L2((0, 1), dx) × L2({0, 1}, η dS),

where η is any weight function defined in {0, 1} with η(j) = ηj for j = 0, 1 and dS is point
evaluation. For u ∈ C2[0, 1] we have

〈Gu, Ju〉 =
〈( ∂2

∂x2 0

−β ∂
∂n

−γ

) (
u

u|∂�
)

,

(
u

u|∂�
)〉

=
∫ 1

0
u′′u dx − β1u

′(1)u(1)η1

+βou
′(0)u(0)ηo − γ1|u(1)|2η1 − γo|u(0)|2ηo.

But∫ 1

0
u′′u dx = −

∫ 1

0
|u′|2 dx + u′(1)u(1) − u′(0)u(0).

Thus,

Re 〈Gu, Ju〉 ≤ Re {u′(1)u(1)[1 − β1η1] + u′(0)u(0)[−1 + βoηo]},
which is clearly nonpositive if βj = 1

ηj
, but not necessarily in general.
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For example, consider

u(x) := x4

4
.

Clearly u = u′ = u′′ = 0 at x = 0, and |u′(x)|2 = x6. Then, if we choose η ≡ 1, β(1) = 1
10

and γ(1) = 2
5 , we have

〈Gu, Ju〉 = −1

7
+ 1

4
(1 − β1) − γ1

16

= −1

7
+ 9

40
− 1

40

= 2

35
> 0.

Hence, G cannot be dissipative on L2((0, 1), dx) × L2({0, 1}, dS).
Other authors have worked in spaces similar to Xp. It is a natural space for studying

inhomogeneous elliptic boundary value problems. During the Conference on Evolution
Equations held at Levico (Italy) in November 2000, the paper of H. Amann and J. Escher
[3], which contains some interesting results, was brought to our attention. They worked in
Lp(�, dx) × Lp(�, dS) where � is a portion of the boundary. Their paper is very general
and technically complicated; it deals with a general class of inhomogeneous parabolic
initial – boundary value problems with dynamic boundary conditions. There is some overlap
between this paper and [3], but we have chosen to make our paper selfcontained because on
the parts of overlap, our proofs are much simpler, and we cover results that are not covered
by [3]. For example, they assume throughout uniform ellipticity, so that in their work the
coefficient a cannot vanish at any boundary point. Nevertheless the ideas of this paper and
[3] can be combined to get extensions of the union of the two papers’ results. Finally the
results of this paper can be extended to situations involving nonlinear boundary conditions
(see [13]).
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