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Abstract
The subterranean environments of the Caatinga drylands (Brazilian biome) host a diverse array of aquatic systems and diver-
sity, comprising both lentic and lotic ecosystems. Species diversity in these environmnts has been overlooked and remains 
poorly understood, especially regarding zooplankton. We studied the species richness and composition of zooplankton living 
in groundwater of the Caatinga drylands and explored how they vary in relation to habitat type (lentic and lotic) by testing 
two hypotheses: (1) species richness, gamma diversity, and zooplankton density are higher in lentic environments and (2) 
zooplankton species composition differs between habitat types. We sampled 12 lentic and lotic groundwater environments 
quarterly for 2 years, and identified 100 species of zooplankton in groundwater environments, including testate amoebae 
(50 species), Rotifera (25 species), Copepoda (16 species), and Cladocera (9 species). Rotifer species richness and copepod 
density differed between lentic and lotic habitats, as did zooplankton composition. Additionally, each habitat was found to 
harbor distinct indicator species based on their ecology and morphological characteristics. These findings contribute to cur-
rent understanding of groundwater biodiversity and ecology, providing support for freshwater and speleological management 
and conservation programs.
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Introduction

Hydrological subterranean environments are primarily influ-
enced by precipitation and surface watercourses, which infil-
trate the underground system via gravity through small pores 
and fractures, forming complex pathways known as epikarst 
(Ford and Williams 2007; Bonacci et al. 2009; Audra and 
Palmer 2011; Culver and Pipan 2019). These flowing waters 
can penetrate the phreatic zone (i.e., saturated zone), either 
fully or partially replenishing subterranean water bodies. 
Such bodies may also originate from phreatic conduits reg-
ulated by elevation or pressure differentials (Gibert et al. 
1994; Williams 2008; White 2019; Audra and Palmer 2011; 
Culver and Pipan 2019). Within caves, a variety of aquatic 
habitats, including those with lentic (e.g., lakes and pools) 
and lotic (e.g., rivers) features, are formed under the influ-
ence of both saturated and/or unsaturated zones (Bonacci 
et al. 2009; Souza-Silva et al. 2012; Pipan et al. 2020). The 
vadose zone (i.e., region from land surface to the regional 
groundwater table) hosts formations such as epikarst struc-
tures, percolating water, and drip pools. Transitioning to the 
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epiphreatic zone, cave streams characterized by riffles and 
pools become prominent. Ultimately, in the phreatic zone, 
the prevailing feature is the presence of lakes (Bonacci et al. 
2009; Robertson et al. 2023). Springs and sinks, which are 
considered to be ecotones between surface and subsurface 
waters, also serve as conduits for accessing groundwater, 
with a biotic composition that is usually distinct from sur-
face and subterranean habitats (Culver and Pipan 2019).

Subterranean environments are typically aphotic, with 
the exception of areas near cave entrances, lacking photo-
autotrophic primary producers and potentially harboring 
chemoautotrophic organisms (Sarbu et al. 1996; Ferreira 
et al. 2007). Consequently, the majority of organic matter in 
these environments originates from external sources, such as 
precipitation, percolating water, transportation by surface-
dwelling animals, or the input of detritus (e.g., feces and 
carcasses) (Gibert et al. 1994; Trajano 2000; Ferreira et al. 
2007; Bento et al. 2016; Saccò et al. 2022a). Roots also serve 
as important habitats and food resources for sustaining sub-
terranean fauna in aquatic and terrestrial habitats (Jasinska 
et al. 1996; Saccò et al. 2022b). Despite being less common, 
subterranean habitats can be nutrient-rich environments 
capable of supporting substantial populations of organisms, 
particularly in tropical regions (Romero 2012).

The structure of cave food webs heavily relies on the 
input of organic matter from surface ecosystems (Simon and 
Benfield 2001; Simon et al. 2007; Venarsky and Huntsman 
2018). The rate at which this organic matter is supplied plays 
a crucial role in shaping cave communities. Caves main-
taining strong connections to surface ecosystems receive 
significant inputs of coarse particulate organic matter ( 
Souza-Silva et al. 2012; Venarsky et al. 2018), influencing 
the composition of invertebrate communities, and favor-
ing the presence of distinct functional and taxonomic taxa. 
However, in scenarios where the input of coarse particulate 
organic matter is absent, the energy base for higher trophic 
levels is established by heterotrophic microbial biofilms that 
colonize inorganic substrates (Venarsky et al. 2023). These 
biofilms are sustained by dissolved organic matter (Simon 
and Benfield 2001), or by chemolithoautotrophic biofilms 
(Engel 2019).

Zooplankton are renowned for their high diversity in 
aquatic ecosystems and assume a pivotal role as a food 
web link, significantly contributing to material and energy 
cycling (Litchman et al. 2013). They are considered to 
be a reliable indicator of water quality and environmen-
tal shifts, as both biotic and abiotic factors can influence 
the structure and composition of zooplankton communi-
ties (Deharveng and Bedos 2019; Shen and Liu 2021). 
Groundwater zooplankton have been extensively studied 
in Europe, Asia, and Oceania with research predominantly 
focused on the taxonomy and ecology of stygobiotic zoo-
plankton, especially Copepoda (De Laurentiis et al. 1999; 

Pipan and Culver 2007; Galassi et al. 2009a, b; Karavonik 
et al. 2015, Hose et al. 2016, Cavite et al. 2017; Culver 
and Pipan 2019; Bozkurt 2022; Guo et al. 2022). However, 
in Brazil, understanding of the diversity and ecology of 
subterranean zooplankton remains relatively limited, with 
only a handful of studies conducted thus far (e.g., Simões 
et al. 2013; Souza-Silva et al. 2017). In this context, the 
present study represents a pioneering effort in the Caatinga 
dryland biome domain, Northeast Brazil.

Lentic and lotic habitats exhibit inherently distinct 
physical, chemical, and biological attributes (Diniz et al. 
2020, Eramma et al. 2023; Park et al. 2023). Lentic envi-
ronments are characterized by low water flow rates, pro-
longed water retention periods, elevated nutrient concen-
trations, and heightened decomposition activity within 
the sediment bed and at the bottom of the water column. 
Conversely, lotic environments are typified by continuous 
water flow, shorter and variable water retention periods 
influenced by rainfall, and typically lower nutrient levels 
(Eramma et al. 2023). These unique conditions give rise 
to specific patterns of habitat functionality and resource 
availability, requiring species adaptability and shaping 
zooplankton communities to comprise species adapted to 
either lentic or lotic environments (Shen and Liu 2021; 
Eramma et al. 2023). Lentic environments, marked by 
higher food availability, offer favorable conditions for the 
development, reproduction, and growth of zooplankton 
populations.

Despite the establishment of conservation units aimed at 
safeguarding the speleological heritage within the Caatinga 
biome, a significant number of caves remain devoid of envi-
ronmental protection measures, rendering them vulnerable to 
anthropogenic impacts, such as lime extraction, rock drilling 
for oil extraction, and tourism (Ferreira et al. 2010; Bento 
et al. 2021). Understanding the diversity of zooplankton in 
subterranean environments is crucial for the conservation of 
groundwater in the Caatinga drylands, alongside other taxa, 
particularly those that have been understudied. This study 
aims to access the structure and composition of the zoo-
plankton community in different subterranean environments 
of the Caatinga drylands. We compared different aspects of 
both total zooplankton diversity and that of the main four 
zooplankton groups (species richness, gamma diversity, 
composition, and density) between lentic and lotic subter-
ranean environments, assuming that: (1) higher species rich-
ness, gamma diversity, and density of zooplankton are found 
in lentic environments due to the greater resource availabil-
ity, more stable hydrological conditions, and reduced organ-
ism transport by water currents; and (2) distinct zooplankton 
species compositions exist between types of lentic and lotic 
habitats. In this regard, our study will shed new light on the 
ecological aspects of the zooplankton community in Caat-
inga groundwater ecosystems, providing valuable insights 
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for discussions concerning biodiversity hotspots and priority 
conservation areas in the region.

Materials and methods

Study area

We conducted our study in seven lentic and five lotic sub-
terranean aquatic environments situated within the Jandaíra 
Formation (municipalities of Felipe Guerra, Baraúna, Mos-
soró, and Governador Dix-Sept Rosado), located in the semi-
arid region of Rio Grande do Norte State, Brazil (Fig. 1; 
Table 1). These environments encompass a variety of lentic 
and lotic aquatic systems, including pools, lakes, springs, 
rivers, and streams, which receive water inputs from phre-
atic and/or epikarst sources. Rio Grande do Norte ranks as 
the fourth state in Brazil in terms of cave abundance, with 
a total of 1372 cavities, predominantly within the Jandaíra 
Formation (Bento et al. 2017; CANIE/CECAV 2023). The 

semiarid region is characterized by elevated air temperatures 
(20–35 °C) and low precipitation levels (300–1000 mm/
year), with rainfall concentrated within a few months (Janu-
ary– May) (Sampaio 1995; Araújo and Medeiros 2013; De 
Jesus and Santana 2017; Silva et al. 2018). Geographically, 
the region lies within the boundaries of the Caatinga biome, 
a seasonal dry forest dominated by small-leaved deciduous 
trees, succulents, and drought-resistant herbs (de Queiroz 
et al. 2017). The Jandaíra Formation constitutes the largest 
expanse of Phanerozoic carbonate outcrops in Brazil, giv-
ing rise to rocky plateaus, locally called as “lajedos”, which 
harbor the majority of limestone caves in the state of Rio 
Grande do Norte (CANIE/CECAV 2011; Bento et al. 2016). 

Field sampling and laboratory analysis

Samples were collected from lentic and lotic groundwater 
environments during the dry (October 2021 and December 
2022) and wet (July 2021 and May 2022) seasons. In the 
field, various limnological parameters were assessed using a 

Fig. 1  Distribution of the 12 sampled subterranean aquatic environ-
ments located in the semiarid region of Rio Grande do Norte, Brazil. 
a–f Photographs of subterranean environments: Poço Feio cave (a), 

Zé do Juvino cave (b), Crotes cave (c), Troglóbios cave (d), Olho 
d’água do Tetéu Spring (e), and Três Lagos cave (f)
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Horiba-U50 multiparameter water quality probe (HORIBA, 
Kyoto, Japan), including temperature (°C) pH, specific con-
ductivity (mS/cm), turbidity (nephelometric turbidity unit 
[NTU]), total dissolved solids (g/L), and salinity (ppt). Water 
samples were also collected for laboratory analysis of total 
phosphorus concentration (µg/L) (Valderrama 1981), total 
organic and inorganic carbon content (µg/L; Xylem Ana-
lytics analyzer; Xylem Analytics, Washington DC, USA), 
and total nitrogen content (µg/L; Xylem Analytics analyzer; 
Xylem Analytics). Sediment samples were also obtained 
for the determination of organic matter content (%) through 
loss by ignition, achieved by combusting the sediment in 
a muffle furnace at 550 °C, with the organic matter value 
calculated as the difference between the initial and post-
ignition weights.

Zooplankton samples were collected at the surface of 
groundwater environments using a 8-L graduated bucket 
and a conical plankton net (pore mesh size: 68 µm). Due to 
spatial heterogeneity among underground environments and 
challenges in accessing water, it was not feasible to sample 
an identical volume of water across all sites. Nevertheless, 
efforts were made to standardize the volume collected as 
much as possible. Water volumes ranged from 3 to 400 L 
(mean ± standard deviation: 105 ± 115 L) and from 0.28 
to 400 L (190 ± 159 L) in lentic and lotic environments, 
respectively. Subsequently, all samples were fixed with 4% 
formaldehyde buffered with calcium carbonate.

Zooplankton taxa (copepods, cladocerans, rotifers, and 
testate amoeba) were identified and quantified using an 
optical microscope, glass slides, and a Sedgewick-Rafter 
chamber for counting. Organisms were identified to the 
lowest taxonomic level possible based on specialized bib-
liography (e.g., Deflandre 1928, 1929; Gauthier-Lièvre and 
Thomas 1958, 1960; Voight and Koste 1978; Ogden and 
Hedley 1980; Reid 1985; Velho and Lansac-Tôha 1996; 
Elmoor-Loureiro 1997;  Rocha 1994; Rocha  & Botelho 

1998; Karaytug 1999; Silva 2003; Ueda and Reid 2003; 
Souza 2008; Neves 2011). A minimum of three subsamples 
of 2 ml each, captured using a Hensen–Stempell pipette, 
were counted from the concentrated sample until a minimum 
of 50 individuals was reached for each taxonomic group. 
Densities were standardized as the number of individuals 
per liter (ind./L).

Data analysis

A principal component analysis (PCA) was conducted to 
examine the ordination of environmental variables (tempera-
ture, pH, specific conductivity, turbidity, total dissolved sol-
ids, salinity, nutrients, and sediment organic matter) across 
habitat types (lentic vs. lotic). All abiotic data underwent 
Z-score standardization prior to analysis. To address mul-
ticollinearity among environmental variables, variance 
inflation factors (VIFs) were computed, and a threshold of 
3 was applied in the PCA. Additionally, differences in envi-
ronmental variables between lentic and lotic habitats were 
accessed using a permutational multivariate analysis of vari-
ance (PERMANOVA).

Sample-based rarefaction curves (Gotelli and Colwell 
2001) were constructed to compare the richness of total and 
main zooplankton groups (i.e., Copepoda, Cladocera, Rotif-
era, and testate amoebae) across lentic and lotic habitats. 
Those curves were employed to mitigate the influence of 
varying sample volumes on species richness. A Wilcoxon 
rank-sum test was used to test differences in density of 
total and main zooplankton groups between habitat types. 
Immature forms of copepods (nauplii and copepodites) were 
included in the density analysis.

PERMANOVA was employed to evaluate the differences 
in community composition, taking into consideration zoo-
plankton density (i.e., Bray-Cutis distance) and occurrence 
(i.e., presence/absence data, Jaccard distance) between lentic 

Table 1  Details on the subterranean aquatic environments sampled in the Caatinga of Rio Grande do Norte State, Brazil

Sampling site Site abbreviation Latitude (S) Longitude (W) Ecosystem type

Água Cave CAG 05°29′43.55″ 37°32′43.46″ Subterranean phreatic lake (lentic)
Crotes Cave CRO 05°33′37.92″ 37°39′30.89″ Subterranean epikarst lake (lentic)
Furna Feia Cave FFA 05°02′12.76″ 37°33′36.64″ Subterranean pond (phreatic/epikarst) (lentic)
Olho d’água do Cedro Cave ODC 05°12′01.13″ 37°46′34.45″ Subterranean phreatic lake (lentic)
Olho d’água da Furna Cave ODF 05°28′50.54″ 37°32′29.93″ Karstic spring (lotic)
Olho d’Água da Onça ODO 05°28′34.18″ 37°16′48.73″ Karstic spring (lotic)
Olho d’Água do Tetéu ODT 05°34′02.63″ 37°40′13.88″ Karstic spring (lotic)
Pedra Lisa Cave PDL 05°02′43.84″ 37°31′18.85″ Subterranean phreatic stream (lotic)
Poço Feio Cave PFE 05°29′15.68″ 37°33′33.46″ Subterranean phreatic stream (lotic)
Três Lagos Cave TLG 05°35′34.40″ 37°41′12.70″ Subterranean phreatic lake (lentic)
Troglóbios Cave TRO 05°33′24.26″ 37°39′40.57″ Subterranean phreatic lake (lentic)
Zé de Juvino Cave ZEJ 05°32′30.63″ 37°37′44.70″ Subterranean phreatic lake (lentic)
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and lotic habitats. This analysis was conducted with 999 
permutations. Dissimilarities in community composition 
between habitat types were visualized using a non-metric 
multi-dimensional scaling (NMDS) plot. To identify the key 
contributors to dissimilarities in community composition 
between habitats (Bray–Curtis distance), a similarity per-
centages (SIMPER) analysis was conducted. Furthermore, 
potential indicator species associated with specific habitats 
were identified using the Indicator Value (IndVal) approach 
for both density and occurrence data (Jaccard and Bray-Cutis 
distances).

All statistical analyses and graphs were performed using 
RStudio ® Core Team 2022), using the libraries “vegan” 
(Oksanen et al. 2022), “ggplot2” (Wickham 2016), “indcspe-
cies” (De Cáceres and Legendre 2009) and “usdm” (Naimi 
et al. 2014).

Results

Principal component analysis axis 1 (Dim1) ordered the 
sampled units based on temperature, specific conductivity, 
and total inorganic carbon, the three variables which made 
the highest contributions, explaining up to 33% of the data 
variability (Fig. 2). PCA axis 2 (Dim2) arranged the sampled 
units according to sediment organic matter, total nitrogen, 
and phosphorus, which accounted for 26% of the variation. 
There were significant differences in environmental vari-
ables between the lentic and lotic habitats (PERMANOVA 
F1,40 = 4.8; r2 = 0.11, p = 0.002). Lentic habitats exhibited 

higher mean values of total phosphorus and nitrogen, while 
lotic environments displayed higher mean values of tem-
perature, electric conductivity, and total inorganic carbon 
(Table 2).

A total of 100 zooplankton species were recorded in the 
subterranean environments of the Caatinga (Electronic Sup-
plementary Material S1). Testate amoebae accounted for 
nearly half of the zooplankton richness (50%) and density 
(45.7%), with the most abundant testate amoebae species 
being Cyclopyxis sp. (11%), Centropyxis aculeata (Ehren-
berg, 1838) (5.7%), and Galeripora sp. (3.5%). There were 

Fig. 2  Principal component 
analysis (PCA) of the envi-
ronmental variables studied in 
lentic and lotic subterranean 
environments of the Caatinga 
drylands. The strength of the 
contribution of environmental 
variables is indicated by the 
shade of gray of the arrows, 
as shown to right of the PCA 
under heading 'Contrib'. SC 
Specific conductivity (mS/
cm), SOM sediment organic 
matter in sediment (%), TEMP 
temperature (°C), TIC total 
inorganic carbon (mg/L), TN 
total nitrogen (mg/L), TP total 
phosphorus (µg/L), TUR  turbid-
ity (nephelometric turbidity unit 
[NTU])

Table 2  Environmental variables registered in lentic and lotic subter-
ranean environments of the Caatinga drylands

Values in table are presented as the mean ± standard deviation

Environmental variables Lentic Lotic

Temperature (ºC) 28.7 ± 1.8 31.2 ± 1.0
pH 7.1 ± 0.9 6.8 ± 0.8
Specific conductivity (mS/cm) 0.7 ± 0.3 1.0 ± 0.3
Turbidity (nephelometric turbidity 

unit [NTU])
14.2 ± 25.1 16.6 ± 37.1

Total dissolved solid (g/L) 0.4 ± 0.2 0.6 ± 0.2
Total phosphorous (µg/L) 117.6 ± 193.2 53.5 ± 15.7
Total carbon (mg/L) 24.2 ± 13.5 47.2 ± 30.5
Total inorganic carbon (mg/L) 24.8 ± 13.6 41.3 ± 17.6
Total organic carbon (mg/L) 1.4 ± 3.3 10.6 ± 26.9
Total nitrogen (mg/L) 16.2 ± 13.1 13.5 ± 6.3
Sediment organic matter (%) 7.0 ± 6.5 7.9 ± 6.9
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25 species of Rotifera recorded (25% of the zooplankton 
richness), contributing 14.5% to the zooplankton density. 
Rotifers of class Bdelloidea were the most abundant rotifer 
in the subterranean community (12.2%). A total of 16 spe-
cies of Copepoda were recorded (16% of the zooplankton 
richness), contributing 39.5% to the relative density of zoo-
plankton, including immature stages. Among the Copep-
oda, larval stages were predominant, constituting 33.2% 
of the zooplankton community and representing 84% of 
all copepods. Cyclopoids were the dominant group within 
Copepoda, comprising 99.5% of the group. Calanoida and 
Harpacticoida represented 0.3 and 0.2% of Copepoda den-
sity, respectively. The most abundant copepod species were 
Thermocyclops decipens (Kiefer, 1929) (1.6%) and Meso-
cyclops aspericornis (Daday, 1906) (1.3%). Nine species of 
Cladocera were noted (9%); Cladocera exhibited the lowest 
relative contribution to hypogean communities (0.3%), with 
Moina minuta Hansen (1899) (0.1%) being the most abun-
dant species.

A total of 85 taxa were observed in lentic habitats versus 
61 in lotic habitats (Table 3). The rarefaction curves showed 
that lentic environments contributed more to the overall rich-
ness and that Rotifera was the only group that differed in 
species richness across the habitats (Fig. 3c). However, the 
curves displayed overlapping standard deviations, suggest-
ing no significant disparities in gamma diversity between 
the habitats (Fig. 3a). In addition, as no curves reached 
an asymptote, there is a great potential for new records in 
both habitats with increasing sampling efforts. In terms 
of density, copepods and rotifers displayed higher density 
(W = 403.5, p = 0.004 and W = 357, p = 0.05, respectively) 
in lentic habitats (Fig. 4).

The PERMANOVA analysis revealed significant differ-
ences in zooplankton community structure (i.e., accessed 
by Bray-Cutis distance) between lentic and lotic habitats 
(pseudo-F1,45 = 2.16, p = 0.004), as well as in species compo-
sition (i.e., Jaccard distance) (pseudo-F1,45 = 2.10, p = 0.006) 
(Fig. 5). SIMPER analysis identified 13 pivotal zooplankton 
species contributing to dissimilarities between the habitats, 
accounting for 71% of the total dissimilarity. Bdelloidea 

and C. aculeata densities collectively accounted for 30% of 
the cumulative contribution for dissimilarities between the 
habitats (Table 4). 

In terms of zooplankton density, the IndVal analysis high-
lighted distinct species-specific associations with each habi-
tat. In lentic environments, the rotifer Bdelloidea (p = 0.03, 
indicator value = 0.60), the copepod Metacyclops cf. orae-
maris Rocha 1994 (p = 0.009, indicator value = 0.38), and 
the testate amoebae Bullinularia indica (Penard, 1907) 
(p = 0.03, indicator value = 0.35) were identified as sig-
nificant indicators. Conversely, in lotic environments, the 
analysis identified the testate amoebae C. acuelata (p = 0.04, 
indicator value = 0.51), Difflugia lacustris (Penard, 1899) 
(p = 0.01, indicator value = 0.29), and Centropyxis dis-
coides (Penard, 1890) (p = 0.009, indicator value = 0.24) as 
indicative species. Regarding zooplankton occurrence (i.e., 
presence/absence), IndVal indicated the copepod M. cf. 
oraemaris (p = 0.04, indicator value = 0.33) and the testate 
amoebae Galeripora sp. (p = 0.02, indicator value = 0.36) 
and B. indica (p = 0.01, indicator value = 0.35) as indicators 
for lentic habitats. For lotic habitats, the testate amoebae 
D. lacustris (p = 0.01, indicator value = 0.32), Difflugia sp2 
(p = 0.01, indicator value = 0.32), and C. discoides (p = 0.04, 
indicator value = 0.22) were significant indicators.

Discussion

In this study, we investigated different aspects of zooplank-
ton diversity (gamma diversity, species richness, species 
composition, and density) within subterranean ecosystems 
(springs, rivers, pools, and lakes) of the Caatinga domain in 
Brazil, focusing on variations between habitat types (lentic 
and lotic). We identified a total of 100 zooplankton species, 
with testate amoebae exhibiting the highest species richness 
and dominance. The observed number of zooplankton spe-
cies in Caatinga subterranean environments was comparable 
to that found in water wells from Turkey (51 spp. excluding 
testate amoebae; Bozkurt & Bozça 2019) and higher than 
that reported in various studies conducted in Asia (13 spp. 
[Cavite et al. 2017]; 20 spp. [Singh and Jatav 2017]; 62 spp. 
[Guo et al. 2022]), Central America (12 spp. [Hendus et al. 
2019]), and Central Brazil (36 spp. [Simões et al. 2013]). 
The higher species richness of zooplankton in Caatinga 
subterranean environments compared to other cave systems 
worldwide is a significant finding, as it reflects favorable 
climatic stability and resource availability in a semi-arid cli-
mate, which is a relatively understudied area (Culver et al. 
2021; Guo et al. 2022). Moreover, it underscores the sub-
stantial potential for biodiversity, given that the subterranean 
fauna of the Caatinga remains largely under-sampled, with 
limited knowledge of its biological diversity and environ-
mental dynamics (Bento et al. 2017, 2021). The richness 

Table 3  Gamma diversity and frequency of occurrence (%) of the 
zooplankton species classified according to main zooplankton groups 
in lentic and lotic subterranean environments of the Caatinga

Values in table are presented as the frequency (n) with the percentage 
in parentheses

Zooplankton group Lentic environment Lotic environment

Testate amoebae 46 (54.1%) 39 (63.9%)
Rotifera 23 (27.0%) 8 (13.1%)
Copepoda 12 (14.1%) 11 (18.0%)
Cladocera 4 (4.7%) 3 (4.9%)
Total 85 61
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observed in our study may also be attributed to the habitat 
heterogeneity that we explored (i.e., lakes, springs, streams, 
pools, and rivers), which fosters environmental and biolog-
ical diversity (Chaparro et al. 2015; Schuler et al. 2017). 
Our findings regarding copepods and rotifers align with 
our hypothesis, with copepods showing higher density and 
rotifers exhibiting greater richness in lentic environments. 
Zooplankton composition varied between habitat types, 
and indicator species reflected biological and ecological 

adaptation to specific environmental conditions in each habi-
tat. It is noteworthy that the distribution of the most diverse 
groups from our study (Protozoa, Rotifera, Copepoda, and 
Cladocera, respectively) differs from that observed in surface 
rivers and lakes (e.g., Lansac-Tôha et al. 2009), where Cla-
docera typically outnumber Copepoda due to the successful 
adaptation of copepods to subterranean environments.

Testate amoebae play a pivotal role in subterranean food 
webs as they feed on bacteria and organic compounds while 

Fig. 3  Sample-based rarefaction curve for zooplankton richness overall (total, a) and for testate amoebae (b), Rotifera (c), Copepoda (d), and 
Cladocera (e) in lentic and lotic ecosystems of subterranean environments of the Caatinga
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also serving as a food source for many other organisms 
(Mazei et al. 2012; Bakóvic et al. 2019). Most species of 
protozoans found in hypogean habitats are also commonly 
found in surface habitats and are transported by percolat-
ing and flowing water into the underground environment 
(Mazei et al. 2012; Bakóvic et al. 2019; Culver and Pipan 
2019). Therefore, the subterranean protozoan community 
primarily consists of eurybiont stygoxenes species, with no 
confirmed stygobiotic species (Mazei et al. 2012, Bakóvic 
et al. 2019, 2022). Nevertheless, the observed binary divi-
sion reproduction of testate amoebae in the Caatinga sub-
terranean environments suggests their independence from 
surface populations (Bakóvic et al. 2019).

Rotifers are recognized as opportunistic R-strategists, 
characterized by parthenogenetic reproduction and rapid 
population growth (Allan 1976; Matsumura-Tundisi 1999). 
They also exhibit a remarkable tolerance for unfavorable 
environments, including the ability to enter the dormancy 
stage and produce eggs resistant to desiccation (Allan 1976; 
Matsumura-Tundisi 1999; Maia-Barbosa 2014). However, 
the dominance of Copepoda over Rotifera in zooplankton 
density suggests a more stable environmental condition and 
lower trophic conditions of the water bodies (Nogueira 2001; 
Matsumura-Tundisi and Tundisi 2005; Neto et al. 2014). 
Rotifers play a crucial role in the food web, serving as inter-
mediaries for transferring energy from pico- and nanoplank-
ton to higher-level consumers, such as microzooplankton. 
Additionally, they contribute to the recycling of degraded 
organic compounds within the microbial web (Arndt 1993; 
Phan et al. 2021).

Copepods, particularly those of the order Cyclopoida, 
exhibited the second-highest density in our study, following 
testate amoebae. These microcrustaceans dominate espe-
cially within hyporheic and epikarst environments (Culver 
and Pipan 2019). Copepods consume microplankton (such as 
protozoans, algae, rotifers, bacteria, and microcrustaceans) 
and serve as food source for meio- and macrofauna. Addi-
tionally, they contribute to the decomposition of organic 
compounds by consuming biofilms and organic matter, 
facilitating nutrient exchange between hypogean and epigean 
ecosystems (Schmid-Araya and Schmid 2000; Benincà et al. 
2008; Galassi et al. 2009a; Neto et al. 2014).

The colonization success of copepods in groundwater can 
be attributed to pre-adaptations in the body plans of their 
ancestors. Stygobiotic species display high morphologi-
cal variation, often linked to heterochrony, which involves 
alterations in the development of ontogenetic characteris-
tics, such as the reduction of appendages and miniaturization 
(Galassi et al. 2009a). Until now, no stygobiotic copepod has 
been recorded in subterranean Caatinga habitats, but some 
individuals (herein classified as Microcylops sp1, Microcy-
clops sp2, Diacyclops sp. and Paracyclops sp1) exhibited 
some morphological traits that warrant further investiga-
tion. The Caatinga region holds significant potential for the 
discovery of stygobiotic species, as evidenced by the prior 
identification of 21 such species of Amphipoda, Isopoda 
and Platyhelminthes (Leal-Zanchet et al. 2014; Bento et al. 
2021). Among these, 13 species are considered to be oceanic 
relicts, having evolved from marine ancestors trapped in iso-
lated subterranean areas during events of ocean introgression 
and regression (Ferreira et al. 2010). Additionally, a novel 
cyclopoid, Paracyclops sp. nov., was discovered in a water 
spring and will be described in a future publication. Another 
interesting record on subterranean habitats of Caatinga is the 
cyclopoid Metacyclops cf. oraemaris, a species observed 
only in Atlantic Forest remnants in Southeast Brazil, includ-
ing in the entrance of a cave near the sea (Rocha 1994; Silva 
and Matsumara-Tundisi 2011).

The structure of the cyclopoid community (i.e., 99.5% of 
the copepods) was predominantly composed of larval and 
juvenile stages, including nauplii and copepodites, with a 
low density of adults. The high density of immature forms 
underscores the presence of favorable environmental condi-
tions for copepod reproduction and may also be linked to the 
extended life stages observed in resource-limited hypogean 
environments (Mulec and Oarga 2014; Kur et al. 2020). In 
some environments, ovigerous females were scarce, suggest-
ing an alternative breeding location apart from the surveyed 
water bodies (Brancelj 2002). However, due to the absence 
of sampling from the epikarst, definitive insights into the 
potential source of copepod populations remain elusive 
(Brancelj 2002; Pipan et al. 2010). The most frequent spe-
cies among copepods in this study, M. aspericornis and T. 

Fig. 4  Zooplankton density of total zooplankton and of main zoo-
plankton groups in lentic and lotic ecosystems of subterranean envi-
ronments of Caatinga
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decipiens, are common in the surface environments of the 
Caatinga (Cabral et al. 2020). Thermocyclops decipiens is 
a dominant species in the tropics and is highly prevalent in 
lentic eutrophic environments (Sampaio et al. 2002), and 
Mesocyclops aspericornis is also widely distributed and is 
known for its ecological adaptability (Reid and Saunders 
1986).

The Harpacticoida individuals were limited, and further 
identification at the species level is imperative to examine 
the potential presence of troglomorphic traits. This becomes 
particularly relevant as all individuals were retrieved from 

sites where prior studies have confirmed the existence of 
aquatic stygobiotic species (i.e., the CRO, ODO, ODT and 
PDL sites; see Fig. 1 and Table 1). The worm-shape body 
structure of harpacticoids are pre-adapted to benthic and 
interstitial lifestyle, making them the most abundant group 
among stygobiotic copepods (640 for harpacticoids and 
330 for cyclopoids on a global scale) (Galassi et al. 2009a; 
Culver and Pipan 2019). Calanoida copepods were nota-
bly scarce, being observed exclusively in two caves (ZEJ 
and TLG) and identified as a common surface species (i.e., 
Notodiaptomus iheringi). The scarcity of calanoids at our 

Fig. 5  Diagram illustrating non-
metric multidimensional scaling 
(NMDS) of the zooplankton 
density (ind./L) (a) and zoo-
plankton species composition 
(presence/absence data) (b) in 
lentic and lotic ecosystems of 
subterranean environments of 
the Caatinga
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study sites were likely due to their herbivorous feeding hab-
its (Rietzler et al. 2002) as the availability of microalgae is 
primarily restricted to cave entrances and drastically dimin-
ishes in response to reduced or absence of light (Ferreira 
et al. 2007; Culver and Pipan 2019).

Cladocera exhibited lower density in the subterranean 
environments of Caatinga. Although some stygobiotic 
cladocerans have been previously documented (Brancelj 
and Dumont 2007), the species identified in our study are 
also prevalent in the surface habitats of the region (Cabral 
et al. 2020), indicating that some species are introduced in 
groundwater from surface habitats. Cladocera sporadically 
occurs in groundwater environments, with approximately 
600 species documented worldwide, of which only 2% are 
classified as stygobiotic species (Dumont and Negrea 1996; 
Brancelj and Dumont 2007). However, Macrotrix laticornis 
and Ceriodaphnia cornuta (the ‘hairy’ one, which was not 
the case in this study) are classified as stygophiles. These 
species exhibit an ambivalent lifestyle and may engage in 
migrations between surface and subterranean environments 
(Dumont and Negrea 1996). Additionally, the benthic hab-
its and body morphology of Chydoridae (e.g., herein rep-
resented as Leydigia ipojucae, Anthalona verrucosa, and 
Coronatella monacantha) are compatible with hypogean 
habitats, allowing the organisms to survive and even repro-
duce in such environments (Brancelj and Sket 1990). Moi-
nidae cosmopolitan representatives (e.g., Moina minuta) are 
usually occasional or accidental in subterranean habitats 
(Brancelj and Sket 1990), likely transported to groundwater 
by percolating and flowing water.

Lentic and lotic groundwater environments exhibited 
distinct zooplankton communities, primarily shaped by 
variations in environmental conditions. These distinctions 

were particularly influenced by water flow velocity, a 
robust environmental filter known to influence nutrient 
dynamics, resource availability, and microhabitat fea-
tures (Baranyi 2002; Larsen et al. 2019; Burgazzi et al. 
2021; Dai et al. 2020). Among the zooplankton groups, 
copepods were the sole category that displayed significant 
variability between these habitats. The habitat preference 
of cyclopoids for slow water flow, sediments of medium-
sized grains, nutrient and organic matter accumulation 
(Galassi et al. 2009a) aligns with the characteristics of 
lentic water bodies. These are characterized by longer 
water residence time, concentration of food resources, 
and greater environmental stability—all factors that also 
reduce the risk of organism displacement caused by water 
currents (Mwebaza-Ndawula et al. 2005; Galassi et al. 
2009a; Jones et al. 2017).

The indicator species selected for lentic habitats include 
the rotifer Bdelloidea, the copepod M. cf. oraemaris, and 
the protozoan B. indica. Bdelloids are known for their 
broad ecological range, inhabiting sediment particles in 
various aquatic and terrestrial environments (Pejler and 
Bērziņš 1993; Ricci and Caprioli 2005). In lentic habitats, 
there is a tendency to accumulate microbial bottom matters 
and organic compounds, which serve as a nutritional sup-
ply for bdelloids (Lukashanets and Maisak 2023). There-
fore, their significance in lentic groundwater habitats may 
stem from their adaptations to unfavorable and eutrophi-
cated environments (Ricci 1998; Ricci and Caprioli 2005; 
Almeida et  al. 2010; Andrade et  al. 2022). This was 
corroborated in our study when we observed that lentic 
environments were separated from lotic environments by 
higher concentrations of nutrients (nitrogen, phosphorus, 
and carbon). Additionally, bdelloids are sensitive to water 

Table 4  List of zooplankton 
species selected in the similarity 
percentages (SIMPER) analysis 
performed based on density data 
in lentic and lotic subterranean 
environments of the Caatinga

For each species, respective cumulative contribution (Cum. cont.), average values (Av.), and p-value are 
shown for lentic and lotic habitats. Contribution cut-off was 70%
*Statistically significant difference at p ≤ 0.05

Taxa Cum. cont. (%) Av. Lentic Av. Lotic p

Bdelloidea 0.16 5.95 0.41 0.88
Centropyxis aculeata (Ehrenberg, 1838) 0.30 0.36 4.46 0.01*
Cyclopyxis sp. 0.41 4.76 1.41 0.84
Mesocyclops aspericornis (Daday, 1906) 0.45 0.61 0.11 0.67
Thermocyclops decipens (Kiefer, 1929) 0.49 0.69 0.21 0.30
Galeripora sp. 0.52 1.28 0.88 0.64
Cyclopyxis kahli Deflandre 1929 0.55 0.49 1.82 0.13
Plagiopyxis callida Penard, 1910 0.58 0.48 0.97 0.22
Centropyxis constricta (Ehrenberg, 1841) 0.61 0.16 1.20 0.04*
Bullinularia indica (Penard, 1907) 0.64 1.09 1.25 0.56
Cyclopyxis sp1 0.67 0.08 0.71 0.07
Difflugia sp. 0.69 0.42 0.36 0.34
Plationus patulus var. macracanthus (Daday, 1905) 0.71 0.60 0.00 0.67
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flow, with a decrease in species richness observed as flow 
rates increase (Ricci and Balsamo 2000).

The cyclopoid Metacyclops cf. oraemaris (still await-
ing species confirmation) remains relatively under-studied 
in terms of its ecology. However, the species has been 
exclusively collected within the Atlantic Forest domain, 
including in moss near the sea and in a dam (Rocha 1994; 
Silva and Matsumara-Tundisi 2011). The dorsal position of 
the species’ gonopore (i.e., in females) is consistent with 
life adaptation for reduced space, such as semiterrestrial, 
bromeliads, and groundwater habitats (Cuoc and Defaye 
2011). Furthermore, Metacyclops are recognized for their 
ability to thrive and establish dominance in ephemeral 
habitats (Perbiche-Neves et al. 2013). Such habitats are 
frequently encountered in subterranean habitats of Caat-
inga, where both lentic and lotic systems may undergo a 
drying process during the dry season.

The selection of testate amoebae for lentic and lotic 
habitats adheres to the criteria established by Velho et al. 
(2003). According to their classification, the morphologi-
cal characteristics of these organisms are adapted to the 
specific environment they inhabit, typically manifesting 
as spherical forms in lentic environments and adopting 
elongated or flattened shapes in lotic environments. Bul-
linularia indica, determined as an indicator for lentic 
environments, exhibits spherical morphology, whereas the 
flattened C. aculeata, C. discoides, Galeripora sp., and 
the elongated D. lacustris and Difflugia sp2 were selected 
for lotic habitats, whose morphologies are conducive to 
resisting water currents (Velho et al. 2003; Lansac-Tôha 
et al. 2014).

The groundwater ecosystem of Caatinga harbors a 
unique aquatic fauna, composed of endemic and stygo-
biotic species, including Brazil’s sole known ocean relict 
(Leal-Zanchet et al. 2014; Bento et al. 2021). However, the 
groundwater and subterranean environments face numer-
ous threats linked to anthropogenic activities and envi-
ronmental changes, such as pollution, land use change, 
over-extraction, mining, climate change, deforestation, and 
regulatory gaps (Fried 1975; Ferreira et al. 2010; Minder-
houd et al. 2017; Mammola et al. 2019, 2024; Bento et al. 
2021; Ferreira et al. 2022). These external pressures sub-
stantially modify environmental conditions and hydrologi-
cal connectivity, impacting the sensitive hypogean fauna 
(Boulton et al. 2023). Despite the existence of a conserva-
tion unit encompassing some caves in the Jandaíra Forma-
tion, most subterranean environments remain unprotected 
(Bento et al. 2021). Hence, the maim aim of this study was 
to draw attention to groundwater zooplankton diversity, 
with the goal of bridging knowledge gaps and providing 
valuable insights for conservation initiatives and the man-
agement of speleological and freshwater heritage in the 
Brazilian Caatinga.
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