RESEARCH ARTICLE

Aquatic Sciences

Horticultural land use efect on fsh assemblages in Neotropical lowland streams, Buenos Aires, Argentina

Juan Martín Paredes del Puerto¹ • Hernán Mugni¹ • Natalia Cappelletti² • Marina Arias¹ • Silvia Fanelli¹ • **Carlos Bonetto1 · Ariel Paracampo1**

Received: 26 September 2023 / Accepted: 3 April 2024 / Published online: 17 April 2024 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract

Agriculture is one of the main factors associated with global biodiversity loss. The present study assesses the impact of horticultural land use on water quality and fsh assemblage composition in lowland Pampean streams. Four samplings were conducted with seasonal frequency during 2018 and 2019 in three horticultural stream reaches (HSR) and three grassland reaches (GSR) with low anthropic intervention, two also located in a biosphere reserve area. Environmental parameters were determined, and water and sediment samples were taken for nutrient and pesticide analysis, respectively. Fish assemblages were sampled in two habitat types: open water (OW) and vegetated patches (VP). The concentration of soluble reactive phosphorus and the detection frequency and concentration of pesticides were signifcatively higher in HSR mainly attributed to the runoff events following application of fertilizers and pesticides to the surrounding crops. Specific richness was signifcantly higher in GSR for both OW and VP environments. Diversity and evenness in the VP were signifcantly higher in GSR, while abundance was signifcantly higher in HSR due to the dominance of the environmental pollution-tolerant taxa of the order Cyprinodontiformes. The multivariate analysis recorded a major contribution of the order Cyprinodontiformes in the HSR, while the GSR species of the order Characiformes, common in environments of low environmental impact, were better represented. Our study demonstrated water quality deterioration associated with horticultural land use resulting in a ruderal fsh community. On-going horticulture expansion is expected to cause further deterioration within the region, unless managerial practices are implemented.

Keywords Lotic ecosystems · Fish community · Biotic attributes · Agrochemicals · Water quality

Introduction

Ecosystem disturbances caused by human activity is one of the main drivers of biodiversity decline worldwide (Sala et al. [2000](#page-10-0); Albert et al. [2021\)](#page-8-0). Land use plays an important role in the ecological integrity of riverine ecosystems (Brauns et al. [2022\)](#page-8-1). Agriculture has been considered the major cause of water pollution (Davies-Colley et al. [2004\)](#page-9-0) and the main factor linked to loss of global biodiversity worldwide (Dolédec and Statzner [2010;](#page-9-1) Dudley and

² Grupo de Investigación en Geología Ambiental (GIGA, UNDAV, CONICET), Avellaneda, Argentina

Alexander [2017](#page-9-2)). It affects freshwater environments mainly through non-point sources (Monaghan et al. [2007](#page-10-1)), changing hydrological characteristics (Allan [2004\)](#page-8-2) and increasing sediments, nutrients and pesticide loads (Nessimian et al. [2008;](#page-10-2) Thomas et al. [2018;](#page-11-0) Cornejo et al. [2019;](#page-9-3) Harrison et al. [2019](#page-9-4)).

In Argentina, agriculture is the main productive activity; horticulture is developed in the peri-urban areas of large cities. The horticultural area around La Plata city, locally known as "Cinturón Hortícola Platense" (CHP), covers roughly 8600 ha, and crop production is developed 50% in open feld and 50% under cover (Baldini et al. [2022\)](#page-8-3). Greenhouse production is intensively managed; it allows several crops per year and requires large amounts of fertilizer and pesticide application. About 170 pesticide active ingredients are being used in the area (DP [2015](#page-9-5)).

Fish assemblages have been considered sensitive to changes in the environment (Walser and Bart [1999](#page-11-1); Teresa

 \boxtimes Ariel Paracampo arielp@ilpla.edu.ar

¹ Instituto de Limnología, Dr.-Raúl A. Ringuelet (ILPLA, CCT-La Plata CONICET, UNLP), CP 1900, Boulevard 120 n° 1437, La Plata, Argentina

and Casatti [2017](#page-11-2); Bertora et al. [2024\)](#page-8-4). The decline in their specifc richness and diversity due to human impact is well documented (Magurran and Phillip [2001;](#page-10-3) Helms et al. [2005\)](#page-9-6). The Neotropical ichthyofauna is regarded as the most diverse continental fauna in the world (Lévêque et al. [2007](#page-9-7); Albert et al. [2020](#page-8-5)), and recent reports have suggested that it is severely threatened by human activities (Castro and Polaz [2019](#page-9-8); Pelicice et al. [2021\)](#page-10-4).

Several studies have assessed the negative effects of urbanization (Cunico et al. [2011;](#page-9-9) Paracampo et al. [2020](#page-10-5)) and industrial (Araújo et al. 2009; Paredes del Puerto et al. [2021\)](#page-10-6) and cattle raising (Matono et al. [2013;](#page-10-7) Goss and Roper [2018\)](#page-9-10) on fish assemblages. In the USA the biotic integrity of fish assemblages in streams from watersheds with approximately 10% of agriculture in the bufer zone was poor (Fitzpatrick et al. [2001](#page-9-11)). Efert-Fanta et al. ([2019\)](#page-9-12) registered negative efects on biotic integrity in streams from watersheds with a high percentage of agriculture and low riparian forest fringe. By contrast, Wang et al. [\(1997\)](#page-11-3) reported good habitat quality and biotic integrity of streams in basins where agriculture was over 80%, attributed to environmental features that mitigate the impact of agriculture, such as the presence of high gradients and rocky substrates, and the absence of channelization. Zeni et al. ([2017](#page-11-4)) determined weak correlations between fsh community attributes and the environmental change caused by the land use transformation of pasture to sugar cane in Brazilian streams. The authors suggest further monitoring because they argue that the failure to fnd a correlation between land use change and the fsh assemblage attributes is related to a time lag of the impact. The aim of the present study was, therefore, to evaluate the impact of horticultural land use on the water quality, taxonomic structure, and composition of fsh assemblages in Pampean lowland streams.

Material and Methods

Study area

The studied streams run roughly parallel through the Pampas plain to end in the Río de la Plata Estuary. The climate is mild and humid, with average monthly temperatures ranging from 10 °C in winter to 22 °C in summer. Mean annual rainfall is 1060 mm with small seasonal variations (Hurtado et al. [2006\)](#page-9-13). The landscape is grassland with small patches of forest. The Pampa plain has a remarkably low slope $\left($ < 1%) (Hurtado et al. [2006\)](#page-9-13) and, therefore, the streams are shallow, with silty bottom sediments and abundant macrophytes and riparian vegetation (Giorgi et al. [2005\)](#page-9-14). Water fow does not present variations associated with the seasonality. Changes in the flow occur after heavy rains where flood peaks occur or during periods of exceptional drought where the water level may decrease signifcantly (Paredes del Puerto et al. [2024](#page-10-8); Rodrigues Capítulo et al. [2010\)](#page-10-9).

Six wadeable stream reaches were sampled seasonally in winter and spring 2018 and summer and autumn 2019. Three are located along the Sauce stream, running through the CHP, hereafter referred to as horticultural stream reaches (HSR): H1, H2 and H3 (Fig. [1](#page-1-0)). The other three are located

Fig. 1 Study sites in Pampean streams, Argentina. H1–H3: horticultural sites in Sauce stream. G1–G3: grassland sites. G1: Chubichaminí stream, G2: Morales stream and G3: Destino stream

in streams running through less impacted grassland areas, hereafter referred to as grassland stream reaches (GSR): G1, G2 and G3, respectively (Fig. [1](#page-1-0)). The G1 site is located in the Chubichaminí stream and run through livestock felds with low cattle density. The G2 and G3 sampling sites are in the Morales and Destino streams, running through the Parque Costero Sur, UNESCO Biosphere Reserve (Athor [2009](#page-8-6)).

Environmental variables

At each sampling site, environmental parameters were determined in situ: dissolved oxygen and water temperature with (YSI 51B), pH (Hanna checker), conductivity (Hanna instruments 8733), transparency (Secchi disc) and stream depth with a gage rod. Water samples were taken for nutrient analysis, transported to the laboratory on ice and fltered through 1.2-µm pore size Whatman GF/C flters. The nutrients were then measured in the fltrate: the soluble reactive phosphorus (SRP) was determined by a colorimetric reaction with ascorbic-acid–ammonium-molybdate; the nitrate was calculated by hydrazine reduction followed by diazotation, and the ammonium was quantifed by the indophenol-blue method (APHA [2012](#page-8-7)). Suspended solids were estimated as the weight diference of the flter before and after fltration (APHA [2012](#page-8-7)).

At each sampling site, macrophyte community composition was determined following Cabrera and Zardini ([1993\)](#page-8-8) and classified according to their life form according to Messetta et al. [\(2023\)](#page-10-10). In the surveys carried out in spring 2018 and summer and autumn 2019, sediment samples for pesticide determinations were taken in each sampling site from the top two centimeters with a stainless-steel scoop, placed in glass vessels and transported to the laboratory on ice. The samples were extracted following You et al. ([2004\)](#page-11-5) with a mixture of acetone and methylene chloride. A cleanup procedure was carried out using Florisil solid-phaseextraction cartridges. Chlorpyrifos, endosulfan, permethrin, λ-cyhalothrin, cypermethrin and deltamethrin were quantifed by gas chromatography (HP 6890) using 30 m-length HP1 columns and equipped with electron capture detector. Two microliters were injected on a splitless mode (290 °C) and detector was kept at 290 °C. The oven temperature program was: start at 190 °C, followed by an increase of 10 °C/ min up to 260 °C (13 min), then 10 °C/min up to 290 °C (7 min). Quantifcation was performed using pure standard pesticides (AccuStandard; 4-point calibration curve) and tetrachloro m-xylene (Ultra Scientifc) as internal standard. The detection limits in dry sediment ranged between 0.35 ng/g for chlorpyrifos and endosulfan, and 1.0–3.0 ng/g for pyrethroids. Procedural and instrumental blanks (one for every batch of twelve samples) were below the detection limits.

Pesticide concentrations below the detection levels were treated as half the detection limits for statistical analysis.

Fish assemblages

Fish were collected in two types of habitats using diferent fshing gears. In open water (OW) environments, fsh were sampled with a sei8ne net with a bag (width 15 m, height 1.1 m and mesh size 10 mm between opposite knots; bag width 2 m and mesh size 5 mm between opposite knots) along a 30 m stretch of stream previously isolated with a block net (width 20 m, height 1.1 m and mesh size 10×5 mm). Two people hauled the seine net upstream toward the block net, where both nets were recovered together.

Fish were also collected in vegetated patches (VP). Pampean streams have dense and rich macrophyte communities that increase habitat heterogeneity in relation to a comparatively homogeneous sediment, supporting rich community of consumers that live in association with the vegetation (Giorgi et al. [2005](#page-9-14); Feijoó and Lombardo [2007;](#page-9-15) Cortelezzi et al. [2013\)](#page-9-16). Therefore, two fshing gears were used in the VP with aquatic macrophytes in a 30 m stretch upstream of the seine net-sampled sector: a hand frame $(0.6 \times 0.6 \text{ m}, \text{mesh})$ size 2×2 mm) and a square frame drop net (frame width 0.48 m and height, 0.48 m; mesh size 1×1 mm; rope 5 m) were used. Five fshing attempts were made with each type of gear. Sampling was carried out during base fow conditions to avoid undesired variations associated with the food flow effect (Junk and Wantzen [2004\)](#page-9-17). The treatment of the specimens was carried out in accordance with the requirement of the National Council of Scientifc and Technical Research of Argentina follow the guidelines of its "Comité de Etica" (OCR-RD-20050701–1047.pdf conicet.gov.ar) and its biological sampling guide ([https://proyectosinv.conicet.](https://proyectosinv.conicet.gov.ar/solicitud-colecta-cientifica/) [gov.ar/solicitud-colecta-cientifca/](https://proyectosinv.conicet.gov.ar/solicitud-colecta-cientifica/)). The scientifc collection permits were granted by the Subsecretaria de Agricultura, Ganadería y Pesca of the Province of Buenos Aires (exp. DI-2019–488-GDEBA-DAPAYCPMAGP).

Easily identifed species were weighed with an Ohaus 0.5-g–precision balance, measured and returned to the stream. All other specimens captured were euthanized with an overdose of anesthetic (benzocaine in excess), conserved with a solution of 10% formalin and later replaced by 70% ethanol for routine laboratory determination. Species were identifed following Azpelicueta and Braga ([1991\)](#page-8-9), Braga ([1993,](#page-8-10) [1994\)](#page-8-11), Aquino [\(1997](#page-8-12)), Reis and Pereira ([2000\)](#page-10-11), Casciotta et al. ([2005](#page-9-18)), Miquelarena and Menni [\(2005\)](#page-10-12), Říčan and Kullander [\(2008](#page-10-13)), Almirón et al. ([2015\)](#page-8-13) and Rosso et al. ([2018\)](#page-10-14). Updates in the taxonomy were reviewed following Mirande and Koerber ([2020\)](#page-10-15), Terán et al. [\(2020](#page-11-6)) and Fricke et al. ([2023\)](#page-9-19). Voucher specimens were stored at the ichthyological collection of the Museo Argentino de Ciencias

Naturales "Bernardino Rivadavia" (MACN-Ict), Buenos Aires, Argentina.

Data analysis

Species richness (S), abundance, biomass, Shannon–Wiener diversity index (H') and evenness (J') were calculated for each sampling site, separately for OW and VP environments, hereafter referred to as the biotic attributes. The values were calculated with the "Diverse" routine for univariate index treatment performed with Primer-E v6.0 (Clarke and Warwick [2001](#page-9-20)).

Differences in physicochemical variables and biotic attributes among the diferent land uses were assessed by t-test or its non-parametric equivalent Mann–Whitney test using Sigmaplot for windows v12. Signifcance levels were set to α = 0.05. To evaluate differences in the insecticide concentrations, Dixon's test for outliers and one-way ANOVA followed by Tukey HSD comparison were accomplished with XLSTAT software (version 2014.5.03). Signifcance levels were set to α = 0.1.

Multivariate analyses were performed to assess fish assemblages. Similarity matrices were obtained using the Bray–Curtis index based on previously $log 10(x + 1)$ transformed abundance; a Non-Metric Multidimensional Scaling (MDS) analysis was then performed. Signifcant diferences in land use factor were determined by one-way ANOSIM analysis. Finally, the specifc contribution to the similarity of each group was assessed by SIMPER analysis. Multivariate analysis was performed with Primer-E v6.0 (Clarke and Warwick [2001](#page-9-20)).

To avoid overestimation of the specifc richness, riverine species entering from the Río de la Plata Estuary (Fig. [1.](#page-1-0) Almirón et al. [2000;](#page-8-14) Paracampo et al. [2015,](#page-10-16) [2020\)](#page-10-5) were not considered in the analyses. Four species were determined as riverine: *Megaleporinus obtusidens, Astyanax lacustris*, *Trachelyopterus galeatus* and *Pimelodus maculatus*; they contributed only to 0.05% of the total abundance of the fsh assemblage and were excluded from all the analyses.

Results

Environmental parameters

The environmental variables measured in the streams are summarizes in Table [1](#page-3-0). The water was well oxygenated, and the pH was slightly alkaline, showing similar values in the two groups of streams sampled. By contrast, water transparency was signifcantly higher in HSR than in the GSR $(p<0.001)$. The maximum value was recorded in H1 sampling site (49 cm) and the minimum in G2, 8 cm. Suspended solids and water conductivity were signifcantly higher in GSR $(p < 0.001$ and $= 0.003$, respectively). The maximum value for suspended solids was registered at site G2 reaching 552 mg/l, while highest value for conductivity was recorded in G3 (910 µS/cm).

Soluble reactive phosphorus was signifcantly higher in HSR than in the GSR $(p < 0.001)$. The minimum SRP concentration was measured in G2 sampling site (14 µg/l), while the maximum (704 µg/l) was recorded in H1. Nitrate and ammonium concentrations showed no signifcant diferences among the two groups of stream reaches studied (Table [1](#page-3-0)).

All studied sites showed moderate macrophyte cover year-round (~30%). The rooted with foating leaves *Ludwigia peploides* was present in all sites. In HSR, *L. peploides* was dominant, together with the emergent *Gymnocoronis spilanthoides*. In GSR, *L. peploides* was followed by the submerged *Myriophyllum aquaticum*. Other submerged species, like *Potamogeton gayi* and *Ceratophyllum demersum*, were present in these sites, together with the foating *Azolla fliculoides*.

n. s. no signifcant

Signifcant diferences between groups are indicated by asterisks

Table 1 Mean, standard deviations and range values of environmental variables in grassland and horticultural Pampean streams, Buenos Aires province, Argentina

Insecticide analysis

Pesticide concentrations in sediment samples are summarized in Table [2.](#page-4-0) Among the eight pesticides analyzed, six were detected in HSR and four in GSR. Deltamethrin and λ-cyhalothrin were detected only in the HSR. Pesticide detection frequencies in samples from HSR (0.52 ± 0.29) , were significantly higher $(p=0.049)$ than those measured in GRS (0.20 ± 0.26) .

Concentrations of chlorpyrifos and endosulfan sulphate were significantly higher ($p = 0.089$ and $= 0.066$, respectively) in HSR (2.90 and 1.16 ng/g, respectively) than in GSR (0.54 and 0.26 ng/g, respectively). Total pyrethroids and total pesticide concentrations were signifcantly higher $(p = 0.024 \text{ and } = 0.041,$ respectively) in HSR (7.09 and 12.88 ng/g, respectively) than those determined in GSR (2.81 and 3.53 ng/g, respectively).

Chlorpyrifos and cypermethrin were the most abundant pesticides, contributing 9–16% and 33–41%, respectively, to total pesticide in both sampling areas. The maximum concentrations of the four pesticides detected in both areas, chlorpyrifos, endosulfan I, endosulfan sulphate and cypermethrin, were found in HSR (amounting to 11.88; 9.25; 3.50 ng/g and 12.60 ng/g, respectively), while the maximum concentrations measured in GSR showed a lower order of magnitude (amounting 0.73–1.71 ng/g).

Fish assemblages

A total of 25,843 fsh were registered corresponding to 33 species, 17 families and fve orders (Table S3). Characiformes was the order with the highest number of species in each land use, amounting to 15 species in GSR and 12 for HSR, representing 55.5% and 50% of the total, respectively. Twelve species of Characiformes were recorded in common in both land uses, while the species *Diapoma terofali*, *Hyphessobrycon meridionalis* and *Oligosarcus oligolepis* were recorded exclusively in GSR sampling sites.

The order Siluriformes and Cichliformes recorded the same number of species with 7 and 2, respectively, in both land uses. Three species of Cyprinodontiformes were recorded: *Austrolebias belotti* were exclusively found in grassland sampling sites, while *Cnesterodon*

Table 2 Concentration and detection frequency measured pesticides in sediment samples of grassland and horticultural Pampean streams, Buenos Aires province, Argentina

	Grassland				Horticultural				
	Detection frequency	$Mean \pm DS$ (ng/g)	Minimum (ng/g)	Maximum (ng/g)	Detection frequency	$Mean + DS$ (ng/g)	Minimum (ng/g)	Maximum p (ng/g)	
Chlorpyri- fos	0.67	$0.54 \pm 0.51*$	0.37	1.71	0.80	$2.90 \pm 3.89*$	0.66	11.88	$= 0.089$
Endosul- fan I	0.11	0.24 ± 0.18	< 0.35	0.73	0.80	1.73 ± 3.09	0.82	9.25	n. s.
Endosulfan n.d \rm{II}					n. d.				
Endosul- fan S	0.11	$0.26 \pm 0.24*$	< 0.35	0.92	0.40	$1.16 \pm 1.35*$	1.52	3.50	$= 0.066$
Total Endosul- fan		$0.49 + 0.29*$	< 0.35	1.27		$2.89 + 3.42*$	< 0.35	9.60	$= 0.052$
λ Cyhalo- thrin	n. d				0.30	1.68 ± 3.01	0.85	10.20	
Permethrin n. d					n. d.	$\overline{}$		$\overline{}$	
Cyperme- thrin	0.33	2.81 ± 2.20	2.95	7.59	0.70	4.76 ± 4.08	1.72	12.60	n. s.
Deltame- thrin	n. d				0.10	0.65 ± 0.47	< 1.00	1.97	
Total Pyre- throid		$2.81 \pm 2.20*$	1.70	9.24		$7.09 \pm 4.43*$	3.15	14.30	$= 0.024$
cide	Total pesti- $0.20 \pm 0.26^*$	$3.53 \pm 2.73*$	2.87	11.50	$0.52 \pm 0.29*$	$12.88 \pm 11.00*$	3.85	35.70	$= 0.049 = 0.041$

Detection limits in dry sediment ranged between 0.35 ng/g for chlorpyrifos and endosulfan, and 1.0–3.0 ng/g for pyrethroids

n. s. no signifcant

Signifcant diferences between groups are indicated by asterisks

decemmaculatus and *Phalloceros caudimaculatus* were recorded in both land use sampling sites.

Specifc richness was signifcantly higher in GSR than in HSR for both OW and VP, $p = 0.015$ and $p = 0.007$, respectively (Table [3](#page-5-0)). Maximum value in OW was recorded at site G3 with 23 species and for VP patches in G1 and G3 with 12 species, respectively. Minimum values were recorded in H3 with 6 species for OW and 3 species for VP in H1. Diversity and evenness in VP were signifcantly higher in GSR (Table [3\)](#page-5-0) than in HSR ($p < 0.001$) with the highest values recorded at sites G2 and G1 with values of 1.4 and 0.7, respectively, while the lowest values were recorded at H3 (0.1). By contrast, abundance in VP was signifcantly higher in HSR ($p < 0.001$; Table [3](#page-5-0)). Taxa of the order Cyprinodontiformes showed a clear dominance and contributed to more than 90% of the total capture in HSR (Fig. [2](#page-5-1)). Maximum value was recorded in H3 with 1505 individuals, while the minimum was recorded in G1, with 21 individuals.

NMDS analysis showed that sampling sites were segregated into two groups according to land use for both OW and VP (Fig. [3\)](#page-6-0). The result of the ANOSIM analysis revealed that the groupings obtained according to each land use were signifcantly diferent for both OW and VP, Global *R*=0.41; *p*<0.001 and Global *R*=0.43; *p*<0.001, respectively.

For OW, SIMPER analysis showed that 11 species contributed to the 89.9% of similarity in GSR (Table [4](#page-7-0)): four species of Characiformes, with *Cheirodon interruptus* with the largest contribution followed by *Pseudocorynopoma doriae*, *Psalidodon eigenmanniorum*, *Hyphessobrycon meridionalis* and Siluriformes *Corydoras longipinnis*, accumulating 56.7% of total contribution (Table [4\)](#page-7-0). By contrast, only 6 species contributed to 82.9% in HSR. *Cheirodon interruptus* and Cyprinodontiformes *Cnesterodon decemmaculatus* accumulated 51.9% of similarity.

For VP, fve species accumulated 79.2% of similarity in GSR, whereas in HSR, three species accounted for 95.6% of similarity (Table [4](#page-7-0)). The same frst three species in each

Fig. 2 Relative abundance registered in grassland and horticultural Pampean streams, Buenos Aires province, Argentina. H1–H3: horticultural sites in Sauce stream. G1–G3: grassland sites. G1: Chubichaminí stream, G2: Morales stream and G3: Destino stream

	Open water			Vegetated patches		
Fish assemblage attributes	Grassland	Horticultural	p	Grassland	Horticultural	p
Specific richness		$15.2 \pm 4.5 (7.0 - 23.0)^* 10.6 \pm 3.5 (6.0 - 17.0)^*$	$= 0.015$	8.1 ± 2.3 (5.0–12.0)*	5.3 ± 2.0 (3.0–8.0)*	$= 0.007$
Abundance	1363.1 ± 1927.6 $(68.0 - 6580.0)$	$444.9 + 216.6$ (181.0 ± 949.0)	n. s.	79.9 ± 50.9 (21.0- $205.0*$	460.3 ± 432.3 (73.0- $1505.0*$	< 0.001
Diversity	1.7 ± 0.4 (1.1–2.3)	1.4 ± 0.4 (0.8–2.3)	n. s.	1.4 ± 0.2 $(1.0 - 1.7)^*$	0.3 ± 0.2 (0.1–0.8)*	< 0.001
Evenness	0.6 ± 0.1 (0.5–0.9)	0.6 ± 0.1 (0.4–0.8)	n. s.	0.7 ± 0.1 $(0.5 - 0.9)^*$	0.2 ± 0.1 (0.01–0.4)*	< 0.001
Biomass (g)	1851.6 ± 2942.3 $(161.1 - 10.547.6)$	737.7 ± 701.4 (121.7- 2525.0	n. s.	33.0 ± 19.0 (11.0–76.5)	54.5 ± 40.2 (11.3–125.5) n. s.	

Table 3 Mean, standard deviations and range values of biotic attributes measured in grassland and horticultural Pampean streams, Buenos Aires province, Argentina

Signifcant diferences between groups are indicated by asterisks

n. s. no signifcant

Fig. 3 Ordination of sampling sites according to NMDS analysis in grassland and horticultural Pampean streams, Buenos Aires province, Argentina. H1–H3: horticultural sites in Sauce stream. G1-G3: grassland sites. G1: Chubichaminí stream, G2: Morales stream and G3: Destino stream. Open water (**a**), vegetated patches (**b**). *au* autumn, *wi* winter, *sp* spring, *su* summer

group were arranged in the same order of contribution with *C. decemmaculatus* followed by *C. interruptus* and *Characidium rachovii;* however*,* the magnitude of contribution was diferent in each group. In HSR *C. decemmaculatus* accumulated twice the percentage of similarity (63.0%) compared to that recorded at GSR (31.6%). Finally, Characiformes *P. doriae* and *H. meridionalis* completed the similarity recorded in GSR.

Discussion

Water quality was diferent in each land use; higher SRP concentrations in HSR suggest contributions from applications of fertilizer to the surrounding crops. The SRP concentrations measured in HSR in the present study were consistent with high concentrations (200–900 µg/l) reported by Mugni ([2008\)](#page-10-17), Solis et al. [\(2016,](#page-10-18) [2017](#page-11-7)), Arias et al. ([2020,](#page-8-15) [2023](#page-8-16)) and Cunha et al. [\(2020\)](#page-9-21) in stream draining agricultural basins in Argentina and Brazil. Higher pesticide detection frequencies and concentrations in sediments of HSR are mainly contributed by runoff events following application to the surrounding crops (Jergentz et al. [2005](#page-9-22); Mugni et al. [2012;](#page-10-19) Paracampo et al. [2012](#page-10-20)). Concentrations measured in the present study were consistent with higher concentrations reported in sediment samples from stream draining basins with agricultural and horticultural land use (Liess [1998;](#page-9-23) Arias et al. [2020](#page-8-15), [2023](#page-8-16); Mac Loughlin et al. [2022](#page-10-21)).

The occasional pesticide detection at low concentrations in GSR points the long-range atmospheric transport from the application sites (Weber et al. [2010\)](#page-11-8). Pesticides are also detected in protected areas, but detection frequencies and concentrations are lower than those in agricultural areas (Wolfram et al. [2023\)](#page-11-9). The pesticide concentration detected in the grassland streams might also be attributed to applications associated with cattle-pest control within the livestock areas surrounding the reserve. Cypermethrin is used for such a purpose (Ferré et al. [2018](#page-9-24)) to combat the horn-fy pest in cows (Oyarzún et al. [2008](#page-10-22)).

Horticultural stream reaches sustain lower specifc richness than the less impacted Pampean GSR. Our results agree with several studies reporting decreased fsh diversity and biotic integrity in agricultural basins in the USA (Walser and Bart [1999;](#page-11-1) Pyron and Lauer [2004](#page-10-23); Diana et al. [2006](#page-9-25)). These studies linked decreased diversity to increased water turbidity and substrate homogenization. Similarly, Casatti et al. [\(2015\)](#page-8-17) and Dala-Corte et al. ([2016\)](#page-9-26) reported lower richness and functional diversity in streams with high sedimentation in agricultural basins in Neotropical areas in Brazil. None of these papers measured pesticide concentrations in the streams studied. Unlike the quoted studies increased siltation was not the cause of decreased species richness in the present study because transparency was higher and suspended matter was lower in the horticultural stretches. It seems likely that increased greenhouse coverage decreased soil erosion loss in adjacent streams. Furthermore, irrigation channels provide streams with transparent water with low suspended matter. Fish assemblages in Pampean streams are adapted to high water turbidity and siltation because these characteristics are naturally found in regional streams (Giorgi et al. [2005](#page-9-14); Feijoó and Lombardo [2007](#page-9-15); Rodrigues Capítulo et al. [2010\)](#page-10-9). The life histories of local communities inhabiting sites with high proportions of fne sediments are adapted to siltation (Crowe and Hay [2004\)](#page-9-27).

Mugni et al. [\(2012\)](#page-10-19) and Paracampo et al. [\(2012\)](#page-10-20) simulated rain events in an experimental crop, measured pesticide **Table 4** Percentage and cumulative contribution to similarity for each species in grassland and horticultural Pampean streams, Buenos Aires province, Argentina

concentrations and assessed fish toxicity in runoff at different times following application of cypermethrin, endosulfan and chlorpyrifos. Runoff events were toxic to fish for the pesticides assayed, endosulfan persistence being remarkably long, several months since application. The decrease observed in species richness is consistent with the expected efect of repeated toxicity pulses on assemblages composed of species with diferent pesticide sensitivity.

Characiformes was the most important order in terms of richness and abundance in the grassland streams, as in most not contaminated Neotropical streams (Pinto and Araujo 2007; Gonino et al. [2020](#page-9-28)). Characiformes are water-column feeders sensitive to water quality degradation (Casatti et al. [2003;](#page-8-18) Pelicice and Agostinho [2006](#page-10-24)). In neotropical freshwater environments with abundant vegetation coverage, Characiformes may reach up to 88% of the total abundance and feed mainly on invertebrates, with low interspecifc overlapping (Pelicice et al. [2008\)](#page-10-25). In the present study the Cyprinodontiformes *Cnesterodon decemmaculatus* became dominant in HSR, contributions to similarity being much higher than those in GSR. *Cnesterodon decemmaculatus* is tolerant to environmental pollution, occasionally the only taxa present in heavily contaminated water bodies (Paracampo et al. [2020](#page-10-5); Paredes del Puerto et al. [2021\)](#page-10-6). The dominance of *C*. *decemmaculatus* was evident in lower diversity and evenness in the VP of HSR.

Solis et al. [\(2018](#page-11-10)) reported lower invertebrate densities in Pampeanstreams of agricultural basins. Arias et al. ([2020\)](#page-8-15) recorded lower taxonomic richness, density and absence of sensitive taxa to insecticide exposure in Pampean streams of horticultural basins, including the stream sampled in the present study. Thus, decreased trophic resources might have contributed to the impoverished fsh assemblage observed in the HSR of the present study. *C*. *decemmaculatus* in polluted environments feeds mostly on detritus (Quintans et al. [2009](#page-10-26)). Once the community was impoverished by sensitive species at low density, tolerant ones increased abundance due to the lower competence for resources available. The species of Characiformes *Cheirodon interruptus* and *Characidium rachovii* that contributed more to similarity in GSR than in HSR and the species that only contributed in GSR *Pseudocorynopoma doriae* and *Hyphessobrycon meridionalis* are commonly abundant in Pampean streams with low anthropogenic impact (Paracampo et al. [2020;](#page-10-5) Paredes del Puerto et al. [2021,](#page-10-6) [2022](#page-10-27)) and prey mainly on invertebrates (Fernandez et al. 2012; Brancolini et al. [2015\)](#page-8-19).

For the assemblages sampled in OW environments, only significant differences in specific richness were recorded. Nevertheless, multivariate analysis showed different groupings among land use and the diferent contribution of species to each group. Eleven species contributed to similarity in the GSR sampling sites while only five did so in HSR. In addition, the tolerant species *C. decemmaculatus* was last in the list of contributors in GSR, whereas it ranked second in HSR. An increase in dissimilarity seen in OW environments between the group of sampling sites may result from an environmental impact of the toxicity pulses caused by insecticides. Disturbances do not always translate into changes in diversity or biotic homogenization (Hawkins et al. [2015](#page-9-29)).

Conclusion

Our study showed deterioration of water quality associated with horticultural land use in Neotropical lowland streams. Pesticides were found in sediments of the horticultural basins. Detection frequencies and concentrations were signifcantly higher than those in grassland basins with lower impact. Deterioration of water quality resulted in lower richness of species in the horticultural streams. Lower diversity and evenness and higher abundance were evidenced in the vegetated stretches of horticultural basins.

The on-going horticulture expansion leads to further deterioration resulting in ruderal fsh community within the region, unless managerial practices are implemented. Monitoring surveys are needed to assess the effect on fish biodiversity and evaluate pollution mitigation practices.

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s00027-024-01076-9>.

Acknowledgements The authors thank the Argentine National Scientifc and Technical Research Council (CONICET) and the fnancial support of the Argentine National Agency for the Promotion of Science and Technology (ANPCyT; PICT 2016-0902). We are also grateful to Sergio Bogan, curator of the ichthyology collection, for receiving and storing the vouchers at the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET). This paper is Scientifc Contribution N° 1259 of the Institute of Limnology "Dr. Raúl A. Ringuelet" (ILPLA, CCT-La Plata CONICET, UNLP).

Author contributions J.M.P.d.P investigation, conceptualization, feld samplings, formal analysis, data curation, writing of the original draft, editing and visualization. H.M. and N.C. methodology, data processing, investigation, laboratory measurements, writing and editing. M.A. and S.F. feld samplings, laboratory measurements, editing. C.B. conceptualization writing, review and editing. A.P. designed the study, feld samplings, investigation, conceptualization, methodology, resources, data processing, writing of the original draft, writing and editing, funding acquisition, project administration and supervision. All authors read and approved the fnal manuscript.

Data availability The datasets generated during and/or analyzed in the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known competing fnancial interests or personal relationships that may have infuenced the work reported in this paper.

References

- Albert JS, Tagliacollo VA, Dagosta F (2020) Diversifcation of neotropical freshwater fshes. Annu Rev Ecol Evol Syst 51:27–53. <https://doi.org/10.1146/annurev-ecolsys-011620-031032>
- Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winnemiller KO, Ripple WJ (2021) Scientists' warning to humanity on the freshwater

biodiversity crisis. Ambio 50(1):85–94. [https://doi.org/10.1007/](https://doi.org/10.1007/s13280-020-01318-8) [s13280-020-01318-8](https://doi.org/10.1007/s13280-020-01318-8)

- Allan JD (2004) Landscapes and riverscapes: the infuence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257– 284.<https://doi.org/10.1146/annurev.ecolsys.35.120202.110122>
- Almirón AE, García ML, Menni RC, Protogino L, Solari LC (2000) Fish ecology of a seasonal lowland stream in temperate South America. Mar Freshw Res 51(3):265–274
- Almirón AE, Casciotta JR, Ciotek L, Giorgis P (2015) Guía de los peces del Parque Nacional Pre-Delta. Administración de Parque Nacionales, Buenos Aires
- APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC, p 1360
- Aquino AE (1997) Las especies de Hypoptomatinae (Pisces, Siluriformes, Loricariidae) en la Argentina. Revista De Ictiología 5:5–21
- Arias M, Scalise A, Solis M, Paracampo A, Indaco M, Fanelli S, Mugni H, Bonetto C (2020) Horticulture affects macroinvertebrate assemblages in adjacent streams (Buenos Aires, Argentina). Knowl Manag Aquat Ecosyst 421(5):1–10. [https://doi.org/](https://doi.org/10.1051/kmae/20190481) [10.1051/kmae/20190481](https://doi.org/10.1051/kmae/20190481)
- Arias M, Bonetto C, Fanelli SL, Scenna L, Miglioranza KSB, Mugni H (2023) Macroinvertebrate assemblages in lowland streams under horticultural impact (Buenos Aires, Argentina). Hydrobiologia 850:399–416. <https://doi.org/10.1007/s10750-022-05081-7>
- Athor J (2009) Parque Costero del Sur Naturaleza, conservación y patrimonio cultural. Fundación de Historia Natural "Félix de Azara", Buenos Aires, pp 562
- Azpelicueta MM, Braga L (1991) Los curimátidos en Argentina. Fauna De Agua Dulce De La República Argentina 40(1):1–53
- Baldini C, Marasas ME, Tittonell P, Drozd AA (2022) Urban, periurban and horticultural landscapes–Confict and sustainable planning in La Plata district, Argentina. Land Use Policy 117:106120. <https://doi.org/10.1016/j.landusepol.2022.106120>
- Bertora A, Grosman F, Sanzano P, Rosso JJ (2024) Impoverished fsh assemblages of temperate Neotropical streams respond to environmental degradation and support a sensitive Index of Biotic Integrity. Hydrobiologia 851(2):383–408
- Braga L (1993) Los Anostomidae (Pisces, Characiformes) de Argentina. In: Castellanos ZA (ed) Fauna de agua dulce de la República Argentina. Profadu, CONICET, La Plata, pp 5–45.
- Braga L (1994) Los Characidae de Argentina de las subfamilias Cynopotaminae y Ancestrorhynchinae. In: Castellanos ZA (ed) Fauna de Agua Dulce de la República Argentina. Profadu, CONICET, La Plata, pp 21–29.
- Brancolini F, Maroñas ME, Sendra ED (2015) Dieta de Pseudocorynopoma doriae (Characiformes: Characidae) en el arroyo de La Choza, Buenos Aires, Argentina. Biología Acuática 30:259– 655. [https://revistas.unlp.edu.ar/bacuatica/article/view/7726.](https://revistas.unlp.edu.ar/bacuatica/article/view/7726) Accessed March 2023
- Brauns M, Allen DC, Boëchat IG et al (2022) A global synthesis of human impacts on the multifunctionality of streams and rivers. Glob Change Biol 28:4783–4793. [https://doi.org/10.1111/gcb.](https://doi.org/10.1111/gcb.16210) [16210](https://doi.org/10.1111/gcb.16210)
- Cabrera AL, Zardini EM (1993) Manual de la Flora de los alrededores de Buenos Aires. ACME, segunda edición aumentada y actualizada, Buenos Aires, Argentina, pp 755
- Casatti L, Mendes HF, Ferreira KM (2003) Aquatic macrophytes as feeding site for small fshes in the Rosana Reservoir, Paranapanema River, Southeastern Brazil. Braz J Biol 63:213–222. <https://doi.org/10.1590/S1519-69842003000200006>
- Casatti L, Teresa FB, Zeni JDO, Ribeiro MD, Brejao GL, Ceneviva-Bastos M (2015) More of the same: high functional redundancy in stream fish assemblages from tropical agroecosystems.

Environ Manag 55:1300–1314. [https://doi.org/10.1007/](https://doi.org/10.1007/s00267-015-0461-9) [s00267-015-0461-9](https://doi.org/10.1007/s00267-015-0461-9)

- Casciotta JR, Almirón A, Bechara JA (2005) Peces del Iberá: hábitat y diversidad. Grafkar, La Plata.
- Castro R, Polaz CN (2019) Small-sized fish: the largest and most threatened portion of the megadiverse neotropical freshwater fish fauna. Biota Neotrop. [https://doi.org/10.1590/](https://doi.org/10.1590/1676-0611-BN-2018-0683) [1676-0611-BN-2018-0683](https://doi.org/10.1590/1676-0611-BN-2018-0683)
- Clarke KR, Warwick RM (2001) Change in Marine Communities. An Approach to Statistical Analysis and Interpretation. 2nd Edition, PRIMER-E, Ltd., Plymouth Marine Laboratory, Plymouth.
- Cornejo A, Tonin AM, Checa B, Tuñon AR, Pérez D et al (2019) Efects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14(8):e0220528. [https://doi.org/10.1371/journal.pone.](https://doi.org/10.1371/journal.pone.0220528) [0220528](https://doi.org/10.1371/journal.pone.0220528)
- Cortelezzi A, Sierra MV, Gómez N, Marinelli C, Rodrigues Capítulo A (2013) Macrophytes, epipelic bioflm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environ Monit Assess 185:5801–5815. [https://doi.](https://doi.org/10.1007/s10661-012-2985-2) [org/10.1007/s10661-012-2985-2](https://doi.org/10.1007/s10661-012-2985-2)
- Crowe A, Hay J (2004) Effects of fine sediments on river biota. Motueka Integrated Catchment Management Programme 951, pp 38
- Cunha DGF, Finkler NR, Gómez N, Cochero J, Donadelli JL, Saltarelli WA, Calijuri MDC, Miwa PAC, Tromboni F, Dodds WK, Gonçalves Boëchat L, Gücker B, Thomas SA (2020) Agriculture infuences ammonium and soluble reactive phosphorus retention in South American headwater streams. Ecohydrology 13:e2184. <https://doi.org/10.1002/eco.2184>
- Cunico AM, Allan JD, Agostinho AA (2011) Functional convergence of fsh assemblages in urban streams of Brazil and the United States. Ecol Ind 11(5):1354–1359. [https://doi.org/10.1016/j.ecoli](https://doi.org/10.1016/j.ecolind.2011.02.009) [nd.2011.02.009](https://doi.org/10.1016/j.ecolind.2011.02.009)
- Dala-Corte RB, Giam X, Olden JD, Becker FG, Guimarães TDF, Melo AS (2016) Revealing the pathways by which agricultural land-use afects stream fsh communities in South Brazilian grasslands. Freshw Biol 61(11):1921–1934. [https://doi.org/10.1111/fwb.](https://doi.org/10.1111/fwb.12825) [12825](https://doi.org/10.1111/fwb.12825)
- Davies-Colley RJ, Nagels JW, Smith RA, Young RG, Phillips CJ (2004) Water quality impact of a dairy cow herd crossing a stream. N Z J Mar Freshw Res 38(4):569–576. [https://doi.org/10.1080/](https://doi.org/10.1080/00288330.2004.9517262) [00288330.2004.9517262](https://doi.org/10.1080/00288330.2004.9517262)
- Diana M, Allan JD, Infante D (2006) The infuence of physical habitat and land use on stream fsh assemblages in southeastern Michigan. Am Fish Soc Sympos 48:359–374
- Dolédec S, Statzner B (2010) Responses of freshwater biota to human disturbances: contribution of J-NABS to developments in ecological integrity assessments. J N Am Benthol Soc 29(1):286–311. <https://doi.org/10.1899/08-090.1>
- DP 2015. Defensoría del Pueblo de la Provincia de Buenos Aires. Relevamiento de la utilización de Agroquímicos en la Provincia de Buenos Aires – Mapa de Situación e incidencias sobre la salud 497–532.
- Dudley N, Alexander S (2017) Agriculture and biodiversity: a review. Biodiversity 18(2–3):45–49. [https://doi.org/10.1080/14888386.](https://doi.org/10.1080/14888386.2017.1351892) [2017.1351892](https://doi.org/10.1080/14888386.2017.1351892)
- Efert-Fanta EL, Fischer RU, Wahl DH (2019) Efects of riparian forest buffers and agricultural land use on macroinvertebrate and fish community structure. Hydrobiologia 841:45–64. [https://doi.org/](https://doi.org/10.1007/s10750-019-04006-1) [10.1007/s10750-019-04006-1](https://doi.org/10.1007/s10750-019-04006-1)
- Feijoó CS, Lombardo RJ (2007) Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Res 41(7):1399–1410. <https://doi.org/10.1016/j.watres.2006.08.026>
- Fernández EM, Ferriz RA, Bentos CA, López GR (2012) Dieta y ecomorfología de la ictiofauna del arroyo Manantiales, provincia de

Buenos Aires, Argentina. Revista Del Museo Argentino De Ciencias Naturales 14(1):1–13

- Ferré DM, Quero AAM, Hernández AF, Hynes V, Tornello MJ, Lüders C, Gorla NBM (2018) Potential risks of dietary exposure to chlorpyrifos and cypermethrin from their use in fruit/vegetable crops and beef cattle productions. Environ Monit Assess 190(5):292. <https://doi.org/10.1007/s10661-018-6647-x>
- Fitzpatrick FA, Scudder BC, Lenz BN, Sullivan DJ (2001) Efects of multi-scale environmental characteristics on agricultural stream biota in eastern Wisconsin. J Am Water Resour Assoc 37(6):1489–1507. [https://doi.org/10.1111/j.1752-1688.2001.tb036](https://doi.org/10.1111/j.1752-1688.2001.tb03655.x) [55.x](https://doi.org/10.1111/j.1752-1688.2001.tb03655.x)
- Fricke R, Eschmeyer WN, Van der Laan R (2023) Eschmeyer's catalog of fshes: genera, species, references [Internet]. San Francisco: California Academy of Science. Available from: [http://researchar](http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) [chive.calacademy.org/research/ichthyology/catalog/fshcatmain.](http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) [asp..](http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) Accessed March 2023
- Giorgi A, Feijoó C, Tell G (2005) Primary producers in a Pampean stream: temporal variation and structuring role. Biodivers Conserv 14:1699–1718.<https://doi.org/10.1007/s10531-004-0694-z>
- Gonino G, Benedito E, Cionek VDM, Ferreira MT, Oliveira JM (2020) A fsh-based index of biotic integrity for neotropical rainforest sandy soil streams—Southern Brazil. Water 12(4):1215. [https://](https://doi.org/10.3390/w12041215) doi.org/10.3390/w12041215
- Goss LM, Roper BB (2018) The relationship between measures of annual livestock disturbance in Western riparian areas and stream conditions important to trout, salmon, and char. West N Am Nat 78(1):76–91. <https://doi.org/10.3398/064.078.0108>
- Harrison S, McAree C, Mulville W, Sullivan T (2019) The problem of agricultural 'difuse' pollution: getting to the point. Sci Total Environ 677:700–717. [https://doi.org/10.1016/j.scitotenv.2019.](https://doi.org/10.1016/j.scitotenv.2019.04.169) [04.169](https://doi.org/10.1016/j.scitotenv.2019.04.169)
- Hawkins CP, Mykrä H, Oksanen J, Vander Laan JJ (2015) Environmental disturbance can increase beta diversity of stream macroinvertebrate assemblages. Glob Ecol Biogeogr 24(4):483–494. [https://](https://doi.org/10.1111/geb.12254) doi.org/10.1111/geb.12254
- Helms BS, Feminella JW, Pan S (2005) Detection of biotic responses to urbanization using fsh assemblages from small streams of western Georgia, USA. Urban Ecosyst 8:39–57. [https://doi.org/10.1007/](https://doi.org/10.1007/s11252-005-1418-1) [s11252-005-1418-1](https://doi.org/10.1007/s11252-005-1418-1)
- Hurtado MA, Giménez JE, Cabral MG, da Silva M, Martínez OR, Camilión MC, Sánchez CA, Muntz D, Gebhard JA, Forte, LM, Bof LD, Crincoli A, Lucesoli H (2006) Análisis ambiental del partido de La Plata. Aportes al ordenamiento territorial. Buenos Aires: Consejo Federal de Inversiones pp 124
- Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61(6):817–826. [https://doi.org/10.1016/j.chemosphere.2005.04.](https://doi.org/10.1016/j.chemosphere.2005.04.036) [036](https://doi.org/10.1016/j.chemosphere.2005.04.036)
- Junk WJ, Wantzen KM (2004) The food pulse concept: new aspects, approaches and applications - an update. In: Welcomme RL, Petr T (eds) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, pp 117–149. Bangkok: Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific. [https://](https://hdl.handle.net/11858/00-001M-0000-000F-DB40-5) [hdl.handle.net/11858/00-001M-0000-000F-DB40-5..](https://hdl.handle.net/11858/00-001M-0000-000F-DB40-5) Accessed April 2023
- Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA (2007) Global diversity of fsh (Pisces) in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K (eds) Freshwater animal diversity assessment. Developments in hydrobiology, vol 198. Springer, Dordrecht, pp 545–567. [https://doi.org/10.1007/978-1-4020-8259-](https://doi.org/10.1007/978-1-4020-8259-7_53) [7_53](https://doi.org/10.1007/978-1-4020-8259-7_53)
- Liess M (1998) Significance of agricultural pesticides on stream macroinvertebrate communities. Internationale Vereinigung

Für Theoretische Und Angewandte Limnologie: Verhandlungen 26(3):1245–1249. [https://doi.org/10.1080/03680770.1995.11900](https://doi.org/10.1080/03680770.1995.11900921) [921](https://doi.org/10.1080/03680770.1995.11900921)

- Mac Loughlin TM, Peluso ML, Marino DJ (2022) Multiple pesticides occurrence, fate, and environmental risk assessment in a small horticultural stream of Argentina. Sci Total Environ 802:149893. <https://doi.org/10.1016/j.scitotenv.2021.149893>
- Magurran, AE, Phillip DA (2001) Implications of species loss in freshwater fsh assemblages. Ecography 24(6):645–650. [https://doi.org/](https://doi.org/10.1111/j.1600-0587.2001.tb00526.x) [10.1111/j.1600-0587.2001.tb00526.x](https://doi.org/10.1111/j.1600-0587.2001.tb00526.x)
- Matono P, Sousa D, Ilhéu M (2013) Efects of land use intensifcation on fish assemblages in Mediterranean climate streams. Environ Manag 52:1213–1229. [https://doi.org/10.1007/](https://doi.org/10.1007/s00267-013-0152-3) [s00267-013-0152-3](https://doi.org/10.1007/s00267-013-0152-3)
- Messetta ML, Anselmo JH, Gantes P, Pérez B, Feijoó CS (2023) Plantas acuáticas de arroyos pampeanos: una guía de campo: revalorizando nuestro ambiente. Luján, Libros del INEDES, pp 76
- Miquelarena AM, Menni RC (2005) *Astyanax tumbayaensis*, a new species from northwestern Argentina highlands (Characiformes: Characidae) with a key to the Argentinean species of the genus and comments on their distribution. Rev Suisse Zool 112:661– 676.<https://doi.org/10.5962/bhl.part.80319>
- Mirande JM, Koerber S, 2020 Checklist of the Freshwater Fishes of Argentina. 2nd edition (CLOFFAR-2). Ichthyological Contributions of Peces Criollos 72: 1–81. [https://usercontent.one/wp/peces](https://usercontent.one/wp/pecescriollos.de/wp-content/uploads/2020/12/ICP-72-Mirande-Koerber-2020-CLOFFAR-2.pdf) [criollos.de/wp-content/uploads/2020/12/ICP-72-Mirande-Koerb](https://usercontent.one/wp/pecescriollos.de/wp-content/uploads/2020/12/ICP-72-Mirande-Koerber-2020-CLOFFAR-2.pdf) [er-2020-CLOFFAR-2.pdf](https://usercontent.one/wp/pecescriollos.de/wp-content/uploads/2020/12/ICP-72-Mirande-Koerber-2020-CLOFFAR-2.pdf)
- Monaghan RM, Wilcock RJ, Smith LC, Tikkisetty B, Thorrold BS, Costall D (2007) Linkages between land management activities and water quality in an intensively farmed catchment in southern New Zealand. Agric Ecosyst Environ 118(1–4):211–222. [https://](https://doi.org/10.1016/j.agee.2006.05.016) doi.org/10.1016/j.agee.2006.05.016
- Mugni H, Demetrio P, Paracampo A, Pardi M, Bulus G, Bonetto C (2012) Toxicity persistence in runoff water and soil in experimental soybean plots following chlorpyrifos application. Bull Environ Contam Toxicol 89:208–212. [https://doi.org/10.1007/](https://doi.org/10.1007/s00128-012-0643-6) [s00128-012-0643-6](https://doi.org/10.1007/s00128-012-0643-6)
- Mugni HD (2008) Concentración de nutrientes y toxicidad de pesticidas en aguas superfciales de cuencas rurales. Tesis Doctoral. Universidad Nacional de La Plata. [https://doi.org/10.35537/](https://doi.org/10.35537/10915/4410) [10915/4410](https://doi.org/10.35537/10915/4410)
- Nessimian JL, Venticinque EM, Zuanon J, De Marco P, Gordo M, Fidelis L, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614:117–131. <https://doi.org/10.1007/s10750-008-9441-x>
- Oyarzún MP, Quiroz A, Birkett MA (2008) Insecticide resistance in the horn fy: alternative control strategies. Med Vet Entomol 22(3):188–202.<https://doi.org/10.1111/j.1365-2915.2008.00733.x>
- Paracampo A, Mugni HD, Demetrio PM, Pardi MH, Bulus GD, Asborno MD, Bonetto CA (2012) Toxicity persistence in runof and soil from experimental soybean plots following insecticide applications. J Environ Sci Health B 47(8):761–768
- Paracampo A, García I, Mugni H, Marrochi N, Carriquiriborde P, Bonetto C (2015) Fish assemblage of a Pampasic stream (Buenos Aires, Argentina): temporal variations and relationships with environmental variables. Stud Neotrop Fauna Environ 50:145–153. <https://doi.org/10.1080/01650521.2015.1065658>
- Paracampo A, Marrochi N, García I, Maiztegui T, Carriquiriborde P, Bonetto C, Mugni H (2020) Fish assemblages in Pampean streams (Buenos Aires, Argentina): relationship to abiotic and anthropic variables. An Acad Bras Ciênc 92(2):e20190476. <https://doi.org/10.1590/0001-3765202020190476>
- Paredes del Puerto JM, Paracampo AH, García ID, Maiztegui T, Garcia de Souza JR, Maroñas ME, Colautti DC (2021) Fish assemblages and water quality in Pampean streams (Argentina) along

an urbanization gradient. Hydrobiologia 848(19):4493–4510. <https://doi.org/10.1007/s10750-021-04657-z>

- Paredes del Puerto JM, García ID, Maiztegui T, Paracampo AH, Rodrigues Capítulo L, Garcia de Souza JR, Colautti DC (2022) Impacts of land use and hydrological alterations on water quality and fsh assemblage structure in headwater Pampean streams (Argentina). Aquat Sci 84(1):6. [https://doi.org/10.1007/](https://doi.org/10.1007/s00027-021-00836-1) [s00027-021-00836-1](https://doi.org/10.1007/s00027-021-00836-1)
- Paredes del Puerto JM, Sathicq MB, Altieri P, Nicolosi Gelis MM, Paracampo A, Pazos RS, Tarda AS, Gómez N, Colautti D (2024) Extreme drought conditions interact with urbanisation, afecting hydrological regimes and water quality in temperate lowland streams. Aquat Sci 86(1):13
- Pelicice FM, Agostinho AA (2006) Feeding ecology of fshes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecol Freshw Fish 15(1):10–19. [https://doi.org/10.1111/j.1600-0633.](https://doi.org/10.1111/j.1600-0633.2005.00121.x) [2005.00121.x](https://doi.org/10.1111/j.1600-0633.2005.00121.x)
- Pelicice FM, Thomaz SM, Agostinho AA (2008) Simple relationships to predict attributes of fsh assemblages in patches of submerged macrophytes. Neotrop Ichthyol 6(4):543–550. [https://doi.org/10.](https://doi.org/10.1590/S1679-62252008000400001) [1590/S1679-62252008000400001](https://doi.org/10.1590/S1679-62252008000400001)
- Pelicice FM, Bialetzki A, Camelier P, Carvalho FR, García-Berthou E, Pompeu PS, Teixeira de Mello FT, Pavanelli CS (2021) Human impacts and the loss of Neotropical freshwater fsh diversity. Neotrop Ichthyol 19(3):e210134. [https://doi.org/10.1590/](https://doi.org/10.1590/1982-0224-2021-0134) [1982-0224-2021-0134](https://doi.org/10.1590/1982-0224-2021-0134)
- Pinto BCT, Araújo FG (2007) Assessing of biotic integrity of the fsh community in a heavily impacted segment of a tropical river in Brazil. Braz Arch Biol Technol 50(3):489–502. [https://doi.org/10.](https://doi.org/10.1590/S1516-89132007000300015) [1590/S1516-89132007000300015](https://doi.org/10.1590/S1516-89132007000300015)
- Pyron M, Lauer TE (2004) Hydrological variation and fsh assemblage structure in the middle Wabash River. Hydrobiologia 525:203– 213.<https://doi.org/10.1023/B:HYDR.0000038867.28271.45>
- Quintans F, Scasso F, Loureiro M, Yafe A (2009) Diet of *Cnesterodon decemmaculatus* (Poeciliidae) and Jenynsia multidentata (Anablepidae) in a hypertrophic shallow lake of Uruguay. Iheringia Série Zoologia 99(1):99–105. [https://doi.org/10.1590/S0073-](https://doi.org/10.1590/S0073-47212009000100014) [47212009000100014](https://doi.org/10.1590/S0073-47212009000100014)
- Reis RE, Pereira EHL (2000) Three new species of the loricariid catfish genus Loricariichthys (Teleostei: Siluriformes) from southern South America. Copeia 4:1029–1047. [https://doi.org/10.1643/](https://doi.org/10.1643/0045-8511(2000)000[1029:TNSOTL]2.0.CO;2) [0045-8511\(2000\)000\[1029:TNSOTL\]2.0.CO;2](https://doi.org/10.1643/0045-8511(2000)000[1029:TNSOTL]2.0.CO;2)
- Říčan O, Kullander SO (2008) The Australoheros (Teleostei: Cichlidae) species of the Uruguay and Paraná River drainages. Zootaxa 1724:1–51.<https://doi.org/10.5281/zenodo.181173>
- Rodrigues Capítulo A, Gómez N, Giorgi A, Feijoó C (2010) Global changes in Pampean lowland streams (Argentina): implications for biodiversity and functioning. In: Stevenson RJ, Sabater S (eds) Global change and river ecosystems—implications for structure, function and ecosystem services. Developments in Hydrobiology 215. Springer, Dordrecht. [https://doi.org/10.1007/](https://doi.org/10.1007/978-94-007-0608-8_5) [978-94-007-0608-8_5](https://doi.org/10.1007/978-94-007-0608-8_5)
- Rosso JJ, González-Castro M, Bogan S, Cardoso YP, Mabragaña E, Delpiani M, Díaz Astarloa JM (2018) Integrative taxonomy reveals a new species of the Hoplias malabaricus species complex (Teleostei: Erythrinidae). Ichthyol Explor Freshw 28:235–252. <https://doi.org/10.23788/IEF-1076>
- Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfeld J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff L, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global Biodiversity Scenarios for the Year 2100. Science 287(5479):1770–1774. [https://](https://doi.org/10.1126/science.287.5459.1770) doi.org/10.1126/science.287.5459.1770

Sigmaplot version 12 for Windows (Systat Software, Inc., U.S.A.)

Solis M, Mugni H, Hunt L, Marrochi N, Fanelli S, Bonetto C (2016) Land use efect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina). Environ Monit Assess 188:1–12. <https://doi.org/10.1007/s10661-016-5545-3>

- Solis M, Mugni HD, Fanelli SL, Bonetto CA (2017) Effect of agrochemicals on macroinvertebrate assemblages in Pampasic streams, Buenos Aires, Argentina. Environ Earth Sci 76(180):1–13. [https://](https://doi.org/10.1007/s12665-017-6476-1) doi.org/10.1007/s12665-017-6476-1
- Solis M, Bonetto C, Marrochi N, Paracampo A, Mugni H (2018) Aquatic macroinvertebrate assemblages are afected by insecticide applications on the Argentine Pampas. Ecotoxicol Environ Saf 148:11–16.<https://doi.org/10.1016/j.ecoenv.2017.10.017>
- Terán GE, Benitez MF, Mirande JM (2020) Opening the Trojan horse: phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool J Linn Soc 190(4):1217–1234
- Teresa FB, Casatti L (2017) Trait-based metrics as bioindicators: responses of stream fsh assemblages to a gradient of environmental degradation. Ecol Ind 75:249–258
- Thomas KE, Lazor R, Chambers PA, Yates AG (2018) Land-use practices infuence nutrient concentrations of southwestern Ontario streams. Can Water Resour J/revue Canadienne Des Ressources Hydriques 43(1):2–17. [https://doi.org/10.1080/07011784.2017.](https://doi.org/10.1080/07011784.2017.1411211) [1411211](https://doi.org/10.1080/07011784.2017.1411211)
- Walser CA, Bart HL (1999) Infuence of agriculture on in-stream habitat and fsh community structure in Piedmont watersheds of the Chattahoochee River System. Ecol Freshw Fish 8(4):237–246. <https://doi.org/10.1111/j.1600-0633.1999.tb00075.x>
- Wang L, Lyons J, Kanehl P, Gatti R (1997) Infuences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22(6):6–12. [https://doi.org/10.1577/1548-](https://doi.org/10.1577/1548-8446(1997)022%3C0006:IOWLUO%3E2.0.CO;2) [8446\(1997\)022%3C0006:IOWLUO%3E2.0.CO;2](https://doi.org/10.1577/1548-8446(1997)022%3C0006:IOWLUO%3E2.0.CO;2)
- Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T (2010) Endosulfan, a global

pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408(15):2966–2984. [https://doi.](https://doi.org/10.1016/j.scitotenv.2009.10.077) [org/10.1016/j.scitotenv.2009.10.077](https://doi.org/10.1016/j.scitotenv.2009.10.077)

- Wolfram J, Bub S, Petschick LL, Schemmer A, Stehle S, Schulz R (2023) Pesticide occurrence in protected surface waters in nature conservation areas of Germany. Sci Total Environ 858(3):160074. <https://doi.org/10.1016/j.scitotenv.2022.160074>
- XLSTAT Version 2014.5.03 Copyright Addinsoft 1995–2014 (2014) XLSTAT and Addinsoft are Registered Trademarks of Addinsoft. [https://www.xlstat.com.](https://www.xlstat.com). Accessed March 2023
- You J, Weston D, Lydy MA (2004) Sonication extraction method for the analysis of pyrethroid, organophosphate, and organochlorine pesticides from sediment by gas chromatography with electroncapture detection. Arch Environ Contam Toxicol 47:141–147. <https://doi.org/10.1007/s00244-003-3165-8>
- Zeni JO, Hoeinghaus DJ, Casatti L (2017) Effects of pasture conversion to sugarcane for biofuel production on stream fsh assemblages in tropical agroecosystems. Freshw Biol 62(12):2026–2038. [https://](https://doi.org/10.1111/fwb.13047) doi.org/10.1111/fwb.13047

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.