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Abstract
Agriculture is one of the main factors associated with global biodiversity loss. The present study assesses the impact of 
horticultural land use on water quality and fish assemblage composition in lowland Pampean streams. Four samplings were 
conducted with seasonal frequency during 2018 and 2019 in three horticultural stream reaches (HSR) and three grassland 
reaches (GSR) with low anthropic intervention, two also located in a biosphere reserve area. Environmental parameters were 
determined, and water and sediment samples were taken for nutrient and pesticide analysis, respectively. Fish assemblages 
were sampled in two habitat types: open water (OW) and vegetated patches (VP). The concentration of soluble reactive 
phosphorus and the detection frequency and concentration of pesticides were significatively higher in HSR mainly attrib-
uted to the runoff events following application of fertilizers and pesticides to the surrounding crops. Specific richness was 
significantly higher in GSR for both OW and VP environments. Diversity and evenness in the VP were significantly higher 
in GSR, while abundance was significantly higher in HSR due to the dominance of the environmental pollution-tolerant taxa 
of the order Cyprinodontiformes. The multivariate analysis recorded a major contribution of the order Cyprinodontiformes 
in the HSR, while the GSR species of the order Characiformes, common in environments of low environmental impact, 
were better represented. Our study demonstrated water quality deterioration associated with horticultural land use resulting 
in a ruderal fish community. On-going horticulture expansion is expected to cause further deterioration within the region, 
unless managerial practices are implemented.

Keywords Lotic ecosystems · Fish community · Biotic attributes · Agrochemicals · Water quality

Introduction

Ecosystem disturbances caused by human activity is one 
of the main drivers of biodiversity decline worldwide (Sala 
et al. 2000; Albert et al. 2021). Land use plays an impor-
tant role in the ecological integrity of riverine ecosystems 
(Brauns et  al. 2022). Agriculture has been considered 
the major cause of water pollution (Davies-Colley et al. 
2004) and the main factor linked to loss of global biodi-
versity worldwide (Dolédec and Statzner 2010; Dudley and 

Alexander 2017). It affects freshwater environments mainly 
through non-point sources (Monaghan et al. 2007), chang-
ing hydrological characteristics (Allan 2004) and increasing 
sediments, nutrients and pesticide loads (Nessimian et al. 
2008; Thomas et al. 2018; Cornejo et al. 2019; Harrison 
et al. 2019).

In Argentina, agriculture is the main productive activity; 
horticulture is developed in the peri-urban areas of large 
cities. The horticultural area around La Plata city, locally 
known as “Cinturón Hortícola Platense” (CHP), covers 
roughly 8600 ha, and crop production is developed 50% in 
open field and 50% under cover (Baldini et al. 2022). Green-
house production is intensively managed; it allows several 
crops per year and requires large amounts of fertilizer and 
pesticide application. About 170 pesticide active ingredients 
are being used in the area (DP 2015).

Fish assemblages have been considered sensitive to 
changes in the environment (Walser and Bart 1999; Teresa 
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and Casatti 2017; Bertora et al. 2024). The decline in their 
specific richness and diversity due to human impact is well 
documented (Magurran and Phillip 2001; Helms et  al. 
2005). The Neotropical ichthyofauna is regarded as the most 
diverse continental fauna in the world (Lévêque et al. 2007; 
Albert et al. 2020), and recent reports have suggested that it 
is severely threatened by human activities (Castro and Polaz 
2019; Pelicice et al. 2021).

Several studies have assessed the negative effects of 
urbanization (Cunico et al. 2011; Paracampo et al. 2020) and 
industrial (Araújo et al. 2009; Paredes del Puerto et al. 2021) 
and cattle raising (Matono et al. 2013; Goss and Roper 2018) 
on fish assemblages. In the USA the biotic integrity of fish 
assemblages in streams from watersheds with approximately 
10% of agriculture in the buffer zone was poor (Fitzpatrick 
et al. 2001). Effert-Fanta et al. (2019) registered negative 
effects on biotic integrity in streams from watersheds with a 
high percentage of agriculture and low riparian forest fringe. 
By contrast, Wang et al. (1997) reported good habitat quality 
and biotic integrity of streams in basins where agriculture 
was over 80%, attributed to environmental features that miti-
gate the impact of agriculture, such as the presence of high 
gradients and rocky substrates, and the absence of chan-
nelization. Zeni et al. (2017) determined weak correlations 
between fish community attributes and the environmental 
change caused by the land use transformation of pasture to 
sugar cane in Brazilian streams. The authors suggest further 
monitoring because they argue that the failure to find a cor-
relation between land use change and the fish assemblage 
attributes is related to a time lag of the impact. The aim 

of the present study was, therefore, to evaluate the impact 
of horticultural land use on the water quality, taxonomic 
structure, and composition of fish assemblages in Pampean 
lowland streams.

Material and Methods

Study area

The studied streams run roughly parallel through the Pampas 
plain to end in the Río de la Plata Estuary. The climate is 
mild and humid, with average monthly temperatures rang-
ing from 10 °C in winter to 22 °C in summer. Mean annual 
rainfall is 1060 mm with small seasonal variations (Hurtado 
et al. 2006). The landscape is grassland with small patches of 
forest. The Pampa plain has a remarkably low slope (< 1%) 
(Hurtado et al. 2006) and, therefore, the streams are shallow, 
with silty bottom sediments and abundant macrophytes and 
riparian vegetation (Giorgi et al. 2005). Water flow does not 
present variations associated with the seasonality. Changes 
in the flow occur after heavy rains where flood peaks occur 
or during periods of exceptional drought where the water 
level may decrease significantly (Paredes del Puerto et al. 
2024; Rodrigues Capítulo et al. 2010).

Six wadeable stream reaches were sampled seasonally 
in winter and spring 2018 and summer and autumn 2019. 
Three are located along the Sauce stream, running through 
the CHP, hereafter referred to as horticultural stream reaches 
(HSR): H1, H2 and H3 (Fig. 1). The other three are located 

Fig. 1  Study sites in Pampean 
streams, Argentina. H1–H3: 
horticultural sites in Sauce 
stream. G1–G3: grassland sites. 
G1: Chubichaminí stream, G2: 
Morales stream and G3: Destino 
stream
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in streams running through less impacted grassland areas, 
hereafter referred to as grassland stream reaches (GSR): G1, 
G2 and G3, respectively (Fig. 1). The G1 site is located in 
the Chubichaminí stream and run through livestock fields 
with low cattle density. The G2 and G3 sampling sites are 
in the Morales and Destino streams, running through the 
Parque Costero Sur, UNESCO Biosphere Reserve (Athor 
2009).

Environmental variables

At each sampling site, environmental parameters were 
determined in situ: dissolved oxygen and water temperature 
with (YSI 51B), pH (Hanna checker), conductivity (Hanna 
instruments 8733), transparency (Secchi disc) and stream 
depth with a gage rod. Water samples were taken for nutri-
ent analysis, transported to the laboratory on ice and filtered 
through 1.2-µm pore size Whatman GF/C filters. The nutri-
ents were then measured in the filtrate: the soluble reactive 
phosphorus (SRP) was determined by a colorimetric reaction 
with ascorbic-acid–ammonium-molybdate; the nitrate was 
calculated by hydrazine reduction followed by diazotation, 
and the ammonium was quantified by the indophenol-blue 
method (APHA 2012). Suspended solids were estimated as 
the weight difference of the filter before and after filtration 
(APHA 2012).

At each sampling site, macrophyte community composi-
tion was determined following Cabrera and Zardini (1993) 
and classified according to their life form according to 
Messetta et al. (2023). In the surveys carried out in spring 
2018 and summer and autumn 2019, sediment samples for 
pesticide determinations were taken in each sampling site 
from the top two centimeters with a stainless-steel scoop, 
placed in glass vessels and transported to the laboratory on 
ice. The samples were extracted following You et al. (2004) 
with a mixture of acetone and methylene chloride. A clean-
up procedure was carried out using Florisil solid-phase-
extraction cartridges. Chlorpyrifos, endosulfan, permethrin, 
λ-cyhalothrin, cypermethrin and deltamethrin were quanti-
fied by gas chromatography (HP 6890) using 30 m-length 
HP1 columns and equipped with electron capture detector. 
Two microliters were injected on a splitless mode (290 °C) 
and detector was kept at 290 °C. The oven temperature pro-
gram was: start at 190 °C, followed by an increase of 10 °C/
min up to 260 °C (13 min), then 10 °C/min up to 290 °C 
(7 min). Quantification was performed using pure standard 
pesticides (AccuStandard; 4-point calibration curve) and tet-
rachloro m-xylene (Ultra Scientific) as internal standard. The 
detection limits in dry sediment ranged between 0.35 ng/g 
for chlorpyrifos and endosulfan, and 1.0–3.0 ng/g for pyre-
throids. Procedural and instrumental blanks (one for every 
batch of twelve samples) were below the detection limits. 

Pesticide concentrations below the detection levels were 
treated as half the detection limits for statistical analysis.

Fish assemblages

Fish were collected in two types of habitats using differ-
ent fishing gears. In open water (OW) environments, fish 
were sampled with a sei8ne net with a bag (width 15 m, 
height 1.1 m and mesh size 10 mm between opposite knots; 
bag width 2  m and mesh size 5  mm between opposite 
knots) along a 30 m stretch of stream previously isolated 
with a block net (width 20 m, height 1.1 m and mesh size 
10 × 5 mm). Two people hauled the seine net upstream 
toward the block net, where both nets were recovered 
together.

Fish were also collected in vegetated patches (VP). Pam-
pean streams have dense and rich macrophyte communities 
that increase habitat heterogeneity in relation to a compara-
tively homogeneous sediment, supporting rich community 
of consumers that live in association with the vegetation 
(Giorgi et al. 2005; Feijoó and Lombardo 2007; Cortelezzi 
et al. 2013). Therefore, two fishing gears were used in the VP 
with aquatic macrophytes in a 30 m stretch upstream of the 
seine net-sampled sector: a hand frame (0.6 × 0.6 m, mesh 
size 2 × 2 mm) and a square frame drop net (frame width 
0.48 m and height, 0.48 m; mesh size 1 × 1 mm; rope 5 m) 
were used. Five fishing attempts were made with each type 
of gear. Sampling was carried out during base flow condi-
tions to avoid undesired variations associated with the flood 
flow effect (Junk and Wantzen 2004). The treatment of the 
specimens was carried out in accordance with the require-
ment of the National Council of Scientific and Technical 
Research of Argentina follow the guidelines of its "Comité 
de Etica" (OCR-RD-20050701–1047.pdf conicet.gov.ar) and 
its biological sampling guide (https:// proye ctosi nv. conic et. 
gov. ar/ solic itud- colec ta- cient ifica/). The scientific collection 
permits were granted by the Subsecretaria de Agricultura, 
Ganadería y Pesca of the Province of Buenos Aires (exp. 
DI-2019–488-GDEBA-DAPAYCPMAGP).

Easily identified species were weighed with an Ohaus 
0.5-g–precision balance, measured and returned to the 
stream. All other specimens captured were euthanized with 
an overdose of anesthetic (benzocaine in excess), conserved 
with a solution of 10% formalin and later replaced by 70% 
ethanol for routine laboratory determination. Species were 
identified following Azpelicueta and Braga (1991), Braga 
(1993, 1994), Aquino (1997), Reis and Pereira (2000), Cas-
ciotta et al. (2005), Miquelarena and Menni (2005), Říčan 
and Kullander (2008), Almirón et al. (2015) and Rosso et al. 
(2018). Updates in the taxonomy were reviewed following 
Mirande and Koerber (2020), Terán et al. (2020) and Fricke 
et al. (2023). Voucher specimens were stored at the ich-
thyological collection of the Museo Argentino de Ciencias 

https://proyectosinv.conicet.gov.ar/solicitud-colecta-cientifica/
https://proyectosinv.conicet.gov.ar/solicitud-colecta-cientifica/
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Naturales "Bernardino Rivadavia" (MACN-Ict), Buenos 
Aires, Argentina.

Data analysis

Species richness (S), abundance, biomass, Shannon–Wiener 
diversity index (H’) and evenness (J’) were calculated for 
each sampling site, separately for OW and VP environments, 
hereafter referred to as the biotic attributes. The values were 
calculated with the “Diverse” routine for univariate index 
treatment performed with Primer-E v6.0 (Clarke and War-
wick 2001).

Differences in physicochemical variables and biotic 
attributes among the different land uses were assessed by 
t-test or its non-parametric equivalent Mann–Whitney test 
using Sigmaplot for windows v12. Significance levels were 
set to α = 0.05. To evaluate differences in the insecticide con-
centrations, Dixon's test for outliers and one-way ANOVA 
followed by Tukey HSD comparison were accomplished 
with XLSTAT software (version 2014.5.03). Significance 
levels were set to α = 0.1.

Multivariate analyses were performed to assess fish 
assemblages. Similarity matrices were obtained using the 
Bray–Curtis index based on previously log10(x + 1) trans-
formed abundance; a Non-Metric Multidimensional Scaling 
(MDS) analysis was then performed. Significant differences 
in land use factor were determined by one-way ANOSIM 
analysis. Finally, the specific contribution to the similarity 
of each group was assessed by SIMPER analysis. Multivari-
ate analysis was performed with Primer-E v6.0 (Clarke and 
Warwick 2001).

To avoid overestimation of the specific richness, riverine 
species entering from the Río de la Plata Estuary (Fig. 1. 
Almirón et al. 2000; Paracampo et al. 2015, 2020) were not 
considered in the analyses. Four species were determined 
as riverine: Megaleporinus obtusidens, Astyanax lacustris, 

Trachelyopterus galeatus and Pimelodus maculatus; they 
contributed only to 0.05% of the total abundance of the fish 
assemblage and were excluded from all the analyses.

Results

Environmental parameters

The environmental variables measured in the streams are 
summarizes in Table 1. The water was well oxygenated, and 
the pH was slightly alkaline, showing similar values in the 
two groups of streams sampled. By contrast, water trans-
parency was significantly higher in HSR than in the GSR 
(p < 0.001). The maximum value was recorded in H1 sam-
pling site (49 cm) and the minimum in G2, 8 cm. Suspended 
solids and water conductivity were significantly higher in 
GSR (p < 0.001 and = 0.003, respectively). The maximum 
value for suspended solids was registered at site G2 reaching 
552 mg/l, while highest value for conductivity was recorded 
in G3 (910 µS/cm).

Soluble reactive phosphorus was significantly higher in 
HSR than in the GSR (p < 0.001). The minimum SRP con-
centration was measured in G2 sampling site (14 µg/l), while 
the maximum (704 µg/l) was recorded in H1. Nitrate and 
ammonium concentrations showed no significant differences 
among the two groups of stream reaches studied (Table 1).

All studied sites showed moderate macrophyte cover 
year-round (~ 30%). The rooted with floating leaves Ludwi-
gia peploides was present in all sites. In HSR, L. peploides 
was dominant, together with the emergent Gymnocoronis 
spilanthoides. In GSR, L. peploides was followed by the 
submerged Myriophyllum aquaticum. Other submerged spe-
cies, like Potamogeton gayi and Ceratophyllum demersum, 
were present in these sites, together with the floating Azolla 
filiculoides.

Table 1  Mean, standard 
deviations and range values 
of environmental variables in 
grassland and horticultural 
Pampean streams, Buenos Aires 
province, Argentina

n. s. no significant
Significant differences between groups are indicated by asterisks

Environmental variables Grassland Horticultural p

Temperature (°C) 20.6 ± 7.6 (10.8–31.1) 19.5 ± 8.3 (8.5–31.4) n. s.
Dissolved oxygen (mg/l) 7.2 ± 2.5 (3.4–10.4) 8.2 ± 4.3 (1.4–17.0) n. s.
% Saturation 78.7 ± 25.6 (34.1–116.8) 88.3 ± 51.1 (17.1–209.4) n. s.
pH 8.0 ± 0.4 (7.2–8.6) 8.2 ± 1.0 (6.5–9.4) n. s.
Stream depth (cm) 61.8 ± 21.3 (35.0–110.0) 49.6 ± 8.4 (40.0–68.0) n. s.
Transparency (cm) 13.1 ± 4.7 (8.0–22.5)* 29.9 ± 9.4 (16.5–49.0)*  < 0.001
Suspended solids (mg/l) 178.9 ± 133.6 (40.0–552.0)* 30.1 ± 19.7 (10.4–65.6)*  < 0.001
Conductivity (µS/cm) 587.5 ± 186.1 (288.0–910.0)* 335.2 ± 160.1 (200.0–712.0)*  = 0.003
Soluble reactive phosphorus (µg/l) 42.9 ± 16.1 (14.0–66.0)* 513.7 ± 113.8 (299.0–704.0)*  < 0.001
Nitrates (µg/l) 43.3 ± 24.6 (7.0–71.0) 214.8 ± 371.5 (3.0–1176.0) n. s.
Ammonium (µg/l) 15.7 ± 14.3 (1.0–53.0) 15.6 ± 13.8 (1.0–48.0) n. s.
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Insecticide analysis

Pesticide concentrations in sediment samples are summa-
rized in Table 2. Among the eight pesticides analyzed, six 
were detected in HSR and four in GSR. Deltamethrin and 
λ-cyhalothrin were detected only in the HSR. Pesticide 
detection frequencies in samples from HSR (0.52 ± 0.29), 
were significantly higher (p = 0.049) than those measured 
in GRS (0.20 ± 0.26).

Concentrations of chlorpyrifos and endosulfan sulphate 
were significantly higher (p = 0.089 and = 0.066, respec-
tively) in HSR (2.90 and 1.16 ng/g, respectively) than in 
GSR (0.54 and 0.26 ng/g, respectively). Total pyrethroids 
and total pesticide concentrations were significantly higher 
(p = 0.024 and = 0.041, respectively) in HSR (7.09 and 
12.88 ng/g, respectively) than those determined in GSR 
(2.81 and 3.53 ng/g, respectively).

Chlorpyrifos and cypermethrin were the most abun-
dant pesticides, contributing 9–16% and 33–41%, respec-
tively, to total pesticide in both sampling areas. The maxi-
mum concentrations of the four pesticides detected in both 
areas, chlorpyrifos, endosulfan I, endosulfan sulphate and 

cypermethrin, were found in HSR (amounting to 11.88; 
9.25; 3.50 ng/g and 12.60 ng/g, respectively), while the 
maximum concentrations measured in GSR showed a lower 
order of magnitude (amounting 0.73–1.71 ng/g).

Fish assemblages

A total of 25,843 fish were registered corresponding to 33 
species, 17 families and five orders (Table S3). Characi-
formes was the order with the highest number of species in 
each land use, amounting to 15 species in GSR and 12 for 
HSR, representing 55.5% and 50% of the total, respectively. 
Twelve species of Characiformes were recorded in com-
mon in both land uses, while the species Diapoma terofali, 
Hyphessobrycon meridionalis and Oligosarcus oligolepis 
were recorded exclusively in GSR sampling sites.

The order Siluriformes and Cichliformes recorded 
the same number of species with 7 and 2, respectively, 
in both land uses. Three species of Cyprinodontiformes 
were recorded: Austrolebias belotti were exclusively 
found in grassland sampling sites, while Cnesterodon 

Table 2  Concentration and detection frequency measured pesticides in sediment samples of grassland and horticultural Pampean streams, Bue-
nos Aires province, Argentina

Detection limits in dry sediment ranged between 0.35 ng/g for chlorpyrifos and endosulfan, and 1.0–3.0 ng/g for pyrethroids
n. s. no significant
Significant differences between groups are indicated by asterisks

Grassland Horticultural

Detection 
frequency

Mean ± DS 
(ng/g)

Minimum 
(ng/g)

Maximum 
(ng/g)

Detection 
frequency

Mean ± DS 
(ng/g)

Minimum 
(ng/g)

Maximum 
(ng/g)

p

Chlorpyri-
fos

0.67 0.54 ± 0.51* 0.37 1.71 0.80 2.90 ± 3.89* 0.66 11.88  = 0.089

Endosul-
fan I

0.11 0.24 ± 0.18  < 0.35 0.73 0.80 1.73 ± 3.09 0.82 9.25 n. s.

Endosulfan 
II

n. d – – – n. d. – – –

Endosul-
fan S

0.11 0.26 ± 0.24*  < 0.35 0.92 0.40 1.16 ± 1.35* 1.52 3.50  = 0.066

Total 
Endosul-
fan

0.49 ± 0.29*  < 0.35 1.27 2.89 ± 3.42*  < 0.35 9.60  = 0.052

λ Cyhalo-
thrin

n. d – – – 0.30 1.68 ± 3.01 0.85 10.20

Permethrin n. d – – – n. d. – – –
Cyperme-

thrin
0.33 2.81 ± 2.20 2.95 7.59 0.70 4.76 ± 4.08 1.72 12.60 n. s.

Deltame-
thrin

n. d – – – 0.10 0.65 ± 0.47  < 1.00 1.97

Total Pyre-
throid

2.81 ± 2.20* 1.70 9.24 7.09 ± 4.43* 3.15 14.30  = 0.024

Total pesti-
cide

0.20 ± 0.26* 3.53 ± 2.73* 2.87 11.50 0.52 ± 0.29* 12.88 ± 11.00* 3.85 35.70  = 0.049 = 0.041
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decemmaculatus and Phalloceros caudimaculatus were 
recorded in both land use sampling sites.

Specific richness was significantly higher in GSR than in 
HSR for both OW and VP, p = 0.015 and p = 0.007, respec-
tively (Table 3). Maximum value in OW was recorded at site 
G3 with 23 species and for VP patches in G1 and G3 with 
12 species, respectively. Minimum values were recorded 
in H3 with 6 species for OW and 3 species for VP in H1. 
Diversity and evenness in VP were significantly higher in 
GSR (Table 3) than in HSR (p < 0.001) with the highest val-
ues recorded at sites G2 and G1 with values of 1.4 and 0.7, 
respectively, while the lowest values were recorded at H3 
(0.1). By contrast, abundance in VP was significantly higher 
in HSR (p < 0.001; Table 3). Taxa of the order Cyprinodon-
tiformes showed a clear dominance and contributed to more 
than 90% of the total capture in HSR (Fig. 2). Maximum 
value was recorded in H3 with 1505 individuals, while the 
minimum was recorded in G1, with 21 individuals.

NMDS analysis showed that sampling sites were segre-
gated into two groups according to land use for both OW and 
VP (Fig. 3). The result of the ANOSIM analysis revealed 
that the groupings obtained according to each land use were 
significantly different for both OW and VP, Global R = 0.41; 
p < 0.001 and Global R = 0.43; p < 0.001, respectively.

For OW, SIMPER analysis showed that 11 species con-
tributed to the 89.9% of similarity in GSR (Table 4): four 
species of Characiformes, with Cheirodon interruptus with 
the largest contribution followed by Pseudocorynopoma 
doriae, Psalidodon eigenmanniorum, Hyphessobrycon 
meridionalis and Siluriformes Corydoras longipinnis, 
accumulating 56.7% of total contribution (Table 4). By 
contrast, only 6 species contributed to 82.9% in HSR. 
Cheirodon interruptus and Cyprinodontiformes Cnest-
erodon decemmaculatus accumulated 51.9% of similarity.

For VP, five species accumulated 79.2% of similarity in 
GSR, whereas in HSR, three species accounted for 95.6% 
of similarity (Table 4). The same first three species in each 

Table 3  Mean, standard deviations and range values of biotic attributes measured in grassland and horticultural Pampean streams, Buenos Aires 
province, Argentina

Significant differences between groups are indicated by asterisks
n. s. no significant

Open water Vegetated patches

Fish assemblage 
attributes

Grassland Horticultural p Grassland Horticultural p

Specific richness 15.2 ± 4.5 (7.0–23.0)* 10.6 ± 3.5 (6.0–17.0)*  = 0.015 8.1 ± 2.3 (5.0–12.0)* 5.3 ± 2.0 (3.0–8.0)*  = 0.007
Abundance 1363.1 ± 1927.6 

(68.0–6580.0)
444.9 ± 216.6 

(181.0 ± 949.0)
n. s. 79.9 ± 50.9 (21.0–

205.0)*
460.3 ± 432.3 (73.0–
1505.0)*

 < 0.001

Diversity 1.7 ± 0.4 (1.1–2.3) 1.4 ± 0.4 (0.8–2.3) n. s. 1.4 ± 0.2 (1.0–1.7)* 0.3 ± 0.2 (0.1–0.8)*  < 0.001
Evenness 0.6 ± 0.1 (0.5–0.9) 0.6 ± 0.1 (0.4–0.8) n. s. 0.7 ± 0.1 (0.5–0.9)* 0.2 ± 0.1 (0.01–0.4)*  < 0.001
Biomass (g) 1851.6 ± 2942.3 

(161.1–10,547.6)
737.7 ± 701.4 (121.7–

2525.0)
n. s. 33.0 ± 19.0 (11.0–76.5) 54.5 ± 40.2 (11.3–125.5) n. s.

Fig. 2  Relative abundance registered in grassland and horticultural 
Pampean streams, Buenos Aires province, Argentina. H1–H3: hor-
ticultural sites in Sauce stream. G1–G3: grassland sites. G1: Chubi-
chaminí stream, G2: Morales stream and G3: Destino stream
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group were arranged in the same order of contribution with 
C. decemmaculatus followed by C. interruptus and Chara-
cidium rachovii; however, the magnitude of contribution 
was different in each group. In HSR C. decemmaculatus 
accumulated twice the percentage of similarity (63.0%) 
compared to that recorded at GSR (31.6%). Finally, Char-
aciformes P. doriae and H. meridionalis completed the 
similarity recorded in GSR.

Discussion

Water quality was different in each land use; higher SRP 
concentrations in HSR suggest contributions from appli-
cations of fertilizer to the surrounding crops. The SRP 

concentrations measured in HSR in the present study 
were consistent with high concentrations (200–900 µg/l) 
reported by Mugni (2008), Solis et al. (2016, 2017), Arias 
et al. (2020, 2023) and Cunha et al. (2020) in stream drain-
ing agricultural basins in Argentina and Brazil. Higher 
pesticide detection frequencies and concentrations in sedi-
ments of HSR are mainly contributed by runoff events 
following application to the surrounding crops (Jergentz 
et al. 2005; Mugni et al. 2012; Paracampo et al. 2012). 
Concentrations measured in the present study were con-
sistent with higher concentrations reported in sediment 
samples from stream draining basins with agricultural and 
horticultural land use (Liess 1998; Arias et al. 2020, 2023; 
Mac Loughlin et al. 2022).

The occasional pesticide detection at low concentra-
tions in GSR points the long-range atmospheric transport 
from the application sites (Weber et al. 2010). Pesticides 
are also detected in protected areas, but detection frequen-
cies and concentrations are lower than those in agricultural 
areas (Wolfram et al. 2023). The pesticide concentration 
detected in the grassland streams might also be attributed 
to applications associated with cattle-pest control within 
the livestock areas surrounding the reserve. Cypermethrin 
is used for such a purpose (Ferré et al. 2018) to combat the 
horn-fly pest in cows (Oyarzún et al. 2008).

Horticultural stream reaches sustain lower specific rich-
ness than the less impacted Pampean GSR. Our results 
agree with several studies reporting decreased fish diver-
sity and biotic integrity in agricultural basins in the USA 
(Walser and Bart 1999; Pyron and Lauer 2004; Diana 
et al. 2006). These studies linked decreased diversity to 
increased water turbidity and substrate homogenization. 
Similarly, Casatti et al. (2015) and Dala-Corte et al. (2016) 
reported lower richness and functional diversity in streams 
with high sedimentation in agricultural basins in Neotropi-
cal areas in Brazil. None of these papers measured pes-
ticide concentrations in the streams studied. Unlike the 
quoted studies increased siltation was not the cause of 
decreased species richness in the present study because 
transparency was higher and suspended matter was lower 
in the horticultural stretches. It seems likely that increased 
greenhouse coverage decreased soil erosion loss in adja-
cent streams. Furthermore, irrigation channels provide 
streams with transparent water with low suspended matter. 
Fish assemblages in Pampean streams are adapted to high 
water turbidity and siltation because these characteristics 
are naturally found in regional streams (Giorgi et al. 2005; 
Feijoó and Lombardo 2007; Rodrigues Capítulo et  al. 
2010). The life histories of local communities inhabiting 
sites with high proportions of fine sediments are adapted 
to siltation (Crowe and Hay 2004).

Mugni et al. (2012) and Paracampo et al. (2012) simu-
lated rain events in an experimental crop, measured pesticide 

Fig. 3  Ordination of sampling sites according to NMDS analysis in 
grassland and horticultural Pampean streams, Buenos Aires province, 
Argentina. H1–H3: horticultural sites in Sauce stream. G1-G3: grass-
land sites. G1: Chubichaminí stream, G2: Morales stream and G3: 
Destino stream. Open water (a), vegetated patches (b). au autumn, wi 
winter, sp spring, su summer
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concentrations and assessed fish toxicity in runoff at differ-
ent times following application of cypermethrin, endosulfan 
and chlorpyrifos. Runoff events were toxic to fish for the 
pesticides assayed, endosulfan persistence being remark-
ably long, several months since application. The decrease 
observed in species richness is consistent with the expected 
effect of repeated toxicity pulses on assemblages composed 
of species with different pesticide sensitivity.

Characiformes was the most important order in terms of 
richness and abundance in the grassland streams, as in most 
not contaminated Neotropical streams (Pinto and Araujo 
2007; Gonino et al. 2020). Characiformes are water-column 
feeders sensitive to water quality degradation (Casatti et al. 
2003; Pelicice and Agostinho 2006). In neotropical freshwa-
ter environments with abundant vegetation coverage, Char-
aciformes may reach up to 88% of the total abundance and 
feed mainly on invertebrates, with low interspecific overlap-
ping (Pelicice et al. 2008). In the present study the Cyprino-
dontiformes Cnesterodon decemmaculatus became domi-
nant in HSR, contributions to similarity being much higher 
than those in GSR. Cnesterodon decemmaculatus is tolerant 
to environmental pollution, occasionally the only taxa pre-
sent in heavily contaminated water bodies (Paracampo et al. 
2020; Paredes del Puerto et al. 2021). The dominance of C. 
decemmaculatus was evident in lower diversity and evenness 
in the VP of HSR.

Solis et al. (2018) reported lower invertebrate densities in 
Pampeanstreams of agricultural basins. Arias et al. (2020) 
recorded lower taxonomic richness, density and absence of 
sensitive taxa to insecticide exposure in Pampean streams 

of horticultural basins, including the stream sampled in the 
present study. Thus, decreased trophic resources might have 
contributed to the impoverished fish assemblage observed 
in the HSR of the present study. C. decemmaculatus in pol-
luted environments feeds mostly on detritus (Quintans et al. 
2009). Once the community was impoverished by sensitive 
species at low density, tolerant ones increased abundance 
due to the lower competence for resources available. The 
species of Characiformes Cheirodon interruptus and Chara-
cidium rachovii that contributed more to similarity in GSR 
than in HSR and the species that only contributed in GSR 
Pseudocorynopoma doriae and Hyphessobrycon meridiona-
lis are commonly abundant in Pampean streams with low 
anthropogenic impact (Paracampo et al. 2020; Paredes del 
Puerto et al. 2021, 2022) and prey mainly on invertebrates 
(Fernandez et al. 2012; Brancolini et al. 2015).

For the assemblages sampled in OW environments, only 
significant differences in specific richness were recorded. 
Nevertheless, multivariate analysis showed different 
groupings among land use and the different contribution 
of species to each group. Eleven species contributed to 
similarity in the GSR sampling sites while only five did so 
in HSR. In addition, the tolerant species C. decemmacula-
tus was last in the list of contributors in GSR, whereas it 
ranked second in HSR. An increase in dissimilarity seen 
in OW environments between the group of sampling sites 
may result from an environmental impact of the toxicity 
pulses caused by insecticides. Disturbances do not always 
translate into changes in diversity or biotic homogeniza-
tion (Hawkins et al. 2015).

Table 4  Percentage and 
cumulative contribution to 
similarity for each species in 
grassland and horticultural 
Pampean streams, Buenos Aires 
province, Argentina

Grassland Horticultural

Fish species Contrib.% Cum.% Fish species Contrib.% Cum.%

Open water
 Cheirodon interruptus 21.5 21.5 Cheirodon interruptus 28.2 28.2
 Pseudocorynopoma doriae 9.9 31.4 Cnesterodon decemmaculatus 23.7 51.9
 Psalidodon eigenmanniorum 8.8 40.2 Characidium rachovii 9.5 61.4
 Hyphessobrycon meridionalis 8.4 48.6 Pseudocorynopoma doriae 8.1 69.5
 Corydoras longipinnis 8.1 56.7 Psalidodon eigenmanniorum 7.4 76.9
 Corydoras paleatus 5.6 62.3 Andromakhe stenohalina 6.0 82.9
 Andromakhe stenohalina 4.7 67.0
 Characidium rachovii 4.4 71.4
 Steindachnerina biornata 4.0 75.4
 Charax stenopterus 4.0 79.4
 Cnesterodon decemmaculatus 3.5 89.9
 Vegetated patches
 Cnesterodon decemmaculatus 31.6 31.6 Cnesterodon decemmaculatus 63.0 63.0
 Cheirodon interruptus 27.1 58.7 Cheirodon interruptus 20.5 83.5
 Characidium rachovii 7.5 66.2 Characidium rachovii 12.1 95.6
 Pseudocorynopoma doriae 7.2 73.4
 Hyphessobrycon meridionalis 5.8 79.2
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Conclusion

Our study showed deterioration of water quality associated 
with horticultural land use in Neotropical lowland streams. 
Pesticides were found in sediments of the horticultural 
basins. Detection frequencies and concentrations were sig-
nificantly higher than those in grassland basins with lower 
impact. Deterioration of water quality resulted in lower 
richness of species in the horticultural streams. Lower 
diversity and evenness and higher abundance were evi-
denced in the vegetated stretches of horticultural basins.

The on-going horticulture expansion leads to further 
deterioration resulting in ruderal fish community within 
the region, unless managerial practices are implemented. 
Monitoring surveys are needed to assess the effect on fish 
biodiversity and evaluate pollution mitigation practices.
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