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Abstract
Environmental characteristics, spatial structures, and landscape features are ecological factors that drive beta diversity in 
stream communities, but the effects of these factors, considering multiple spatial scales on beta diversity in aquatic com-
munities, still remain a goal of community ecology. Using the distance-based redundancy analysis (db-RDA) and variance 
partitioning, we evaluated the contribution of the local environment, regional, and spatial variables to total beta diversity 
and its components (i.e., species replacement and richness difference) for fish communities in 59 streams from the Brazilian 
Cerrado. The influence of local environmental, regional, and spatial variables on beta diversity was distinct along different 
spatial scales. Specifically, local environmental variables were the main drivers of dissimilarity between streams. We sug-
gest that the environmental filter is the primary structuring mechanism of local communities in stream fishes in the Cerrado, 
regardless of the spatial scale. Together, spatial and regional variables may be considered complementary mechanisms to 
explain the variation in the beta diversity pattern. Thus, based on high beta diversity values and the number of unique species, 
our findings suggest that the preservation of stream structural features is necessary to maintain regional diversity.

Keywords  Biodiversity · Conservation · Environmental filters · Headwaters · Land use · Neotropical fishes

Introduction

Understanding the effects of land use changes on natural 
communities is a significant challenge in the Anthropo-
cene (Steffen et al. 2015; Newbold et al. 2016). Freshwa-
ter ecosystems, especially streams, are among the natural 

ecosystems most affected by land use changes (Reid et al. 
2019; Dudgeon 2019). The effects of land use changes on 
stream ecosystems are scale-dependent and may vary across 
space (Townsend et al. 2003; Allan 2004; Petsch et al. 2021). 
Deforestation of native vegetation within a sub-basin to agri-
cultural practice is associated with the input of sediment and 
nutrients into the streams (Roth et al. 1996; Burdon et al. 
2013), leading to the loss of local microhabitats (Teresa and 
Casatti 2012). In turn, sediment input decreases depth and 
further substrate homogenization, reducing local habitat 
complexity (Schlosser 1991; Montag et al. 2019). Remov-
ing native vegetation increases luminosity on water bodies, 
favoring primary productivity and species that feed on peri-
phyton (Bojsen and Barriga 2002). In this scenario, piscivo-
rous fishes (with local habits in riffles) lose their habitats, 
while some environmental disturbance-tolerant generalist 
species are benefited (Casatti et al. 2009; Teresa and Casatti 
2012). Previous studies have shown that fish taxonomic 
richness and functional diversity in stream communities 
are negatively affected by the removal of native vegetation 
(Teresa and Casatti 2012; Brejão et al. 2018).

Streams are organized in a hierarchically structured den-
dritic network system (Frissell et al. 1986; Altermatt 2013). 
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Therefore, their structural characteristics can be influenced 
by the landscape surrounding this dendritic network and the 
human activities in the basin (Schlosser 1991). Divergent 
results have been shown in previous studies assessing the 
influence of ecological predictors at multiple scales on the 
structure of fish communities. Some studies have shown that 
local environmental conditions (i.e., depth, dissolved oxy-
gen, and % of grass in margins) are the primary structuring 
drivers for stream fish communities (Bordignon et al. 2015; 
Montag et al. 2019). On the other hand, other studies have 
shown that stream fish communities are influenced by local 
environmental variables and spatial factors (i.e., watercourse 
distance) (Roa-Fuentes and Casatti 2017; Roa-Fuentes et al. 
2019). These findings are evidence that environmental fil-
tering and dispersal limitations are complementary mecha-
nisms acting on the structure of communities (Carvalho and 
Cardoso 2014; López-Delgado et al. 2020).

Several studies have demonstrated how local communities 
exchange organisms and how the specification processes, 
extinction, dispersal, and environmental filtering events 
interact at various spatial and temporal scales to structure 
communities (Leibold et al. 2004; Presley et al. 2010; Erős 
2017; Schmera et al. 2018). From a theoretical and empiri-
cal perspective, at least four models of metacommunity 
dynamics have been proposed (species sorting, mass effect, 
patch dynamics, and neutral model), each defined by the 
relative influences of environmental filtering, dispersal, hab-
itat selection, habitat disturbance, biotic interactions, and 
stochastic factors (Leibold et al. 2004; Tonkin et al. 2018). 
The advances in metacommunity ecology have facilitated 
the understanding of how community composition varies in 
space and time (Baselga 2010; Legendre 2014).

Beta diversity can be defined as a change in the species 
composition of communities among sites (Gaston 2000; 
Cottenie 2005). Deterministic processes and stochas-
tic factors have been identified as the main mechanisms 
driving dissimilarity patterns among communities (Rick-
lefs 1987; Dornelas et al. 2006; Chase et al. 2011). The 
deterministic factors are linked as species interact with 
abiotic conditions and biotic interactions (e.g., niche-
based processes) that are reflected in the species sorting 
mechanism to determine variation in species communities 
(Chase and Leibold 2003; Chase 2007). On the other hand, 
the communities are influenced by stochastic factors such 
as colonization and extinction events, and the variation 
in species communities is not explained by niche species 
requirements but by rates of dispersal or ecological drift 
that reflect the mass effect in the structure of the communi-
ties (Hubbell 2001; Chase 2007). Furthermore, beta diver-
sity may be partitioned into two additive sources of dis-
similarity, species replacement (i.e., species substitution) 
and richness-difference components (Podani and Schmera 
2011; Carvalho et al. 2012). Substitution of species among 

sites, often due to environmental filtering, biotic interac-
tions, or historical factors, is described by species replace-
ment (Baselga 2010; Perez Rocha et al. 2018). The spe-
cies richness-difference component derives from the loss 
or gain of species along environmental gradients due to 
environmental changes or barriers to dispersal, reflecting 
niche diversity across spatial or temporal scales (Podani 
and Schmera 2011; Carvalho et al. 2012). Thus, the parti-
tioning of beta diversity may provide valuable information 
about the processes and mechanisms of species distribu-
tions on community dynamics and how the species com-
position changes at different spatial scales (Carvalho et al. 
2012; Baselga and Leprieur 2015).

The effects of land use changes on beta diversity patterns 
depend on the initial ecological conditions, the magnitude of 
the environmental disturbance, the species dispersion capac-
ity, and the prevalence of stochastic events (Al-Shami et al. 
2013; Zbinden and Matthews 2017). In general, landscape 
changes due to agricultural expansion could alter species 
composition, leading to rare species loss and common spe-
cies predominance and contributing to biotic homogeniza-
tion (i.e., increase in compositional similarity among fish 
stream communities) (Casatti et al. 2009; Petsch 2016). 
Biotic homogenization contributes to decreasing taxonomic 
beta diversity over time (Olden and Poff 2003; Petsch 2016) 
and may result in one particular cause of the richness-dif-
ference pattern where the site with smaller numbers of spe-
cies is a subset of the species at a richer site (Baselga 2010; 
Baeten et al. 2012). Land use changes may also increase spe-
cies substitution, mainly in communities where the disper-
sal process is predominant (Hawkins et al. 2015; Jamoneau 
et al. 2018). Dispersal processes are related to the ability of 
individuals to move among suitable habitats (Leibold et al. 
2004). When these high dispersal rates occur, the local 
communities could be chiefly driven by mass effect events 
(Leibold et al. 2004; Heino et al. 2015b). However, envi-
ronmental filters created due to changes in environmental 
conditions can hamper the movement of individuals among 
suitable habitats (Leibold and Chase 2017) and contribute 
to species replacement along the environmental gradient.

The relative influence of ecological predictors (e.g., 
environmental, land use, and space) on stream fish commu-
nity structure may vary among networks (Sály et al. 2011; 
Montag et al. 2019). In each watershed, different land use 
forms in the surrounding streams together with the exist-
ing environmental and spatial characteristics in the drain-
age network can result in different stream fish community 
composition. Due to rapid conversion from native vegetation 
to agricultural activities (Strassburg et al. 2017; Latrubesse 
et al. 2019) and scarcity of studies that have addressed fish 
beta diversity, the streams from the Cerrado biome are good 
models for testing these questions. In addition, the metrics 
of beta diversity are essential to testing ecological theories, 
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understanding regional biodiversity patterns, and guiding 
conservation policies (Socolar et al. 2016).

Considering this context, our goals were to answer the 
following questions: (i) What are the contributions of the 
replacement and richness differences to beta diversity in 
Cerrado stream fish communities? (ii) What is the best set of 
variables to predict spatial beta diversity patterns in Cerrado 
streams? We hypothesize that species sorting mechanisms 
are the primary structuring drivers acting on fish commu-
nities due to high environmental heterogeneity within the 
basins and intermediary rates of dispersal of species among 
sites (see Heino et al. 2015b). Another possibility is that the 
richness difference among streams is linked to mass effect 
mechanisms because of the adjustment of the fish commu-
nities by dispersal events due to changes in the landscapes 
surrounding the streams. Thus, we expect to find high values 
of beta diversity where the streams that have undergone less 
landscape modification may maintain their characteristics 
and evidence the replacement of species between sites.

Material and methods

Study area

We sampled 59 stream stretches ranging from the first to 
fourth orders (Strahler 1957) inside the Upper Araguaia 
River (n = 30) and Middle Rio das Mortes basins (n = 29) 
in the Tocantins–Araguaia system (Fig. 1). The list contain-
ing the geographical coordinates for all sampling sites is 
available in the supplementary material (Online Resource 
Table S1). The study area lies within the Cerrado biome 
(Ribeiro and Walter 2008), and its landscape has undergone 
modification mainly because of native vegetation defor-
estation to pasture and agricultural areas (Latrubesse et al. 
2019). The climate of the region is the Aw type according 
to the Köppen classification (Alvares et al. 2013), with two 
distinct periods: (i) rainy and hot (1301.11 ± 528.45 mm, 
mean ± SD; 26.2 ± 1.06  °C) from October to April and 
(ii) dry with a milder temperature (116.97 ± 15.96 mm; 

Fig. 1   Location of streams studied in the Upper Araguaia River (n = 30) and Middle Rio das Mortes basin (n = 29) in the Cerrado biome. In the 
background, we show the main activity of land use in 2017 (MapBiomas, 2018)
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24.2 ± 1.93 °C) from May to September (INMET 1979 to 
2017).

Data collection

Local environmental variables

In each stream, we measured 23 environmental variables 
related to the limnologic conditions and habitat structure 
within the channel and the margins of the streams (Table 1). 
We measured the variables related to stream limnologic con-
ditions (e.g., conductivity, dissolved oxygen, pH, turbidity, 
and water temperature) using a portable multiparametric 
probe (Horiba U-50) only once at the beginning of the sam-
pled stretch before taking measurements inside the chan-
nel to prevent disturbance. We divided each sampled 50-m 
stretch into six equidistant cross-section transects. For each 
of the six cross-section transects, we make visual observa-
tion to calculate the mean values of the structural variables 
related to canal morphology (width and depth), substrate 
composition (sand, gravel, pebbles, rock, slabs, clay/silt), 
the margin composition (thin roots, thick roots, grass banks), 
and internal habitat structure (presence of the trunks and leaf 
litter bank). The mean width and depth were obtained from 
five measurements from one margin to the other in each of 
the six cross-section transects. Additionally, we determined 
the mean surface water velocity using the fluctuating mate-
rial method (Teresa and Casatti 2012), from surface water 
velocity measured in each of the six cross-section transects. 
Finally, to represent the local riparian vegetation structure, 
we measured the forest width and visually assessed the pro-
portions of shrubs, herbaceous plants, and trees along both 
banks within the sampled reach. Then we calculated the 
mean values based on these observations.

Regional variables

We used a geographic information system (GIS) to gathering 
the regional variables represented by catchment variables 
(i.e., area size, hill slope, bioclimatic, and land use variables 
within catchment area) and land use variables in the riparian 
zone (i.e., 60-m buffer zone around the drainage network 
upstream of the sampling sites; Online Resource Fig. S1). 
First, we delimited the upstream catchment of each sampling 
site and hydrographic network based on a digital elevation 
model (DEM) with 30-m spatial resolution (Topoda; www.​
webma​pit.​com.​br/​inpe/​topod​ata/). Then, we built the catch-
ment and hydrographic network using the r.water.outlet 
and r.stream.extract functions available in GRASS GIS 7.6 
(GRASS Development Team 2019).

We estimated the average hill slope of each catchment 
from the average slope of all DEM pixels in the respective 

catchment. We extracted the bioclimatic variables from 
the raster images of high spatial resolution (30 arc-sec-
onds ~ 1 km2) from WordClim (Fick and Hijmans 2017). We 
extracted the land use variables in the catchment and ripar-
ian zone from MapBiomas (MapBiomas 2021). We used 
the functions available in the raster package to extract the 
bioclimate and land use variables (Hijmans 2020).

We measured 10 catchment variables: the average hill 
slope, the catchment size upstream (km2), annual mean tem-
perature, annual mean precipitation, seasonality precipita-
tion, proportion of native vegetation, proportion of pasture, 
proportion of agriculture, proportion of silviculture, and pro-
portion of urban infrastructure. We measured the following 
riparian zone variables: the proportion of native vegetation, 
the proportion of pastures, and the proportion of agricul-
ture. Initially, we tested the correlation among catchment 
and land use riparian zone variables. We retained the catch-
ment variables in the posterior analysis when the correlation 
was significant (Pearson correlation > 0.7; Online Resource 
Fig. S2).

Spatial variables

We built a pairwise distance matrix between all the sam-
pled sites for each model (i.e., Global—model with all sites 
from both basins, Upper Araguaia River, and Middle Rio 
das Mortes) following the hydrographic network using 
the extension QGIS Network Analysis Toolbox 3 in QGIS 
3.4 (QGIS Development Team 2023). Next, we generated 
our spatial variables for each model using distance-based 
Moran’s eigenvector maps (dbMEM) (Borcard and Legendre 
2002; Dray et al. 2006). We retained only those dbMEMs 
that model a positive spatial correlation (Moran’s I is larger 
than E (I)). We calculated the dbMENs using the dbmem 
function from the R package adespatial (Dray et al. 2022).

Fish sampling

We sampled 59 streams between 2014 and 2017. We delim-
ited a 50-m stretch once in each catchment based on the 
accessibility and relative independence of the catchment. 
We collected all samples during the diurnal period in the 
dry hydrologic cycle to increase our fish-catching efficiency 
(Ueida and Castro 1999). We blocked the 50-m stretch with 
seine nets (5.0-mm mesh size) to prevent the fish from 
escaping.

We used two distinct methods to collect the fish due to 
logistical issues. Thus, we sampled 35 stream stretches using 
seine nets (3.0 m width × 1.5 m height × 5.0 mm mesh size) 
and dipnets (0.5 m length × 0.45 m width × 5.0 mm mesh 
size) employing four collectors for approximately 1 hour. 
We collected 24 other stretches of streams using the electro-
fishing method (Honda EG1000 generator, 220 V, CA), and 

http://www.webmapit.com.br/inpe/topodata/
http://www.webmapit.com.br/inpe/topodata/
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we employed three collectors for approximately 1 hour. For 
both basins and sampling methods, we analyzed the sam-
ple coverage estimation based on the Hill diversity series 
(Chao et al. 2014) with a confidence interval of 95%. The 
Hill diversity series showed that our sampling effort was 
sufficient to sample 93% of the estimated species (Online 
Resource Figs. S3–S4).

We anesthetized the sampled fish with benzocaine 
(CFMV 2012) and fixed them in a 10% formalin solution, 
and all individuals were conserved in 70% ethanol after 72 h. 
In the laboratory, we measured, weighed, and identified all 
individuals until lowest taxonomic level possible. The iden-
tification of taxa was based on the specialized bibliography 
as taxonomic reviews (Garutti and Langeani 2009; Mala-
barba and Jerep 2014; Terán et al. 2020; Tencatt et al. 2022), 
species descriptions (Garutti 1999; Petrolli et al. 2016), 
books (Buckup et al. 2007; Venere and Garutti 2011), or 
species list published on fish fauna from the Araguaia basin 
(Dagosta and Pinna 2019; Lima et al. 2021). We checked the 
validity of the species names using the Catalogue of Fishes 
(Fricke et al. 2023). The sampling was authorized by the 
Institute for Biodiversity Conservation (ICMBIO, SISBIO 
# 45,316–1) and by the Animal Use Ethics Committee from 
Universidade Federal do Mato Grosso (CEUA/UFMT – N° 
23,108.152116).

Data analysis

Beta diversity

We built site-by-species matrices with either presence or 
absence for each model (i.e., global, Upper Araguaia River, 
and Middle Rio das Mortes). Next, we calculated the beta 
diversity components based on Jaccard dissimilarity coeffi-
cient following the approach devised by Podani and Schmera 
(2011) and Carvalho et al. (2012). As a measure of beta 
diversity (βtotal), the algebraic decomposition of the Jac-
card dissimilarity index embedded general theoretical and 
methodological frameworks for analyzing patterns in pres-
ence–absence data (Podani and Schmera 2011; Carvalho 
et al. 2012). This approach consists in deriving from total 
beta diversity (βtotal) the species replacement (βrepl) and 
richness-difference (βrich) components: βtotal = βrepl + βrich 
(Podani and Schmera 2011; Carvalho et al. 2012; Podani 
et al. 2013). We know of the alternative approach proposed 
by Baselga (2010) that decomposes total beta diversity into 
turnover and nestedness components. However, in the pre-
sent study, we are focused on the replacement and richness-
difference components (Podani and Schmera 2011) because 
we are interested in any variation related to richness differ-
ences between sites instead of nestedness-related patterns 
(Carvalho et al. 2012; Legendre 2014). In addition, studies Ta
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have showed this decomposition approach is conceptually 
and mathematically adequate for addressing complex issues 
in beta diversity (Carvalho et al. 2012; Legendre 2014). We 
calculated the beta diversity metrics using the beta.div.comp 
function of the R package adespatial (Dray et al. 2022).

We used the ternary plot called the SDR simplex to repre-
sent the contribution of each component to the total variation 
of the communities. Proposed by Podani et al. (2013), the 
SDR simplex plot is an intuitive triangular graph to show 
three indices resulting or derived from beta diversity par-
titioning: similarity (S), replacement (Repel), and richness 
difference (Richdiff). The total beta (βtotal) is calculated by 
summing Repel (βrepl) and Richdiff (βrich), while similarity 
is equal to 1 − βtotal. Thus, it is possible to represent each 
index in the ternary graph as a vertex of a triangle, allowing 
us to analyze the relative importance of each component 
(Podani et al. 2013). We built ternary plots using the R pack-
age ggtern (Hamilton and Ferry 2018).

Statistical analysis

We standardized (z transformation) all environmental local 
(except pH) and regional variables. We adopted a parsimoni-
ous approach (Dormann et al. 2013) to check for collinearity 
in the data. First, we performed Pearson pairwise correla-
tions among the variables to each set of predictor variables 
(i.e., local and regional) inside each model. Variables with 
an absolute r coefficient > 0.7 were considered highly corre-
lated (Online Resource Fig. S5). If two variables were highly 
correlated, we retained only a variable with a more biologi-
cal sense in the posterior analysis. Then we performed dis-
tance-based redundancy analysis (db-RDA) (Legendre and 
Anderson 1999), where beta diversity components (βtotal, 
βrepl, and βrich) were response variables, and each predictor 
variable set (local and regional) was used as an explanatory 
variable. We performed variance inflation factor (VIF) anal-
ysis to control for multicollinearity and removed all those 
variables with VIF > 10 (Borcard et al. 2018). Finally, we 
performed predictor variable selection based on db-RDA 
for each model (global, Upper Araguaia River, and Middle 
Rio das Mortes) using the function ordiR2step (999 permu-
tations) from the vegan package (Oksanen et al. 2018) with 
the double-stopping criterion (Blanchet et al. 2008). Our 
final set of predictor variables was composed only of those 
variables that substantially explained the model (Online 
Resource Tables S2–S4).

We evaluated the contribution of the local environment, 
regional variables, and spatial variables to beta diversity and 
our components (βtotal, βrepl, and βrich) in each model through 
db-RDA, together with the variance partitioning technique 
(Cottenie 2005; Peres-Neto and Legendre 2010). We used 
the sqrt.dist function in all db-RDA to correct problems of 
negative eigenvalues (Legendre and Anderson 1999). The 

significance of each fraction of the set of predictor variables 
and individual variables was tested through an analysis of 
variance (ANOVA). A total of 999 permutations and a sig-
nificance level of 5% were considered in this analysis. We 
used the function anova with the option “by = term” to test 
the significance of each explanatory variable. A flowchart 
with all the steps used in this analysis is available in the sup-
plementary material (Online Resource Fig. S6).

We performed analyses using the programming environ-
ment and statistical analysis R version 3.6.1 (R Core Team 
2021). We used the capscale, varpart, and anova functions 
available in the vegan package (Oksanen et al. 2018) to 
perform the distance-based redundancy analyses, variance 
partitioning analysis, and analysis of variance, respectively.

Results

Fish communities

We collected 135 species distributed in six orders and 30 
families. The Characidae, Loricariidae, and Cichlidae fami-
lies were the most representative (38, 25, and 12 species, 
respectively) and contributed more than half of the captured 
species (Online Resource Table S5). The average species 
richness was 17.84 (SD = 10.51) species per catchment. 
Astyanax cf. goyacensis Eigenmann 1908 (n = 47), Knodus 
cf. breviceps (Eigenmann 1908) (n = 42), Characidium cf. 
zebra Eigenmann 1909 (n = 39), and Imparfinis mirini Hase-
man 1911 (n = 39) were the most frequent species. We col-
lected 79 and 118 species in the Upper Araguaia River and 
Middle Rio das Mortes basins, respectively, considering the 
two basins. The basins shared 59 fish species. Seventeen 
species were exclusive to the Upper Araguaia River basin, 
whereas 59 species were exclusive to the Middle Rio das 
Mortes basin (Online Resource Table S5).

Environmental variable predictors

The water in the studied streams has low conductivity, is 
slightly acidic, has low turbidity, and has high dissolved oxy-
gen levels (Table 1). The predominant substrate structure 
was composed of sand, gravel, and pebbles (Table 1). The 
catchment area size varied among streams (mean = 35.81 
SD = 40.53 Km2), and the average hill slope ranged from 
1.54º to 15.18º (Table 1). At the catchment scale, native 
vegetation, pastures, agriculture, silviculture, and urban 
infrastructure varied according to the following ranges: 
8.83%–95.44%, 4.56%–91.17%, 0%–33.22%, 0%–15.47%, 
and 0%–0.83%, respectively (Table  1). In the riparian 
zone, the native vegetation, pastures, and agriculture var-
ied according to the following ranges: 23.21%–100%, 
0%–76.79%, and 0%–3.56% (Table  1), respectively. In 
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general, an average of 55.51% of the catchment area of the 
streams was preserved and covered with native vegetation 
(Fig. 2), and most streams had riparian vegetation over 30 m.

Beta diversity patterns

We found high values of total beta diversity, ranging from 
74.1% to 84% (Fig. 3). For all beta diversity analyses, fish 
community variation was primarily explained by the species 
replacement component rather than the richness difference 
(Figs. 3 and 4). As shown in the ternary plots, most site pairs 
were concentrated close to the left corner, with the centroid 
near to the species replacement side (Fig. 4).

Regarding the decomposition of βtotal into its two com-
ponents, βrepl and βrich. To the global model, βrepl and βrich 
components contributed 41.5% and 40.2% to dissimilarity 
among fish stream communities, respectively (Fig. 4). In 
the Upper Araguaia River basin, βrepl and βrich components 
contributed 45.5% and 39% to the dissimilarity among fish 
stream communities, respectively (Fig. 4). Finally, in the 
Middle Rio das Mortes basin, βrepl and βrich components con-
tributed 45.5% and 29.6% to the dissimilarity among fish 
stream communities, respectively (Fig. 4).

Regarding the influence of the local environment, 
regional variables, and spatial variables on βtotal, βrepl, and 
βrich in the global model, βtotal was explained by a set of all 
variables (Fig. 5a, Online Resource Table S6). Similarly, 
βrepl and βrich were explained mainly by local environmental 
variables (Fig. 5b, c, Online Resource Table S6). However, 
in the Upper Araguaia River basin, βtotal and its components 
(βrepl and βrich) were explained only by environmental vari-
ables (Fig. 5d, Online Resource Table S7). In the Middle 
Rio das Mortes River basin, βtotal was explained by the 
local, regional, and spatial environmental variables (Fig. 5g, 
Online Resource Table S8), while βrep was explained only by 
the local environmental variable (Fig. 5h, Online Resource 
Table S8), and βrich was explained by the local environment 
and regional variables (Fig. 5h).

The db-RDA analyses showed that the relative importance 
of the predictor variables (i.e., local, regional, and spatial) to 
explain the beta diversity patterns differed between the mod-
els (Online Resource Table S9–S11). However, we did not 
find any influence of land use variables on the beta diversity 
components in our model (Online Resource Table S9–S11). 
In the global model, the βtotal component was influenced 
by the local environmental variables related to water 

Fig. 2   The land use in catchment a and riparian zone b for different models in our study. Vertical bars represent the standard deviation for land 
use classes
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physiological and chemical features (pH, dissolved oxy-
gen, turbidity, and current velocity), morphology (width), 
substrate (trunks and leaf litter banks), margin structure 
(thin roots), regional variables (catchment size), and spatial 
variables (dbMEM1) (Online Resource Table S9). The βrepl 
component was influenced by local environmental variables 
related to the water physiological and chemical features (pH 
and current velocity) and stream structure (trunks, leaf litter 
banks, and thin roots). The regional variables were related 
to the available hydric features (annual mean precipitation; 
Online Resource Table S9). The βrich was influenced by local 
environmental variables related to stream structure (width, 
leaf litter banks, percentage of grasses) and spatial variables 
(dbMEM1) (Online Resource Table S9).

In the Upper Araguaia River basin, the db-RDA showed 
that the βtotal component was influenced only by local 
environmental variables related to the physiological and 
chemical characteristics of the water (conductivity, tur-
bidity, current velocity) and stream morphology (depth; 
Online Resource Table S10). The βrepl component was only 
influenced by local environmental variables related to the 

physiological and chemical characteristics of the water (sur-
face water velocity) and the mean width of the local riparian 
vegetation. Together, the βrich component was exclusively 
influenced by the local environmental variables related to 
the physiological and chemical characteristics of the water 
(conductivity) and the stream morphology (depth; Online 
Resource Table S10).

In the Middle Rio das Mortes River basin, the βtotal com-
ponent was shown by the db-RDA to be influenced by local 
environmental variables related to water physiological and 
chemical characteristics (turbidity), morphology (depth), 
margin structures (percentage of grasses), and proportion 
of shrubs in the local riparian vegetation of the streams. 
The regional variables were represented by the hydric avail-
ability (annual mean precipitation) and the spatial variables 
that represented the spatial processes on a regional scale 
(dbMEM1) ( Online Resource Table S11). The βrepl compo-
nent was influenced by local environmental variables related 
to water physiological and chemical characteristics (turbidity 
and water temperature), stream morphology (depth), sub-
strate structure (trunks), and margin structure (thin roots), 

Fig. 3   Box plots of pairwise dissimilarities for the beta total (βtotal), 
species replacement (βrepl), and richness difference (βrich) of fish com-
munities in different models. The central lines denote the median 

value, the box denotes the first (25th) and third (75th) percentiles, 
whiskers represent the smallest and largest value, and dots indicate 
outliers
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and by regional variables represented by the annual mean 
precipitation (hydric availability) and the spatial variables 
that represent the spatial processes on a regional scale 
(dbMEM3). In comparison, the βrich component was influ-
enced by local environmental variables related to water 
physiological and chemical characteristics (pH), the margin 
structures (percentage of grasses), and regional variables 
represented by catchment size (Online Resource Table S11). 
We provided the separated significance test results for each 

explanatory variable in the supplementary material (Online 
Resource Tables S9–S11).

Discussion

Here, we found that beta diversity (βtotal) was mainly deter-
mined by species replacement (βrep), while richness differ-
ence (βrich) has secondary importance to the loss or gain of 

Fig. 4   Ternary plots illustrating the beta diversity structure of stream fish communities. Each black dot represents a pair of sites. The large gray 
dot represents the centroid of the point cloud. Abbreviations: βtotal = total beta diversity; βrepl = species replacement; βrich = richness difference
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species along an environmental gradient. The prevalence 
of species replacement along environmental gradients 
could be related to the niche filtering process (Carvalho 
et al. 2012; Malumbres-Olarte et al. 2021; Frota et al. 
2022), which refers to species-sorting metacommunity 
dynamics (Leibold et al. 2004; Heino et al. 2015a). Thus, 
environmental feature variation may be responsible for the 
difference in composition through niche differentiation 
(Ricklefs 1987; Siqueira et al. 2012). For example, some 
species, such as Brycon falcatus Müller & Troschel 1844 
and Leporinus sp., were found only in streams at great 
depths. Simultaneously, fish species in the Gymnotiformes 

group are related to streams with higher conductivity and 
root meshes in the margins. Thus, this study reveals spe-
cies-specific requirements for habitat occupation.

Local environmental, regional, and spatial variables 
distinctly influenced the dissimilarity of species between 
sites and their components (Fig.  5, Online Resource 
Tables S6–S8). Moreover, local environmental variables 
were the main drivers responsible for the dissimilarity 
among fish stream communities. On the other hand, regional 
and spatial variables secondarily explained the beta diversity 
patterns. This prevalence of the local environment in filter-
ing and regulating the local communities (i.e., the species 

Fig. 5   Venn diagrams showing the influence of set predictor vari-
ables (environmental local, regional, and spatial variables) on the 
beta diversity components in stream fish communities. Values in 
bold indicate the set of variables with a significant influence on beta 
diversity, and asterisks indicate the significance level (*P < 0.05; 
**P < 0.005; ***P < 0.001). The result indicated by 0.000 corre-
sponds to a negative fraction whose value was truncated to zero (Leg-

endre 2008). Abbreviations: Local = local environmental variables; 
Regional = catchment variables and land use variables in the riparian 
zone; Spatial = spatial variables (dbMEM, distance-based Moran’s 
eigenvector maps); Not testable = not possible variance partitioning 
because only set environmental variables were selected during the 
variable selection process; βtotal = total beta diversity; βrepl = species 
replacement; βrich = richness difference
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sorting process) has been shown in the literature to be the 
most important process structuring freshwater communities 
at various spatial extents (Perez Rocha et al. 2018; López-
Delgado et al. 2020). For instance, López-Delgado et al. 
(2020) reported a strong species sorting process in struc-
tured fish communities in the Amazon Bita River at two 
spatial levels at the river and basin levels. This influence of 
the species sorting process on the dissimilarity among fish 
stream communities is more evident in headwater streams 
(Zbinden and Matthews 2017; Frota et al. 2022), as in our 
study. However, the mass effect and patch dynamics models 
can also be relevant in structuring the fish community at the 
basin level (López-Delgado et al. 2019). But the fact that our 
results showed the proportion explained by a set of the local 
environmental variables was larger than others set of the 
variables is clear evidence that niche-based processes (i.e., 
species sorting process) are the main mechanisms structur-
ing fish communities in the streams studied.

Regional variables were less important in explaining 
variations in the beta diversity components. We suppose 
that the spatial scale of our study may be a possible expla-
nation for the secondary importance of regional variables 
in explaining the beta diversity. The environmental factors 
that vary on a large spatial scale (i.e., climatic variables 
and land use) can have low variability on smaller spatial 
scales because these variables need a large amount of time 
or range to have noticeable variations (Leibold et al. 2004; 
Benone et al. 2020). However, we may not discard their 
importance in explaining aquatic variation patterns in com-
munities because regional variables can interact with local 
environmental variables (Allan and Castillo 2007; Galbraith 
et al. 2008). For instance, surrounding land use, one regional 
variable, can affect fish communities directly through stream 
inputs of sediment organic matter and nutrients, and indi-
rectly influence local variables such as substrate structure, 
and modify the physiological and chemical features of water 
streams (Allan 2004; Sweeney and Newbold 2014; Montag 
et al. 2019). In addition, the native vegetation cover in the 
catchment and in the riparian zone are the main sources of 
wood debris and leaf litter banks in streams (Paula et al. 
2013; Sweeney and Newbold 2014), two important vari-
ables to explain the dissimilarity among fish communities 
in our study. Thus, the native and riparian vegetation within 
the catchments permit regional fish diversity maintenance 
through species niche requirements and environmental 
filters.

Here, catchment area size and variables related to hydric 
availability (annual mean precipitation and seasonality 
precipitation) were regional variables that influenced dis-
similarity among fish stream communities. We highlight 
that greater catchments have more voluminous streams that 
should support more diverse fish communities (Angermeier 
and Schlosser 1989; Zbinden and Matthews 2017). The size 

of an area has been reported as a predictor with a potentially 
positive effect on species richness (MacArthur and Wilson 
1967; Gooriah and Chase 2020) because there is a relation-
ship that the larger the areas are, the greater the possibil-
ity of niches and habitat complexity, which can result in 
greater diversity (species richness). Thus, beta diversity is 
expected to increase with ecological heterogeneity in large 
areas (Ricklefs 1987; Bini et al. 2014; Heino et al. 2015a) 
because ecological heterogeneity allows the increase in spe-
cies coexistence (i.e., contributing to the ecological speciali-
zation of species).

Hydric availability is related to habitat viability and envi-
ronmental heterogeneity, favoring dissimilarity among fish 
stream communities (Oberdorff et al. 2019). For instance, 
the hydric availability that influences the water level in 
streams is an important driver of the mass effect process 
by creating the possibility of fish dispersion being active or 
passive through the net drainages (Tonkin et al. 2018). Addi-
tionally, hydric availability may influence local environmen-
tal variables (e.g., pH, turbidity, conductivity, and depth) by 
changing habitat features and species niche requirements, 
emphasizing the importance of the species sorting process 
in community assembly rules (Soininen 2014; Tonkin et al. 
2016).

The influence of spatial processes driving metacommu-
nity structure is linked to the spatial extent and capacity for 
movement of species or group dispersion (Landeiro et al. 
2011; Astorga et al. 2012; Frota et al. 2022). The communi-
ties dominated by organisms with high dispersal rates and 
longest dispersal capabilities could be chiefly driven by mass 
effect events (Leibold et al. 2004; Heino et al. 2015a). High 
dispersal rates are associated with the homogenization of 
community composition, resulting in low beta diversity val-
ues. However, communities dominated by organisms with 
limited dispersal rates and short dispersal capabilities could 
be driven by species-sorting mechanics or dispersal limita-
tions (Grönroos et al. 2013; Tonkin et al. 2018). Thus, spe-
cies sorting prevails across multiple scales when dispersal 
rates are insufficient to overwhelm the environmental filtering 
process (Heino et al. 2015b; Tonkin et al. 2018). In addition, 
stronger dispersal limitations can be associated with the den-
dritic structure of stream networks. In contrast with dispersal 
in terrestrial landscapes, fish species are constrained to dis-
perse through the watercourse stream network and are highly 
dependent on the degree of connectivity between branches of 
the network (Altermatt 2013; Tonkin et al. 2018). Here, we 
think the importance of spatial variables in the global model 
to explain the dissimilarity among fish stream communities 
is linked to dispersal limitations. The shortest distance among 
the watercourses in the studied streams in the Upper Araguaia 
River and the Middle Rio das Mortes basin is larger than 900 
km, and most stream fish species are small (Online Resource 
Table S2). Thus, the distance among habitats represents a 
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barrier to dispersion, contributing to the differentiation of fish 
communities among streams (Landeiro et al. 2011; Schmera 
et al. 2018). Therefore, biogeographic processes (e.g., specia-
tion, extinction, and headwater capture) could result in ich-
thyofauna regionalization, as occurs in the interfluves of the 
Amazon, where great rivers represent a barrier to the smallest 
stream fish, leading to the isolation of these sites (Dambros 
et al. 2020).

In general, the local environmental variables contributed 
more to explaining the pattern of beta diversity. Indeed, 
despite the known strong influence of environmental vari-
ables in driving species distributions across intense habitat 
filters (Chase and Leibold 2003; Chase 2007), the disper-
sal rates are often found to mediate the relative importance 
of environmental versus spatial factors. It is important to 
consider that dispersion should be strong enough to allow 
individuals to reach sites that match their habitat require-
ments and therefore allow for environmental filters (Lei-
bold and Chase 2017). In addition, the aquatic fauna of the 
stream's ecosystems is constantly extinct and recolonized 
due to waterspouts, suggesting that fish species have eco-
logical adaptations to survive in extreme conditions (Taylor 
and Warren 2001). Thus, ecological strategies of species 
could be more important in explaining the variation in the 
aquatic community along the stream's gradient than disper-
sion limitation, since local sites are constantly recolonized.

Drivers of the species replacement component

In all models, species replacement was influenced only by 
local environmental variables (Fig. 5b, e, and h; Online 
Resource Tables S6–S8). These results provide evidence 
that βrepl favored species-sorting events. Local environ-
mental variables related to the physiological and chemical 
parameters of water (e.g., pH, turbidity, water temperature, 
surface water velocity, and depth) and structural features 
(e.g., trunks and roots) were the main drivers of environ-
mental filtering and were more prominent than spatial fac-
tors in structuring biological communities (Landeiro et al. 
2012), leading us to believe that these factors were the 
drivers of community distribution. For instance, the water 
velocity could select species with the best swimming ability 
(Jackson et al. 2001), such as Characidium cf. zebra Eigen-
mann 1909, which was one of the few species occurring in 
a large number of streams. In turn, structural variables such 
as trunks and roots increase niche availability and provide 
opportunities for the establishment of several fish species. 
The ecological mechanisms associated with local environ-
mental factors (e.g., environmental filtering) were shown by 
our results to be predominant over regional or spatial factors 
to explain species replacement among the studied stream 
fish communities.

Drivers of the richness‑difference component

We found distinct patterns for each model regarding the 
influence of the sets of variables on the βrich component. 
There is a predominance of environmental factors that 
explain richness differences in the studied fish stream 
communities. Therefore, we propose that the hierarchical 
structure of rivers should be a significant driver of com-
munity change (Frissell et al. 1986; Tonkin et al. 2018). 
The importance of spatial variables in affecting species 
loss/gain depends mainly on the size of the geographical 
scale (Tonkin et al. 2018). The global model (the one with 
the greatest geographic range) was the only one in which 
spatial variables were more prominent than environmental 
variables while explaining the richness-difference patterns. 
Again, the importance of geographic isolation, as observed 
by the higher number of exclusive species found in both 
basins, is highlighted by this finding. On the other hand, 
we emphasize that among regional variables, only catch-
ment size was important in explaining richness differences 
only in the Middle Rio das Mortes basin. This pattern can 
be explained in light of the hierarchical structure of fluvial 
systems, in which aquatic communities of small drainages 
are subsets of communities from larger drainages (Altermatt 
2013; Tonkin et al. 2018), one particular case of the spe-
cies richness pattern. Finally, the prevalence of the environ-
mental factors in explanted the species loss/gain between 
sites is evidence of the intermediary dispersal rates among 
streams (Leibold et al. 2004; Tonkin et al. 2018). Therefore, 
species-sorting mechanisms are the main driver in shaping 
the structure of fish communities due to environmental filters 
(Heino et al. 2015b).

Conclusion

Our results showed that local environmental variables were the 
main factors responsible for the variation patterns in the beta 
diversity components of stream fish communities. Simultane-
ously, the regional and spatial variables were the least useful 
in explaining the variation patterns of the fish communities. 
Therefore, these variables can be considered secondary mecha-
nisms for the variation patterns of beta diversity. Although 
we did not find direct influence of land use variables on the 
beta diversity and its components, we may not discard their 
importance in explaining aquatic variation patterns in com-
munities. Because land use variables can interact with local 
environmental variables, they constitute a set of important 
variables to explain the dissimilarity among fish communities 
in our study. Thus, the higher number of exclusive species in 
the basins shows the need to concentrate efforts on maintain-
ing the remaining native and riparian vegetation within the 
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catchments, which guarantees a variety of habitats and, con-
sequently, regional fish diversity maintenance.
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