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the overall driver of the macroinvertebrate assemblages. 
Regression analysis evaluated the strength of single and 
multiple variables in explaining macroinvertebrate multi-
metric index (MMI) and ordination patterns, and revealed 
that assemblages were highly responsive to numerous 
stressors. In contrast to predictions, total upstream network 
riparian forest cover explained the most variation over-
all (83%) while specific conductance was the single best 
instream measure (64%). Stepwise regression models using 
combinations of field, laboratory, and land use variables 
all performed reasonably well but we found that a 3-vari-
able model [% forest (catchment), road density, and specific 
conductance] that minimized colinearity and cost/effort 
explained 90% of the variation in the MMI. Validation and 
spatial autocorrelation results suggest that this model could 
potentially be used to forecast stream condition for prior-
itizing conservation and remediation efforts in headwaters 
within the ecoregion, and our general approach would be 
broadly applicable in other settings.

Keywords Bioassessment · Predictive models · 
Urbanization · Headwater · Land use alteration · Buffer 
zone

Introduction

An effective monitoring program demands considerable 
resources in order to make sound assessments of water-
body condition. Under the US Clean Water Act (CWA), 
states must evaluate the condition of all of their streams 
(often thousands of stream segments covering thousands 
of kilometers). States typically assess streams on a catch-
ment-by-catchment basis defined by hydrologic unit codes 
(HUCs), rotating sampling efforts among HUCs and years. 

Abstract Environmental agencies are often faced with 
resource and time constraints in assessing waterbody 
health. We compared the strengths of varying levels of 
effort (field measures, laboratory chemistry, land use, and 
multiple combinations of these) to explain macroinverte-
brate assemblage response along a gradient of urban land 
use intensity among 30 headwater streams in northern 
West Virginia. Because the spatial arrangement of human 
disturbance can govern biotic response, land use effects 
were analyzed at five spatial scales (whole catchment, and 
100  m buffer zone at three fixed upstream distances and 
total stream network upstream of site); instream ecologi-
cal measures included physical habitat, algal concentrations 
and water chemistry. Of the five spatial scales, we pre-
dicted that riparian land use nearest the site would explain 
the most variation but that instream measures would be 
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Environmental agencies charged with protecting aquatic 
resources commonly rely on macroinvertebrate assem-
blages to assess and designate waterbody attainment under 
various governmental regulations (e.g., aquatic life use of 
the CWA). Because of the sheer number of streams and 
associated monitoring costs, spatially-balanced probabil-
istic approaches are often applied. There are some indica-
tions that land use quantification can adequately predict 
biological condition in streams and rivers at regional scales 
(e.g., Gergel et  al. 2002; Van Sickle et  al. 2004; Carlisle 
and Hawkins 2008; Brown et al. 2012) providing managers 
with incentive for applying geographic information systems 
(GIS) tools to assess, explain, and ultimately target water-
bodies in need of preservation, restoration or pollution 
control.

Catchment land alteration (i.e., deviation from natural) 
drives multiple changes in terrestrial and aquatic ecosys-
tem structure that ultimately shape ecosystem functions 
(Allan 2004) but these changes are often dependent on 
both magnitude and proximity to the alteration (Tran et al. 
2010). For example, urbanization can affect multiple eco-
logical processes leading to stream degradation. In fact, the 
‘urban stream syndrome’ is a term that captures the con-
sistency by which major hydrological, chemical, and bio-
logical changes are observed (Walsh et  al. 2005). While 
stressor pathways are complex, monitoring and assessment 
strategies often aim to narrow down this complexity using 
surrogate measures. Land use quantification is commonly 
used to explain patterns in stream biota and can serve as 
an effective measure for predicting waterbody health. The 
spatial proximity of land use pressures (e.g., whole catch-
ment versus riparian corridor) can often dictate the sever-
ity of observed aquatic impacts (Roth et al. 1996; Sliva and 
Williams 2001; Sponseller et  al. 2001; King et  al. 2005; 
McBride and Booth 2005; Rios and Bailey 2006; Roy et al. 
2007; Tran et  al. 2010); however, whole catchment land 
use has been considered an overly simplistic representa-
tion of environmental disturbance (King et al. 2005). Given 
contradictory findings by some of these investigators on 
whether catchment or riparian impacts are most important 
to biological communities (or are concordant), this research 
area deserves further exploration. Although other analytical 
methods exist to address proximity effects such as inverse 
distance-weighting (King et al. 2005; Van Sickle and John-
son 2008), flow-weighting via spatial stream networks 
(Ver Hoef et al. 2014) and connected impervious surfaces 
(Roy and Shuster 2009), we chose to emulate other previ-
ous studies that examined whole catchment versus ripar-
ian land use pressures on stream condition within a local 
watershed-context.

Land use as a predictor of water quality or biological 
integrity (e.g., fish or macroinvertebrate assemblages) is 
enticing because with appropriate models, local or regional 

evaluations and forecasting can be done using existing GIS 
data layers (Kristensen et  al. 2012; Villeneuve et  al. 2015). 
However, given the complex interplay of land use and its 
direct and indirect influences on habitat and water qual-
ity, localized land use models often suffer from colinearity 
among the land use classes themselves and with instream 
(habitat and chemistry) measures (King et  al. 2005). This 
complexity makes it difficult to select appropriate variables 
without risk of overfitting models that ultimately cannot reli-
ably predict responses in novel locations. Given budgetary 
constraints in monitoring resources, GIS-based models can 
provide managers with useful decision tools for assessing and 
interpreting local or regional waterbody health, but are prob-
ably deficient without some level of accompanying instream 
monitoring data (Gergel et al. 2002).

With an overarching goal to predict regional headwa-
ter stream conditions, we aimed to first explain changes in 
local headwater macroinvertebrate assemblages and compo-
nent bioassessment endpoints along a gradient of proximate 
(riparian) and catchment-scale urban land use, and associated 
instream physical and chemical measures. We focused on 
headwater streams (1st–2nd order) because of their impor-
tance to local and regional biodiversity and their contribu-
tion to the overall health of larger rivers and streams (Meyer 
et al. 2007). Specifically, our objectives were fourfold: (1) we 
aimed to test which spatial scale of land use pressure could 
best explain assemblage composition and overall biological 
condition. We predicted that riparian buffer zone land use 
affects assemblages more than whole catchment land use. 
(2) With this acquired knowledge, we compared the best 
spatial arrangement of land use to instream measures (habi-
tat and chemistry) to test which can better explain biologi-
cal condition. Here, we predicted that macroinvertebrates 
respond more consistently to local instream factors compared 
to the best land use indicator. (3) Furthermore, we sought to 
develop and compare multivariable composite models to pre-
dict future biological condition in these or other unassessed 
headwater streams within our study ecoregion. Models were 
based on varying levels of information (land use, field meas-
urements, water chemistry, or combinations of all) that rep-
resented differing levels of cost, time and resources needed 
by environmental agencies to help assess stream health. (4) 
Based on biological condition endpoints, we inferred stressor 
thresholds of select land use and instream variables to protect 
aquatic life in the region.

Methods and materials

Study area

We selected 30 moderate- to high-gradient perennial head-
water tributaries (1st–2nd order) of lower Wheeling Creek 
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(Fig.  1) in the vicinity of Wheeling, West Virginia (WV) 
that varied in land use pressures (e.g., forested, residential/
commercial development, agricultural). Wheeling Creek 
is a 5th order tributary (~777 km2) of the Ohio River and 
drains portions of southwestern Pennsylvania and the 
northern panhandle area of WV and is within the Upper 
Ohio South HUC8 watershed. The study area lies within 
the Permian Hills subecoregion (70a; after Woods et  al. 
1996) of the Western Allegheny Plateau, a hilly region 
characterized by Appalachian oak forest in the uplands 
and mixed mesophytic forest in the valleys, and underlain 
by sedimentary siltstone, sandstone, shale, limestone, and 
coal. Surrounding the city of Wheeling in Ohio County, 
human disturbance intensity is generally dictated by topog-
raphy, road access, and proximity of parks and basic infra-
structure. Human population has varied over the last cen-
tury in the county, peaking in the mid-1900s (~73,000) 
versus current day (~44,000). A network of roads spans 
the entire Wheeling Creek catchment where roads often 
run parallel to, and cross stream channels in nearly all 
major tributaries of Wheeling Creek. Our streams ranged 
from having low to high disturbance intensities (e.g., 
roadless forested catchments, expansive golf courses, and 
low- to high-density commercial or residential develop-
ment). We sampled all sites (50  m reaches) for physical, 

chemical, and biological properties in April 2015. Reaches 
were first selected by stream size (upstream catchment 
areas ranging from ~0.5 to 1.5 km2), and secondly to rep-
resent positions along streams so as to capture a gradient 
of catchment and riparian land use pressures. We avoided 
resource extraction (coal mining and natural gas) land use 
in this study to focus on primary land uses (commercial, 
residential, and some agriculture) in the immediate Wheel-
ing vicinity. None of the individual sites were longitudi-
nally connected by flow within the same sub-catchment 
(non-nested) which allowed for statistical independence. 
A few developed sites had sections of their upstream or 
downstream areas piped underground and stream banks 
of urbanized streams often had extensive non-native veg-
etation consisting of Japanese Knotweed (Fallopia japon-
ica), Multiflora Rose (Rosa multiflora), Privet (Ligustrum 
vulgare), Russian Olive (Elaeagnus umbellata), and Hon-
eysuckle (Lonicera spp.). In order to reduce confound-
ing by some common factors, selection criteria involved 
choosing sites with full streambed shading (canopy cover, 
median = 93%; range = 83–98%) and similar stream catch-
ment area (median = 0.87  km2; range = 0.5–1.3  km2); this 
latter criterion typically led to site comparability in mean 
wetted width (median = 2.0  m; range = 1.3–2.9  m), eleva-
tion (median = 290  masl; range = 250–330  masl), general 
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Fig. 1  Map of sample sites along with general study location (upper right insert) and magnified view of example buffer zone polygons (far right 
insert)
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lithology (Dunkard Group of Permian age), dominant soil 
type (alfisols; Westmoreland silt-loam), and stream channel 
morphology (i.e., riffle-pool sequences dominated by cob-
ble riffles). Example site photographs are shown in Online 
Resource 1.

Macroinvertebrate sampling

We sampled macroinvertebrates in April 2015 using 
West Virginia Department of Environmental Protection’s 
(WVDEP) riffle kicknet method (WVDEP 2014). In brief, 
a 0.5-m wide rectangular frame kick-net (595  µm  mesh) 
was used to collect 4–0.25 m2 samples; the contents were 
composited to yield a 1  m2 sample. Samples were fixed 
with 95% ethanol and returned to the laboratory for pro-
cessing to a 200 (±20%)-fixed count random subsample 
from a gridded pan, and subsequent identification and enu-
meration. All aquatic insects (including Diptera), crayfish, 
snails and clams were identified to the genus-level. Follow-
ing WVDEP protocol, higher classifications were assigned 
to some taxa: Oligochaeta (family), Nematoda (phylum), 
Turbellaria (class), and Trombidiformes (order).

Instream measures

Rapid bioassessment protocol (RBP) (Barbour et al. 1999) 
visual habitat assessments and other site measurements 
were performed at the time of benthic sampling. The RBP 
habitat assessment method consisted of rating ten habitat 
metrics on a scale of 0–20 (total possible score = 200). At 
each site, we estimated channel slope (hand-held clinom-
eter); mean canopy cover (spherical densitometer) from 
lower, middle and upper reach of each transect, and mean 
wetted stream width. Substrate composition was estimated 
using pebble counts with a gravelometer where approxi-
mately 100+ random substrate particles were measured 
along the reach in a wandering upstream direction. For ana-
lytical purposes, pebble count data were reduced to three 
variables: % fines <1 and <4  mm, and median particle 
diameter  (D50). We used an in  situ fluorometer (Bentho-
Torch, bbe Moldaenke, Germany) to estimate the dominant 
type (green, diatoms, blue-green) and mean concentration 
of benthic algae (benthic Chl a, µg/cm2) on the surfaces of 
six stones. Stones (i.e., medium cobble) were chosen in rif-
fle areas of the reach, primarily in the immediate vicinity of 
benthic macroinvertebrate collections. Two replicate meas-
urements were taken on each stone and averaged across all 
measurements; diatoms made up >90% of these measure-
ments and we chose to combine all algal types into total 
benthic Chl a for analytical purposes. A multi-probe sonde 
(YSI, Yellow Springs, OH, USA) was used in situ to meas-
ure specific conductance (µS/cm), dissolved oxygen (both 
mg/L and % saturation), pH and temperature (°C) at the 

time of benthic sampling. We also collected water chem-
istry grab samples (ions, nutrients, metals, TSS, alkalinity) 
once at each site (top of reach); samples were analyzed at 
EPA Region III’s Environmental Science Center at Fort 
Meade, MD. In addition, fecal coliform bacteria samples 
were collected concurrently and analyzed as colony form-
ing units/100 mL (cfu/100 mL) at a local laboratory within 
6 h of sampling.

Land use quantification

We used ESRI ArcGIS software and tools (ArcMap 10.3.1, 
Arc Hydro v2.0) to delineate catchments (3 m digital eleva-
tion model) upstream of the 30 sample points and to quan-
tify land use at five spatial scales: (1) whole catchment, and 
a 100  m wide riparian buffer zone (50  m per side) poly-
gon delineated at upstream (US) segment distances from 
the lowest reach end of (2) 200 m, (3) 500 m, (4) 1000 m, 
and (5) for the entire stream network US of site (to the 
map-derived stream sources). We used the West Virginia 
Statewide Addressing and Mapping Board (SAMB) for 
GIS layers of streams, roads, and building points (struc-
tures). For the whole catchment, land use classes were 
derived from the 2011 National Land Cover Database 
(NLCD; see Homer et  al. 2012) at a spatial resolution of 
30 m. ArcMap’s buffer tool was used in conjunction with 
the NLCD layer to determine % forest land cover within the 
100 m buffer zone (50 m per side) polygons at 200, 500, 
1000  m, and entire network US (cumulatively). We com-
bined deciduous-evergreen-mixed forest into one forest 
classification. Likewise, in the whole catchment, varying 
intensities of urban development (low, medium, high) and 
agriculture (hay/pasture, crops) were aggregated. Several 
catchments had large golf courses which were classified 
as open-space development (similar to lawns) and we ana-
lyzed open-space and urban development both separately, 
and combined as a total development class. Ultimately, 
we compared five land use classes: % forest (sub-classes: 
catchment, buffer 200 m US segment, 500 m US, 1000 m 
US, and entire network US), % developed urban, % devel-
oped open-space, % developed total, and % agriculture. 
In addition, catchment-scale road density (km/km2) and 
structure density (structures/km2) were calculated using the 
SAMB data. We also evaluated percent impervious cover 
(% IC) as an indicator to compare with other studies found 
in the literature using the 2011 NLCD derived impervious 
layer (30  m) calculated for each catchment polygon (see 
Online Resource 2 for site examples).

Statistical analyses

All of the data used in this study were collected in a 
one-time sample event; thus, our analyses followed a 
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space-for-time substitution approach where trends or 
changes in macroinvertebrates due to altered land use or 
instream measures is inferred from sampling a range of 
characteristics across space.

Data reduction

With the macroinvertebrate data, we calculated a WV-
specific multimetric index (MMI; 100-point scale) called 
the GLIMPSS (CF) (genus-level index of most probable 
stream status, with Chironomidae identified to family-
level; Pond et  al. 2012) specifically calibrated for this 
region and season (plateau spring, or PL Sp). We used 
this MMI as our primary response variable that relies on 
the following component metrics: intolerant (<4 toler-
ance value) richness, Ephemeroptera richness, Plecop-
tera richness, clinger richness, modified Hilsenhoff biotic 
index (mHBI), % Ephemeroptera + Plecoptera + Trichop-
tera relative abundance (minus Cheumatopsyche), and % 
Chironomidae + Annelida. Taxon tolerance value desig-
nations followed WVDEP’s assignments. This version 
of the GLIMPSS is used by WVDEP for monitoring pur-
poses in the study region (WVDEP 2015); we also applied 
WVDEP’s stream condition ratings of “very good” (25th 
%ile of state reference), “good” (5th %ile of reference), 
“degraded” (upper bisection of reference 5th %ile), and 
“severely degraded” (zero to lower bisection of reference 
5th %ile) as grouping variables (see “Statistical analyses”). 
Although not part of the MMI, we documented the range 
in density (organisms/m2) (a simple extrapolation estimated 
from the proportion of grids required to meet the target 
subsample size from the 1 m2 kicknet sample; Ligeiro et al. 
2013), and ranges of total and EPT richness.

In addition to the MMI, we synthesized overall assem-
blage structure using multivariate ordination with non-
metric multidimensional scaling (NMDS; PC-ORD v. 6, 
Gleneden Beach, OR, USA). The NMDS was based on 
Bray–Curtis distances and  log10 (x + 1) transformed abun-
dances, omitting rare taxa (observed in <5% of samples) 
(McCune and Grace 2002). The software rotates (varimax) 
the final ordination axes so that they are orthogonal (where 
axis 1 accounts for the most variance); projected axes are 
thus parametric and site scores (and taxa) can be used in 
correlation-type analysis as a form of indirect gradient 
analysis. Thus, we used NMDS 1 as a separate response 
variable to compare with MMI and to represent fine-scale 
changes in the assemblage composition (see below). For 
visualization within the n-dimensional ordination plot, we 
grouped sites according to MMI stream condition (very 
good, good, degraded, and severely degraded after Pond 
et  al. 2012). This also provided a relative check on how 
taxonomic composition varied with MMI-based condition 
assessments.

Instream measures were screened for colinearity and 
strongest macroinvertebrate response. First, variables were 
inspected for normality (histogram plots and Shapiro-
Wilkes test, Systat v. 13) and transformed accordingly (log, 
√, arc sin √(x)) to ultimately improve linearity among 
predictors and response variables. Several of the chemi-
cal variables (e.g., trace metals) were omitted when below 
detection limits at >90% of sites. While some variables 
were evaluated individually, we used Spearman correlation 
to initially inspect for multicolinearity of all variables; in 
this case, one variable of a correlated pair (r > 0.75) was 
chosen first if it was deemed to show a stronger signal with 
biotic metrics, and secondarily (in the case of ties) if it had 
a wider range.

Catchment land use classes were also evaluated for col-
inearity (i.e., an increase in developed land corresponded to 
a concomitant reduction in forest). Since natural land cover 
in this ecoregion is forest (deciduous, conifer, mixed), 
we assume that non-forest is a proxy for land use altera-
tion. However, to avoid statistical dependency of mutually 
inclusive land use variables (King et al. 2005), we used a 
series of Pearson product-moment partial correlations to 
examine correlation independence of the MMI with % for-
est catchment, % developed open, % developed urban, % 
developed total, % agriculture, road density, and structure 
density. Here, correlations between the MMI and each land 
use variable were calculated after other land use variables 
were held constant. From this analysis, we focused on a 
reduced set of land use indicators for multiple linear regres-
sion modeling (see “Constructing and validating composite 
explanatory/predictive models”), but we compared all land 
use classes as individual explanatory variables (see below). 
Although correlated with other land use classes, % IC was 
evaluated separately with macroinvertebrate indicators.

Testing individual explanatory variables

We used ordinary least-square regression analysis to evalu-
ate magnitude, direction and significance of the relation-
ships between land use and instream measures on mac-
roinvertebrate response indicators (MMI and NMDS 1 
scores). For all regressions, model residuals were plotted 
and inspected for lack of independence (random distribu-
tional patterns); we found that transforming the independ-
ent variables resulted in normal ± scatter of the residuals 
along the zero line. For prediction 1 (riparian versus catch-
ment scale), we compared the strength of fit using coeffi-
cient of determination (r2) and Akaike Information Criteria 
 (AICC; corrected for small sample size) on the relationships 
between MMI and NMDS 1 scores versus % forest land 
cover (our assumed proxy) at different proximities (i.e., 
whole catchment, and 100  m wide riparian buffer within 
reaches of 200, 500, 1000  m, and total network US). We 
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also compared MMI and NMDS 1 with catchment-scale 
road density, structure density, % developed (open-space, 
urban, and total), % agriculture, and % IC. Prediction 2 
was then investigated by comparing the strength and sig-
nificance of the relationship between macroinvertebrate 
response (r2 and AICc) with the best land use variable ver-
sus the best instream explanatory factor.

Constructing and validating composite explanatory/
predictive models

For objective 3, we compared the predictive power of com-
bined variables (field measures, water chemistry data, land 
use, and combinations of these) collected with varying lev-
els of effort (i.e., time and cost) on the MMI (our primary 
response variable), by running a series of stepwise (back-
wards selection) multiple linear regressions on the reduced 
set of variables for each level of effort. Model performance 
was assessed with adjusted R2and  AICC. To avoid multi-
colinearity in the multiple regressions, we set tolerance 
(1 − R2) at 0.5, and then inspected variance inflation factors 
[VIF; (1/1 − R2)] for each variable selected using a VIF <4 
as an acceptable threshold indicating negligible multico-
linearity (Kutner et al. 2004). We compared models based 
on weight of evidence using ΔAICc and AICc weights 
(wi) [where Δi is the paired difference between the mini-
mum AICc and model i; wi is computed as exp(−0.5Δi)/∑ 
exp(−0.5Δi)]. We also considered a relative cost gradient 
based on typical work hours and expenses for field, labo-
ratory, and GIS measures (see “Results”). The preferred 
model was selected based on a combination of the best 
weight of evidence with a lesser resource intensive level of 
effort. For this preferred model, we evaluated spatial auto-
correlation of the predictor variables with Moran’s I scat-
terplots. Prior, we assigned spatial weights using Euclidean 
distance and a furthest neighbor distance threshold (meas-
ured at ~3.1  km based on actual spatial distances). For 
each predictor variable and MMI (regression residuals) we 
report Moran’s I and pseudo p values based on 999 random 
permutations.

For comparative purposes, we further evaluated mul-
tivariate relationships between macroinvertebrate assem-
blages, and the candidate composite models while control-
ling for potential spatial autocorrelation. Here, we used 
partial Mantel tests (pMantel, PC-ORD v. 6; McCune and 
Grace 2002) that compared each pair of Bray–Curtis (mac-
roinvertebrate) vs. Euclidean dissimilarity matrices (based 
on multiple regression parameters from field data, chemical 
data, land use data, and combined models) while partialing 
out a spatial proxy (Euclidean matrix based on y-latitude 
and x-longitude coordinates). The pMantel procedure tests 
the assumption that the distance among objects (e.g., sites) 
in one dissimilarity matrix (e.g., macroinvertebrate taxa) is 

linearly independent of the distances from the same objects 
in another matrix (e.g., water chemistry, habitat data). 
Mantel tests produce a coefficient akin (but lower in mag-
nitude) to correlation analysis (r) with larger values indicat-
ing stronger associations; accompanying significance tests 
were executed with 999 randomized permutations where 
p < 0.05 would reject the hypothesis of no association.

Preferred model validation

To validate the preferred multiple regression model’s per-
formance, we compared it to random exclusion cross-val-
idation regressions and an independent dataset. The ran-
dom exclusion cross-validation technique (Systat v. 13) 
randomly removed one-fifth of the 30 sites (6 sites), re-ran 
regressions (999 repetitions), and calculated an average 
model fit (predicted R2). The independent validation data-
set comprised 13 Western Allegheny Plateau sites sampled 
by the WVDEP between 2006 and 2009; these sites were 
screened for seasonality, catchment size and lack of acid 
coal mine drainage to be comparable to our original data set 
(these sites all trained toward the Ohio River but belonged 
to three adjacent HUC8 watersheds; see Online Resource 
4). Several of the validation sites were slightly larger than 
our original sites (~2–4  km2) but catchment area was not 
found to be correlated with the MMI from regional refer-
ence sites in previous analyses (Pond et al. 2011). Our vali-
dation sites provided a gradient of environmental quality 
(e.g., 22–82% forest; specific conductance = 189–1442 µS/
cm) and biological condition (MMI = 23.6–88.5). We also 
evaluated spatial autocorrelation of the predictor variables 
and MMI regression residuals with Moran’s I scatter-
plots at the validation sites. Similarly, we assigned spatial 
weights using Euclidean distance and a furthest neighbor 
distance threshold that measured ~12 km. For each predic-
tor variable (and MMI residuals), we calculated Moran’s I 
and pseudo p values based on 999 random permutations.

Threshold detection

Existing statistical methods for threshold determination are 
varied (Dodds et al. 2010). Rather than finding breakpoints 
where macroinvertebrates significantly change along a 
stressor gradient, our interest for objective 4 was to simply 
determine stressor values corresponding with MMI impair-
ment. We used the linear regression fit of the MMI scores 
with select land use and instream stressor variables to iden-
tify central tendency-based thresholds corresponding to a 
MMI score of 57 (Pond et  al. 2012) which demarcates a 
line between a passing and failing stream condition assess-
ment. Identified threshold values of transformed variables 
were then back-transformed to report the actual values.
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Results

Macroinvertebrates

The 30 benthic riffle samples yielded 105 distinct taxa with 
total richness ranging from 15 to 32 taxa per site; EPT rich-
ness ranged from 4 to 16 genera per site. Estimated mac-
roinvertebrate densities ranged from 420 to 3376  organ-
isms/m2 (mean = 1530; all samples met the 200-count 
subsample target for MMI calculations). Among these 
headwater streams, richness was dominated by aquatic 
insect genera (e.g., 10 Ephemeroptera, 11 Plecoptera, 
10 Trichoptera, and 46 Diptera); however, at a few sites 
the crustacean amphipod Gammarus numerically domi-
nated (~50–75% abundance). MMI scores ranged from 
12 (severely degraded) to 89 (very good) across all sites. 
Based on the GLIMPSS (CF) threshold (score of 57) desig-
nated in Pond et al. (2012), 14 sites were non-degraded and 
16 sites were degraded.

The NMDS ordination (Fig.  2) plotted sites primarily 
along axis 1 (77% variance explained after 62 iterations; 
p < 0.001 after 999 permutations); axis 2 explained only 
12% variance (p > 0.05). Overall stress (i.e., goodness of 

fit) for the two-dimensional solution was 0.134. Ordina-
tion patterns showed that sites were approximately grouped 
by their corresponding MMI-based condition categories, 
indicating that MMI represented multivariate taxonomic 
composition relatively well. The top 10 important taxa [i.e., 
genera with the strongest correlations (5- and 5+ respond-
ers)] with NMDS 1 included: pollution sensitive Epe-
orus (r = −0.83), Amphinemura (r = −0.82), Ephemerella 
(r = −0.71), Diphetor (r = −0.65) and Leuctra (r = −0.64), 
and inversely, the pollution tolerant Cricotopus (r = 0.79), 
Cheumatopsyche (r = 0.77), Diamesa (r = 0.74), Thiene-
mannimyia (r = 0.65), and Hydropsyche (r = 0.57). Because 
NMDS 1 can represent finer fine-scale changes to assem-
blage composition compared to typical MMIs, it was also 
used as a response variable in regression analysis (see 
below).

Environmental data

Preliminary correlation analysis uncovered several instream 
abiotic variables that were strongly co-related (e.g., specific 
conductance/chloride (Cl)/sodium (Na)/hardness (total); 
embeddedness/sediment deposition scores; riparian zone/
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channel alteration scores; and pairings of substrate particle 
size fractions). These results reduced the set of instream 
variables (Table  1) used in regression modeling. Online 
Resource 3 provides site-specific environmental measures 
(e.g., catchment area, mean wetted width, channel slope, 
canopy cover, and stressor variables).

Despite the highly colinear nature of land use classes, 
partial correlation analysis identified suitable variables 
for use in the multiple regressions [however, all land use 
variables were compared with biological measures in the 
single regression analysis (see below)]. As anticipated, 
% forest catchment and % developed total were strongly 
related (r = −0.93). Partial correlation analysis of MMI 
versus % forest catchment (while holding other land use 
variables constant) often revealed decreased correlations 
while some maintained strong relationships. For instance, 
when controlling for road density, the MMI-% forest catch-
ment relationship remained high (partial r = −0.78); how-
ever, the correlation between MMI and % forest catchment 
declined in magnitude from r = −0.89 to partial r = −0.36 
when % developed total was controlled. While statisti-
cally independent of % forest catchment, % agriculture and 
structure density were weakly correlated with MMI. The 
100 m buffer zone % forest classes (at 200, 500, 1000 m, 
and entire network US) were also highly colinear. Here, we 
compared each class with the MMI and found that buffer 
zone % forest along the entire network US showed the 
strongest signal with MMI.

Comparison of single explanatory variables

The responses of MMI and NMDS 1 with individual abi-
otic variables (Table  3) were relatively similar (model  r2) 
with some difference noted. First, catchment area (a com-
mon covariate) was not significantly correlated with any 
of our biotic or abiotic variables (all Spearman’s |r| < 0.26, 
p > 0.05, not shown). In contrast to our prediction for objec-
tive 1, we found that while several land use classes were 
significant predictors of biological condition (MMI), our 
nearest proximity variable (% forest buffer 200 m US) per-
formed worse (r2 = 0.47, AICc = 262) than % forest catch-
ment (r2 = 0.79, AICc = 234) in explaining MMI or NMDS 
1 variation. However, % forest within the buffer zone at 
longer reach scales (both 1000 m and entire network US) 
were much better predictors than % forest catchment. Ripar-
ian forest along the entire network (% forest network) was 
the best single predictor (Table 3). Within the buffer zone, 
an increasing correlation with macroinvertebrate indica-
tors was observed with increasing distance upstream (e.g., 
200, 500, 1000 m,  r2 values increased from 0.47 to 0.58 to 
0.83, respectively for MMI). Catchment-level % IC ranged 
from 0 to 44% and was strongly correlated with MMI and 
NMDS 1 (r2 = 0.70). Structure density and % agriculture 

were non-significant predictors of MMI (p > 0.05), but 
MMI actually tended to increase with % agriculture in our 
data set and it was important in one of the composite mod-
els (see below).

Our prediction for objective 2 that the best instream 
variables would explain macroinvertebrates better than the 
best land use variables was not supported. Several instream 
measures (chemistry and habitat) were significantly related 
with MMI and NMDS 1 (Table  2) but not as strongly as 
with key land use variables. With MMI, the best predic-
tor was specific conductance (r2 = 0.63, p < 0.001) while 
the weakest was % fines < 1 mm (r2 = 0.19, p = 0.02); water 
hardness (total) and Cl were key single chemical variables 
(r2 = 0.58 and r2 = 0.48, respectively). With NMDS 1, ben-
thic Chl a (r2 = 0.48) and total habitat score (r2 = 0.46) 
were the next best explanatory variables after specific 
conductance (r2 = 0.56). Bank stability score was the best 
single-habitat metric with MMI (r2 = 0.37), but embedded-
ness score was more strongly related to NMDS 1. While 
nitrite + nitrate was not a significant single predictor, it 
was important in multiple regression modeling with MMI 
(see below). Although we purposely avoided coal mining 
land use, elevated sulfate levels were observed at nearly 
all sites (Table  1), perhaps due to seepage from exposed 
coal outcrops or old underground mines, including house 
coal extraction by residents more than a century ago. How-
ever, sulfate was not significantly correlated with MMI or 
NMDS1 scores (not shown). Linear regression plots of 
the best single-variable predictors (land use and instream 
measures) of macroinvertebrate assemblages are shown in 
Fig. 3.

Composite regression models based on level of effort

Our 3rd objective was to develop and compare compet-
ing multiple regression models to predict the MMI based 
on the level of information collected among sites. Despite 
common intercorrelations between land use classes and 
the reduced set of instream variables (see Online Resource 
4), we were able to minimize multicolinearity in stepwise 
regressions (all selected variables had VIFs ≤2.2). We 
developed several strong and significant candidate com-
posite models (Table  3) explaining variation in the MMI. 
The best model combined a mix of field-collected vari-
ables, laboratory chemical variables and GIS-derived land 
use (adj. R2 = 0.92,  AICC = 210): % forest buffer 1000  m 
US, hardness (total), nitrite + nitrate, and bank stability 
score. Comparatively, models developed from field-only 
data (benthic Chl a, specific conductance, and bank sta-
bility score; adj. R2 = 0.76,  AICC = 241, Δi = 30.7) and 
lab-only water data (fecal coliform, hardness (total), Cl, 
and nitrite + nitrate; adj. R2 = 0.77,  AICC = 241, Δi = 30.7) 
performed the worst. But when combined, field + lab 
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efforts yielded a slightly better performing 4-variable 
model (adj. R2 = 0.82,  AICC = 233.6, Δi = 23.4) using ben-
thic Chl a, specific conductance, bank stability score, and 
nitrite + nitrate. Focusing only on catchment land use, an 
improved 2-variable model was constructed (adj. R2 = 0.84, 
 AICC = 225.9, Δi = 15.7) using % forest catchment and road 
density; however, when combined with field data, a better 
3-variable model (adj. R2 = 0.90,  AICC = 217.6, Δi = 7.4) 
was constructed that included specific conductance, road 
density, and % forest catchment.

Considering predictive power with the perceived 
amount of time and costs (see Online Resource 5), 
we selected the combined land use–field effort pro-
totype: MMI = 144 − (42.3 × log10 specific conduct-
ance) − (1.5 × road density) + (42 × arc sin (√ forest catch-
ment)) as our preferred predictive model (Fig.  4). An 
analysis of spatial autocorrelation on this model yielded 
low univariate Moran’s I values indicating random disper-
sion of these three predictors in geographic space: specific 
conductance (Moran’s I = −0.06, p = 0.39), % forest catch-
ment (Moran’s I = −0.015, p = 0.41), and road density 

(Moran’s I = −0.07, p = 0.42). However, a test on the MMI 
regression residuals showed some slight spatial autocorre-
lation (Moran’s I = 0.29, p = 0.02). Here, 4 of the 30 sites 
having higher or lower lagged residuals were typically 
located near outer boundaries of the study area with fewer 
neighbors.

Multivariate assemblage response to stressors approxi-
mated results found with the MMI response. As seen in 
the NMDS ordination (Fig.  2), sites exhibited patterns 
that corresponded with the biological condition classes 
as rated by the MMI and taxa with known sensitivity or 
tolerance to pollution plotted within these classes. Multi-
variate comparisons of the effort-based regression mod-
els using partial Mantel tests (pMantel r and significance) 
between Bray–Curtis distance (macroinvertebrates) and 
Euclidean distance (abiotic factors) are shown in Table 4. 
First, we found no spatial autocorrelation in the biological 
data matrix (macroinvertebrates versus geographic coor-
dinates; Mantel r = 0.01, p = 0.41). Despite this result, we 
conservatively controlled for any underlying geographic 
influence (e.g., spatial clumping of sites as visualized in 

Table 2  Single variable, 
ordinary least-squares linear 
regression results for land 
use and a subset of instream 
measures comparing MMI and 
NMDS 1 as response variables

Variables are sorted by decreasing order of MMI model support based on differences in Akaike Informa-
tion Criterion from minimum (Δi), and Akaike weights (wi). Total RBP habitat score is provided for com-
parison

MMI NMDS 1

β r2 p Δi wi β r2 p Δi wi

Land use
 % Forest buffer network US 58.9 0.83 <0.001 0 0.58 −2.6 0.86 <0.001 0 0.82
 % Forest buffer 1000 m US 49.8 0.83 <0.001 1 0.35 −1.9 0.85 <0.001 3 0.18
 % Developed total −53.4 0.80 <0.001 5 0.05 1.9 0.69 <0.001 24 <0.01
 % Forest catchment 66.5 0.80 <0.001 6 0.04 −2.5 0.77 <0.001 16 <0.01
 % Impervious cover −123.9 0.70 <0.001 19 <0.01 4.7 0.70 <0.001 23 <0.01
 % Developed urban −80.3 0.62 <0.001 25 <0.01 2.9 0.59 <0.001 32 <0.01
 % Developed open-space −60.3 0.62 <0.001 25 <0.01 1.9 0.46 <0.001 41 <0.01
 Road density −5.7 0.60 <0.001 27 <0.01 0.2 0.55 <0.001 35 <0.01
 % Forest buffer 500 m US 41.6 0.59 <0.001 27 <0.01 −1.6 0.63 <0.001 29 <0.01
 % Forest buffer 200 m US 30.1 0.47 <0.001 35 <0.01 −1.2 0.55 <0.001 35 <0.01
 Structure density −0.1 0.09 0.06 50 <0.01 0.03 0.06 0.159 57 <0.01
 % Agriculture 37.7 0.09 0.102 51 <0.01 −0.8 0.01 0.379 59 <0.01

Instream measures
 Specific conductance −111.8 0.63 <0.001 0 0.87 3.9 0.56 <0.001 0 0.78
 Hardness, total −158.6 0.58 <0.001 4 0.12 4.9 0.39 <0.001 9 0.01
 Chloride −12.4 0.48 <0.001 10 0.01 0.5 0.44 <0.001 6 0.04
 Total RBP habitat score 1.1 0.46 <0.001 11 <0.01 −0.1 0.46 <0.001 5 0.06
 Bank stability score 6.1 0.37 <0.001 17 <0.01 −0.2 0.25 0.005 16 <0.01
 Benthic Chl a −19.9 0.34 0.001 18 <0.01 0.9 0.48 <0.001 4 0.11
 Embeddedness score 7.3 0.33 0.001 18 <0.01 −0.3 0.36 <0.001 10 0.01
 Fecal coliform −10.3 0.24 0.006 22 <0.01 0.4 0.29 0.001 13 <0.01
 % Fines (<1 mm) −2.6 0.19 0.018 24 <0.01 0.09 0.16 <0.001 19 <0.01
 Nitrite + nitrate −5.3 0.05 0.242 29 <0.01 0.1 0.02 0.545 24 <0.01
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Fig.  1) with pMantel tests. As with MMI-based multiple 
regression models, all pMantels were significant but we 
observed better agreement between macroinvertebrates 
and land use matrices than with field or chemical matrices. 
However, Euclidean matrices based on combined variables 
(i.e., select field, chemical, and land use as in Table 3) did 
not necessarily improve the associations seen in the MMI 
multiple regressions (i.e., comparing Tables 3, 4); in fact, 
results of independent field and % forest catchment tests 
(pMantel r = 0.42 and 0.45, respectively) were roughly 
equivalent to a combined matrix (pMantel r = 0.44), while 
a univariate matrix (% forest buffer network US) had the 
highest association overall (pMantel r = 0.70).

Preferred model validation

Statistical cross-validation of the preferred 3-variable 
regression model (% forest catchment, road density, and 
specific conductance) with the MMI revealed an adequate 
fit (predicted R2 = 0.98). Although this model performed 
reasonably well in predicting biological condition of the 
13 independent sites, it tended to over-predict the more 
disturbed sites. Here, predicted and observed MMI scores 
were approximately similar (Fig.  4) but predicted scores 

were typically biased high and more variable (R2 = 0.86; 
R2 = 0.83 with intercept set at 0). These validation sites 
showed no evidence of spatial autocorrelation (Moran’s 
I = −0.03, p = 0.37) in the residuals of MMI scores, or the 
individual predictor variables (see Online Resource 6). Fur-
ther, we found that 12 of the 13 sites (92%) were correctly 
classified as impaired or unimpaired using the MMI thresh-
old score of 57 (Fig. 4; Online Resource 6).

Threshold detection

Using an MMI impairment cutoff of <57 (Pond et al. 2012) 
for our objective 4, we estimated (via regression fitting) 
that impairment occurred when % forest catchment was 
<60% (and <70% forest riparian buffer for entire network 
US), % total developed >30%, % developed urban >15%, 
and road density >4.5 km/km2. However, steep regression 
slopes (Table  2) suggested that considerable biological 
changes were occurring at even lower rates of land altera-
tion. For single instream variables, we detected MMI-based 
impairment when specific conductance was >540  µS/
cm. The MMI impairment threshold for Cl corresponded 
to a mean of 30 mg/l, but this response pattern was more 

Fig. 3  Linear regression plots 
of best single variable predic-
tors (% forest network and 
specific conductance) of MMI 
and NMDS axis 1. Dashed 
lines demarcate 95% confidence 
intervals of the fitted regression 
line
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variable  (r2 = 0.48) and the maximum Cl at an unimpaired 
site was 72 mg/l.

Discussion

Local watershed or regionally-based assessment tools that 
use GIS or instream measurements could be cost effec-
tive by helping to focus monitoring efforts and prioritizing 
potential areas for restoration or conservation opportuni-
ties. Moreover, an ability to forecast future water quality 
conditions with appropriate models would benefit local 
or regional landscape design and management plans (Van 
Sickle et al. 2004; Merriam et al. 2013). Although the inter-
play of modified land use and physical–chemical impacts 
on biotic response is complex, we produced robust empiri-
cal models explaining macroinvertebrate response to land 
use alteration with a relatively small data set (n = 30). We 
found that GIS-based tools to derive land uses for response 
variables can be predictive, but recognize that simple bivar-
iate relationships likely miss additive or interactive effects 
as noted by Bryant and Carlisle (2012).

Regardless of scale or proximity, loss of natural vegeta-
tion (particularly in urbanizing areas), can lead to drastic 
changes in the physical, chemical and biological character-
istics of streams (Paul and Meyer 2001; Moore and Palmer 
2005; Roy et  al. 2003; Cuffney et  al. 2010). Although 
choice of land use indicators is varied in the literature, 
we chose % forest as the primary indicator for land altera-
tion since it represents the natural state in our study area 
and had high initial correlation with the MMI. However, 
% developed total (sum of all open-space, low, moder-
ate, and high urban development) was the near-equivalent 
inverse of % forest in our study (Spearman r = −0.94), and 
one could infer that either classification would indicate a 
similar degree of macroinvertebrate response. Recent stud-
ies (Wickham et  al. 2016) have depicted % IC as a relia-
ble measure and it was a strong predictor in our study, but 
less effective than % forest. Land use quantification alone 
might miss some important impacts as urbanized headwa-
ter streams (including some of ours) are often buried and 
piped for considerable lengths (Roy et  al. 2009), poten-
tially altering hydrology, chemistry, and invertebrate dis-
persal. Chemically, increases in pollutants via dissolved 
salts (e.g., chloride) or other forms of urban runoff can alter 

Table 3  Stepwise multiple regression results for MMI, categorized by differing levels of effort (field measures, laboratory chemical analysis, 
land use, or combinations)

Adjusted  R2, p values (for individual variables), Akaike’s information criterion (AICc), differences in AICc from minimum (Δi), and akaike 
weights  (wi) of each model are shown. VIF variable inflation factors. Slope direction of independent variables used in the models are indicated 
as positive (+) or negative (−)

Adj R2 p VIF AICC Δi wi Variables selected

Field-only measures 0.76 0.005 1.2 241.0 30.7 <0.001 − Benthic Chl a
<0.001 1.4 − Specific conductance

0.012 1.3 + Bank stability score
Laboratory-only chemical analysis 0.77 0.045 1.2 241.0 30.7 <0.001 − Fecal coliform

0.047 2.2 − Hardness, total
<0.001 2.2 − Chloride

0.004 1.6 − Nitrite + nitrate
Combined field + laboratory 0.82 <0.001 1.2 233.6 23.4 <0.001 − Benthic Chl a

0.042 1.4 + Bank stability score
0.003 1.1 − Nitrite + nitrate

<0.001 1.4 − Specific conductance
Land use (catchment) 0.84 0.002 1.8 225.9 15.9 0.003 − Road density

<0.001 1.8 + % Forest catchment
Land use (catchment + buffer) 0.85 0.056 1.1 225.1 15.9 0.003 + % Agriculture

<0.001 1.1 − % Forest network US
Combined land use (catchment) + field + laboratory 0.90 0.03 1.9 217.6 7.4 0.03 − Road density

0.002 2.1 − Specific conductance
<0.001 2.0 + % Forest catchment

Combined land use (buffer) + field + laboratory 0.92 <0.001 2.0 210.3 0.0 0.97 + % Forest buffer 1000 m US
0.051 1.9 + Bank stability score
0.004 1.2 − Hardness, total
0.014 1.4 − Nitrite + nitrate
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invertebrate assemblages through direct toxicity (Findlay 
and Kelly 2011) or alteration of nutrient and microbial pro-
cesses (Swan and DePalma 2012).

Comparing land use spatial scales

We expected near-field riparian buffer (at 200 m upstream) 
land use pressure to shape macroinvertebrate assemblages 

most, but it was apparent that distant and cumulative dis-
turbances from upstream pressures within the buffer zone 
were more critical. Riparian buffer zones are frequently 
restored as a means to improve local stream conditions, 
but research has confirmed success is unlikely if upland 
disturbance is a driving factor (Walsh et  al. 2007, Wahls 
et  al. 2013). Although the 200  m polygon scale did cor-
relate better with reach factors such as riparian vegetation 
score, channel alteration score, total RBP habitat score, 
and fecal coliforms (see Online Resource 4), MMI scores 
were more variable at this scale, compared with their 
response to increasing forest cover in further upstream 
segments, and for the whole catchment. This finding is in 
contrast to Sponseller et  al. (2001) who showed greater 
forest cover–macroinvertebrate relationships at the local 
200 m riparian segment scale. Despite this particular con-
tradiction, we confirmed our expectation that buffer zone 
disturbance (specifically, remaining % forest cover along 
the entire stream network) explained MMI variation more 
than whole catchment forest. The outcome was further sup-
ported by the results of the pMantel tests that indicated a 
stronger relationship between the macroinvertebrate assem-
blage and % forest buffer network US than % forest catch-
ment. Therefore, from a spatial perspective, our findings 
complimented Roy et  al. (2003) and Tran et  al. (2010) 
but contradicted others (Roth et  al. 1996; Sliva and Wil-
liams 2001). The differences among these results might 
be attributed to a host of factors such as study design and 
stream size, regional setting, scale, temporality, assemblage 
metrics or water quality indicators. Moreover, we believe 
shorter (and narrower) headwater stream corridors like ours 
might be particularly vulnerable to buffer zone alterations 
due to an apparent link between the low volume of aquatic 
habitat and the extent of riparian land use alteration. Our 
finding that land use alteration within the entire upstream 
riparian corridor drives macroinvertebrates more than near-
site pressures has implications for stream restoration needs, 
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Fig. 4  Observed versus predicted multimetric index (MMI) scores 
for original and independent validation sites fitted using the recom-
mended multiple regression equation (based on performance and 
cost/efforts). The MMI was predicted from specific conductance, 
road density and % forest catchment using the equation: MMI (pre-
dicted) = 144 − (42.3 × Log10 specific conductance) − (1.5 × road den-
sity) + (42 × arc sin (√ % forest catchment)). Solid line is the original 
fitted regression line  (R2 = 0.90); dashed line represents regression of 
independent sites  (R2 = 0.86). Lines representing MMI impairment 
thresholds also shown

Table 4  Partial Mantel tests (except Space-only based on full Mantel test) between macroinvertebrate assemblages (Bray–Curtis distance) and 
environmental data (Euclidean distance) based on level of information

Significance based on 10,000 permutations. Variables used correspond to regression variable selections in Table 3. US upstream

Level of information Mantel r p Variables used in distance matrix

Space 0.01 0.411 Geographic coordinates (x-longitude, y-latitude)
Field|space 0.42 0.002 Benthic Chl a, Sp. conductance, Bank stability
Laboratory|space 0.35 0.001 Fecal coliform, hardness, chloride, nitrite + nitrate
Field, laboratory|space 0.34 0.001 Benthic Chl a, Sp. conductance, nitrite + nitrate, Bank stability
Land use (catchment)|space 0.45 <0.0001 Road density, % forest catchment
Land use (buffer)|space 0.70 <0.0001 % Forest buffer network US
Combined model
Land use (catchment)|space

0.44 0.0002 % Forest catchment, road density, Sp. conductance

Combined model
Land use (buffer)|space

0.25 0.008 % Forest buffer 1000 m US, hardness, nitrite + nitrate, bank stability
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where biological response to instream channel alignment, 
habitat enhancements, and riparian tree planting is likely 
scale-dependent (i.e., requiring longer lengths of restored 
upstream habitat in our case) and with success contingent 
on the absence of chemical stressors (Bond and Lake 2003; 
Walsh et al. 2007).

Comparing instream measures versus land use

We found that many of the abiotic variables could sig-
nificantly explain macroinvertebrate indicators, but with 
varying power. Here, our results contradicted some previ-
ous studies (Roy et al. 2003; Wang et al. 2003; Hale et al. 
2016) in that we found land use explained more variation in 
macroinvertebrates than any of our instream factors. Two 
of the upstream buffer zone forest classes (1000  m and 
entire network US) were far stronger single predictors than 
any single instream chemical or habitat variable. In larger 
Michigan streams, buffer zone land use and instream vari-
ables explained macroinvertebrate indices more precisely 
than did catchment land use (Lammert and Allen 1999). 
The influence of instream versus catchment land use fac-
tors might be dependent on the degree of catchment dis-
turbance. For example, Midwestern fish assemblages were 
more responsive to instream variables in unaltered catch-
ments, but as the level of disturbance increased, land use 
became more important (Wang et  al. 2006). We did not 
explore this angle but believe it is plausible, or simply a 
statistical artifact that in the absence of a pronounced land 
use effect, instream variation would be more detectable.

In our headwater reaches, specific conductance was the 
best single field or laboratory variable describing changes 
in MMI and NMDS 1. In other studies, specific conduct-
ance was a good predictor of macroinvertebrate assem-
blages in urban (Roy et al. 2003; Morgan et al. 2007; Utz 
et  al. 2016) and coal mining affected catchments (Pond 
et  al. 2008; Griffith et  al. 2012; Cormier et  al. 2013a, b). 
In our data set, Na, Cl, and hardness (total) were the 
strongest correlates (r > 0.90) with specific conductance. 
Although our sampling occurred in April (when road de-
icing had ceased), we believed there was considerable road 
salt deposits (surface residues and groundwater) affecting 
our streams. We observed the highest Na and Cl concentra-
tions (25–100× above background) at sites draining inter-
state and county highway corridors and Cl was most corre-
lated with road density (see Online Resource 4). Out of all 
land use classes, we found that % developed urban had the 
highest correlation magnitude with specific conductance 
(r = 0.86); consequently, it was necessary to control for this 
colinearity in multiple regression model selections. In con-
trast, instream habitat factors (e.g., total RBP habitat score, 
bank stability score, benthic Chl a, % fines) played signifi-
cant but lesser roles in determining biological condition 

indicating the stronger influence of chemical factors (influ-
enced by land use) on macroinvertebrates.

Combining land use and instream abiotic variables 
into predictive models

A model that uses various scales of land use information 
in addition to instream measures might be the most com-
prehensive (Lammert and Allen 1999; Bailey et  al. 2007; 
Macedo et al. 2014; Villeneuva et al. 2015) and we found 
this true in our headwater data set. However, one might 
argue that the addition of instream measures only increased 
our predictive power slightly and it would be necessary to 
consider the costs of collecting instream data as opposed 
to GIS-only methods. This finding was observed by Kris-
tensen et  al. (2012) who found instream variables did not 
appreciably add to the power of predicting fish assemblages 
in Denmark. They argued that GIS offered cost-effective 
tools for targeting catchments or reaches for conservation 
planning or rehabilitation but warned against monitoring 
streams purely from a desktop. In Brazilian streams, com-
binations of variables from geophysical, site, and land use 
data explained the most variation in fish and benthic rich-
ness compared to models based on individual measures 
alone (Macedo et  al. 2014). Given that land cover data 
(such as NLCD or even more refined state and county data 
sets) are readily available and free to the public, the poten-
tial cost-savings can be substantial compared to full water 
chemistry and habitat monitoring schemes, especially for 
watershed screening and planning.

Multiple regressions applied to sets of variables (field, 
laboratory, GIS) based on varying levels of perceived effort 
(cost and time), were able to develop several strong candi-
date models. We propose that our reduced cost, 3-variable 
model that included % forest catchment, road density, and 
specific conductance could be used by independent investi-
gators to help infer biological condition of small streams in 
our study region either in targeted reaches or through a spa-
tially balanced probabilistic survey design (e.g., McManus 
et  al. 2016). Although we found no evidence of spatial 
autocorrelation with these three predictor variables, we 
noted minor spatial autocorrelation with MMI residuals; 
however, validation results indicate that this model is capa-
ble of detecting degraded or exceptional quality streams in 
a broader area of the region.

Inferring thresholds of disturbance

Resource agencies would benefit from the ability to fore-
cast stream impairment, and thus threshold identification is 
a critical undertaking if society is to proactively conserve 
aquatic resources. Thus, we used our linear regression 
models to estimate thresholds of various single stressors 
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and to compare these thresholds with other studies. MMI 
impairment occurred when % forest catchment was <60% 
(<70% forest buffer for entire network US), when % total 
developed was >30%, and when % developed urban was 
>15%. In Georgia Piedmont streams, Roy et al. (2003) also 
suggested that 15% urban land cover represented a thresh-
old indicating significant change in macroinvertebrate met-
rics. Our regression analysis detected impairment of MMI 
scores when % IC was >5%, a value less than the 10–15% 
threshold typically found in the literature (Brabec et  al. 
2002) but was similar to lower threshold values found in 
Maryland streams (King and Baker 2010; King et al. 2011) 
and Alaska (Ourso and Frenzel 2003). Utz et al. (2009) and 
Baker and King (2010) similarly reported low % urbaniza-
tion and % IC thresholds for many Maryland taxa indicat-
ing similar sensitivities (and tolerances) of the top genera 
that we described from our NMDS ordination analysis.

Our conductivity threshold value (540  µS/cm) was 
higher than known extirpation thresholds for West Vir-
ginia macroinvertebrate genera (~300  µS/cm) identified 
by Cormier et al. (2013a) and Bernhardt et al. (2012) who 
used different statistical techniques (and relied on observed 
genera); however, Cormier et  al. (2013b) found a family-
level MMI had a conductivity threshold of 180  µS/cm in 
WV. We note that our streams drained some carbonate 
lithology that produced elevated background conductivi-
ties compared with other parts of the state. Moreover, ions 
at our impacted sites were dominated by de-icing salts (Cl 
and Na), compared to  SO4 and  HCO3 from coal mining as 
in Cormier et  al. (2013a). Our regression-based threshold 
for MMI and Cl (30 mg/l) was lower than the range of that 
was reported for road-salted Toronto streams, where Cl 
thresholds of 50–90 mg/l were observed for macroinverte-
brates (Wallace and Biastoch 2016).

Conclusions and recommendations

Considering that land alteration influences instream physi-
cal and chemical stressors (e.g., % urban developed was 
strongly correlated with specific conductance; total RBP 
habitat score was best correlated with riparian buffer zone 
forest), our multiple regression models provided accept-
able subsets of best predictors that captured combined 
effects without overfitting. Headwater macroinvertebrates 
were very responsive to a variety of disturbance indicators 
but network-scale riparian forest cover was the strongest 
predictor overall and could potentially be used as a sin-
gle predictor, but we contend that water quality measures 
strengthen simple land use-focused models.

From a level-of-effort based monitoring perspec-
tive (i.e., requiring less money or resources), we recom-
mend that the model: MMI = 144 − (42.3 × log10 specific 

conductance) − (1.5 × road density) + (42 × arc sin (√ forest 
catchment)) can be used to predict headwater stream condi-
tion in this region, but we caution its use in streams that 
are outside of the model’s experience (e.g., catchment size, 
season, ecoregion). This model could be used to quickly 
characterize a large number of headwater catchments in a 
watershed to pinpoint areas in need of immediate conserva-
tion or remediation for improving receiving streams. Fur-
thermore, our potential stressor thresholds can be evaluated 
at new sites to help interpret the sources of MMI impair-
ment. Because several other models also performed rela-
tively well (see Table  3), we believe that they too could 
be explored, depending on the types of information (GIS, 
instream, or combinations) available to the investigator.
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