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Abstract This review summarizes direct and indirect

analytical methods for the detection and quantification of

the reactive oxygen species (ROS): 1O2, O2
�-/HOO�, H2O2,

HO�, and CO3
�- in aqueous solution. Each section briefly

describes the chemical properties of a specific ROS fol-

lowed by a table (organized alphabetically by detection

method, i.e., absorbance, chemiluminescence, etc.) sum-

marizing the nature of the observable (associated analytical

signal) for each method, limit of detection, application

notes, and reaction of the probe molecule with the partic-

ular ROS.
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Introduction

For the purpose of this review, reactive oxygen species

(ROS) are defined as relatively short-lived molecules

that contain oxygen atoms, with half-lives (t�) in aquaticElectronic supplementary material The online version of this
article (doi:10.1007/s00027-012-0251-x) contains supplementary
material, which is available to authorized users.
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environments in the range of nanoseconds to hours (Bartosz

2006; Kearns 1971; Lu et al. 2006; Schmidt 2006; Zafiriou

1977; Zafiriou et al. 1984, 1990; Kieber et al. 2003; Waite

et al. 1988). ROS are commonly found at picomolar to

micromolar concentrations in environmental systems. This

review focuses on the dominant ROS in surface waters and

includes methods for the detection and quantification of

singlet oxygen (1O2), superoxide (O2
�-) and its protonated

form (hydroperoxyl radical; HOO�), hydrogen peroxide

(H2O2), hydroxyl radical (HO�) and carbonate radical (CO3
�-).

In natural systems, 1O2, HOO�, HO�, H2O2, and CO3
�-

are capable of oxidizing a wide variety of molecules

(including biomolecules) with relatively low selectivity

and are involved in the attenuation of contaminants and the

transformation of dissolved organic matter (DOM) in

aquatic environments (Brezonik and Fulkerson-Brekken

1998; Canonica et al. 2005; Westerhoff et al. 1999, 2007).

O2
�- is more selective in its reactions with aqueous organic

compounds than other ROS, but its reduction potential

overlaps that of a range of biologically important metal

ions (e.g., iron, copper, and manganese) that can them-

selves affect DOM oxidation (Goldstone and Voelker

2000). H2O2 is a thermodynamically powerful oxidant but

its reaction rates with many compounds are typically slow

compared to those of free radicals. Its conjugate base

(HOO-) is also capable of acting as a reductant under some

conditions, particularly for transition metal ions (Wood

1974; Koppenol and Butler 1985; Petlicki and van de Ven

1998).

ROS are usually generated by photolysis, electron

transfer or energy transfer reactions (Bartosz 2006; Kearns

1971; Lu et al. 2006; Schmidt 2006; Zafiriou 1977; Zafiriou

et al. 1984, 1990; Kieber et al. 2003). In the absence of

other sinks, most free radical ROS undergo self-reaction

(e.g., dimerization or disproportionation), while the elec-

tronically excited 1O2 rapidly decays through vibronic

coupling with water (i.e., non-radiative decay). The steady-

state concentration of 1O2 observed in natural waters is

typically constrained by its interaction with water (result-

ing in a t� *4 ls) with significant concentrations only

observed in localized hydrophobic environments (Grand-

bois et al. 2008; Pogue et al. 2000). The bimolecular rate

constants for the self-reactions of O2
�-/HOO�, HO� and

CO3
�- are reasonably high (Czapski et al. 1994; Elliot et al.

1990; Zafiriou 1990; Scurlock and Ogilby 1996; Czapski

and Dorfman 1964). However, in environmental systems,

concentrations of these ROS are rarely high enough for

self-reaction to be a significant sink for removal due to

their large bimolecular rate constants with other sinks such

as trace metal species and organic compounds. H2O2 does

not react with itself but catalytically degrades through rapid

reactions with trace metal ions and enzymes (Zepp et al.

1992; Rush and Bielski 1985; Duesterberg et al. 2005).

Consequently, analyses of ROS have proven challenging

because their lifetimes, with the exception of H2O2, are

usually too short for ex-situ analysis.

Methods for ROS detection can be broadly classified as

either direct or indirect. Due to the short lifetimes and typi-

cally low concentrations of ROS in aquatic systems, their

direct observation is only possible on the sub-millisecond

timescale, with the relatively stable H2O2 being an exception.

Indirect methods involve the reaction of a particular ROS with

a probe molecule to yield a more stable, long-lived analyte

(Zafiriou et al. 1990). Such methods typically involve specific

chemical derivatization (e.g., trapping a radical with a nitr-

oxide or other spin trap) or are based on competitive kinetics.

By virtue of introducing additional chemical reactions, all

indirect techniques risk perturbing the observed system. In

addition, both direct and indirect analyses suffer from the poor

availability of standardized approaches to calibration (see

Online Resource 1), particularly for use in the field.

Some important aspects to consider when choosing an

ROS analysis method include: (1) the sensitivity of the

method; (2) the selectivity and specificity of the method for

the analyte of interest; and (3) the ability of the method to

allow measurements with sufficiently fast time resolution.

Specificity varies widely between methods, and should be

carefully considered when choosing a method for ROS

qualification and/or quantification. Additional analytical

considerations are availability, robustness, portability (for

field studies), the cost of the necessary instrumentation, and

in some cases, the cost of the probe molecules. Largely due

to these latter factors, much of the method development for

aqueous ROS analysis has focused on ultraviolet (UV)/

visible (Vis) light spectroscopic techniques and the use of

relatively common and hence lower cost probe molecules.

Spectroscopic detection strategies [including absorbance

(UV/Vis), fluorescence (FL) and chemiluminescence (CL)]

share a common approach with several other techniques for

measuring rates of ROS formation and decay in laboratory

experiments. These strategies are also compatible with

methods such as steady-state kinetic analyses, stopped flow

methods, time-resolved laser spectroscopy, flash photolysis

and pulse radiolysis (Waite et al. 1988). However, appli-

cations of spectroscopic techniques for ROS analyses in

natural waters are often limited by interference from DOM

through background absorbance or FL, although the use of

CL probes may circumvent these issues. All of these

spectroscopic approaches can benefit, in certain circum-

stances, from the application of a preliminary ‘‘clean-up’’

technique such as the use of a concentrating resin,

extraction, or chromatography [gas chromatography (GC)

or high performance liquid chromatography (HPLC)] to

remove interferences prior to analysis. Other analytical

techniques for ROS detection, such as electron paramag-

netic (spin) resonance (EPR), nuclear magnetic resonance
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(NMR), derivatization with attendant mass spectrometric

(MS) analysis and liquid scintillation counting can also be

quite useful but are less portable and often require con-

siderable technical expertise to operate and can be

expensive. For these reasons, when use of the aforemen-

tioned instrumentation is required, the observable species

must be stable on timescales of days or more.

Earlier reviews have focused on the detection of specific

ROS in specific media (e.g., cellular, aqueous, or organic

solvents) (Bartosz 2006; Lu et al. 2006; Zafiriou et al.

1990; Gomes et al. 2005). This review is focused more

broadly on comprehensively listing published methods that

in the authors’ considered opinion are relevant for quali-

fying and quantifying ROS in environmental settings,

particularly fresh and marine waters, groundwaters, and

atmospheric waters. However, ‘relevance’ is defined by the

needs of the researcher, and it is the authors’ hope that this

review will also be useful for scientists working in engi-

neered aquatic systems and biological systems. Since the

probes reviewed in the compilation are by their nature

reactive, it is important to note that the methods listed in

the following tables require control studies in purified

water to evaluate the possibility of probe degradation or

competing reactions that may confuse the ROS signal. The

low aqueous solubility of some probes may dictate the

conditions of their use or result in their inadvertent partition-

ing from the aqueous phase to organic microenvironments

(e.g., micellar or intra-DOM) (Grandbois et al. 2008; Lissi

et al. 1993; Latch and McNeill 2006). The authors have per-

sonal experience with many of the methods but not all

compiled in the tables. Because of this, when personal expe-

rience was lacking, additional pertinent information inserted

into the tables was kept as faithful to the original cited text as

possible.

The review is sectioned by ROS, with a brief intro-

duction highlighting the fundamental chemical properties

of the particular ROS followed by a critical evaluation and

tabulation of relevant methods for detection of that ROS.

The table entry for each method is arranged to display the

identity of the probe molecule (using the nomenclature

from the method’s literature citation), observable (analyt-

ical signal associated with the technique; e.g., absorbance,

FL or CL emission, etc.), limit of detection (LOD) (as

reported or calculated based on the original citation),

application notes, approximate number of literature cita-

tions for the method (as of 09/2011), reaction schemes, and

references for the method.

An Excel spreadsheet has also been prepared summa-

rizing the information in the tables, enabling all the ROS

analytical methods to be selected in terms of specific cri-

teria such as the type of ROS to be analyzed while listing

the relevant methods for that ROS, for example, in order of

increasing LOD. This spreadsheet can be downloaded from

the Web site http://neon.otago.ac.nz/research/bmp/data/

ros_database.xlsx.

Singlet oxygen

Ground state molecular oxygen exists as a triplet state with

the lowest lying excited state of oxygen being a singlet

state [O2(1Dg) or 1O2; Table 1] that lies 94 kJ/mol above

the ground state (Table 1) (Khan et al. 1967; Wilkinson

et al. 1995). The singlet state can be generated in solution

by energy transfer from excited photosensitizers (S, e.g.,

humic substances or Rose Bengal; Eq. 1); or chemically,

for example via the reaction between hypohalites and H2O2

(Eq. 2) (Zafiriou 1977; Khan and Kasha 1963; Schweitzer

and Schmidt 2003; Schmidt 2006).

S!ht
S� !O2

Sþ 1O2 ð1Þ

OCl� þ H2O2 ! Cl� þ H2Oþ 1O2 ð2Þ

In sunlit waters, singlet oxygen concentrations have

been measured in the range of *10-12 to 10-13 M

(Table 1) (Zepp et al. 1977; Haag and Hoigne 1986;

Larson and Marley 1999; Egorov et al. 1989; Merkel and

Kearns 1971; Wolff et al. 1981; Wick et al. 2000; Shao

et al. 1994). The lifetime of singlet oxygen in aqueous

solution is constrained through quenching by water with its

lifetime in pure water being *4 ls (Faust 1999; Egorov

et al. 1989; Merkel and Kearns 1971). In natural waters its

lifetime may be shorter due to the presence of additional

quenchers, such as DOM (Table 1) (Faust 1999).

Direct measurement of the concentration of 1O2 is

possible through observation of its emission at 1,268 nm

(Hessler et al. 1994; Nonell and Braslavsky 2000).

Table 1 Properties of singlet oxygen

1O2 (singlet oxygen)

E0 (1O2/O2
�-) vs. NHE at pH 7.0a 0.65 V

kmax absorption; e1,913nm
b 1,913 nm;

6.0 M-1 cm-1

Emission maximac 1,268 nm

Steady state concentration in sunlit natural

watersd–i
10-12 to 10-13 M

Lifetime (pH 7.0)h–j *4 ls

a (Koppenol 1976; Koppenol and Butler 1985)
b (Andersen and Ogilby 2002; Adam et al. 2005)
c (Khan and Kasha 1963)
d (Sulzberger et al. 1997; Behar et al. 1970a)
f (Haag and Hoigne 1986)
g (Larson and Marley 1999)
h (Faust 1999)
i (Egorov et al. 1989)
j (Merkel and Kearns 1971)
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However, the intensity of this emission is too weak to be

useful at low 1O2 concentrations. Consequently, use of this

technique has been restricted to transient luminescence

studies initiated by laser irradiation. The desire to measure

environmentally relevant concentrations necessitated the

development of molecular probes that can trap 1O2 or be

used in competition kinetics (Table 2).

A suitable probe compound for photochemically gener-

ated 1O2 has to meet several requirements that are well

summarized by Nardello et al. (1997): ‘‘The trap must be

highly reactive towards 1O2, specific, compatible with

aqueous media and must not perturb the system under study.

Moreover, it must be transparent in the spectral range of the

incident light in order to avoid photosensitization by the trap

itself.’’ However, while many of the currently available

probes meet some of these requirements, they do not meet all.

Typical probes include anthracene- and pyrene-based com-

pounds which are poorly soluble in water and absorb strongly

in the UV-A and UV-B ranges appropriate for aquatic pho-

tochemistry (Evans and Upton 1985; Botsivali and Evans

1979; Wasserman et al. 1972; Corey and Taylor 1964).

Therefore, the suite of probes matching all of the above

mentioned requirements specified by Nardello et al. (1997) is

small and includes only furfuryl alcohol (furan-2-ylmethanol;

FFA) and 1,3-cyclohexadiene-1,4-diethanoate. FFA has the

benefit of being commercially available and has been one of

the most widely used probe compounds for singlet oxygen in

aquatic photochemistry (Braun et al. 1986; Haag and Hoigne

1986; Haag et al. 1984a, b).

Furan derivatives, such as FFA, react with 1O2 to yield the

corresponding molozonide (Table 2), which is unstable in

water and rapidly hydrolyzes to other products, including the

corresponding dicarbonyl. Steady-state concentrations of 1O2

are determined by measuring the rate constant of the loss of the

furan probe and dividing by the second-order rate constant

(Haag et al. 1984a; Latch et al. 2003). The rate constant is

*108 M-1 s-1 and hence two orders of magnitude below the

diffusion-controlled limit (1010 M-1 s-1). Combined with

the picomolar and sub-picomolar concentrations of 1O2

observed in natural waters, this results in long measurement

times (tens of minutes) being required to observe a readily

detectable decrease ([5%) in the concentration of FFA (Braun

et al. 1986; Haag et al. 1984a, b).

The presence of 1O2 can also be tested through the

addition of quenchers that promote non-radiative decay of

this ROS back to the ground state. The addition of these

materials result in an effective reduction in the rate of an

observed process (kq), to a degree that is predictable (and

therefore testable) based on the known rates of reaction

between the added quencher and 1O2. The addition of

quenchers can potentially disrupt the nature of the system

and their suitability must be based on the system’s needs.

For example, the azide ion (N3
-) is both a 1O2 quencher

and a microbial poison, and is thus not suitable for

microbiological studies examining the role of 1O2. Exam-

ples of frequently cited quenchers are N3
-, I-, and

diazabicyclooctane (DABCO; Table 2) (Rubio et al. 1992;

Hasty et al. 1972; Ouannes and Wilson 1968; Saito et al.

1975; Zepp et al. 1977). As with the furan derivatives, the

interpretation of the results of these experiments is com-

plicated by the additional reactivity of the quencher with

HO� (Motohashi and Saito 1993).

An assay for 1O2 that avoids interference from HO� is

the use of D2O as the reaction solvent (Table 2). Singlet

oxygen has a longer lifetime in D2O solutions than H2O as

a result of the relatively poor vibronic coupling between
1O2 and D2O (kd = 1.8 9 104 s-1) relative to H2O

(kh = 2.4 9 105 s-1) (Wilkinson et al. 1995). Singlet

oxygen’s reduced decay rate in D2O and/or D2O–water

mixtures results in higher steady-state 1O2 concentrations

leading to higher rate constants for oxidation of singlet

oxygen acceptors (Merkel and Kearns 1972a, b; Merkel

et al. 1972; Zepp et al. 1977). The use of the kinetic isotope

effect in this instance allows the qualitative determination

of 1O2 (through comparison of experimentally measured

rates in the presence and absence of D2O) and its quanti-

tative determination through application of the steady-state

approximation to the rate of loss of a second probe (e.g.,

FFA). It should be noted that if the behavior of 1O2 is being

monitored in a lipid membrane or other micro-heteroge-

neous phase (e.g., within a DOM micro-phase), many of

these analytical measurements are rendered ineffective,

since the reaction in this case is insensitive to the compo-

sition of the solvent and to the presence of quenchers that

are present in the aqueous phase (Latch and McNeill 2006).

Superoxide and hydroperoxyl radical

Superoxide (Tables 3, 4) is the one-electron reduced form

of triplet O2 and the conjugate base of the hydroperoxyl

radical (Eq. 3; Table 3) (Hoigne 1975; Adams and Willson

1969; Bielski 1978). Because of its relatively low pKa

(4.69), the O2
�- anion dominates over HOO� in the majority

of aqueous environments. O2
�- can be generated during the

redox cycling of transition metals (Eq. 4) and the photo-

degradation of DOM (Eq. 5) (Richard and Canonica 2005).

HOO�� O��2 þ Hþ ð3Þ

Mnþ þ O2 ! Mðnþ1Þþ þ O��2 ð4Þ

DOMþ O2!
ht

DOMþoxid þ O��2 ð5Þ

Superoxide concentrations have been reported over the

range of 10-9 to 10-12 M in natural waters (Faust 1999;

Fujiwara et al. 2006; Petasne and Zika 1987; Rose et al.
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2008a, b; Voelker et al. 2000; Hansard et al. 2010; Heller

and Croot 2010b; Shaked et al. 2010). The O2
�- anion is

relatively unreactive due to resonance stabilization, as

reflected by the low rate constant for self-reaction of the

anion (Eq. 6), but readily undergoes disproportionation

through reaction with HOO� (Eq. 7). HOO� also reacts

relatively rapidly with itself (Eq. 8) (Zafiriou 1977; Bielski

1978; Cooper and Zika 1983a).

2HOO� ! O2 þ H2O2 k6 ¼ 8:3� 105ðM�1 s�1Þ ð6Þ

HOO� þ O��2 ! O2 þ HOO�!H
þ

O2 þ H2O2

k7 ¼ 9:7� 107ðM�1 s�1Þ
ð7Þ

2O��2 ! O2 þ O��2 !
2Hþ

O2 þ H2O2 k8 � 101ðM�1 s�1Þ
ð8Þ

The apparent second-order rate constant for

disproportionation in terms of TO��2
, kobs, is thus highly

pH dependent (Zafiriou 1977; Cooper and Zika 1983b;

Bielski 1978) (Eqs. 9, 10), with a maximum value of

*107 M-1 s-1 at pH 4.69 (the pKa of O2
�-/HOO�) that

decreases by an order of magnitude for each unit increase

in pH where the pH [ pKa (Bielski 1978).

dTO��2

dt
¼ �kobsðTO��2

Þ2 ð9Þ

kobs ¼
½Hþ�

k8 þ ½Hþ�

� �2

k6 þ
½Hþ�

k8 þ ½Hþ�

� �
k8

k8 þ ½Hþ�

� �
k7

ð10Þ

At the typical pH and superoxide concentrations found

in seawater (8.1, 10-9 to 10-12 M), the uncatalyzed

second-order disproportionation rate predicts a decay

half-life of hours to hundreds of days. Measured half-

lives of superoxide in seawater are much faster, ranging

from 10 to 300 s, presumably due to catalysis by enzymes

or transition metal ions (Hansard et al. 2010; Heller and

Croot 2010b; Rose et al. 2010; Shaked et al. 2010; Rusak

et al. 2011; Saragosti et al. 2010). This accelerated

reactivity of O2
�- thus presents significant analytical

challenges, because standards (Online Resource 1) and

samples at natural pH are stable for only seconds to

minutes.

Superoxide absorbs strongly in the 230–350 nm region

of the UV/Vis spectrum and can be quantified directly at

micromolar concentrations by measuring its absorbance

(Tables 3, 4). However, such a method is of limited value

for measuring naturally occurring concentrations of

superoxide due to the strong absorbance exhibited by other

components of natural waters in this wavelength range.

Many of the superoxide decay rate measurements in pure

water were measured by millisecond ultraviolet spectros-

copy (Bielski 1978). Superoxide can also be determined

spectrophotometrically by measuring the rate of loss of

compounds such as ferricytochrome c (FC), nitrobluetet-

razolium (NBT), and 4-chloro-7-nitrobenzo-2-oxa-1,3-

diazole (NBD-Cl) with which it readily reacts (Heller and

Croot 2010a). These techniques have largely been used for

measurements of superoxide production rates in biological

systems due to their limited sensitivity (LOD * 1 lM–

0.1 lM) and their lack of specificity (Olojo et al. 2005).

Due to superoxide’s brief lifetime and low steady-state

concentrations (\1 nM) in natural waters, it is typically

measured using highly sensitive CL probe molecules.

Successful probes for decay or steady-state measurements

must react at rates of at least ten times greater than that of

natural superoxide disproportionation. Luminol is the most

widely used CL probe for natural water analysis. This

reagent has been used for the analysis of iron (Rose and

Waite 2001; Xiao et al. 2002), chromium (Xiao et al.

2000), hydrogen peroxide (Yuan and Shiller 1999), and

superoxide (Fujiwara et al. 2006), among other species,

where these analytes are the rate-limiting species in the

oxidation of luminol by superoxide. Unfortunately, because

so many species can promote the CL of luminol in the

presence of dissolved oxygen and hydrogen peroxide, this

reagent is problematic for the selective analysis of super-

oxide in complex matrices.

In contrast, the selectivity, CL intensity, and commercial

availability of MCLA (2-methyl-6-(4-methoxyphenyl)-3,7-

dihydroimidazo[l,2-a]pyrazin-3(7H)-one) and red-CLA([2-

[4-[4-[3,7-dihydro-2-methyl-3-oxoimidazo[1,2-a]pyrazin-

6-yl]phenoxy]butyramido]ethylamino]sulforhodamine101)

make these probes particularly suitable for superoxide

analysis in natural waters (Godrant et al. 2009; Hansard

Table 3 Properties of superoxide and hydroperoxyl radicals

O2
�-/HOO�(superoxide/hydroperoxyl radical)

E0(O2/O2
�-) vs. NHE at pH 7.0 -0.33 Va

-0.137 V b

E0(O2
�-/H?, H2O2) vs. NHE at pH 7.0 0.94 Va

0.95 Vb

kmax absorption; e240nm (pH 7.0)c 240 nm;

2,100 M-1 cm-1

pKa
c 4.69

Steady state concentration in natural waters

(M)d–g
10-9 to 10-12

Lifetime (pH dependent) sc,f 1–3,000 min

a (Wood 1974; Koppenol and Butler 1985)
b (Petlicki and van de Ven 1998)
c (Bielski 1978)
d (Faust 1999)
e (Voelker et al. 2000)
f (Rose et al. 2008a, b)
g (Fujiwara et al. 2006)

ROS detection in aqueous environments 695

123



et al. 2010; Heller and Croot 2010b; Rose et al. 2008a, b;

Shaked et al. 2010; Zheng et al. 2003). The entire class of

CLA molecules react with superoxide through an expoxi-

tane intermediate, with red-CLA and FCLA (3,7-dihydro-

6-[4-[2-[N0-(5-fluoresceinyl)thioureido]ethoxy]phenyl]-2-

methylimidazo[1,2-a]pyrazin-3-one) involved in a CL

resonance energy transfer to shift the emission to longer

wavelengths (Teranishi 2007). The CLA probes are also

reactive with singlet oxygen (Suzuki et al. 1990), but

selective analysis of superoxide is possible by first waiting

*100 ls for the singlet oxygen to decay. More signifi-

cantly, the CLA reagents are not reactive to hydrogen

peroxide, which is often present at concentrations in

100-fold excess to that of superoxide in natural waters. The

selectivity of these probes is driven by their specific and

relatively rapid second-order reaction rate with superoxide

(*5 9 105 M-1 s-1). These rates of reaction are then 100

times that of the rate of disproportionation (Bielski 1978)

and the rate of first order superoxide decay in natural

samples (Hansard et al. 2010; Heller and Croot 2010b;

Rose et al. 2008a, 2010; Shaked et al. 2010). The CLA

reagents will react with superoxide and oxygen at pH and

temperature dependent rates, thus requiring background CL

measurements and standard additions of superoxide at

ambient conditions with a constant oxygen concentration

(creation of standards and correction for background CL

described in Online Resource 1) (Godrant et al. 2009;

Hansard et al. 2010). For superoxide flux measurements, a

CLA probe is added several minutes before making

chemiluminescence measurements to ensure complete

reaction of the steady-state superoxide concentration in the

samples. The CL signal is then assumed to arise solely

from superoxide production in the sample with the

chemiluminescence photon flux proportional to superoxide

production rates (Godrant et al. 2009).

Of the analytical methods discussed above, MCLA and

red-CLA have both been successfully used to measure steady-

state concentrations and production/decay rates of superoxide

in seawater. Detection limits of *30 pM are reported for

superoxide concentrations using MCLA (Hansard et al. 2010)

while production/decay rates as low as *1 pM/s can be

determined using red-CLA (Godrant et al. 2009). Recently,

there has been a substantial increase in the number of

superoxide measurements being made in a wide range of

oceanographic water types, most of which have utilized CL

probes (Hansard et al. 2010; Heller and Croot 2010a, b; Rose

et al. 2010; Shaked et al. 2010; Rusak SA 2011).

Hydrogen peroxide

Hydrogen peroxide (Table 5) is a weak acid (pKa 11.62)

that is a ubiquitous component of surface and atmospheric

waters (Eqs. 11–13). It is an important component of nat-

ural waters due to its impact on redox chemistry and

biological processes, its role as an indicator of photo-

chemical oxidation of DOM, as a photic zone tracer in the

ocean, and its potential utility for in situ degradation of

pollutants. Its presence in natural waters typically arises

from the disproportionation of superoxide and the hydro-

peroxyl radical (von Sonntag and Schuchmann 1991).

H2O2 production often occurs in association with the

photoexcitation of DOM or the thermal oxidation of

reduced transition metal ions (Eqs. 12–13), along with

production from biological sources (Petasne and Zika

1987; Cooper et al. 1987; Thompson and Zafiriou 1983;

Cooper and Zika 1983a).

H2O2 � HO�2 þ Hþ ð11Þ

Mnþ þ O��2 ! Mðnþ1Þþ þ H2O2 ð12Þ

DOM!ht
DOM� ð13Þ

The lifetime of H2O2 in the environment is dependent

not only on pH, but also on the presence of transition metal

ions, biological enzymatic decay, and some organic species

that can catalyze its decomposition (Eq. 5) (Petasne and

Zika 1997; Moffett and Zafiriou 1990, 1993; Moffett and

Zika 1987). In ocean waters, its lifetime is on the order of

days but in coastal waters it is much shorter (Hakkinen

et al. 2004; Shaked et al. 2010). Hydrogen peroxide can be

detected directly using spectrophotometric techniques,

although its molar absorption coefficient (189 M-1 cm-1;

Table 5) is low, thus limiting this analytical method to

relatively pure solutions where the H2O2 concentration is

high or the analytical pathlengths are long (e.g.,

atmospheric measurements) (Hochanadel 1952; Morgan

et al. 1988).

Hydrogen peroxide has been measured at concentrations

between 10-7 and 10-11 M (Table 5) in natural surface

waters (Peake and Mosley 2004; Moore et al. 1993;

Szymczak and Waite 1988, 1991; Cooper and Zika 1983a)

and is normally in the micromolar range in atmospheric

water (Kok et al. 1978; Zika et al. 1982). Concentrations in

surface waters are generally highest in the photic zone and

diminish toward the detection limit of most methods in the

dark waters below the mixed surface layer, reflecting its

dominant formation process by photochemical reactions.

Of the more than 30 analytical methods listed in

Table 6, only 10 have a LOD that is useful for the H2O2

concentrations found in surface waters (LOD B 50 nM).

Of these, six employ a peroxidase enzyme to achieve the

specificity required for H2O2. Because H2O2 is ubiquitous

in water due to equilibrium with gas-phase H2O2 in the

atmosphere (even in laboratory water), most methods

require addition of catalase (an enzyme that decomposes
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H2O2 into water and O2) to the sample to eliminate H2O2

for analytical blanks prior to analysis.

Use of horseradish peroxidase (HRP) to provide speci-

ficity for the peroxide functional group can result in

measurement of not only H2O2, but also other peroxy

species such as peroxyacetic acid, methyl hydroperoxide,

hydroxymethylperoxide, ethylhydroperoxide, and several

propylperoxides formed through HRP-catlayzed reactions.

These have all been shown to activate HRP and allow

subsequent reaction with electron donors used to either

develop (e.g., p-hydroxyphenylacetic acid or POHPAA) or

diminish (e.g., scopoletin) FL. Using a post column chro-

matographic method based on the POHPAA technique,

Miller et al. (2005) showed that any interference from

organic peroxides is likely to be insignificant in the open

ocean (Miller et al. 2005; Lee 1995). However, users of any

peroxide method employing HRP should be aware of the

potential contribution of organic peroxides in coastal and

fresh waters.

While the 2-electron oxidation of HRP provides speci-

ficity for the peroxide functionality, it subsequently

requires an electron donor to return HRP to its ground state.

This second set of redox reactions is much less specific.

This property of the enzyme is exploited in HRP-based

methods, whereby the oxidized HRP subsequently reacts

with a probe molecule to yield a product that is easily

quantified, typically using spectroscopic methods such as

absorbance or FL. This allows flexibility in terms of

choosing the most suitable substrate for detection of H2O2

under particular measurement conditions. Phenolic com-

pounds have fast reaction rates with the activated enzyme

and all three FL methods discussed here take advantage of

this fact. However, Miller and Kester (1988) have

demonstrated that DOM in natural waters can also act as

electron donors, likely via phenolic moieties which may

need to be considered when using HRP-based methods

under some conditions (Miller and Kester 1988).

While much research has been done with absorbance

methods, the most commonly used and highly cited

methods for determination of H2O2 in natural waters

involve the HRP-catalyzed oxidation of probe compounds

to yield products that either exhibit FL (e.g., p-hydroxy-

phenylacetic acid) or whose FL is diminished (e.g.,

scopoletin) after oxidation (Table 6). These fluorometric

methods make use of readily available fluorophores, do not

require specialized equipment other than a reliable fluo-

rometer, and generally afford greater specificity, sensitivity

and lower limits of detection compared to absorbance-

based methods.

In many ways, current interest in the role of ROS in

marine chemistry was inspired by early studies that used the

HRP-catalyzed oxidation of scopoletin to analyze H2O2 in

seawater (Perschke and Boda 1961; Zika et al. 1985a, b).

While no longer the most commonly used method for the

quantitative determination of peroxide, it is the seminal

method from which many current methods evolved and so a

presentation of some methodological detail is appropriate for

any review. Specifically, when HRP, phenol, scopoletin, and

H2O2 are together in a sample, the activated HRP enzyme

catalyzes the production of a phenolic radical that then oxi-

dizes scopoletin to a non-fluorescent product. This results in

a stoichiometric decrease in scopoletin FL proportional to

the concentration of H2O2 in the sample. Some studies have

omitted phenol and still observed a decrease in scopoletin FL

in the presence of HRP and H2O2. For example, Holm et al.

(1987) substituted NaN3 for phenol to act as a more effective

bactericide and H2O2 was still effectively measured using

changes in scopoletin FL. It was noted, however, that the

stoichiometry of the reaction varied without phenol. This is

consistent with the greatly enhanced ability of naturally

occurring phenolic compounds to compete as electron

donors for activated HRP. In the absence of the fast-reacting

phenol, a variable and wide variety of oxidized compounds

having different reaction rates with scopoletin would gen-

erate variability in the observed decrease in FL. Additional

details for the scopoletin method include the use of narrow-

band optical filters and an excitation shutter (Donahue 1998),

placing the sample in a dark fluorometer cell compartment

for several minutes before measuring FL to minimize erro-

neous readings due to excitation from ambient light, storing

reacted samples in the dark to reduce photobleaching, and

carefully controlling pH. In fact, scopoletin FL is highly pH

dependent and a buffer (usually phosphate buffer at pH 7) is

required to ensure a meaningful and consistent relationship

between the decrease in scopoletin FL emission intensity and

the concentration of H2O2.

Table 5 Properties of hydrogen peroxide

H2O2 (hydrogen peroxide)

E0(H2O2, H?/HO�, H2O) vs. NHE at pH

7.0a
0.46 V

kmax absorption; e200nm
b 200 nm;

189 M-1 cm-1

pKa
c 11.62

Steady state concentration in natural

watersd–f
10-7 to 10-11 M

Lifetime (pH 7.0)g,h *10 h

a (Koppenol 1976; Koppenol and Butler 1985)
b (Hochanadel 1952; Morgan et al. 1988)
c (Greenwood and Earnshaw 1997; Boveris et al. 1977; Zepp et al.

1977)
d (Peake and Mosley 2004)
e (Moore et al. 1993)
f (Cooper and Zika 1983a)
g (Petasne and Zika 1997)
h (Moffett and Zafiriou 1990)
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Table 6 Methods for detecting hydrogen peroxide (H2O2)

Technique/Probe Observable LODa Application notes No. of

citationsb

Direct detection of H2O2 Absorbance of H2O2

(k = 200 nm,

e200 = 189 M-1 cm-1)

mM e is dependent on which peroxide form

is being observed (H2O2 or HOO-)

404

Refs.: Morgan et al. (1988), Hochanadel (1952), Lin et al. (1978)

2,20-Azinobis-(3-ethyl-benzthiazoline-

6-sulfonate) (ABTS)

Absorbance of radical cation

(kmax = 415 nm,

e415 = 3,600 M-1 cm-1)

nM–lM Optimized for pH C 7;

quenched by Cl-
513

Ref.: Childs and Bardsley (1975)

N-alkyl-N-sulfopropylanilinederivatives Absorbance of product

(k = 540–561 nm)

lM Optimal reaction at pH 5.5–9.5 100

H2O2

horseradish peroxidase
N

NaO3SH2CH2CH2C

CH2CH3

+
N

N

NH2

O

N

N
N

O

N+

H3CH2C

CH2CH2CH2SO3Na

Refs.: Madsen and Kromis (1984); Tamaoku et al. (1982)

Cytochrome c:Fe2? Absorbance of product

(kmax = 550 nm)

nM Optimum reaction occurs in low ionic

strength solutions

182

2 cytochrome: Fe2þ þ H2O2 þ 2Hþ �!cytochrome c peroxidase
2 cytochrome: Fe3þ þ 2H2O

Refs.: Altschul et al. (1940); Abrams et al. (1942)

Dihydrorhodamine 6G Absorbance of product

(kmax = 528 nm,

e528 = 105,000 M-1 cm-1) nM

Probe is light sensitive 197

H2O2

horseradish peroxidase

OHN NH

O

O

OHN NH+

O

O
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Table 6 continued

Technique/Probe Observable LODa Application notes No. of

citationsb

Refs.: Edman and Rigler (2000); Soh (2006)

Leuco crystal violet (LCV) Absorbance of product

(kmax = 596 nm)

lM Optimized for pH 4.5; products can be

unstable in light; interference from

organic peroxides

501

H2O2

horseradish peroxidase

N

N

N

H

N

N+

N

Refs.: Chance (1943), Mottola et al. (1970), Zepp et al. (1988), Draper and Crosby (1983a)

Leuco malachite green (LMG) Absorbance of product

(kmax = 617 nm)

lM Optimized for pH 4.5; products can be

unstable in light; interference from ROOH

399

H2O2

horseradish peroxidase

N

N

H

N

N+

Refs.: Chance (1943), Zepp et al. (1988), Draper and Crosby (1983a)

N,N-diethyl-p-phenylenediamine (DPD) Absorbance of radical cation

(kmax = 510 and 551 nm;

e510 = 19,930 M-1 cm-1,

e551 = 21,000 M-1 cm-1)

nM Radical cation unstable and hence

measurements must be made within

1 min; interference from ROOH

234
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Table 6 continued

Technique/Probe Observable LODa Application notes No. of

citationsb

NH2

N
CH2CH3H3CH2C

DPD

0.5 H2O2

horseradish peroxidase

NH2

N+

CH2CH3H3CH2C

NH2

N
CH2CH3H3CH2C

DPD.+

Ref.: Bader et al. (1988)

2,9-Dimethyl-1,10-phenanthroline

(DMP) ? Cu2?
Absorbance of product

(kmax = 454 nm)

lM Optimum pH 5–9; interference from DOM

and other transition metal ions

311

H2O2

N

N

2 + Cu2+

N

N

Cu+

N

N

Refs.: Kosaka et al. (1998), Smith and Mccurdy (1952), Baga et al. (1988)

Leuco base of phenolphthalein Absorbance of

phenolphthalein product

(kmax = 534 nm)

lM Product unstable over long time periods; use

Cu2? as catalyst

12

Ref.: Dukes and Hyder (1964)

1,2-Di-(4-pyridyl)ethylene (DPE) ? 3-

methyl-2-

benzothiazolinonehydrazone

(MBTH)

Absorbance of product

(kmax = 442 nm,

e442 = 36,500 M-1 cm-1)

lM Must heat 1–2 min in boiling water after

addition of MBTH or allow to sit at room

temperature 45–60 min before analysis

12

H2O2

N

N

N

O

S

N

N

NH2

N NN
N

S
NN

O
+
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Table 6 continued

Technique/Probe Observable LODa Application notes No. of

citationsb

Ref.: Hauser and Kolar (1968)

2-((5-Bromopyridyl)azo)-5-(N-propyl-

N-sulfopropylamino)phenol ? Ti4?

(Ti-PAPS)

Absorbance of product

(kmax = 539 nm,

e539 = 57,000 M-1 cm-1)

lM Optimum reaction occurs at pH 6.3–8 and

heating for 5 min at 37�C

11

H2O2

N

N N

Ti

N

O

OH
OH

N

N N

Ti

N

O
OH

OH

OOH

Br

CH2CH2CH3

CH2CH2CH2SO3H

Br

CH2CH2CH3

CH2CH2CH2SO3H

Ref.: Matsubara et al. (1985b)

4-(2-Pyridylazo)resorcinol ? Ti4? (Ti-

PAR)

Absorbance of product

(kmax = 508 nm,

e508 = 36,000 M-1 cm-1)

lM Interference from carbonate; optimal

reaction occurs at pH * 8.6; multiple

resonance structures for product

16

H2O2

N

N N

Ti

O

O

OH
OH

N

N N

Ti

O

O
OH

OH

OOH

Refs.: Li and Cheng (1965), Matsubara et al. (1985a)

Xylenolorange ? Fe3? Absorbance of complex

(kmax = 540 nm,

e540 = 26,800 M-1 cm-1)

lM Perform at acidic pH, high [H2O2] will

decolorize xylenol orange; interference

from HO�,titanium, and organic chelators

66

Ref.: Gupta (1973)

Xylenol orange ? Ti4? Absorbance of complex

(kmax = 520 nm,

e520 = 7,400 M-1 cm-1)

lM Perform at acidic pH, high [H2O2] will

decolorize xylenol orange; does not form

complexes with organic peroxides;

interference from metal ions

66

Ref.: Gupta (1973)

Acridinium ester (10-methyl-9-

(p-formylphenyl)-acridinium

carboxylatetrifluoromethane

sulfonate)

CL of product (k = 470 nm) nM Optimized for pH 12; possible interference

from high Fe3? concentrations and O2
.-

71
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Table 6 continued

Technique/Probe Observable LODa Application notes No. of

citationsb

H2O2

N+

O

HO

O

O

OH

+

N

O

*

CL

N

O

Refs.: Cooper et al. (2000), King et al. (2007), Miller et al. (2005)

Lucigenin CL of product (k = 425 and

470 nm)

lM Lucigenin sensitizes superoxide production;

quenched by Cl-, also reacts with

hydroperoxides; optimal reaction under

basic conditions

87

Refs.: Maskiewicz et al. (1979), Malehorn et al. (1986)

Luminol (phthalic cyclic hydrazide) CL of luminol (k = 425 and

470 nm)

nM Interference from Mn2?, and Fe3?; can also

use HRP as the catalyst

258

H2O2
NH

NH

NH2 O

O

+ Cu2+ catalyst
OH- (pH 12.8)

+ N2

O-

O-

NH2 O

O

Refs.: Armstrong and Humphreys (1965), Kok (1980), Kok et al. (1978), Malavolti et al. (1984), Mayneord et al. (1955)

Peroxy oxalates [e.g., bis-

trichlorophenyloxalic ester (TCPO)]

CL of product nM–lM pH 4–10 135

H2O2

Cl

Cl Cl

O

O

OH

O

O

O

O

O

O

O

O

O

+

*

2CO2 +

CL

Refs.: Neftel et al. (1984), Williams et al. (1976)

Amplex Red (also known as APOXA;

N-acetyl-3,7-dihydroxyphenoxanine)

FL of product

(kex = 563 nm,

kem = 587 nm)

pM Buffer to pH 7.4 and incubate 5 min 210
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Table 6 continued

Technique/Probe Observable LODa Application notes No. of

citationsb

H2O2

horseradish peroxidase

N

O OHHO

N

O OHO

O

Refs.: Soh (2006), Scully et al. (2003), Zhou et al. (1997)

2,7-Dichlorodihydrofluorescein (DCFH) FL of product

(kex = 498 nm,

kem = 522 nm)

pM–nM Can be oxidized by other ROS and HRP 759

H2O2

O OH

Cl

HO

Cl
H

HOOC

O O

Cl

HO

Cl

HOOC

Refs.: Crow (1997), Gomes et al. (2005); Keston and Brandt (1965)

Homovanillic acid (HVA) FL of product

(kex = 315 nm,

kem = 425 nm)

nM–lM Optimal reaction occurs at pH C 8.5 240

H2O2

CH2COOH

OH

CH2COOH

HO

CH2COOH

OH

horseradish peroxidase
2

H3CO
H3CO

OCH3

Refs.: Barja (2002), Gomes et al. (2005), Guilbault et al. (1968)

p-Hydroxyphenylacetic acid

(POHPAA)

FL of product

(kex = 317 nm,

kem = 414 nm)

nM Optimal reaction occurs at pH C 8.5;

product stable for *5 days

618

H2O2

CH2COOH

OH

CH2COOH

HO

CH2COOH

OH

horseradish peroxidase
2
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Hydrogen peroxide detection through the HRP-cata-

lyzed dimerization of POHPAA to create a FL compound

has been used extensively in rain, oceanic, and fresh water

studies. In this method, two POHPAA radicals created via

electron exchange with activated HRP dimerize to form a

product that is FL at high pH using excitation and emission

wavelengths of 313 and 400 nm, respectively (Miller and

Kester 1988). The background FL of DOM in natural

waters is variable and often pronounced at these wave-

lengths, thus requiring careful measurement of the natural

FL in the sample prior to adding analytical reagents. This

blank subtraction allows peroxide analysis in solutions with

Table 6 continued

Technique/Probe Observable LODa Application notes No. of

citationsb

Refs.: Zepp et al. (1988), Guilbault et al. (1968), Miller and Kester (1988), Hwang and Dasgupta (1985), (1986), Dasgupta and Hwang (1985),

Kok et al. (1986), Lazrus et al. (1985)

Redox sensor red CC-1 FL of product

(kex = 540 nm,

kem = 600 nm)

nM Performed at pH 7.4 and 37�C with 60 min

incubation

16

O

H

NN

F

F

F

F

F
horseradish peroxidase

H2O2

O N+N

F

F

F

F

F

Ref.: Chen and Gee (2000)

Scopoletin (7-hydroxy-6-

methoxycoumarin)/horseradish

peroxidase (HRP)

FL of scopoletin

(kex = 350 nm,

kem = 460 nm)

pM Initial solution conditions pH 4.5 followed

by addition of pH 10 buffer

1,202

Refs.: Andreae (1955), Kieber and Helz (1986), Perschke and Boda (1961), Zika et al. (1985a), (b), Johnson and Siddiqi (1970), Zika and

Saltzman (1982)

Iodide titration Back titration of I2 product

by phenylarsine oxide,

endpoint determined

amperometrically

nM Occurs at pH 4; also suitable for the

determination of organic peroxides

74

H2O2 + 2I-

H+

(NH4)6Mo7O24
.4H2O

I2 + 2H2O

I2 + 2H2O +

As

2I- + 2H+ +

As OH

OH

O

O

Refs.: Kieber and Helz (1986), Johnson and Siddiqi 1970)

a When not specified in the original literature reference, LOD is estimated based on available information (i.e., for absorbance the e and an

assumed 1 cm pathlength is used); all other estimates based on typical LODs for similar methods and instruments
b Number of times the method has been cited using Science Citation Index� as of September 2011
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varying levels of naturally occurring fluorophores. As for

all HRP-based methods, in samples with varying DOM

content, standard additions are required to account for

changes in stoichiometry due to competition between PO-

HPAA and DOM for H2O2.

CL methods, while historically somewhat less useful in

natural waters due to interferences from other ROS, have

an inherent capacity for great sensitivity and have been

used successfully in natural waters for measurement of

H2O2. Both the luminol (Rose and Waite 2001) and

acridinium ester methods (Cooper et al. 2000), when paired

with portable and stable CL systems, have been demon-

strated to be robust methods for analysis of H2O2 in

oceanographic systems (Miller et al. 2005).

Luminol CL has been used most often for analysis of

trace metals in natural water samples. However, in the

presence of a metal catalyst, luminol (5-amino-2,3-dihydro-

1,4-phthalazinedione) is oxidized, yielding the luminol rad-

ical, and subsequently a diazaquinone species. The

diazaquinone reacts stochiometrically with H2O2, forming

an intermediate that decays spontaneously to 3-aminophth-

alate while emitting luminescence that can be detected at

*425 nm (Rose and Waite 2001). In solutions with an

excess of metal catalyst and carefully controlled pH, H2O2

becomes the limiting reagent in the luminescence reaction,

and the photon signal can be quantitatively related to the

concentration of H2O2 (Yuan and Shiller 1999). Luminol-

based determinations of H2O2 are generally performed using

flow injection analysis, and offer subnanomolar detection

limits in natural waters. Using a cobalt catalyst, Yuan and

Shiller (1999) achieved a LOD of\1 nM, with a precision of

17 pM. The method is linear up to 300 nM H2O2; above

300 nM, the slope of the calibration curve decreases. As an

excess of Co(II) must be added to the sample prior to

analysis, the method does not exhibit interference from most

other oxidants present in natural waters. Iron species, how-

ever, do compete with H2O2 in a secondary oxidation

reaction that leads to a positive interference (Yuan and

Shiller 1999; Rose and Waite 2001).

Similar to the use of luminol, acridinium ester reacts

stochiometrically with H2O2 to form an intermediate

structure that upon addition of base, forms a second

intermediate which rapidly decays and emits luminescence

that can be detected at *470 nm (Cooper et al. 2000).

Acridinium ester method advantages are that it minimizes

interference from colored and FL organic compounds and

metals naturally present in natural waters and it does not

require the addition of metal complexes or other catalysts

for the method to work. Miller et al. (2005) demonstrated

that the use of the acridinium ester CL method and the

POHPAA FL method in the open ocean gives indistin-

guishable and accurate results.

Hydroxyl radical

The hydroxyl radical (Table 7) is a non-selective oxidant

that can be generated from a variety of sources, including

photolysis of nitrate and nitrite ions (Eq. 14), transition

metal complexes, and DOM, as well as Fenton-type reac-

tions involving peroxides, hypohalites and several

transition metal ions (Eq. 15), on photo-excited transition

metal oxide surfaces and as a result of the aqueous

decomposition of ozone (Zafiriou 1977; Zafiriou and True

1979a, b; Alfassi 1999; Weissler 1953; Makino et al. 1983;

Dixon and Norman 1963; Zepp et al. 1992).

NO�3 þ ht !H2O
NO2 þ OH� þ HO� ð14Þ

Mnþ þ H2O2 ! Mðnþ1Þþ þ OH� þ HO� ð15Þ

HO� reacts at near-diffusion-controlled rates with many

substrates, resulting in low steady-state concentrations of HO�
in sunlit natural waters (10-15 to 10-18 M) (Zepp et al. 1987;

Brezonik and Fulkerson-Brekken 1998; Haag and Hoigne

1985). The corresponding low concentrations and brief

lifetimes (*ls) for HO� pose significant challenges in

quantifying this ROS. While HO� absorbs light in the UV

region (Table 7), direct observation is not typically possible

because of its limited lifetime and the presence of other

chromophores absorbing in a similar wavelength region.

Therefore, HO� is quantified either through the loss of a

reagent or accumulation of a product. The key challenge is

obtaining a compound that will react selectively and

unambiguously with HO�, which either does not unduly

influence the other aspects of the chemistry of the system

under study, or alters the system in a predictable and well-

defined manner.

Table 7 Properties of hydroxyl radical

HO� (hydroxyl radical)

E0(HO�, H?/H2O) vs. NHE at pH 7.0a 2.18 V

kmax absorption; e260
b 260 nm;

370 M-1 cm-1

pKa
c 11.90

Steady state concentration in natural waters

(M)d
10-15 to 10-18

Lifetimee

Freshwater *40 ls

Marine *0.2 ls

a (Koppenol and Liebman 1984; Koppenol and Butler 1985; Schwarz

and Dodson 1984; Klaning et al. 1985)
b (Thomas et al. 1966)
c (Buxton et al. 1988)
d (Haag and Hoigne 1985; Zepp et al. 1987)
e (Anastasio and Matthew 2006)

ROS detection in aqueous environments 711

123



The EPR technique is often used to measure the for-

mation of stable paramagnetic aminoxyl radicals (spin

adducts) by reaction of HO� with diamagnetic nitrone or

nitroso (spin trap) compounds. The use of these diamag-

netic compounds can also be beneficial in that they may

allow for simultaneous quantification of several ROS

through formation of different spin adducts, each with a

characteristic EPR spectrum. However, the stability of the

spin adduct in a given system needs to be carefully eval-

uated and controls established to confirm that radical

trapping is the source of aminoxyl formation (Finkelstein

et al. 1980c). For example, the adduct formed from the

reaction of HO� with dimethylpyrrolidine oxide (DMPO,

Table 8) can be readily transformed to a diamagnetic

species by both Fe(III) and superoxide (Mizuta et al. 1997;

Samuni et al. 1988); also, the superoxide DMPO-adduct

decays to form either the HO� adduct or HO� itself

(Finkelstein et al. 1979, 1982). Similarly, under acidic

conditions the alternative spin trap (E)-2-methyl-N-

((1-oxidopyridin-4-yl)methylene)propan-2-amine oxide (4-

POBN, Table 8) hydrolyzes to the hydroxylamine, which

can be readily oxidized to form the HO� adduct (Brezonik

and Fulkerson-Brekken 1998; Janzen et al. 1978). pH can

also significantly impact the stability of the hydroxyl spin

adducts, with dramatic increases in stability observed for

phenyl/pyridlyl-butylnitrone hydroxyl adducts when the

pH is reduced from 8 to 6 (Janzen et al. 1992b). Spin

trapping-type compounds have also been employed using

alternative methods of quantitation to EPR. For example,
19F-NMR has been employed with a fluorinated-DMPO

derivative, albeit with similar drawbacks to those already

described for DMPO (Khramtsov et al. 2001). Although

employed extensively in the biomedical literature, spin

trapping with EPR detection appears to have had minimal

use in natural systems. Of course, apart from these

chemical limitations of the method, one of the biggest

draw backs is the cost of EPR instrumentation, which is

much greater than typical absorbance or fluorescence

spectrometers.

An alternative to direct spin trapping of HO� is the

inclusion of an additional reagent to convert HO� to a

carbon-centered radical (such as the use of DMSO to form

methyl radicals), which is then trapped and quantified.

3-aminomethyl-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (3-

AMP, Table 8) and 3-amino-2,2,5,5,-tetramethyl-1-pyrro-

lidinyloxy (3-AP, Table 8) trap methyl radicals formed

from the reaction of DMSO and HO�. The resultant com-

plex can then be derivatized with fluorescamine and

fluorometrically quantified after HPLC separation (with

detection limits on the order of 10 nM) (Alaghmand and

Blough 2007; Li et al. 1997a, 1999; Vaughan and Blough

1998). It is also possible to use a pre-fluorescamine

derivatized aminoxyl probe in a similar fashion (Pou et al.

1993). This method can be employed under both oxic and

anoxic conditions and has also been used to examine

photochemical processes with minimal background pro-

duction of the HO� derived product (Vaughan and Blough

1998).

The ability of HO� to undergo H-abstraction reactions

has been employed for detection, typically using aliphatic

alcohols/acids or halogenated alkanes as probe com-

pounds (see Blough and Zepp 1995 for discusison of

further probe compounds). Typical probe compounds

employed in early studies involved quantitatively moni-

toring the loss of 1-chlorobutane (Haag and Hoigne 1985)

or the reaction of 2-propanol with HO� yielding acetone,

which can be quantified using HPLC after derivatization

with 2,4-dinitrophenylhdrazine (Warneck and Wurzinger

1988).

Aromatic hydroxylation is another technique that is

often employed for HO� quantification, particularly in

natural aqueous environments. A wide variety of com-

pounds have been reported for use in this type of HO�
assay, including terephthalate, benzoic acid, p-chloroben-

zoic acid, benzene and phthalhydrazide (Table 8) (Backa

et al. 1997; Haag and Yao 1993; Miller et al. 2011; Page

et al. 2010; Qian et al. 2001; Saran and Summer 1999;

Vione et al. 2006; Zhou and Mopper 1990). These methods

utilize the ability of HO� to add to an aromatic ring to

initially form a hydroxycyclohexadienyl radical which can

be further oxidized to a phenolic moiety by a range of

oxidants. Dissolved oxygen is a suitable oxidant for this

process, presumably proceeding via the mechanism sug-

gested by Dorfman et al. (1962) involving HO2�/O2
�-

elimination to yield the diamagnetic hydroxylated species

(Dorfman et al. 1962). The presence of other oxidants can

alter the product distribution, and, as such, care must be

taken to ensure consistent conditions for such a procedure

to be analytically useful. In the hydroxylation of tere-

phthalate, the yield of 2-hydroxyterephthalate increases by

fivefold when IrCl6
2- is employed as the oxidant instead of

the more abundant O2 (Fang et al. 1996). When benzoic

acid is used as the probe compound, the more benign

Fe(III)-EDTA (Ethylenediaminetetraacetic acid) oxidant is

at least an order of magnitude less efficient than O2, and

should not interfere with this procedure under oxic condi-

tions (Maskos et al. 1990). Other routes to achieve

aromatic hydroxylation are also possible, e.g., the

hydroxylation of benzene to phenol by cytochrome P450 is

a key process in the metabolism of benzene (Medinsky

et al. 1995) with such processes representing potential

interferences to aromatic hydroxylation probes. As O2 is

necessary to oxidize the intermediate hydroxycyclohexa-

dienyl radical, such probe systems are not suitable for

investigating anoxic systems, where the absence of O2

would result in altered product distributions.
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Table 8 Methods for detecting hydroxyl radical (HO�)

Technique/Probe Observable LODa Application notes No. of

citationsb

Direct detection of HO� Absorbance (k = 260 nm,

e260 = 370 M-1 cm-1)

lM Optimized for acidic solutions

and long path lengths

46

Ref.: Thomas et al. (1966)

Br- Absorbance of Br2
�- (k = 360 and 700 nm;

e360 = 12,000 M-1 cm-1)

lM Br2
�- is transient (t1/2 = 200 ns);

ROH may interfere; pH 5–9

662

HO� þ Br� ! HO� þ Br�
Br� þ Br� ! Br��2
Refs.: Zafiriou (1974), Zehavi and Rabani (1972a) Westerhoff et al. (2007), Matheson et al. (1966) Schuler et al. (1980)

Crocin Absorbance of crocin (k = 440 nm,

e440 = 133,500 M-1 cm-1)

nM–lM For direct reaction between HO�
and crocin pH must be \4

32

Ref.: Bors et al. (1982)

Ferrocyanide Absorbance of ferricyanide (k = 420 nm,

e420 = 1,027 M-1 cm-1)

lM pH independent at pH [ 4 626

HO� + Fe2þðCNÞ4�6 ! HO� þ Fe3þðCNÞ3�6
Refs.: Schuler et al. (1980), (1981), Adams et al. (1964); Zehavi and Rabani (1972b)

Rhodamine B (RhB) Absorbance of RhB (k = 550 nm) lM Tested at pH \ 7 9

Ref.: Yu et al. (2008)

Riboflavin Absorbance of riboflavin (k = 445 nm) lM 3

Ref.: Kishore et al. (1982)

Phthalhydrazide CL at kmax = 415 nm after oxidation under

alkaline conditions (Cu(III)/H2O2 or

S2O8
2-/H2O2 at pH & 11)

nM Phthalhydrazide slowly forms

hydroxylated product under

solar irradiation

61

Refs.: Backa et al. (1997), Miller et al. (2011), Reitberger and Gierer (1988)

4-Cyano-2,2-dimethyl-2H-imidazole

1-oxide (CDI)

EPR spin trapping—signal increase due to

adduct (aN = 1.39 mT, aH = 1.54 mT)

lM Also traps carbon-centered and

sulfite radicals but not O2
�-

3

HO

N+

N

-O

CN
N

N

O

CN

OH

Ref.: Klauschenz et al. (1994)

4-Carboxy-2,2-dimethyl-2H-

imidazole 1-oxide (CIMO)

EPR spin trapping—signal increase due to

adduct (aN = 1.43 mT, aH = 1.56 mT)

lM Also traps carbon-centered and

suflite radicals but not O2
�-

3

HO

N+

N

-O

COOH
N

N

O

COOH

OH

Ref.: Klauschenz et al. (1994)

(Z)-N-(4-chlorobenzylidene)-2-

(diethoxyphosphoryl)propan-2-

amine oxide (4-ClPPN)

EPR spin trapping—signal increase due to

adduct (aN = 1.45 mT, aH = 0.23 mT,

aP = 4.36 mT)

lM Adducts more stable at pH \ 7 22
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Table 8 contiuned

Technique/Probe Observable LODa Application

notes

No. of

citationsb

Cl

N+

O-

PO OOCH2CH3

OOCH2CH3

Cl

N
O

PO OOCH2CH3

OOCH2CH3

HO

HO

Ref.: Tuccio et al. (1996)

N-[(1-oxidopyridin-1-ium-4-yl)-methylidene]-

1,1-bis

(ethoxycarbonyl)ethylamine

N-oxide (DEEPyON)

EPR spin trapping—signal increase due to adduct

(aN = 1.40 mT, aH = 0.19 mT)

lM 10

HO

N
O

COOCH2CH3

COOCH2CH3

N+

-O

OH

N+

-O

COOCH2CH3

COOCH2CH3

N+

-O

Ref.: Allouch et al. (2005)

5,5-Dimethyl-1-pyrroline N-oxide (DMPO) Loss of EPR signal lM Reactive with

trace metal

ions and O2
�-

1,485

HO N

O

HO

N+

O-

Refs.: Buettner (1985), Gutteridge et al. (1990), Harbour et al. (1974), Goldstein et al. (2004), Finkelstein et al. (1980a), (b)

3-Aminomethyl-2,2,5,5,-tetramethyl-1-

pyrrolidinyloxy (3-AMP) or 3-amino-

2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (3-AP)

Loss of EPR signal and a concomitant increase in

FL when product derivatized with fluorescamine

(kex = 393 nm, kem = 482 nm)

nM Does not form

O2
�- adduct

298
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Table 8 contiuned

Technique/Probe Observable LODa Application notes No. of

citationsb

HO
Dimethyl sulfoxide

.
CH3

N

O

N

O
OH

COOH

N

H3CO

N

O
OH

COOH

.
CH3

Refs.: Pou et al. (1993), Alaghmand and Blough (2007), Li et al. (1997b), Vaughan and Blough (1998)

2-(Ethoxycarbonyl)-2-methyl-

3,

4-dihydro-2H-pyrrole

1-oxide (EMPO)

EPR spin trapping—signal increase

due to adduct (aN = 1.40 mT,

aH = 1.26 mT)

lM Forms O2
�- adduct 142

HO
N

O

H3CH2COOC

HO

N+

O-

H3CH2COOC

Refs.: Stolze et al. (2002), (2005), Olive et al. (2000), Li et al. (1999)

4-(Methoxycarbonyl)-2,2-

dimethyl-2H-imidazole

1-oxide (MEMO)

EPR spin trapping—signal increase

due to adduct (aN = 1.40 mT,

aH = 1.50 mT)

lM Does not form O2
�- adduct 3

HO

N

N

O

H3COOC

HO

N

N+

O-

H3COOC

Ref.: Klauschenz et al. (1994)

2-(2-Pyridyl)-3H-indol-3-one

N-oxide

EPR spin trapping—signal increase

due to adduct

lM No interference from O2
�- 27

HO

N

O

O

N

OH
N+

O

O-

N

Refs.: Rosen et al. (2000)

(E)-N-benzylidene-2-

methylpropan-2-amine

oxide (PBN)

EPR spin trapping—signal increase

due to adduct (aN = 1.55 mT,

abH = 0.27 mT)

lM Adduct decay pH (stability increases at

pH \ 8) and UV illumination dependent;

can form O2
�- adduct

659
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Table 8 contiuned

Technique/Probe Observable LODa Application notes No. of

citationsb

HO

N
O

OH

N+

O-

Refs.: Harbour et al. (1974), Kotake and Janzen (1991), Janzen et al. (1992a), (b); Britigan et al. (1990), Kosaka et al. (1992)

(E)-2-methyl-N-((1-oxidopyridin-4-

yl)methylene)propan-2-amine oxide

(4-POBN)

EPR spin trapping—signal increase due to adduct

(aN = 1.50 mT, ab
H = 0.17 mT, ac

H = 0.03 mT)

lM Best at pH 6–7 199

HO

N
O

N+

OH

N+

O-

N+

-O -O

Refs.: Pou et al. (1994), Janzen et al. (1978)

(Z)-N-benzylidene-2-

(bis(ethylperoxy)phosphoryl)propan-2-

amine oxide (PPN)

EPR spin trapping—signal increase due to adduct

(aN = 1.47 mT, aH = 0.34 mT, aP = 4.24 mT)

lM PPN can partially

decompose in water

39

HO

N
O

OH

N+

O-

P P O

OOCH2CH3

H3CH2COOO

OOCH2CH3

H3CH2COO

Refs.: Zeghdaoui et al. (1995), Roubaud et al. (1996)

2-Pyridyl-N-t-butyl nitrone (2-PyBN) EPR spin trapping—signal increase due to adduct

(aN = 1.50 mT, aH = 0.25 mT)

lM Lifetime of adduct

decreases with

increasing pH

153

HO

N
O

N

OH

N+

O-

N
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Table 8 contiuned

Technique/Probe Observable LODa Application notes No. of

citationsb

Refs.: Roubaud et al. (1996), Tuccio et al. (1996), Janzen et al. (1992a), (b)

3-Pyridyl-N-t-butyl nitrone

(3-PyBN)

EPR spin trapping—signal increase due to adduct

(aN = 1.52 mT, aH = 0.21 mT)

lM Lifetime of adduct decreases

with increasing pH

153

HO

N
O

N OH

N+

O-

N

Refs.: Roubaud et al. (1996), Tuccio et al. (1996), Janzen et al. (1992a), (b)

4-Pyridyl-N-t-butyl nitrone

(4-PyBN)

EPR spin trapping—signal increase due to adduct

(aN = 1.52 mT, aH = 0.19 mT)

lM Lifetime of adduct decreases

with increasing pH

153

HO

N
O

N

OH

N+

O-

N

Refs.: Roubaud et al. (1996), Tuccio et al. (1996), Janzen et al. (1992a), (b)

2-Pyridine-N-oxyl-N0-t-
butylnitrone (2-PyOBN)

EPR spin trapping—signal increase due to adduct

(aN = 1.52 mT, aH = 0.19 mT)

lM Lifetime of adduct decreases

with increasing pH

153

HO

N
O

N+

OH

N+

O-

N+
O-O-

Refs.: Roubaud et al. (1996), Tuccio et al. (1996), Janzen et al. (1992a), (b)

3-Pyridine-N-oxyl-N0-t-
butylnitrone (3-PyOBN)

EPR spin trapping—signal increase due to adduct

(aN = 1.49 mT, aH = 0.160 mT)

lM Lifetime of adduct decreases

with increasing pH

153

HO

N
O

N+ OH

N+

O-

N+

-O -O
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Table 8 contiuned

Technique/Probe Observable LODa Application notes No. of

citationsb

Refs.: Roubaud et al. (1996), Tuccio et al. (1996), Janzen et al. (1992a), (b)

4-Pyridine-N-oxyl-N0-t-butylnitrone (4-

PyOBN)

EPR spin trapping—signal increase

due to adduct (aN = 1.50 mT,

aH = 0.17 mT)

lM Lifetime of adduct decreases with

increasing pH

153

HO

N
O

N+

-O

OH

N+

O-

N+

-O

Refs.: Roubaud et al. (1996), Tuccio et al. (1996), Janzen et al. (1992a), (b)

(E)-2-(bis(ethylperoxy)phosphoryl)-N-

((1-oxidopyridin-4-

yl)methylene)propan-2-amine oxide

(4-PyOPN)

EPR spin trapping—signal increase

due to adduct (aN = 1.38 mT,

aH = 0.17 mT, aP = 4.28 mT)

lM HO� adduct distinguishable from

O2
�- adduct

77

HO

N
O

PO

OOCH2CH3

OOCH2CH3

N+

-O

OH

N+

O-

PO

OOCH2CH3

OOCH2CH3

N+

-O

Refs.: Zeghdaoui et al. (1995), Roubaud et al. (1996), Rizzi et al. (1997), Tuccio et al. (1996)

2,2,4-Trimethyl-2H-imidazole 1-oxide

(TMI)

EPR spin trapping—signal increase

due to adduct (aN = 1.42 mT,

aH = 1.63 mT)

lM Does not react with O2
�- 3

HON

N+

O-

N

N

O

OH

Ref.: Klauschenz et al. (1994)

1,1,3-Trimethylisoindole-N-oxide

(TMINO)

EPR spin trapping—signal increase

due to adduct (ag-b = 1.50 mT)

lM Must be purified immediately prior

to use; adduct stable for *1 h;

does not react with O2
�-

20
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Table 8 contiuned

Technique/

Probe

Observable LODa Application notes No. of

citationsb

N+ O- N

OH

O
HO

Refs.: Bottle et al. (2003), Bottle and Micallef (2003)

Benzoic acid FL of salicylic acid (kex = 305 nm, kem = 410 nm), absorbance p-

hydroxybenzoic acid (k = 250 nm), absorbance m-hydroxybenzoic

acid (k = 300 nm)

nM 613

HO
OH

O

OH

O

OH

O

OH

O

OH

OH

HO

++

p-hydroxybenzoic acidm-hydroxybenzoic acidsalicylic acid

Refs.: Matthews and Sangster (1965), Motohashi and Saito (1993), Jankowski et al. (1999), Jankowski et al. (2000), Qian et al. (2001), Vione

et al. (2006), Zhou and Mopper (1990), Armstrong et al. (1960), Loeff and Swallow (1964), Klein et al. (1975), Oturan and Pinson (1995),

Armstrong and Grant (1958), Halliwell and Gutteridge (1985)

Nitroxide-

linked

naphthalene

FL of product(kex = 300 nm, kem = 390 nm) nM–lM Tested in the pH range of

1.5–5.5 with the greatest

FL at pH 3

23

Dimethyl sulfoxide
HO .

CH3

O

O

N OO

O

N O

CH3

.
CH3

Ref.: Yang and Guo (2001)

Terephthalic

acid (TPA)

FL of product (kex = 315 nm, kem = 425 nm) nM HO� specific 128
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Table 8 contiuned

Technique/Probe Observable LODa Application

notes

No. of

citationsb

HO

-OOC

COO- COO-

-OOC OH

Refs.: Fang et al. (1996), Saran and Summer (1999), Snyrychova and Hideg (2007), Page et al. (2010)

Proxylfluorescamine FL of product (kex = 404 nm, kem = 490 nm), ESR-

proxylfluorescamine

nM Does not react

with O2
�-

135

Dimethyl sulfoxide
HO .

CH3

N

O

N

OH
O

COOH

N

H3CO

N

OH
O

COOH

.
CH3

Refs.: Pou et al. (1993), Li et al. (1997b)

Methional/methionine/2-keto-

4-methylthiobutyric acid

(KMB)

GC–flame ionization detection of ethylene lM Interference

from other

ROS

3

HO +
OH

S

O

HO OH

S

O

Refs.: Lawrence (1985), Youngman and Elstner (1985)

7-14C-benzoate Liquid scintillation counter or GC for 14CO2 determination nM 13

HO14C

O

OH

+ 14CO2

Ref.: Winston and Cederbaum (1985)

14C-formate Liquid scintillation counter to quantify remaining14C-formate after
14CO2 driven out through sparging or quantify 14CO2 that is trapped

in concentrated NaOH

nM 182

Refs.: Duesterberg et al. (2005), Kwan and Voelker (2002), Southworth and Voelker (2003)

Adrenalone HPLC–UV of products (ko = 260–275 nm,

e260–275 = 16,000 M-1 cm-1; kp = 440–450 nm,

e440–450 = 5,400 M-1 cm-1)

lM Interference

from O2
�-

9
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Table 8 contiuned

Technique/Probe Observable LODa Application notes No. of

citationsb

HO

-O

HO

H2
+

N

O

-O

O

H2
+

N

O

-O
H2

+

N

O

+

O

o-semiquinone p-semiquinone

Ref.: Bors et al. (1979b)

p-Chlorobenzoic acid (pCBA) HPLC–UV of pCBA (kmax = 236 nm) nM Relatively unreactive with

ozone

629

Refs.: Yao and Haag (1991), Acero and Von Gunten (2001), Elovitz and von Gunten (1999), Hoigne (1997), Oh et al. (2004), Pines and Reckhow

(2002), (2003), Westerhoff et al. (1999); Pi et al. (2005)

5-(Diethoxyphosphory1)-5-

methyl-l-pyrroline N-oxide

(DEPMPO)

31P-NMR—observation of DEPMPO at -66 ppm or EPR

spin trapping—signal increase due to adduct

(aP = 4.75 mT, aN = 1.40 mT)

lM–mM Forms adducts with O2
�- 405

N+

O-

HO

P

O

O
O

N

OP

O

O
O

OH

Refs.: Frejaville et al. (1994), (1995)

4-Hydroxy-5,5-dimethyl-2-

trifluoromethylpyrroline-1-

oxide (FDMPO)

19F-NMR—observation of FDMPO at -66 ppm or EPR

spin trapping—signal increase due to adduct

(aF = 0.28 mT, aN = 1.39 mT)

lM–mM No interference from O2
�-,

forms adducts with �CH3

and �CH2OH

7

N+F3C

O-

OH

NF3C

O

OH

HO

HO

Ref.: Khramtsov et al. (2001)

a When not specified in the original literature reference, LOD is estimated based on available information (i.e., for absorbance the e and an

assumed 1 cm pathlength is used); all other estimates based on typical LODs for similar methods and instruments
b Number of times the method has been cited using Science Citation Index� as of September 2011
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With aromatic hydroxylation probes, quantification can

be undertaken by monitoring either the loss of the probe

compound or the formation of one of the hydroxylated

products, with the latter typically considered to be more

selective for HO� than other strong oxidants and to offer

sensitivity advantages. Since the hydroxylated product of

analytical interest is only a fraction of the total amount of

probe that has reacted with HO�, the yield of the hydrox-

ylated product must be known in order to determine the

quantity of HO� trapped. For benzoic acid, three hy-

droxybenzoic acid isomers are formed (Zhou and Mopper

1990). The proportion of ortho-, meta-, and para-substi-

tuted hydroxybenzoic acids has been found to be 36, 34,

and 30%, respectively, under marine conditions (Zhou and

Mopper 1990). When decarboxylation and ring fission

products are accounted for, the fraction of HO� that reacts

with benzoic acid to yield the para-isomer is determined to

be 17%. Likewise, for phthalhydrazide, 20% of the reacted

HO� yields the desired 5-hydroxy product (Miller et al.

2011) and 35% of the reacted terephthalate yields hy-

droxyterephthalate (Page et al. 2010). The higher yield

from terephthalate is due to the symmetry of the probe

molecule which yields only one possible hydroxy-isomer,

thereby offering clear advantages in using this method.

For photochemical studies, it is essential to establish the

stability of both the probe compound and the quantified

product species with respect to direct photolysis by the

light source. For the benzoic acid method, o-hydroxyben-

zoic acid has been shown to be stable with respect to direct

photolysis using irradiation with k[ 313 nm and pH \ 12

(Yang et al. 2004). The base (but not acid) form of m-

hydroxybenzoic acid, however, is known to degrade in the

presence of solar irradiation (Anastasio and McGregor

2001), whereas the para isomer is reportedly photo-stable

(Zhou and Mopper 1990). With terephthalate, the probe

compound itself is stable to solar irradiation, however, the

hydroxylated product is directly photolyzed by 365 nm

light with quantum yield (U) of (6.3 ± 0.1) 9 10-3 (Page

et al. 2010). In contrast, phthalhydrazide as a probe com-

pound is directly photolyzed to the 5-hydroxy analyte,

which is itself then seemingly stable to solar radiation

(Miller et al. 2011). Although aromatic hydroxylation

assays are advantageous with regards to sensitivity and

selectivity, it is clear that caution must be used when

applied to photochemical systems.

Further complications can arise when other oxidants are

present in the system that are able to degrade the probe

compound rendering it unavailable for reaction with any

HO� that may be formed. For example, in studies of

ozonation chemistry, precautions need to be taken to ensure

the probe is unreactive towards ozone. In such cases,

4-chlorobenzoic acid has been found to be a suitable probe

that is readily degraded by HO� yet is relatively unreactive

towards O3. As such, HO� can be determined in the pres-

ence of O3 by monitoring the loss of 4-chlorobenzoic acid

using HPLC (Haag and Yao 1993; Jans and Hoigné 1998).

There are significant challenges to determining HO� with

all the methodologies described to date. In general, these all

have some flaws or drawbacks that must be carefully con-

sidered and controlled as much as possible in any given

system. Regardless of these potential problems, rigorous

application of an appropriate method or indeed, potentially,

several different methods (Table 8), enables quantitative

insights to be made in the analysis of many systems. A

discussion on the generation of standards to quantitatively

determine HO� can be found in Online Resource 1.

Carbonate radical

The carbonate radical (Table 9) is produced in natural

aqueous systems primarily through the oxidation of car-

bonate or bicarbonate ions by a one-electron oxidant such

as HO� (Eq. 16) or the photoreactions of metal–carbonato

complexes.

HO� þ CO3
2� ! OH� þ CO3

�� ð16Þ

This radical has not been as widely measured in the

aqueous environment as other transient oxidants. This is

unfortunate, as its reduction potential overlaps that of I-

and Br- and subsequent reactions of CO3
�- could be a

major source of reactive halogens in seawater. Its

concentration in sunlit waters has been estimated at

10-13 to 10-15 M (Table 9) (Czapski et al. 1999; Faust

1999; Huang and Mabury 2000; Sulzberger et al. 1997;

Larson and Zepp 1988). CO3
�- reacts relatively slowly with

itself, likely due to Coulombic repulsion (Behar et al.

Table 9 Properties of carbonate radical

CO3
�- (carbonate radical)

E0(CO3
�-/CO3

2-) vs. NHE at pH 7.0a 1.59 V

kmax absorption; e600nm
b,c 600 nm;

1,860 M-1 cm-1

pKa
d \0

Steady state concentration in natural

waterse–g
10-13 to 10-15 M

Lifetime (pH 7.0)h *8 ms

a (Armstrong et al. 2006; Buxton et al. 1988; Huie et al. 1991)
b (Weeks and Rabani 1966)
c (Behar et al. 1970a)
d (Czapski et al. 1999; Lymar et al. 2000)
e (Sulzberger et al. 1997)
f (Faust 1999)
g (Huang and Mabury 2000)
h (Bonini et al. 1999; Canonica et al. 2005)
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Table 10 Methods for detecting carbonate radical (CO3
�-)

Technique/Probe Observable LODa Application notes No. of

citationsb

Direct detection of HCO3�/CO3
�- Absorbance (kmax = 600 nm,

e600 = 2,000 M-1 cm-1)

lM HCO3�/CO3
�-

indistinguishable;

e600 pH independent

446

Refs.: Weeks and Rabani (1966), Zuo et al. (1999), Behar et al. (1970a), Chen et al. (1973)

Direct detection of CO3
�- Fast flow EPR (g = 2.0113, line

width = 0.55 mT)

lM Singlet spectrum; pH

independent between

pH 6–9

186

Ref.: Bonini et al. (1999)

Aliphatic amines Absorbance of CO3
�- (k = 600 nm) or monitor

the appearance of reaction products

lM 14

CO��3 þ RCH2NR
0

2 ! CO2�
3 þ RCH2 N

�þ
R
0

2

CO��3 þ RCH2NH2 ! HCO3� þ R C
�

H2NR
0

2

Ref.: Elango et al. (1985)

1,4-Diaza-bicyclo[2.2.2]octane (DABCO) Absorbance of radical cation (k = 465 nm,

e465 = 2.1 9 103 M-1 cm-1)

lM Radical cation has a

t1/2 B ms

41

N N N N
CO3

-.

Refs.: (Elango et al. 1985; Ernstbrunner et al. 1978)

1,3,6,8-tetraazatricyclo[4.4.1.1]dodecane

(TATCD)

Absorbance of radical cation (k = 570 nm) lM Radical cation has a t1/

2 B ms

41

N

N

N

N

N

N

N

N

CO3
-.

Refs.: (Elango et al. 1985; Nelsen and Buschek 1974)

Dimethylpyrrolidine oxide (DMPO) EPR spin trapping—signal increase due to

adduct (aN = 1.43 mT, ab-H = 1.07 mT, and

ac-H = 0.14 mT)

lM Can form DMPO-OH

complex; pH

sensitive

61

N+

O

N

O

O

-O

O

CO3
-.

Refs.: Villamena et al. (2007), Wolcott et al. (1994), Yoon et al. (2002), Villamena et al. (2006)

Aniline and substituted anilines GC–MS—loss of probe molecule; reverse phase

HPLC/UV—loss of probe molecule

lM 156
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1970a). It is much more selective than HO� with respect to

reactions with organic species. For example, it reacts

rapidly with phenols, anilines, and some amino acids

(Busset et al. 2007; Chen and Hoffman 1973; Chen et al.

1975; Elango et al. 1985; Larson and Zepp 1988; Mak et al.

2007; Moore et al. 1977), but relatively slowly with

saturated alkanes, aromatic hydrocarbons, etc. It primarily

oxidizes organics through electron transfer as opposed to

addition or atom transfer, and its role in environmental

systems is underestimated because it has been so rarely

measured. However, its impact may be greater than

previously estimated, and it is interesting that the

functional groups that CO3
�- radicals are kinetically apt to

react with are also those depleted most rapidly in the

terrestrial DOM signature during mixing of fresh and

marine waters.

CO3
�- is strongly absorbing in the visible region

(k = 600 nm) and this is the primary method used for its

detection in pump and probe experiments of its kinetics and

reactivity (Weeks and Rabani 1966; Zuo et al. 1999). Its

lifetime (*8 ms) is typically too brief to enable direct

measurement in natural waters (Table 9) (Bonini et al.

1999; Canonica et al. 2005) and instead indirect quantita-

tion methods are employed for this ROS. The presence of

this radical is usually inferred through observation of the

effects of the carbonate/bicarbonate ion on the oxidation of

organic compounds by more oxidizing radicals such as HO�
(Glaze et al. 1995; Glaze and Kang 1989). When the rate of

oxidation of an HO� probe is reduced as a result of addition

of carbonate ionic species, it is assumed that HO� has been

scavenged by the carbonate anion resulting in the genera-

tion of CO3
�- (Table 10). Although it is possible to trap this

radical using nitrones with subsequent EPR detection

(Table 10), the resulting adducts are subject to hydrolysis

and so are difficult to characterize or quantify directly

(Villamena et al. 2006, 2007; Wolcott et al. 1994; Yoon

et al. 2002).
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