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Efficient Representation of Lattice Path
Matroids
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Abstract. Efficient deterministic algorithms to construct representations
of lattice path matroids over finite fields are presented. They are built on
known constructions of hierarchical secret sharing schemes, a recent char-
acterization of hierarchical matroid ports, and the existence of isolating
weight functions for lattice path matroids whose values are polynomial
on the size of the ground set.

1. Introduction

Every linear code determines a matroid, namely the one that is represented by
any of its generator matrices. Several properties of the code are derived from
that matroid. For example, the weight enumerator of the code is derived from
the Tutte polynomial of the matroid [19]. Another example is the correspon-
dence between maximum distance separable linear codes and representations
of uniform matroids. Determining over which fields uniform matroids are rep-
resented is equivalent to solving the main conjecture for maximum distance
separable codes. Detailed information on that conjecture is given in [26, Prob-
lem 6.5.19]. Important advances for solving it have been presented in [1,2].

Additional connections follow from applications of linear codes other than
plain error detection and correction, as network coding [15] or locally repairable
codes [13,30]. Among them, secret sharing has attracted most attention, and
it is the main motivation for our results. Vector secret sharing schemes [9] are
ideal and linear, so they are among the most efficient secret sharing schemes.
The access structures of vector secret sharing schemes coincide with the ports
of representable matroids. Every representation of a matroid over a finite field
provides a vector secret sharing scheme for each of its ports. The efficiency of
those schemes is determined by the size of the field.

Given a family of representable matroids, some basic questions are moti-
vated by those applications. Over which (finite) fields can they be represented?
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Which is the minimum size of those fields? Are there efficient algorithms to
find a representation for every member of the family?

This paper deals with efficient deterministic constructions of representa-
tions of matroids over finite fields. Specifically, deterministic algorithms that
provide, for each member in a given family of representable matroids, a repre-
sentation over some finite field Fq. Both the running time and the size log q of
the elements in the finite field must be polynomial in the number of elements
in the ground set.

The existence of such algorithms is well known for uniform and graphic
matroids, and it has been proved for matroids with two clonal classes [3].
Efficient deterministic representations for other families of matroids are de-
rived from constructions of several classes of vector secret sharing schemes,
namely hierarchical [9,14,31], compartmented [12], and uniform multipartite
[11] schemes. Some results on deterministic algorithms for transversal matroids
are given in [21,24], but no efficient algorithms are known for that class.

For other families of matroids, only efficient randomized algorithms are
known. This is the case for transversal matroids. The output of those algo-
rithms is correct with high probability, but there is no efficient way to check
whether or not this is the case.

In this paper, we present efficient deterministic algorithms for lattice path
matroids, a family of transversal matroids introduced in [8]. Even though the
existence of such algorithms has not been explicitly stated before, it directly
follows from previous works in secret sharing. Namely, the constructions of
hierarchical vector secret sharing schemes in [9,14,31] and a recent character-
ization of the matroids determined by those schemes, which were proved to
coincide with lattice path matroids [25]. In addition to pointing out and ex-
plaining that connection, the main contribution in this paper is a simpler and
more general description of those constructions. Specifically, using isolating
weight functions in a similar way as in [21], a general method to find represen-
tations of transversal matroids is presented. It is efficient if the values of the
isolating weight functions are polynomial in the size of the ground set. The
existence of such functions is proved for lattice path matroids. The application
to other families of transversal matroids remains an open question.

Our algorithms provide two kinds of representations of lattice path ma-
troids. The first one works for large algebraic extensions of relatively small
prime fields and it corresponds to the constructions of hierarchical secret shar-
ing schemes in [9,14]. The second one deals with large prime fields. Another
such construction was proposed in [31], but it applies only to nested matroids.

2. Preliminaries

The main concepts and known results together with the terminology and no-
tation that are used in the paper are explained in this section. After presenting
the basics on polymatroids and matroids, we discuss the connection between
transversal matroids and Boolean polymatroids, which is used later to describe
the two existing characterizations [17,25] of hierarchical matroid ports, that is,
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the access structures of ideal hierarchical secret sharing schemes. In addition,
we review some facts and open questions on ideal multipartite secret sharing
schemes and multi-uniform matroids that are the initial point of this work.
Polymatroids play a fundamental role in that topic.

2.1. Polymatroids, Matroids, and Matroid Ports

The reader is referred to [26] for a textbook on matroid theory. Most of the
time, we use here the terminology and notation from it. More information
about polymatroids, matroid ports, and their application to secret sharing is
found in [22].

A set function f : 2E → R on a finite set E is monotone if f(X) ≤ f(Y )
whenever X ⊆ Y ⊆ E, and it is submodular if f(X)+f(Y )−f(X ∪Y )−f(X ∩
Y ) ≥ 0 for all X,Y ⊆ E. A polymatroid is a pair (E, f) formed by a ground set
E and a rank function f . The former is a finite set and the latter is a monotone,
submodular set function on E with f(∅) = 0. Integer polymatroids are those
with integer-valued rank functions. From now on, only integer polymatroids
are considered.

An integer polymatroid M = (E, r) with r({x}) ≤ 1 for each x ∈ E is a
matroid. The independent sets of the matroid M are the subsets of the ground
set with r(X) = |X|. A basis is a maximal independent set and a circuit is a
minimal dependent set. All bases have r(E) elements, and that value is called
the rank of the matroid.

For an element po in the ground set E, the port of the matroid M at po

is formed by the sets X ⊆ E \ {po}, such that r(X ∪ {po}) = r(X). Observe
that the minimal sets in the matroid port are the ones, such that X ∪{po} is a
circuit. A matroid is connected if every two different elements in the ground set
lie in a common circuit. As a consequence of [26, Theorem 4.3.3], a connected
matroid is determined by any of its ports.

Given a matrix A over a field K with columns indexed by a set E and
a set X ⊆ E, let r(X) be the rank of the submatrix formed by the columns
corresponding to the elements in X. Then, M = (E, r) is a matroid. In that
situation, M is representable over K, or K-representable, and the matrix A is
a representation of M over K.

While representations of matroids are collections of vectors (the columns
of a matrix), some polymatroids can be represented by collections of vector
subspaces. A polymatroid (E, f) is K-representable if there exists a collection
(Vx)x∈E of subspaces of a K-vector space V , such that f(X) = dim

∑
x∈X Vx

for every X ⊆ E.

2.2. Transversal Matroids and Boolean Polymatroids

We discuss next some basic facts about transversal matroids, Boolean poly-
matroids, and lattice path matroids. The reader is referred to [6–8,23,26] for
additional information on those topics.

For an integer polymatroid (S, f), consider the family formed by the sub-
sets X ⊆ S, such that |Y | ≤ f(Y ) for every Y ⊆ X. By [26, Corollary 11.1.2],
that is the family of independent sets of a matroid, which is called the matroid
induced by the polymatroid (S, f).
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Let G be a bipartite graph with vertices in the parts J and S. For a set X
of vertices, N(X) denotes the set of neighbors of the vertices in X. If B ⊆ S,
we notate GB for the subgraph of G induced by J ∪B. The biadjacency matrix
of the bipartite graph G is a (0, 1)-matrix whose rows and columns are indexed
by the sets J and S, respectively, and the entries equal to 1 mark the edges of
G.

The graph G determines two sequences of sets. Namely, (Cx : x ∈ S)
with Cx = N({x}) ⊆ J and (Aj : j ∈ J) with Aj = N({j}) ⊆ S. Observe
that the sets in those sequences may not be distinct.

A set X ⊆ S is a partial transversal of the sequence (Aj : j ∈ J) if there
is an injective map ϕ : X → J , such that x ∈ Aj if ϕ(x) = j. Those partial
transversals are the independent sets of a transversal matroid M with ground
set S. Observe that X ⊆ S is an independent set of M if and only if there is a
matching in G covering all vertices in X. The sequence (Aj : j ∈ J) of subsets
of S and, equivalently, the graph G provide a presentation of the transversal
matroid M . A transversal matroid may admit different presentations, but there
exist presentations such that the size of J equals the rank of the matroid [6,
Theorem 2.6]. From now on, we always assume that this is the case, that is, we
assume that there is a matching in G with |J | edges. In that situation, B ⊆ S
is a basis of M if and only if the subgraph GB has a perfect matching.

The sequence (Cx : x ∈ S) of subsets of J determines a Boolean poly-
matroid with ground set S. Namely, the polymatroid (S, f) with f(X) =
|N(X)| =

∣
∣⋃

x∈X Cx

∣
∣ for every X ⊆ S. By Hall’s marriage theorem, X ⊆ S is

an independent set of the transversal matroid M determined by G if and only
if |Y | ≤ |N(Y )| = f(Y ) for every Y ⊆ X. Therefore, a matroid is transversal
if and only if it is induced by a Boolean polymatroid.

Lattice path matroids, which were introduced in [8], are a special class
of transversal matroids. As a consequence of [6, Lemma 4.7], the following
definition is equivalent to the one in [8]. For positive integers m,n, with m ≤ n,
we notate [m,n] = {m,m + 1, . . . , n} and [n] = [1, n].

Proposition 2.1. Let G be a bipartite graph with parts J = [r] and S = [n].
Then, the following conditions are equivalent.

1. There are sequences (a1, . . . , ar) and (b1, . . . , br) in S with 1 = a1 ≤ a2 ≤
· · · ≤ ar and b1 ≤ b2 ≤ · · · ≤ br = n, such that aj ≤ bj and Aj = [aj , bj ]
for every j ∈ J .

2. There are sequences (c1, . . . , cn) and (d1, . . . , dn) in J with 1 = c1 ≤ c2 ≤
· · · ≤ cn and d1 ≤ d2 ≤ · · · ≤ dn = r, such that cx ≤ dx and Cx = [cx, dx]
for every x ∈ S.

Definition 2.2. A lattice path matroid is a transversal matroid that admits a
presentation with the conditions of Proposition 2.1. It is a nested matroid (also
called generalized Catalan matroid) in the particular case that it admits such
a presentation with b1 = n or, equivalently, cn = 1.

2.3. Vector Secret Sharing Schemes

The reader is referred to [4] for a comprehensive survey on secret sharing.
In a secret sharing scheme, a secret value is distributed into shares among
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some players in such a way that only some qualified sets of players are able
to recover the secret from their shares. The qualified sets form the access
structure, which is a monotone family of sets of players. That is, every set
containing a qualified set is qualified. A secret sharing scheme is perfect if the
shares from an unqualified set do not provide any information on the secret
value, and it is ideal if, in addition, each share has the same size as the secret
value, which is the optimal case. Brickell and Davenport [10] proved that the
access structure of every ideal secret sharing scheme is a matroid port.

Vector secret sharing schemes are ideal schemes determined by linear
codes. A linear code of length n over a finite field K is a vector subspace
C ⊆ Kn. The rows of a generator matrix form a basis of C. Such a linear
code C determines a vector secret sharing scheme as follows. Given a secret
value s ∈ K, choose uniformly at random a code word c = (c1, c2, . . . , cn) ∈ C
with c1 = s, and distribute the shares c2, . . . , cn among the n − 1 players
in the scheme. A set X is qualified if and only if the first column of the
generator matrix is a linear combination of the columns corresponding to the
players in X. Let M be the K-representable matroid associated to the linear
code C, that is, the matroid represented by the generator matrix. The access
structure of the secret sharing scheme is the port of M at the element in the
ground set corresponding to the first column. Therefore, the access structures
of vector secret sharing schemes are the ports of representable matroids. Each
representation of a matroid over a finite field provides vector secret sharing
schemes for its ports and, conversely, a representation of a matroid over a finite
field is obtained from a vector secret sharing scheme for any of its ports.

2.4. Matroids with Large Clonal Classes

Two elements in the ground set of a matroid are clones if the map that in-
terchanges them and let all other elements fixed is an automorphism of the
matroid. The equivalence classes of that equivalence relation are the clonal
classes of the matroid, For example, uniform matroids are those having only
one clonal class.

In a secret sharing scheme, players x and y are clones if, for every set
A of players with x, y /∈ A, the set A ∪ {x} is qualified if and only if so is
A∪{y}. That is, they play the same role in the scheme. If the access structure
is a matroid port, two players are clones if and only if they are clones in the
matroid.

Definition 2.3. A matroid M is Π-uniform for some partition Π = (Si : i ∈ P )
of the ground set if all elements in the same part are clones. That is, each Si

is a subset of a clonal class. If |P | = m, we say that M is m-uniform.

For a partition Π of the set of players, Π-uniform access structures are
defined analogously. A secret sharing scheme is said to be multipartite if its
access structure is m-uniform, specially when m is much smaller than the num-
ber of players. Ideal multipartite schemes have been studied by several authors
[5,9,12,14,16,17,27,29,31,32]. Their access structures are ports of m-uniform
matroids, which are called m-partite in the works on secret sharing. The main
examples are compartmented and hierarchical secret sharing schemes.
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Let M = (S, r) be a Π-uniform matroid with Π = (Si : i ∈ P ). Associ-
ated to M , consider the integer polymatroid (P, g) with

g(I) = r

(
⋃

i∈I

Si

)

for every I ⊆ P . The matroid M is determined by the integer polymatroid
(P, g) and the partition Π. Indeed, consider the map π : S → P with π(x) = i
if x ∈ Si and the polymatroid (S, f) with f(X) = g(π(X)) for each X ⊆ S.
Then, M is the matroid induced by the polymatroid (S, f). The following
result was proved in [16, Theorem 6.1].

Proposition 2.4. Consider a Π-uniform matroid M = (S, r) with Π = (Si :
i ∈ P ) and its associated polymatroid (P, g). There exists an integer q(M),
such that M is K-representable if the field K has at least q(M) elements and
(P, g) is K-representable.

Nevertheless, no efficient deterministic methods are known to find rep-
resentations of matroids with large clonal classes from representations of the
associated polymatroids, which lead to the open problem posed in [16, Open
Problem 6.9] and [18, Section VII]. Preliminary versions of that problem are
found in [9,31,32]. Solutions for some classes of multi-uniform matroids are
given in [3,9,11,12,14,31].

2.5. Hierarchical Secret Sharing and Lattice Path Matroids

In an access structure, a player x is hierarchically inferior to a player y if, for
every set A of players with x, y /∈ A, the set A ∪ {y} is qualified if so is the set
A ∪ {x}. In that situation, we write x 
 y. Observe that x, y are clones if and
only if x 
 y and y 
 x. An access structure is hierarchical if that preorder in
the set of players is total. Hierarchical secret sharing schemes are those having
a hierarchical access structure.

Efficient deterministic constructions of vector secret sharing schemes were
presented in [9,31] for the so-called hierarchical threshold access structures. The
construction in [9] was generalized in [14] to all hierarchical matroid ports,
which had been previously characterized in [17] in terms of multi-uniform ma-
troids induced by Boolean polymatroids. An alternative characterization has
been recently found [25], which is summarized in the following. If M is a lattice
path matroid on the ground set S = [n], then the ports of M at each of the el-
ements po = 1 and po = n are hierarchical access structures. Conversely, every
hierarchical matroid port is of that form. In particular, hierarchical threshold
access structures are the ports of nested matroids. Moreover, the hierarchical
order is compatible with the order in the ground set. Specifically, in the port of
M at po = 1, a player x is hierarchically inferior to a player y if 1 < y ≤ x ≤ n,
while the hierarchical order is reversed in the port of M at po = n.

Proposition 2.1 clarifies the connection between those two characteriza-
tions of hierarchical matroid ports. While the characterization in [17] uses the
Boolean polymatroid determined by the sets Cx, the one in [25] focuses on the
lattice path matroid determined by the sets Aj .
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Therefore, the constructions from [9,31] and the ones from [14] provide
efficient deterministic algorithms to find representations over finite fields for
nested matroids and, respectively, lattice path matroids. The method in [9,14]
provides representations over algebraic field extensions of large degree, while
the one in [31], which applies only to nested matroids, it is based on Birkhoff
interpolation and yields representations over large prime fields. In the following
sections, we give an alternative description of the former and we present a new
construction over prime fields that applies to all lattice path matroids.

3. Representations of Transversal Matroids

It is well known that representations for a transversal matroid M are obtained
by modifying the biadjacency matrix of a presentation G. Indeed, for each edge
(j, x) of G, replace the corresponding entry (equal to 1) in the biadjacency
matrix with a variable αj,x. Take an arbitrary field K and assume that the
entries of the matrix are polynomials over K in the variables αj,x. Clearly, the
determinant of the square submatrix formed by the columns corresponding
to a set B ⊆ S with |B| = r is a non-zero polynomial if B is a basis of M
and it is zero otherwise. At this point, representations for M are obtained
by assigning values to the variables αj,x. One possibility is considering that
αj,x are algebraically independent elements over K in some extension field.
In addition, for every sufficiently large field K, it is possible to substitute
the variables αj,x by elements in K in such a way that the value of every
polynomial corresponding to a basis of M is non-zero. Nevertheless, it is not
clear how to efficiently choose those elements. We describe next two methods
to assign values to the variables αj,x from a weight function on the edges of
the graph.

Definition 3.1. A weight function with non-negative integer values on the edges
of G is isolating if, for every basis B of the transversal matroid M , among the
perfect matchings of GB , there is only one with minimum weight.

Every bipartite graph admits an isolating weight function. Indeed, enu-
merate the edges {e0, e1. . . . , em−1} and take w(ek) = 2k. Nevertheless, the
methods that are described in the following provide efficient representations
for a family of transversal matroids only if the values of the isolating weight
functions are polynomial in the size of the ground set.

Proposition 3.2. ([28], Theorems 3.2 and 4.1) If p is a prime number, there is
a deterministic algorithm to find an irreducible polynomial over Fp of degree
s. Its running time is O(p1/2s4) ignoring powers of log s and log p. If q = pd,
there is a deterministic algorithm to find an irreducible polynomial over Fq of
degree s that runs in time O(p1/2s3 + s4d2) ignoring powers of log s and log p.

Proposition 3.3. Consider a transversal matroid M with rank r over n ele-
ments, a presentation G of M , an isolating weight function w on the edges
of G, and integers s, t with t = max w(j, x) and s larger than the maximum
weight of a matching in G.
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1. There exists a deterministic algorithm that, for every prime number p,
provides a representation of M over the finite field with ps elements. The
running time is polynomial in n, p, and s.

2. There exists a deterministic algorithm that, for each prime number p >
2rt rr/2, provides a representation of M over Fp. The running time of
the algorithm is polynomial in log p and n.

Proof. Take a variable α and put αj,x = αw(j,x) for every edge (j, x) of G.
Take an arbitrary field K and assume that the entries of the matrix are poly-
nomials over K in the variable α. Then, the determinant of the submatrix
corresponding to a basis B is a non-zero polynomial. Indeed, the coefficient
of the minimum degree equals either 1 or −1, because it corresponds to the
unique perfect matching in GB with minimum weight. For each basis, the de-
gree of that polynomial is at most the maximum weight of a perfect matching,
and hence less than s.

Consider an arbitrary prime number p and q = ps, and take K = Fp.
Using the algorithm given by Shoup [28], find an irreducible polynomial f(α)
over Fp of degree s. As we mentioned in Proposition 3.2, that can be done in
time O(p1/2s4) ignoring the powers of log s and log p. Then, the quotient ring
Fp[α]/(f(α)) is isomorphic to the field Fq, an algebraic extension of Fp. The
class of α in that quotient ring is an element in Fq whose minimal polynomial
over Fp is of degree s. By identifying the entries of the matrix with elements
in Fq, a representation of the matroid M over that field is obtained.

To construct a representation over a prime field, assume that K is the
field of real numbers, and hence, the entries of the matrix are assumed to be
real polynomials in the variable α. Those polynomials have integer coefficients,
because they are either zero or a power of α. Therefore, for every basis B, the
determinant of the corresponding submatrix is a non-zero polynomial hB(α)
with integer coefficients. Moreover, hB(2) �= 0, because the coefficient of the
minimum degree term is ±1. Put α = 2 and let A be the the resulting integer
matrix. Observe that 0 ≤ aj,x ≤ 2t for every entry of that matrix. For a basis
B, the corresponding submatrix AB satisfies

|det AB | ≤ 2rt rr/2

by Hadamard’s inequality. Therefore, that determinant is not a multiple of p
for any prime number p larger than 2rt rr/2, and hence, the matrix A provides
a representation of M over the prime field Fp. �

The most computationally expensive step in the first algorithm is to find
an irreducible polynomial over Fp of degree s. Since p can be the same for all
matroids in the family, the computation time depends almost exclusively on
the value of s, and hence on the maximum weight of the perfect matchings in
the subgraphs GB . In addition, the value of s determines the size of the finite
field Fq, and hence the efficiency of the representations and their applications
as, for example, secret sharing schemes. It is well known that the arithmetic
operations in Fq can be performed in time polynomial in log q using a repre-
sentation of the field given by an irreducible polynomial, that is, by identifying
Fq with Fp[α]/(f(α)).
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The size of the representations given by the second construction is nr log p,
and hence, it provides representations of size O(nr(rt + (r/2) log r)), where t
is the maximum weight of the edges.

4. Efficient Representations of Lattice Path Matroids

In this section, we consider only transversal matroids of rank r with a represen-
tation G with J = [r] and S = [n]. For a set B ⊆ S, we notate B = (x1, . . . , xr)
to indicate that its elements are arranged in increasing order.

We present in Proposition 4.2 a sufficient condition for the existence
of isolating weight functions with polynomial weights. By combining it with
Proposition 3.3, efficient representations for lattice path matroids are obtained.
The following technical result is a consequence of the rearrangement inequality.

Lemma 4.1. Let (p1, . . . , pr) and (q1, . . . , qr) be sequences of real numbers, such
that the first one is non-decreasing and the second one is non-increasing. Then

p1q1 + · · · + prqr ≤ p1qσ1 + · · · + prqσr ≤ p1qr + · · · + prq1

for every permutation σ. Moreover, each of those bounds is attained only by
one permutation if each sequence has distinct terms.

Proposition 4.2. Let M be a transversal matroid, such that, for each basis
B = (x1, . . . , xr), all pairs (j, xj) with j ∈ J are edges of G. Then, G admits
an isolating weight function with maximum weight at most (r − 1)(n − 1). In
addition, for each basis B, the maximum weight of the perfect matchings in
GB is less than r(r − 1)(n − 1)/2.

Proof. For j ∈ [r] and x ∈ [n], take pj = j − 1 and qx = n − x. For every
edge (j, x), take the weight w(j, x) = pjqx. This is an isolating weight function,
because, by Lemma 4.1, the perfect matching formed by the edges (j, xj) is
the only one in GB with minimum weight. Finally, by Lemma 4.1 again, the
weight of a perfect matching in GB is at most

(r − 1)(n − 1) + (r − 2)(n − 2) + · · · + 1 · (n − r + 1) (1)

and hence less than r(r − 1)(n − 1)/2. Smaller upper bounds can be obtained
from (1), but they are not better than O(r2n). �

By the following two propositions, lattice path matroids are the only
transversal matroids satisfying the sufficient condition in Proposition 4.2.

Proposition 4.3. Let M be a lattice path matroid and let G be a presentation
of M in the conditions of Proposition 2.1. If B = (x1, . . . , xr) is a basis of M ,
then (j, xj) is an edge of G for every j ∈ J .

Proof. Suppose that there is a basis B without that property. Let P be a
perfect matching in GB with the maximum number of edges of the form (j, xj)
and take the minimum k ∈ J , such that (k, xk) is not in P . Since P is a perfect
matching, k ≤ r − 1, and there exist �1, �2 ∈ [k + 1, r], such that (�1, xk) and
(k, x�2) are edges in P . Then

ak ≤ a�1 ≤ xk < x�2 ≤ bk ≤ b�1 ,
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which implies that (k, xk) and (�1, x�2) are edges of G. Then

P ′ = (P \ {(k, x�2), (�1, xk)}) ∪ {(k, xk), (�1, x�2)}
is a perfect matching in GB with more edges of the form (j, xj) than P . �

Proposition 4.4. Let M be a transversal matroid without loops that admits a
presentation G, such that, for every basis B = (x1, . . . , xr) and for every j ∈ J ,
the pair (j, xj) is an edge. Then, M is a lattice path matroid.

Proof. Let B1 = (a1, . . . , ar) and B2 = (b1, . . . , br) be the first and last bases
of M in the lexicographic order. We are going to prove that the sequence of
sets ([aj , bj ] : j ∈ J) is a presentation of M , and hence, it is a lattice path
matroid. For two distinct bases B,B′, we notate B � B′ if B precedes B′

in the lexicographic order. We prove first that xj ∈ [aj , bj ] for each j ∈ [r]
if (x1, . . . , xr) is a basis. Suppose that there is a basis with xj < aj for some
j ∈ [r]. Take B the first such basis in the lexicographic order and the minimum
j ∈ [r] with xj < aj . Since B1 � B, the minimum k ∈ [r] with xk > ak satisfies
k < j. Then, B′ = (B\{xk})∪{ak} is another basis in the same situation with
B′ � B, a contradiction. Symmetrically, xj ≤ bj for each j ∈ [r]. We prove
next that (j, x) is an edge if x ∈ [aj , bj ]. Since x is not a loop, there is an edge
(k, x). If k > j and x �= bj , consider the basis B = (a1, . . . , aj−1, bj , . . . , br).
Then, (B \ {bk}) ∪ {x} is a basis and x is its jth element, which implies that
(j, x) is an edge. Symmetrically, the same happens if k < j and x �= aj . �

The following result is a direct consequence of Propositions 3.3, 4.2,
and 4.3.

Proposition 4.5. Given a presentation of a lattice path matroid M with rank
r on n elements in the conditions of Proposition 2.1, there are two efficient
constructions of representations for M , which are described in the following.

1. There is an efficient deterministic algorithm to find a representation of
M over the finite field with q = ps elements, where s = r(r − 1)(n − 1)/2
and p is an arbitrarily chosen prime number. The running time of the
algorithm is polynomial in p and the size n of the ground set.

2. For every prime number p > 2r(r−1)(n−1)rr/2, there is an efficient deter-
ministic algorithm to find a representation of M over Fp. The running
time of the algorithm is polynomial in log p and the size n of the ground
set.

The construction of hierarchical threshold secret sharing schemes in [31],
which uses Birkhoff interpolation, provides another efficient deterministic al-
gorithm to find representations of nested matroids over prime fields Fp with

p > (r − 1)! 2−r+2(r − 1)(r−1)/2n(r−1)(r−2)/2.

The second construction in Proposition 4.5 yields less efficient representations,
but it applies to all lattice path matroids.

We present next an improvement to the first algorithm in Proposition 4.5
for lattice path matroids with a relatively small number of clonal classes. It is
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equivalent to the constructions of hierarchical vector secret sharing schemes in
[9,14].

Take J = [r], S = [n], and integers ti with 1 = t1 < t2 < · · · < tm <
tm+1 = n + 1. Consider the partition Π = (Si : i ∈ [m]) of S with Si =
[ti, ti+1 − 1]. For every x ∈ S, put π(x) = i if x ∈ Si. Consider a bipartite
graph G in the conditions of Proposition 2.1, such that, for each i ∈ [m], all
vertices in Si have the same neighbors. Then, G is a presentation of a Π-
uniform lattice path matroid M . Observe that the port of M at the element
1 ∈ S is a hierarchical access structure in which all players in the same part
are hierarchically equivalent.

As we did before, we replace the non-zero entries of the biadjacency
matrix of G with polynomials in the variable α over some finite field. Take a
prime power q such that q > |Si| = ti+1 − ti for every i ∈ [m]. For each i ∈ [m],
take ti+1−ti distinct non-zero elements (βx : x ∈ Si) in the finite field Fq. For
j ∈ J and x ∈ S, take pj = j −1 and qx = m−π(x), and consider on the edges
of G the weight function w(j, x) = pjqx. Finally, consider the matrix H that is
obtained by replacing the entry in the biadjacency matrix of G corresponding
to the edge (j, x) with βj−1

x αw(j,x).
We prove next that, for every basis B of M , the determinant of the subma-

trix HB formed by the corresponding columns is a non-zero polynomial. Even
though the chosen weight function is not isolating, we can check that the co-
efficient of the minimum degree term is non-zero. Indeed, let B = (x1, . . . , xr)
be a basis of M . By Lemma 4.1, the perfect matching ((j, xj) : j ∈ J) has
minimum weight, but there are other perfect matchings in GB with the same
weight, namely the ones of the form ((j, xσj) : j ∈ J), where σ is any permu-
tation such that π(xσj) = π(xj) for every j ∈ J . The entries corresponding to
the edges of GB involved in those perfect matchings lie on square submatrices
on the diagonal of HB , one for each i ∈ [m] with B ∩ Si �= ∅. The determinant
of each of those submatrices is of the form α�iΔi, where Δi is the determinant
of a Vandermonde-like matrix, and hence non-zero. Therefore, the coefficient
of the minimum degree term of det HB is equal to

∏
i Δi �= 0. Observe that the

weight of a perfect matching in any subgraph GB is less than r(r−1)(m−1)/2.
At this point, the following result has been proved.

Proposition 4.6. There exists a deterministic algorithm that, given an m-uniform
lattice path matroid M with the conditions above, provides a representation of
M over a finite field with qs elements, where q is a prime power larger than
the number of elements in each part and s = r(r − 1)(m − 1)/2. The running
time of the algorithm is polynomial in q and the size n of the ground set.

This algorithm improves on the first one in Proposition 4.5 if the number
of parts m is small in relation to the size of the ground set. Even though q can-
not be arbitrarily small, the degree s of the extension can be much smaller and,
as we discussed before, this is the main parameter to be taken into account.

Every bi-uniform matroid (that is, m = 2) is a lattice path matroid,
and hence, the algorithm in Proposition 4.6 provides representations with s =
r(r − 1)/2. Nevertheless, the algorithm proposed in [3] is in general more
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efficient, because the degree of the extension is s = d(d − 1)/2, where d =
r(S1) + r(S2) − r.
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