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Abstract. Recently, Blecher and Knopfmacher applied the notion of fixed
points to integer partitions. This has already been generalized and refined
in various ways such as h-fixed points for an integer parameter h by
Hopkins and Sellers. Here, we consider the sequence of first column hook
lengths in the Young diagram of a partition and corresponding fixed hooks.
We enumerate these, using both generating function and combinatorial
proofs, and find that they match occurrences of part sizes equal to their
multiplicity. We establish connections to work of Andrews and Merca on
truncations of the pentagonal number theorem and classes of partitions
partially characterized by certain minimal excluded parts (mex).

1. Introduction

Let n be a positive integer. Recall that a partition of n, denoted λ � n, is a
sequence λ = (λ1, λ2, . . . , λt) with λi ≥ λi+1 > 0 and

∑t
i=1 λi = n. Recently,

Blecher and Knopfmacher [3] expanded the notion of permutation fixed points
to integer partitions.

Definition 1.1. A partition λ has a fixed point if there exists i with λi = i.

Blecher and Knopfmacher studied fixed points both for partitions as de-
fined above (where a partition can have at most one fixed point) and for
partitions where the entries are written in nondecreasing order (where there
can be multiple fixed points). We will focus on the first case.

Hopkins and Sellers [5] defined a generalization of partition fixed points.

Definition 1.2. Given an integer h, a partition λ has an h-fixed point if there
exists i with λi = i + h.
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See also Hopkins’s combinatorial refinement which distinguishes partition
fixed points by which part is fixed [4].

Given λ � n, there is an important nonincreasing sequence of integers as-
sociated to λ, namely the first-column hook lengths, also known as a sequence of
β-numbers [7], which we describe now. These play a critical role, for example,
in the representation theory of symmetric groups.

Let λ = (λ1, λ2, . . . , λt) be a partition of n with corresponding Young
diagram [λ]. Let λ′ denote the conjugate or transpose partition, defined by
λ′
i = #{λj ≥ i}. For a box (i, j) ∈ [λ], recall that the (i, j)-hook length is

defined as:
hi,j(λ) := λi + λ′

j − i − j + 1.

Definition 1.3. The sequence of first column hook lengths is given by {h1,1(λ),
h2,1(λ), . . . , ht,1(λ)}.

Notice that the partition λ can easily be recovered from the corresponding
sequence of first column hook lengths. It turns out that studying fixed points
in this sequence leads to very interesting combinatorics.

We define a version of fixed hooks following Definition 1.2 for partitions:

Definition 1.4. For h ∈ Z, say that λ has an h-fixed hook if there is some i ≥ 1
such that hi,1(λ) = i + h.

See Fig. 1 for an example of the various definitions. It shows the Young
diagram of the partition (2, 2, 1) with hook lengths in each box. The first
column hook lengths are {4, 2, 1}. Note that the partition has a 3-fixed hook
h1,1, a 1-fixed hook h2,1, and a −2-fixed hook h3,1.

The sequence of first-column hook lengths is strictly decreasing, so if λ
has an h-fixed hook for a given h, then it is unique. We will be interested in
counting partitions with h-fixed hooks for various h both positive and negative.

In the sequel, we make heavy use of the following standard notation:

(a; q)∞ :=
∞∏

k=0

(1 − aqk), (a; q)n :=
(aqn; q)∞
(a; q)∞

,

(q)x := (q; q)x,

[
A

B

]

q

:=
(q)A

(q)B(q)A−B
.

These have the following combinatorial interpretations (see Andrews [1]):[
M+N

N

]

q
is the generating function for partitions with at most N parts and

Figure 1. The Young diagram of (2, 2, 1) with hook lengths
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largest part at most M , and 1∏
i∈S(1−qi) is the generating function for partitions

with parts in S, e.g., 1
(q)n

is the generating function for partitions with parts
at most n.

2. Fixed Hooks

In this section, we consider partitions λ with 0-fixed hooks hi,1(λ) = i, which
when clear from context we will simply call fixed hooks.

The main result of this section is:

Theorem 2.1. The number f(n) of partitions λ � n having a fixed hook is
equal to the sum over all partitions of n of the number of distinct parts i of
multiplicity i.

The sequence {f(n)} in Theorem 2.1 is A276428 in the Online Encyclo-
pedia of Integer Sequences [6].

We will give a short generating function proof, and then a more detailed
combinatorial proof which illuminates additional features of the correspon-
dence. Readers may note an interesting feature of the bijective proof is that a
partition may have at most one fixed hook, whereas several part sizes may be
equal to their multiplicity, as in (3, 2, 2, 1). Therefore, Theorem 2.1 is not an
equality between two sets of partitions.

Generating function proof. Let λ have k parts. A fixed hook occurs at part
λk−j if λk−j + j = k − j, so λk−j = k − 2j. There are j further parts of sizes

between 1 and k−2j, generated by qj
[
k−j−1

j

]

q
. There are k−j−1 prior parts

of size at least k − 2j, generated by q(k−j−1)(k−2j) 1
(q)k−j−1

. Summing over all
k and j, the generating function

∑
f(n)qn for fixed hooks is

∞∑

k=1

∞∑

j=0

qk
2−3kj+2j2+j 1

(q)k−2j−1(q)j
.

Setting T = k − 2j − 1, this sum becomes
∞∑

T=0

∞∑

j=0

q(T+1)2+(T+2)j

(q)T (q)j
=

∞∑

T=0

q(T+1)2

(q)T

∞∑

j=0

q(T+2)j

(q)j
.

Using the identity
∑∞

j=0
q(T+2)j

(q)j
= 1

(qT+2;q)∞
(combinatorially, each side de-

scribes partitions with parts of size at least T + 2), the generating function
becomes

∞∑

T=0

q(T+1)2

(q)T (qT+2; q)∞
=

∞∑

T=0

q(T+1)2(1 − qT+1)
(q)∞

.

This is the generating function counting the number of times in all partitions
of n that part size i appears with exactly multiplicity i. �
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Figure 2. An example of the bijection Fa,b for a = 4, b = 3

For a bijective proof of Theorem 2.1, we use an interesting bijection found
on the Mathematics Stack Exchange [8]. Let Pa denote the set of all partitions
into at most a parts. Let Ra,b be all partitions that fit into a rectangle with a
rows and b columns.

Proposition 2.2. There is a bijection:

Fa,b : Pa × Pb → Pa+b × Rb,a

which preserves the total weight of the two partitions on each side.

Note that this bijection realizes the identity:
1

(q)a
· 1
(q)b

=
1

(q)a+b

[
a + b

a

]

q

.

Proof. Given a partition λ = (λ1, λ2, . . . , λt) and a positive integer R we
describe how to “insert” R into λ. If R < λt then simply place it at the
end of λ. If not then let it “slide past” λt while subtracting one from R.
Now, compare R − 1 to λt−1 and repeat until you reach the smallest s with
R − s ≤ λt−s, so there are no further slides. Record the new partition λ̃ =
(λ1, λ2, . . . , λt−s, R−s, λt−s+1, . . . , λt) together with the integer s ≤ t counting
the number of slides.

To define Fa,b(λ, μ), successively insert μ1, μ2, . . . , μb into λ as above.
The resulting partition has at most a+ b parts. The collection of s-values then
forms a partition with at most b parts, each at most a. It is easy to visualize
this writing μ atop λ in the French notation as in Fig. 2, which demonstrates
for a = 4, b = 3, that

F4,3((7, 5, 3, 2), (9, 7, 5)) = ((7, 6, 5, 5, 3, 3, 2), (3, 2, 2)).

Notice that given the pair of partitions on the right side of Fig. 2, together
with the values of a and b, it is easy to recover λ and μ, so we have a bijection
as desired. For example, the second part 2 in (3, 2, 2) tells us the last brown
part slid two steps into λ. It is easy to reverse the two slides and recover the
part size 5 in μ. Notice if b were four with the same image pair we would
consider (3, 2, 2, 0) and the inverse map is not the same. �

We now give a bijective proof of Theorem 2.1.
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Figure 3. A partition λ with i copies of i starting in row k

Figure 4. A partition μ with hk+i−1,1(μ) = k + i − 1 and
μk+i−1 = i

Bijective proof. The input to the bijective proof is an ordered pair (λ, i) so
that λ � n and i appears with multiplicity i in λ. The output B(λ, i) is a
partition μ � n with a fixed hook. The bijection is such that if μ = B(λ, i) has
hr,1(μ) = r, then μr = i. Thus we are really giving a sequence of bijections,
one for each i, between partitions with parts i of multiplicity i and partitions
with fixed hooks corresponding to a part of length i.

Given (λ, i), assume that the i identical parts i start in row k for some
k ≥ 1. Thus, λk−1 > i, λk+i < i and λk = λk+1 = · · · = λk+i−1 = i. The
Young diagram of λ is shown in Fig. 3.

Next suppose that μ � n has hk+i−1(μ) = k+i−1 and μk+i−1 = i. These
two conditions immediately force μ to have exactly i + 2k − 2 nonzero parts,
so its Young diagram is as shown in Fig. 4.
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In Fig. 3, τ is an arbitrary partition in Pk−1, and ε is an arbitrary partition
with all parts at most i−1 (equivalently, ε′ ∈ Pi−1). In Fig. 4, γ is an arbitrary
partition in Pk+i−2 and ρ is an arbitrary partition in Rk−1,i−1.

Now, the bijection is easy to define. Define μ = B(λ, i) by starting with λ.
First move the k−1 blue boxes down from {(1, i+1), (2, i+1), . . . , (k−1, i+1)}
to {(i + k, 1), (i + k + 1, 1), . . . , (i + 2k − 2, 1)}. Then, construct μ by setting

(γ, ρ) := Fk−1,i−1(τ, ε′).

The inverse is easily obtained by first performing the inverse of F and
then moving the blue boxes up. �

Here is an example of the bijection.

Example 2.3. Let λ = (16, 12, 8, 8, 7, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2) � 95 and i = 5.
Then k = 6, τ = (10, 6, 2, 2, 1) and ε′ = (6, 6, 5, 2). We calculate that:

F5,4(τ, ε′) = {(10, 6, 3, 3, 2, 2, 2, 1, 1), (3, 3, 3, 1)}
The red encodes how ε′ “sinks” into τ under the map of Proposition 2.2 as

in Fig. 2. Thus μ = B(λ, 5) = (15, 11, 8, 8, 7, 7, 7, 6, 6, 5, 4, 4, 4, 2, 1) � 95. Notice
that h10,1(μ) = 10 as desired with μ10 = 5 as guaranteed by Proposition 2.4
below.

The following strengthening of Theorem 2.1 is clear from the bijection:

Proposition 2.4. The number of partitions λ � n which contain the part i with
multiplicity i is the same as the number of partitions μ � n for which there is
a fixed hook hs,1 = s with μs = i.

Table 1 illustrates Proposition 2.4 and the corresponding bijection for
n = 9. On the left, we see 12 occurrences of i with multiplicity i: seven for
i = 1, four for i = 2 and one for i = 3. Notice that the partition (4, 2, 2, 1)
appears twice. On the right, we have the twelve partitions with fixed hooks,
where the part λi with hi,1(λ) = i is highlighted. Notice that the highlighted
part sizes occur seven times, four times, and once respectively, as predicted.

3. Fixing Part Sizes

The final result of the previous section, illustrated in Table 1, suggests that
it would be interesting to specify the part sizes corresponding to fixed hooks.
In this section, we do so, and find a close connection with an investigation by
Andrews and Merca [2] on the truncated pentagonal number theorem. We give
brief summary of this result.

The generating function for the partition number can be written
∞∑

n=0

p(n)qn =
1

(q)∞
=

1
1 − q − q2 + q5 + q7 − q12 − q15 + . . .

,

where the latter denominator is described by the pentagonal numbers,

(q)∞ =
∑

n∈Z

(−1)nq
n
2 (3n−1).
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Table 1. The Proposition 2.4 result for n = 9

λ � 9 with parts i of multiplicity i B(λ, i) � 9 with fixed hooks

(8, 1) (7, 1, 1)
(6, 2, 1) (5, 1, 1, 1, 1)
(5, 3, 1) (4, 2, 1, 1, 1)
(5, 2, 2) (4, 2, 2, 1)
(4, 4, 1) (3, 3, 1, 1, 1)
(4, 2, 2, 1) (3, 2, 2, 2)
(4, 2, 2, 1) (3, 1, 1, 1, 1, 1, 1)
(3, 3, 3) (3, 3, 3)
(3, 3, 2, 1) (2, 2, 1, 1, 1, 1, 1)
(3, 2, 2, 1, 1) (3, 3, 2, 1)
(2, 2, 2, 2, 1) (1, 1, 1, 1, 1, 1, 1, 1, 1)
(2, 2, 1, 1, 1, 1, 1) (7, 2)

The relation
(q)∞
(q)∞

= 1

now yields the pentagonal number recurrence p(n) = 0 for n < 0, p(0) = 1,
and for n > 0,

p(n) = p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7) + p(n − 12) + · · · .

The difference p(n)− p(n− 1) can be seen to be the number of partitions
of n without 1 s, by noting that a 1 can be appended to all partitions of n− 1.
It is less obvious what truncations of the above recurrence such as

p(n) − p(n − 1) − p(n − 2) + p(n − 5)

might describe, if anything. Andrews and Merca [2] showed that the truncation
after 2k terms is (−1)k+1Mk(n), where Mk(n) is the number of partitions of n
in which the smallest part size not appearing (known as the minimal excludant
or mex of the partition) is k, and the number of parts larger than k is greater
than the number of parts smaller than k. They showed that this quantity has
generating function

Mk(q) :=
∞∑

n=0

Mk(n)qn =
∞∑

n=k

q(
k
2)+(k+1)n

(q)n

[
n − 1
k − 1

]

q

.

Recall that an h-fixed hook is a hook hs,1(λ) = s + h. A useful tool for
the results in this section will be the generating function for the number of
partitions of n with an h-fixed hook where the part indexed in the place of the
hook is size k.
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Figure 5. A partition λ with an h-fixed hook hs,1 = s + h
at part λs = k

Theorem 3.1. The generating function for the number of partitions of n with
an h-fixed hook arising from a part of size k is

∞∑

s=max{k−h,1}
q(k+1)(s−1)+h+1

[
s + h − 1

k − 1

]

q

1
(q)s−1

= qh+1−(k2)
∞∑

s=max{k−h,1}
q(k+1)(s−1)+(k2)

[
s + h − 1

k − 1

]

q

1
(q)s−1

.

Proof. The proof follows from considering the contributions made by the var-
ious portions of the Young diagram of such a partition, shown in Fig. 5.

Let s index the position where the hook is to be found.
There are s − 1 parts of size at least k, generated by qk(s−1)/(q)s−1.
There is a hook of size s + h, generated by qs+h.
The leg of the hook is of length s + h − k, meaning that the ρ portion of

the partition is contributed by the q-binomial coefficient
[
s+h−1
k−1

]

q
. �

We may now state the main theorems of this section. The first considers
fixed hooks corresponding to parts of size one.

Theorem 3.2. The number of partitions of n with an h-fixed hook arising from
a part of size 1, for h ≥ −1, equals the number of times in all partitions of n
that 1 appears exactly h + 1 times, with the exception of n = 0, h = −1.

Proof. Set k = 1 in Theorem 3.1. The generating function becomes
∞∑

s=max{1−h,1}
q2(s−1)+h+1

[
s + h − 1

0

]

q

1
(q)s−1

= qh+1
∞∑

s=max{1−h,1}

q2(s−1)

(q)s−1
=

qh+1

(q2; q)∞
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where the last equality holds as long as h > −1, and this is the generating
function for a partition with exactly h + 1 parts of size 1, and all other parts
of size at least 2. When h = −1 the sum becomes 1

(q2;q)∞
−1, the missing term

being exactly the exception noted (for n = 0, the part size 1 appears 0 times
once but there is no −1-fixed hook arising from a part of size 1). �

A similar proof gives a slightly different interpretation that extends to
h-fixed hooks for any h.

Theorem 3.3. The number of partitions of n with an h-fixed hook arising from
a part of size 1, for h ∈ Z, equals the number of times in all partitions of n−h
that have length at least 1 − h where 1 appears exactly one time.

Proof. Set k = 1 in Theorem 3.1. The generating function becomes
∞∑

s=max{1−h,1}
q2(s−1)+h+1

[
s + h − 1

0

]

q

1
(q)s−1

= qh+1
∞∑

s=max{1−h,1}

q2(s−1)

(q)s−1

and by letting m = s − 1 we get

qh+1
∞∑

m=max{−h,0}

q2m

(q)m
= qh+1

( ∞∑

m=0

q2m

(q)m
−

−h−1∑

m=0

q2m

(q)m

)

,

noting that the second sum on the right hand side is equal to 0 for h ≥ 0.
Finally one gets

qh+1

(
1

(q2; q)∞
−

−h−1∑

m=0

q2m

(q)m

)

.

This is precisely qh times the generating function for partitions that have one
part of size 1, all other parts of size at least 2, and at least 1 − h parts as
desired. �

Finally, we have the following theorem giving a set of partitions equinu-
merous with the number of h-fixed hooks in partitions of n arising from parts
of size 2 or greater.

Theorem 3.4. The number of times in all partitions of n that an h-fixed hook
arises from a part of size k equals the number of partitions of n+

(
k
2

)− (h+1)
with mex k where (h + 1 + the number of parts larger than k) is greater than
the number of parts less than k.

Proof. Interpret the latter form of the generating function from Theorem 3.1
as follows.

The constant term outside the sum is the shift given.
Let there be s − 1 parts of size at least k + 1, generated by q(k+1)(s−1)

(q)s−1
.

Therefore, we are allowed at most s − 1 + h parts less than k. Since the mex
is k, there is at least one part each of sizes 1 through k − 1, giving q(

k
2).

Let as many as s+h−k further parts of size at most k − 1 be appended,
generated by

[
s+h−1
k−1

]

q
. �
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The most direct connection to Andrews and Merca arises in the case
h = −1, for now the h + 1 term vanishes and the generating function becomes
precisely q−(k2)Mk(q). We have the following corollary:

Corollary 3.5. The quantity Mk(n) can also be interpreted as the number of
times in all partitions of n−(

k
2

)
that a −1-fixed hook arises from a part of size

k.

We also give the following combinatorial proof of Corollary 3.5:

Bijective proof. Let λ be a partition of n with a −1-fixed hook in position s
arising from a part of size k. Thus hs,1(λ) = s−1, λs = k, and λ has 2s−k−1
nonzero parts. Transform λ into a new partition μ � n +

(
k
2

)
as follows. Delete

the part λs = k and subtract one from the remaining s − k − 1 nonzero parts
λs+1, λs+2, . . . , λ2s−k−1 below it. Then, add one to each of the first s−1 parts.
Now append a part of every size from 1 to k−1. Thus, μ is a partition of n+

(
k
2

)
,

has minimal excludant k, and there are s − 1 parts larger than k and at most
s − 2 parts less than k as desired.

This process is also invertible. Suppose μ � N has mex k, s − 1 parts
greater than k and at most s − 2 parts less than k. First remove a single part
of sizes {1, 2, . . . , k − 1} and insert a new part λs = k. Subtracting one from
each of the first s − 1 parts and adding one to parts s, s + 1, . . . , 2s − k − 1
gives a partition of N − (

k
2

)
with a −1-fixed hook hs,1 = s − 1 with λs = k as

desired, completing the proof. �

Example 3.6. Note that λ = (11, 6, 5, 5, 4, 4, 4, 2, 1) � 42 has a −1-fixed hook
h7,1 = 6 arising from a part of size λ7 = 4. By taking the fixed hook from 4
and adding 1 to the 6 previous parts we get (12, 7, 6, 6, 5, 5, 1). Adding each
part up to 4 − 1 = 3 yields μ = (12, 7, 6, 6, 5, 5, 3, 2, 1, 1) � 48.

It is natural to wonder whether an interpretation similar to the pentag-
onal number recurrence could be given for the expressions arising from hook
shifts other than h = −1.

4. Fixing Hook Parameters

The relevant data on the hook-length side of these identities appear to be the
hook length k, the place s, and the fixedness h of the hooks to be considered.
Individual terms indexed by s in the generating functions above set particular
values for the place. If we set a value for the size of the hook instead of the
part, we get the following generating function.

Theorem 4.1. The generating function for the number of partitions of n with
an h-fixed hook arising from a hook of size k is

k∑

l=1

qk+l(k−h−1)

(q)k−h−1

[
k − 1
l − 1

]

q

.
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Proof. The proof is direct from considering the contributions made by the
various portions of the Young diagram of such a partition.

Let l index the size of part that forms the hook of size k.
Since k = s + h in place s, we have s = k − h and so there are k − h − 1

parts of size at least l, generated by ql(k−h−1)/(q)k−h−1.
There is a hook of size k, generated by qk.
The leg of the hook is of length k − l, meaning that the ρ portion of the

partition is contributed by the q-binomial coefficient
[
k−1
l−1

]

q
. �

If we now sum over all hook sizes k, we get an expression for the gener-
ating function for all h-fixed hooks:

Theorem 4.2. The generating function for the number of partitions of n with
an h-fixed hook is

∞∑

k=1

k∑

l=1

qk+l(k−h−1)

(q)k−h−1

[
k − 1
l − 1

]

q

=
∞∑

l=1

ql(−h−1)
∞∑

k=l

q(l+1)k

(q)k−h−1

[
k − 1
l − 1

]

q

.

In the case h = −1, the inner sum becomes precisely q−(l
2)Ml(q), and

so we are getting a shifted sum over all of the Ml(q). Note that many sums
involving fixed hook lengths strongly resemble Andrews and Merca’s original
Mk(q). One wonders whether a deeper connection is being brought to light
here, or if there is a more elegant combinatorial identity to be found, especially
for all values of h.

If we instead hold k and sum over all h, we get the generating function
for the number of first-column k-hooks in all partitions of n.

Theorem 4.3. The generating function for the number of first column k-hooks
in all partitions of n is

qk

(qk; q)∞

k∑

l=1

1
(q)k−l

.

Proof. The valid range for summation is −∞ < h ≤ k − 1. Using the substi-
tution H = k − h − 1, the sum becomes

k−1∑

h=−∞

k∑

l=1

qk+l(k−h−1)

(q)k−h−1

[
k − 1
l − 1

]

q

= qk
∞∑

H=0

k∑

l=1

qlH

(q)H

[
k − 1
l − 1

]

q

= qk
k∑

l=1

[
k − 1
l − 1

]

q

∞∑

H=0

qlH

(q)H

=
k∑

l=1

[
k − 1
l − 1

]

q

1
(ql; q)∞

=
qk

(qk; q)∞

k∑

l=1

1
(q)k−l

.
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The third equality follows from the same summation used in previous
proofs (see for instance the explanation in the proof of Theorem 2.1), and the
last from separating out the individual factors in

[
k−1
l−1

]

q
and using the facts

that (q)l−1(ql; q)∞ = (q)∞, and (q)k−1
(q)∞

= 1
(qk;q)∞

. �
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