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Abstract. The derived graph of a voltage graph consisting of a single
vertex and two loops of different voltages is a circulant graph with two
generators. We characterize the automorphism groups of connected, two-
generator circulant graphs, and give their determining and distinguishing
number, and when relevant, their cost of 2-distinguishing. We do the same
for the subdivisions of connected, two-generator circulant graphs obtained
by replacing one loop in the voltage graph with a directed cycle.
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1. Introduction

A voltage graph consists of a base directed graph D = (V,E), a group Γ,
and a voltage function φ : E → Γ. The associated derived directed graph
Dφ has vertex set {ua | u ∈ V, a ∈ Γ} and arc set {ea | e ∈ E, a ∈ Γ};
if e = (u, v) and φ(e) = b, then ea = (ua, vab). For more background on
the voltage graph construction, see [12]. A particularly simple example has
a base directed graph consisting of a single vertex u and two directed loops
(sometimes called a bouquet), denoted B2, and group Γ = Zn. Because the
base graph has only one vertex, we can denote vertices in the derived graph
simply as elements of Zn. We will denote an element of Zn with an integer
representative; for a, b ∈ Z, we use the notation a ≡ b to denote equality of
the equivalence classes in Zn. The voltages on the two loops are denoted i and
j. Then, the underlying undirected graph of the associated derived graph has
vertex set Zn, with a, b ∈ Zn adjacent if and only if a − b ≡ ±i or a − b ≡ ±j.
This is the circulant graph with two generators, commonly denoted Cn(i, j).
Figure 1 shows an example with n = 10, where the two loops have voltages
i = 1 and j = 4.
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Figure 1. Voltage graph (B2, Z10) and derived graph
C10(1, 4)

We present some facts about two-generator circulant graphs. It is clear
from the definition that Cn(i, j) = Cn(n−i, j) = Cn(i, n−j) = Cn(n−i, n−j),
so throughout this paper, we will assume that 0 < i < j ≤ n/2. If k is a
unit in Zn, then multiplying vertices by k is a graph isomorphism Cn(i, j) ∼=
Cn(ik, jk). In particular, if i is a unit in Zn, then Cn(i, j) ∼= Cn(1, i−1j) (and
if j is a unit, then Cn(i, j) ∼= Cn(1, ij−1)). In what follows, we will assume
that either i = 1 or neither i nor j is a unit in Zn. As noted in [6], Cn(i, j)
is connected if and only if gcd(n, i, j) = 1. More generally, if gcd(n, i, j) = g,
then Cn(i, j) consists of g components, all isomorphic to Cn/g(i/g, j/g).

As the drawing of C10(1, 4) in Fig. 1 illustrates, two-generator circulant
graphs can be drawn symmetrically. More precisely, they are always vertex-
transitive. For any s ∈ Zn, let σs be translation by s; that is, σs(a) = s+a for
all a ∈ Zn. This is the natural left action of the voltage group on the derived
graph and it is easily verified to be a graph automorphism of Cn(i, j). If a, b
are vertices of Cn(i, j), then σb−a(a) = b. Note that σb−a maps {a, a + i} to
{b, b + i} and {a, a + j} to {b, b + j}. Thus, Cn(i, j) is edge-transitive if and
only if there is an automorphism mapping an edge of the form {a, a + i} to
an edge of the form {b, b + j}. Since the reflection given by τ−1(a) = −a is
also an automorphism of Cn(i, j), circulant graphs are edge-transitive if and
only if they are arc-transitive. The classification of all arc-transitive circulant
graphs was found independently by Kovacs [14] and Li [16]. Based on this
work, Potoc̆nik and Wilson recently noted in [18] that 4-regular, two-generator
circulant graphs are edge-transitive if and only if they are either isomorphic
to Cn(1, j) for j2 ≡ ±1 or isomorphic to C2m(1,m − 1) for m ≥ 3. Thus,
for example, C10(1, 4) in Fig. 1 is edge-transitive. The only 3-regular edge-
transitive circulant graphs are C4(1, 2) ∼= K4 and C6(1, 3) ∼= K3,3; see [8].

Another way to characterize the symmetry of a graph G is to compute pa-
rameters that measure how easy it is to ‘break’ any nontrivial automorphisms
of G. As one example of this, a determining set of graph G is a vertex subset
W , such that the only graph automorphism that fixes each vertex in W is the
identity. The size of a minimum determining set is the determining number of
G, denoted by Det(G). (Some authors refer to this as the fixing number of the
graph.) Another example is to assign d colors to the vertices in such a way that
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the only automorphism that preserves the color classes (setwise) is the identity.
Such a coloring is called a d-distinguishing coloring; the minimum number of
colors required for a distinguishing coloring is called the distinguishing number
of the graph, denoted by Dist(G). For more background on determining and
distinguishing number and the relationships between them; see [1]. It has been
shown that many infinite families of graphs have distinguishing number 2; for
such graphs, a further refinement is to determine the minimum size of a color
class in a 2-distinguishing coloring. This parameter, introduced in [5], is called
the cost of 2-distinguishing G and is denoted ρ(G).

If a graph G is disconnected with components C1, C2, . . . Ck, then it
is possible to calculate its symmetry parameters from those of its compo-
nents. In particular, if all components have positive determining number, then
Det(G) = Det(C1) + · · · + Det(Ck). However, the situation for distinguish-
ing number is more complicated. If multiple components are isomorphic, then
there are nontrivial automorphisms that permute components. We therefore
need to know the number of nonisomorphic distinguishing colorings for each
such component. In this paper, we focus on finding the symmetry parameters
only for two-generator circulant graphs that are connected.

Partial results on the determining and distinguishing number of circulant
graphs have been obtained. Recently, Brooks et al. [6] studied the determining
number of powers of cycles. This motivated their study of general circulant
graphs of the form Cn(A), where A ⊆ Zn and vertices u and v are adjacent if
and only if ±(u − v) ∈ A. They identify the determining number of circulant
graphs with two generators {i, j} with i + j = n

2 , with i = 1 and 4 ≤ j ≤ n
2

and, for even n, for i = 2 and j > 1 odd. Brooks et al. conjecture that if
Cn(i, j) is connected, then Det(Cn(i, j)) = 2 if and only if Cn(i, j) is twin-free.
We prove that this is true except for Cn(1, 3).

Gravier, Meslem, and Souad [11] investigated the distinguishing number
of circulant graphs Cn(A) where n = mp ≥ 3, for some m ≥ 1 and p ≥ 2, and
A = {kp + 1 | 0 ≤ k ≤ m − 1}. Restricted to two-generator circulant graphs,
their results are Dist(C2p(1, p − 1)) = 3, if p ≥ 2 and p 	= 4, and 5, if p = 4.

The presence of twin vertices, which are vertices having the same neigh-
borhood, understandably affects symmetry parameters. For example, Gonzales
and Puertas [10] looked at quotient graphs with respect to the twin relation
to find upper and lower bounds on the determining number of an arbitrary
graph. Brooks et al. [6] prove that if every vertex in Cn(A) is in a set of k
mutual twins, then Det(Cn(A)) = n − (n/k).

In this paper, we give complete results on the symmetry parameters of
connected, two-generator circulant graphs. We begin by characterizing the
automorphism group of such graphs. There are results on the automorphisms
of special cases of Cn(A), such as when it is arc-transitive or when n is prime,
a prime power, or square-free, and/or the elements of A are divisors of n, or
when the circulant graph has a rational spectrum; see [2,13,16,17]. We find the
automorphism group of all connected, two-generator circulant graphs, with no
restrictions on arc-transitivity or the prime factorization of n. As in [2], our
proofs make extensive use of possible sets of common neighbors. Let H be
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Figure 2. Voltage graph subdivided (B2, Z6) and derived
graph C6(1÷2, 2)

the set of units in Zn that preserve {±i,±j} under multiplication, commonly
denoted by Aut(Zn, {±i,±j}). We show that if Cn(i, j) is connected, twin-free,
and not Cn(1, 3), Aut(Cn(i, j)) = Zn � H. If Cn(i, j) has twins, then every
automorphism can be expressed as the composition of an element of Zn � H
and an automorphism that permutes sets of mutually twin vertices.

We also consider the derived graphs associated with voltage graphs ob-
tained by subdividing one loop in B2 with � vertices of degree 2. Equivalently,
the voltage graph is a directed cycle of length � with a loop at one vertex. Using
the fact that without loss of generality, we can assign a voltage of 0 to the arcs
in a spanning tree of the base directed graph, we assign the subdivided loop’s
original voltage to the arc of the cycle directed to vertex u [12]. The associ-
ated derived graph is a subdivision of Cn(i, j), which we denote by Cn(i÷�, j)
if the arc of voltage i is the one that has been subdivided; Cn(i, j÷�) is defined
analogously. See Fig. 2, in which the arc of voltage i in B2 has been subdivided
with � = 2 vertices of degree 2, producing derived graph C6(1÷2, 2).

We find the automorphism groups of connected, two-generator circu-
lant graphs that have been subdivided in this way, and use them to deter-
mine their symmetry parameters. Our results, summarized in Table 1, confirm
and extend those in [6,11]. Note that subdividing an arc of voltage less than
n/2 sometimes reduces the determining number and always reduces the cost
of 2-distinguishing, indicating that the overall symmetry has been reduced.
On the other hand, when an arc of voltage n/2 is subdivided, the derived
graph changes from trivalent to tetravalent. As a result, the derived graph
has additional symmetries and both the determining number and the cost of
2-distinguishing increase.

Throughout the entire paper, we assume 0 < i < j ≤ n/2 and gcd(n, i, j) =
1. Thus, Cn(i, j) is a connected, two-generator circulant graph. In Sect. 2,
we characterize which Cn(i, j) have twin vertices. In Sect. 3, we compute the
symmetry parameters of such graphs. Section 4 exhibits the possible sets of
common neighbors in twin-free Cn(i, j). In Sect. 5, we characterize the auto-
morphisms of Cn(i, j), both for those that are twin-free and, because we use
this information in the subdivided case, for those with twins. Section 6 gives
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Table 1. Summary of symmetry parameters

Det Dist ρ Condition(s)

Cn(i, j) n − 1 n n/a n ∈ {4, 5}
4 4 n/a (n, i, j) = (6, 1, 3)
6 5 n/a (n, i, j) = (8, 1, 3)
4 3 n/a (n, i, j) = (10, 1, 3)
n/2 3 n/a i + j = n/2, but n 	= 8
2 2 3 Otherwise

Cn(i÷�, j), or 1 2 1 � ≥ 2 and H = {1,−1}
Cn(i, j÷�), j < n/2 2 2 2 Otherwise
Cn(i, j÷�), j = n/2 4 3 n/a � = 1, j = 2

j + 1 2 j + 3 � = 1, j ≥ 3
j 2 j + 1 � = 2, j ∈ {2, 3, 4, 5} or � = j = 3
j 2 j Otherwise

the symmetry parameters of twin-free Cn(i, j). Finally, in Sect. 7, we find the
automorphism group and symmetry parameters of subdivided Cn(i, j). Sec-
tion 7.1 deals with the case in which the subdivided loop in the voltage graph
has voltage less than n/2, and Sect. 7.2 considers the case where this voltage
equals n/2. We close with some ideas for future research in Sect. 8.

2. Twins in Two-Generator Circulant Graphs

The open neighborhood of a vertex v in a graph G, N(v), is defined to be {u ∈
V (G) | uv ∈ E(G)} and the closed neighborhood of v is N [v] = {v} ∪ N(v).
Two vertices v and w are nonadjacent twins if N(v) = N(w), and they are
adjacent twins if N [v] = N [w].

Note that if a vertex has an adjacent twin, it cannot also have a nonad-
jacent twin. We say a graph has twins if it has adjacent or nonadjacent twins.
Finally, we define vertices u and v in a graph Gu to be co-twins if N [us] and
N [v] are complementary sets in V (G). If u and v are twins, the vertex map
that interchanges u and v while leaving all other vertices fixed is a graph au-
tomorphism. In circulant graphs, exchanging a pair of co-twins also leads to
additional automorphisms. Substantial effect on the symmetry parameters of
the graph. The presence of twin and co-twin vertices therefore has a substantial
effect on the symmetry parameters of the graph.

It is easy to verify that the only connected, two-generator circulant graph
with co-twins is C10(1,3); in this case, a and a+5 are co-twins for all a ∈ Z10.
More generally, if n = 4k + 2 for some 2 ≤ k ∈ Z, then any two vertices of the
form a, a+2k+1 are co-twins in C2k(1, 3, . . . , 2kk − 1).

In [6], Brooks et al. show that if i + j = n/2, then N(a) = N(a + n/2).
Lemma 1 strengthens this result by fully characterizing all twin vertices in
connected, two-generator circulant graphs.
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Lemma 1. (1) If n ∈ {4, 5}, then Cn(i, j) = Cn(1, 2) = Kn, and so, any two
distinct vertices are adjacent twins.

(2) If n ≥ 6 and j < n/2, then Cn(i, j) is twin-free if and only if i+ j 	= n/2.
If i + j = n/2, then for distinct a, b, N(a) = N(b) if and only if either
b = a ± n/2 or (n, i, j) = (8, 1, 3) and b = a ± 2.

(3) If n ≥ 6 and j = n/2, then Cn(i, j) is twin-free except if (n, i, j) =
(6, 1, 3), in which case for distinct a, b, N(a) = N(b) if and only if b =
a ± 2.

Proof. Recalling 0 < i < j ≤ n/2, statement (1) is easy to verify. Therefore,
assume n ≥ 6. Since Cn(i, j) is vertex-transitive, Cn(i, j) has twin vertices if
and only if 0 has a twin. Suppose vertex 0 	≡ a ∈ Zn is a twin of 0, so that
N(0) = N(a). In what follows, we use the fact that 0 	≡ a implies a + k 	≡ k
for k ∈ Zn.

Because the proof is simpler, we first consider (3). If j = n/2, then j ≡ −j
and so N(0) = {±i, j} = {a ± i, a + j} = N(a). There are only two possible
values of a + i.

Case 3a. If a+i ≡ −i, then a+j ≡ i and a−i ≡ j. Then, a ≡ −2i ≡ i+j,
so 3i ≡ −j ≡ n/2. Thus, gcd(n, i, j) = i, which by assumption implies i = 1,
and hence, (n, i, j) = (6, 1, 3).

Case 3b. If a+ i ≡ j, then a− i ≡ i and a+ j ≡ −i. Then, a ≡ 2i ≡ j − i,
so again 3i ≡ j ≡ n/2, which forces (n, i, j) = (6, 1, 3).

Thus, if N(0) = N(a), then (n, i, j) = (6, 1, 3). Moreover, a ≡ ±2i ≡ ±2.
Returning to (2), assume j < n/2. Then assuming N(0) = N(a) gives

{±1,±j} = {a ± i, a ± j}. We again consider all possible values of a + i.
Case 2a. If a + i ≡ −j, then a + j ≡ −i. There are only two possibilities

for a − i and a − j. If a − i ≡ i and a − j ≡ j, then a ≡ 2i ≡ 2j. Since
0 < i < j < n/2, 0 < 2i < 2j < n, so this is a contradiction. Thus, a − i ≡ j
and a − j ≡ i. Then, a ≡ i + j ≡ −i − j, which implies that 2i + 2j ≡ 0, and
so, i + j = n/2.

Case 2b. Next, suppose a + i ≡ −i. If a − i ≡ i, then a + j ≡ −j and
a − j ≡ j. These imply a ≡ 2i ≡ 2j, a contradiction. If a − i ≡ j, then
a − j ≡ i and a + j ≡ −j. These imply a ≡ −2i ≡ −2j, which again leads
to the contradiction 2i ≡ 2j. The remaining possibility is a − i ≡ −j, which
implies a + j ≡ i and a − j ≡ j. Then, a ≡ −2i ≡ 2j, which in turn implies
i + j = n/2.

Case 2c. Finally, suppose a+ i ≡ j, which implies a−j ≡ −i. In this case,
there are only two possibilities for a − i and a + j. If a − i ≡ −j and a + j ≡ i,
then a ≡ i − j ≡ −i + j, leading to the contradiction 2i ≡ 2j. Hence, a − i ≡ i
and a + j ≡ −j, so a ≡ 2i ≡ −2j ≡ −i + j, and thus, i + j = n/2.

We conclude that if N(0) = N(a), then i+j = n/2, so N(0) = N(i+j) =
{±i,±j}. Thus, for every b, N(b) = N(b + n/2). The calculations also show
that either a ≡ i+ j, or a ≡ −2i ≡ 2j or a ≡ 2i ≡ −2j. In the latter two cases,
gcd(n, i, j) = 1 forces (n, i, j) = (8, 1, 3), N(0) = N(±2), and more generally,
for every b, N(b) = N(b ± 2). �
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Figure 3. Circulant graphs with twins: C6(1, 3), C10(1, 4)
and C8(1, 3)

Corollary 2. Every connected, two-generator circulant graph with twins is edge-
transitive.

Proof. Clearly, C4(1, 2) ∼= K4, C5(1, 2) ∼= K5 and C6(1, 3) ∼= K3,3 are edge-
transitive. By Lemma 1, it suffices to consider Cn(i, j) where i + j = n/2. Let
m = n/2, so that 2i+2j = 2m. Since gcd(2m, i, j) = 1, we have gcd(i, j) = 1.
It follows that either i or j is a unit. Without loss of generality, assume i is a
unit, so Cn(i, j) ∼= C2m(1, i−1j). Since 2i + 2j ≡ 0, 2 + 2i−1j ≡ 0, implying
i−1j ≡ m − 1. �

The converse of Corollary 2 is false; for example, C15(1, 4) is edge-transitive
and twin-free. Figure 3 shows some examples of circulant graphs with twins.

3. Symmetry Parameters for Cn(i, j) with Twins

Permuting a set of twin vertices and fixing all other vertices is nontrivial graph
automorphism. This implies that a determining set for G must contain at all
but one vertex from any set of mutually twin vertices. Additionally, in any
distinguishing coloring, the vertices in a set of mutual twins must be assigned
distinct colors.

For vertices x, y of a graph G, define the relation x ∼ y if x and y are
twin vertices. It is easy to verify that ∼ is an equivalence relation on V (G)
and so we can create a quotient graph ˜G with respect to the relation ∼, where
the set of vertices is the set equivalence classes [x] = {y ∈ V (G) | x ∼ y} with
[x] adjacent to [z] in ˜G if and only if there exist u ∈ [x] and v ∈ [z], such that
u and v are adjacent in G. We refer to ˜G as the twin quotient graph. It can be
verified that ˜G is twin-free; see [4].

Using terminology from [4], a minimum twin cover T of a graph G is
a subset of vertices that contains all but one vertex from each set of mutual
twins. The following is a corollary of Theorem 19 of [4]:

Corollary 3. Assume every vertex of G has at least one twin. Let T be mini-
mum twin cover of G. Then, T is a minimum size determining set for G.
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The following result, based on an approach used by Boutin and Cock-
burn in [3] to find the symmetry parameters of orthogonality graphs, gives a
relationship between the distinguishing numbers of a graph G and ˜G.

Theorem 4. Let G be a graph in which every vertex is in a set of exactly k

mutual twins and let ˜G be the corresponding twin quotient graph. If Dist( ˜G) =
˜d, then Dist(G) = d, where d is the smallest positive integer, such that

(

d
k

) ≥ ˜d.

Proof. Assume Dist( ˜G) = ˜d. If d ∈ N satisfies
(

d
k

) ≥ ˜d, then from a palette of
d colors, we can create ˜d distinct subsets of k colors, which we can think of
as ˜d distinct k-color packets. By assumption, we can then color each vertex of
˜G with a k-color packet in a distinguishing fashion. For each x ∈ V (G), the
equivalence class [x] ∈ V ( ˜G) has been assigned a k-color packet; we randomly
assign these k colors to the k vertices in [x] a bijective fashion.

Automorphisms of G induce automorphisms in ˜G, so it is straightfor-
ward to verify that this coloring produces a distinguishing coloring of G and
Dist(G) ≤ d. For any d′ < d, the number of different k-color packets is less
than ˜d. Thus, any d′-coloring of G induces a coloring of ˜G by k-color packets
that is not distinguishing. We conclude such a coloring is not distinguishing
for G, so Dist(G) ≥ d. �
Theorem 5. Assume Cn(i, j) has twins.
(1) If n ∈ {4, 5}, then Det(Cn(i, j)) = n − 1 and Dist(Cn(i, j)) = n.
(2) If (n, i, j) = (6, 1, 3), then Det(Cn(i, j)) = Dist(Cn(i, j)) = 4.
(3) If n ≥ 6 and i + j = n/2, then Det(C8(1, 3)) = 6 and Dist(C8(1, 3)) = 5

and for all other values, Det(Cn(i, j)) = n/2 and Dist(Cn(i, j)) = 3.

Proof. The three statements in this theorem align with the three cases in
Lemma 1.

Statement (1) handles the cases in which Cn(i, j) = Kn.
For statement (2), a minimum twin cover of C6(1, 3) is T = {0, 1, 2, 3},

so by Corollary 3, the determining number is 4. The twin quotient graph is
K2, so, by Theorem 4, the distinguishing number is 4.

For statement (3), we first consider the case (n, i, j) = (8, 1, 3). A min-
imum twin cover is T = {0, 1, 2, 3, 4, 5} and the twin quotient graph is again
K2. Thus, by Corollary 3 and Theorem 4, the determining number and distin-
guishing number are both 5.

Finally, we consider the case n ≥ 6, i+j = n/2 but n 	= 8. From Lemma 1,
a and a + i + j = a + n/2 are twins for all a ∈ Zn. A minimum twin cover is
T = {0, 1, 2, . . . , n/2−1}, so the determining number is n/2. The twin quotient
graph has order n/2 and can be easily seen to be a cycle. Thus, it is Cn/2,
which has distinguishing number d̃ = 3 if n/2 ∈ {3, 4, 5} and distinguishing
number d̃ = 2 if n/2 ≥ 6. In either case, the smallest d, such that

(

d
2

) ≥ d̃ is
d = 3. �

Since there is only one two- generator graph with cotwins, namely C10(1, 3),
we use direct computation to find the symmetry parameters, det(C10(1, 3)) =
4 and Dist(C10(1, 3)) = 3.
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4. Common Neighbors in Twin-Free Cn(i, j)

To find the determining and distinguishing numbers of Cn(i, j) in the twin-
free case, we first find its automorphism group. A key tool in our investigation
involves possible sets of common neighbors. Since automorphisms respect adja-
cency and nonadjacency, if α ∈ Aut(G) and u, v are vertices in a graph G with
N(u)∩N(v) = {w1, . . . w�}, then N(α(u))∩N(α(v)) = {α(w1), . . . α(w�)}. To
use this fact, we must determine the possible sets of common neighbors.

Two vertices have common neighbors if and only if there is a path of
length 2 between them. In Cn(i, j), we find a and b have common neighbors if
and only if b ∈ {a ± 2i, a ± 2j, a + i ± j, a − i ± j}. Exchanging the roles of a
and b as needed, we need only consider the cases b ∈ {a + 2i, a + 2j, a + i ± j}.
Additionally, if j = n/2, we can further restrict to b ∈ {a + 2i, a + i + j}.

Lemma 6. Assume Cn(i, j) is twin-free. Distinct vertices a and b have common
neighbors if and only if we can label them, so that b ∈ {a+2i, a+2j, a+ i± j}.
Furthermore, the set of common neighbors of each such pair of vertices (a, b)
is given by the following table, where we take the union of the applicable rows.

(a, a + 2i) (a, a + 2j) (a, a + i + j) (a, a + i − j)

Always {a + i} {a + j} {a + i, a + j} {a + i, a − j}
4i ≡ 0 {a − i} – – –
4j ≡ 0 – {a − j} – –
3i ≡ −j {a − i, a − j} – {a − i} –
3i ≡ j {a − i, a + j} – – {a − i}
3j ≡ −i – {a − i, a − j} {a − j} –
3j ≡ i – {a + i, a − j} – {a + j}

Proof. By Lemma 1, the assumption that Cn(i, j) is twin-free implies n ≥ 6,
(n, i, j) 	= (6, 1, 3) and i + j 	= n/2. When j < n/2, our assumptions yield
2i 	≡ 0, 2j 	≡ 0, 2i 	≡ 2j, and 2i 	≡ −2j.

It is enough to assume a = 0 and to consider which elements of N(a) and
N(b) may be shared. In each case, there are obvious members of N(a) ∩ N(b).
All other possibilities lead to contradictions, except in the special conditions
listed in the left column. �

When j = n/2, none of the special conditions can hold. However, in
general, it is possible for two special conditions to hold. In this case, both affect
the set of common neighbors. For example, in C12(3, 5), both conditions 4i ≡ 0
and 3j ≡ i hold. In this case, N(0) ∩ N(2i) = {±i}, N(0) ∩ N(i + j) = {i, j}
and N(0) ∩ N(2j) = N(0) ∩ N(i − j) = {i,±j}.

Our assumption that 0 < i < j < n/2 implies that each condition corre-
sponds to exactly one linear equation in Z. Given that we are interested only
in intersection points corresponding to integral values of n, i and j, that also
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satisfy gcd(n, i, j) = 1 and i + j 	= n/2, we find only three cases where multi-
ple special conditions are satisfied: C12(3, 5) satisfies both 4i ≡ 0 and 3j ≡ i,
C10(1, 3) satisfies both 3i ≡ j and 3j ≡ −i and C12(1, 3) satisfies both 4j ≡ 0
and 3i ≡ j. Because 5 ≡ 5−1 in Z12, C12(3, 5) � C12(1, 3).

5. Automorphisms of Circulant Graphs

As noted in the introduction, for any s ∈ Zn, translation by s, given by σs(a) =
s + a, is an automorphism of Cn(i, j). Thus Aut(Cn(i, j)) has a subgroup
isomorphic to Zn. Additionally, let H be the set of automorphisms Zn that
preserve {±i,±j}; that is, H = Aut(Zn, {±i,±j}). It is easy to verify that H
is a subgroup of Aut (Zn) = U(n). For t ∈ H and a ∈ Zn, let τt(a) = ta. It is
routine to verify the following special case of Godsil’s Lemma 2.1 in [9].

Proposition 7. For all t ∈ H, we have τt ∈ Aut(Cn(i, j)).

It will always be the case that {±1} ⊆ H. In fact, in many cases, these
are the only two elements of H. Lemma 8 gives H in the edge-transitive cases.

Lemma 8. For C4(1, 2), C6(1, 3) and C2m(1,m − 1) where m ≥ 3 is odd,
H = {±1}. For C2m(1,m − 1) where m ≥ 3 is even and j = m − 1 and
Cn(1, j) where j2 ≡ ±1, H = {±1,±j}.
Proof. The results for C4(1, 2) and C6(1, 3) follow from U(4) = U(6) = {±1}.
Since t ∈ H preserves {±1,±j}, t = t · 1 ∈ {±1,±j}, so H ⊆ {±1,±j}. If m
is odd, then j = m − 1 is even, and so, ±j /∈ U(2m) = U(n). If m is even,
then 2m divides m2, and so, j2 = (m − 1)2 = m2 − 2m + 1 ≡ 1. In particular,
j ∈ U(n). If j2 ≡ ±1, then clearly j and −j preserve {±1,±j}. �

If Cn(i, j) is not edge-transitive, then as noted in the introduction, no
automorphism of Cn(i, j) takes an edge of the form {a, a+ i} to an edge of the
form {b, b + j}. Hence, in this case, H = Aut(Zn, {±i}, {±j}).

Lemma 9. Let 0 < i < j ≤ n/2 and gcd(n, i, j) = 1. If t ∈ U(n) satisfies ti ≡ i
and tj ≡ j, then t ≡ 1. If t satisfies ti ≡ −i and tj ≡ −j, then t ≡ −1.

Proof. Since gcd(n, i, j) = 1, there exist x, y, z ∈ Z, such that xi+yj +zn = 1,
which means xi + yj ≡ 1. Hence

t ≡ t(xi + yj) ≡ x(ti) + y(tj) ≡
{

xi + yj ≡ 1, if ti ≡ i and tj ≡ j,

−(xi + yj) ≡ −1, if ti ≡ −i and tj ≡ −j.

�

Corollary 10. Assume Cn(i, j) is not edge-transitive. If there exists 1 	= t ∈
U(n), such that ti ≡ i and tj ≡ −j, then H = {±1,±t}. Otherwise H = {±1}.
Proof. If there exists such a t, then ±t ∈ H = Aut(Zn, {±i}, {±j}). Suppose
t∗ ∈ H\{±1,±t}. By Lemma 9, we can assume without loss of generality that
t∗i ≡ i and t∗j ≡ −j. Then, tt∗ and t2 fix both i and j, and so, by Lemma 9,
tt∗ ≡ t2 ≡ 1. Since t is a unit, this implies t ≡ t∗. �
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Figure 4. C12(2, 3)

Example 1. For a non-edge-transitive example where H 	= {±1}, let (n, i, j) =
(12, 2, 3). Then, U(12) = {1, 5, 7, 11}. Note that t = 7 satisfies ti ≡ +i and
tj ≡ −j. The (twin-free) circulant graph C12(2, 3) is shown in Fig. 4.

The possibilities for H are summarized in Table 2.
For any s ∈ Zn and t ∈ H, we can compose the automorphisms σs and τt;

for any a ∈ Zn, (σs◦τt)·(a) = s+ta. do not commute, but (τt)−1◦σs◦τt = σst−1 .
In the next subsection, we will show that these are the only automorphisms of
connected, twinfree, twogenerator circulant graphs, except C10(1, 3).

5.1. Automorphisms of Twin-Free Cn(i, j)
Proposition 11. If Cn(i, j) is not C10(1, 3), is connected, and twin-free and
α ∈ Aut(Cn(i, j)) satisfies α(0) = 0, then α is an automorphism of the additive
group Zn.

Proof. Assume α ∈ Aut(Cn(i, j)) fixes 0. Since gcd(n, i, j) = 1, there exist
x, y ∈ Z, such that xi + yj ≡ 1. It follows that for any a ∈ Zn, there exist
c, d ∈ Z, such that ci + dj ≡ a. It suffices to show that for all 0 ≤ c, d ∈ Z

α(ci + dj) ≡ cα(i) + dα(j). (1)

This proof involves multiple cases, but the underlying strategy is to use
induction on m = c+d. As indicated at the beginning of Sect. 3, the main tool
is to apply α to an equation expressing a set of common neighbors. Here, we
will assume that none of the special conditions of Lemma 6 holds; see [7] for
these cases.

Because α preserves adjacency, for any a ∈ Zn, α(a + i) = α(a) + x for
some x ∈ {±i,±j}. Applying α to the equation {a + i} = N(a) ∩ N(a + i)
gives {α(a + i)} = {α(a) + x} = N(α(a)) ∩ N(α(a + 2i)). By Lemma 6,
α(a+2i) = α(a)+2x. Similarly, if α(a+j) = α(a)+y, then α(a+2j) = α(a)+2y
and α(a + i + j) = α(a) + x + y.

It is clear that Eq. 1 holds for m = 1. Applying the results of the preceding
paragraph when a ≡ 0, we get α(2i) = 2α(i), α(2j) = 2α(j) and α(i + j) =
α(i) + α(j). Hence, Eq. 1 also holds for m = 2.
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Table 2. Possibilities for H

H Conditions

{±1,±j} C2m(1,m − 1), m ≥ 3 even
(j = m − 1)

Edge-transitive Cn(1, j), j2 ≡ ±1
H = Aut(Zn, {±i,±j}) {±1} C2m(1,m − 1), m ≥ 3 odd

C4(1, 2), C6(1, 3)
Not edge-transitive {±1,±t} 1 	= t ∈ U(n) satisfies ti ≡

i, tj ≡ −j
H = Aut(Zn, {±i}, {±j}) {±1} Otherwise

If j = n/2, we only need to show α(ci + dj) ≡ cα(i) + dj for all c ≥ 0
and d ∈ {0, 1}. Let m ≥ 3 and assume α(ci + dj) ≡ cα(i) + dα(j) for all
c+d ∈ {m−1,m−2}, with c, d ≥ 0; if j = n/2, further assume that d ∈ {0, 1}.
We have either c ≥ 2 or d ≥ 2. Assume c ≥ 2. For a = (c − 2)i + dj

α(a + i) = α((c − 1)i + dj) = (c − 1)α(i) + dα(j) = α(a) + α(i),

so α(a + 2i) = α(a) + 2α(i). Thus, α(ci + dj) = α((c − 2)i + dj) + 2α(i) =
cα(i) + dα(j). Suppose instead d ≥ 2. Then, letting a = ci + (d − 2)j and
applying a similar argument completes the proof when no special conditions
hold. �

Theorem 12. If Cn(i, j) is not C10(1, 3), is connected, and twin-free, then
Aut(Cn(i, j)) = Zn � H, where the action of (s, t) ∈ Zn � H on a vertex
of Cn(i, j) is (s, t) · (a) = s + ta.

Proof. Let γ ∈ Aut(Cn(i, j)). If γ fixes 0, then γ ∈ Aut(Zn) = U(n) by
Proposition 11. Then, there exists t ∈ U(n), such that γ(a) = ta. Since γ
preserves adjacency, we find t ∈ H. If γ(0) = s, let σ−s be the translation
defined by σ−a(a) = −s + a. Then, σ−s ◦ γ is an automorphism of Cn(i, j)
that fixes 0, and hence, (σ−s ◦ γ)(a) = ta for some t ∈ H. Then, γ(a) = s+ ta;
equivalently, γ = σs ◦ τt. We can represent γ with the ordered pair (s, t).

The argument above shows Aut(Cn(i, j)) = ZnH. As noted earlier, for
all s ∈ Zn and t ∈ H, (τt)−1 ◦ σs ◦ τt = σst−1 , so Zn is a normal subgroup
of Aut(Cn(i, j)). Clearly, Zn ∩ H contains only the identity automorphism.
Hence, Aut(Cn(i, j)) is the semidirect product Zn � H. �

This result aligns with Godsil’s Lemma 2.2 in [9], because in the twin-
free case, except C10(1, 3), the Zn is a normal subgroup of Aut(Cn(i, j)), so
its normalizer is the entire automorphism group.

5.2. Automorphisms of Cn(i, j) with Twins

If Cn(i, j) has twins, then by Corollary 2, Cn(i, j) is edge-transitive and hence
arc-transitive. In [16], Li provides a description of the automorphism group
of any arc-transitive circulant graph, based on its tensor-lexicographic decom-
position into a normal circulant graph, some complete graphs, and an empty
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graph. Here, we take an more elementary approach for the special case of
two-generator circulant graphs.

If Cn(i, j) has twins, then Zn � H is still a subgroup of the automor-
phism group. Additionally, Cn(i, j) has automorphisms that permute mu-
tual twin vertices. Recall from Sect. 3 that for any graph G, we can collapse
sets of mutually twin vertices to define the twin quotient graph ˜G. Define
π : Aut(G) → Aut( ˜G) by [π(α)]·[x] = [α(x)] for all α ∈ Aut(G) and x ∈ V (G).
Properties of automorphisms guarantee that π(α) is a bijection that respects
adjacency and nonadjacency in ˜G. Note that ker(π) is a normal subgroup of
Aut(G) consisting of automorphisms that simply permute the vertices within
each equivalence class.

Lemma 13. Let G be a graph of order n where every vertex is in a set of k

mutual twins. Then, ker(π) = (Sk)n/k and Aut( ˜G) = Aut(G)/ ker(π). Hence

|Aut(G)| = | ker(π)||Aut( ˜G)| = (k!)n/k|Aut( ˜G)|.
Proof. It suffices to show that π is surjective and then apply the First Iso-
morphism Theorem for groups (see [15]). For each equivalence class of vertices
in G, we select a class representative and label the vertices with subscripts in
some order, [x] = {x1, x2, . . . , xk}. Suppose ˜β ∈ Aut( ˜G). If ˜β([x]) = [y], then
let β(xm) = ym for each m ∈ {1, 2, . . . , k}. It is easy to verify that β ∈ Aut(G)
and π(β) = ˜β. �

We can apply Lemma 13 to connected, two-generator circulant graphs
with twins. The relevant twin quotient graphs are K1, K2 and Cn/2. We find
|Aut(Cn(1, 2))| = (n!)n/n · 1 for n ∈ {4, 5}, |Aut(C6(1, 3))| = (3!)6/3 · 2 =
72, |Aut(C8(1, 3))| = (4!)8/4 · 2 = 1152 and for i + j = n/2, but n 	= 8,
|Aut(Cn(i, j))| = 2n/2n.

Using the Second Isomorphism Theorem for groups (see [15]) and a car-
dinality argument, we get the following.

Theorem 14. If Cn(i, j) is connected and has twins, then any automorphism
of Cn(i, j) is a composition of some (s, t) ∈ Zn �H and an automorphism that
permutes twins.

It can be verified computationally that the automorphism group of the
one connected, twogenerator circulant graph with cotwins, C10(1, 3), is Z2×S5.

6. Symmetry Parameters for Twin-Free Cn(i, j)

After establishing Aut(Cn(i, j)) = Zn � H in the twin-free case, we can find
the symmetry parameters with relative ease. The result below proves in the
affirmative a conjecture on the determining number of connected, twin-free,
two-generator circulant graphs of Brooks et al.[6].

Theorem 15. If Cn(i, j) is not C10(1, 3), is connected, and twin-free, then

Det(Cn(i, j)) = 2, Dist(Cn(i, j)) = 2, and ρ(Cn(i, j)) = 3.
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Proof. For determining, first let a ∈ Zn. Since a = (2a) + (−1) · a, we find
{a} is fixed by the nontrivial automorphism (2a,−1). Thus, Det(Cn(i, j)) > 1.
Next, let W = {0, 1} and assume α = (s, t) ∈ Aut(Cn(i, j)) fixes both vertices
in W . Then, 0 ≡ α(0) ≡ s + t · 0 ≡ s. Next, 1 ≡ α(1) ≡ s + t · 1 ≡ 0 + t ≡ t.
Hence, α = (0, 1) which is the identity and W is a determining set. Thus,
Det(Cn(i, j)) = 2.

Next, we find a 2-coloring that is distinguishing and that has one color
class of size 3. There are two cases to consider.

Case 1. Assume vertices i and j are not adjacent in Cn(i, j). If Cn(i, j)
is not edge-transitive, color the vertices in {0, i, j} red and all other vertices
blue. Assume α = (s, t) ∈ Aut(Cn(i, j)) is an automorphism that preserves the
color classes. Since {0, i, j} induces a path, {α(i), α(j)} = {i, j} and α(0) = 0.
Hence, s ≡ 0. Considering the possibilities for t from Corollary 10, we find
t ≡ 1, so α is trivial.

In the case Cn(1, j), j2 ≡ ±1, we have H = {±1,±j}. When j2 ≡ −1,
{0, i, j} is still a color class in a 2-distinguishing coloring. However, when j2 ≡
1, we have that t = j gives a nontrivial automorphism that preserves this set.
In this case, {0,−i, j} is instead a color class in a 2-distinguishing set.

Case 2. If i and j are adjacent in Cn(i, j), then i ∈ N(j) = {0, j ± i, 2j}.
The assumptions on i and j require i ≡ −i + j, so 2i ≡ j. The only edge-
transitive two-generator circulant graphs satisfying this condition are C5(1, 2)
and C6(1, 2), both of which have twins. Hence, in this case, Cn(i, j) is not
edge-transitive.

Using our assumptions, we find that −j /∈ N(i) = {0, 2i, i±j} = {0, j, i±
j}. Thus, we instead color the vertices in {−j, 0, i} red and all other vertices
blue. Arguing as above, we find that any automorphism α preserving these
color classes must be trivial.

In both cases, Dist(Cn(i, j)) = 2 and ρ(Cn(i, j)) ≤ 3. A color class in any
2-distinguishing coloring cannot be a singleton set because Det(Cn(i, j)) = 2.
Furthermore, if a 	= b in Zn, then the nontrivial automorphism (a + b,−1)
interchanges them, so a color class in a 2-distinguishing coloring cannot consist
of just two vertices. Thus, ρ(Cn(i, j)) = 3. �

7. Subdivided Circulant Graphs

We next consider the symmetry parameters of the subdivided circulant graphs
Cn(i÷�, j) and Cn(i, j÷�). Recall that these are the derived graphs associated
to a bouquet voltage graph B2 in which one of the arcs is subdivided by � ≥ 1
vertices of degree 2. Because the voltage graph has order at least 2, we can
no longer label vertices of the derived graph simply with elements of Zn. As
shown in Fig. 2, we label them ua and vr

a where a ∈ Zn and r ∈ {1, . . . , �}.

7.1. Cn(i÷�, j) and Cn(i, j÷�), j < n/2
We first consider the case in which the arc with voltage i has been subdi-
vided by � vertices. In the derived graph, ua is no longer adjacent to the
(distinct) vertices ua+i and ua−i. Instead, for each a ∈ Zn, there is a path
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(ua, v1
a, v2

a, . . . , v�
a, ua+i). of length � + 1, all of whose interior vertices have

degree 2. Note that there is no ambiguity regarding the subscripts on the
degree-2 vertices: if b ≡ a+ i, it cannot also be the case that a ≡ b+ i, because
0 < 2i < n. By definition

N(ua) =

{

{v1
a, v�

a−i, ua−j , ua+j}, j < n/2,

{v1
a, v�

a−i, ua+j}, j = n/2.

Thus, each ua has a distinct pair of degree-2 neighbors, meaning that no two
vertices of this type are twins. Additionally, each vr

a, r ∈ {1, . . . �}, is uniquely
identified by its distances from ua and ua+i. Hence, Cn(i÷�, j) is twin-free.

Neighborhood sizes dictate that the only candidates for subdivided graphs
with co-twins are small and direct inspection shows none exist.

Clearly, Cn(i÷�, j) is neither vertex-transitive nor edge-transitive.
However, automorphisms of Cn(i, j) extend uniquely to automorphisms of
Cn(i÷�, j), provided that they do not interchange edges of the form {a, a + i}
and {b, b + j}. We let

H ′ = H ∩ Aut(Zn, {±i}, {±j}) =

{

{±1}, Cn(i, j) is edge-transitive,
H, otherwise.

Lemma 16. For any α′ = (s, t) ∈ Zn�H ′, there is a unique α ∈ Aut(Cn(i÷�, j)),
such that α(ua) = α′(ua) for all a ∈ Zn. The action of the unique extension α
is defined as

α(x) =

⎧

⎪

⎨

⎪

⎩

us+ta, x = ua,

vr
s+at, x = vr

a and ti ≡ i,

v
(�+1)−r
s+ta−i , x = vr

a and ti ≡ −i.

(2)

Proof. First, suppose γ, λ ∈ Aut(Cn(i÷�, j)) satisfy γ(ua) = λ(ua) for all
a ∈ Zn. Then, γ−1 ◦ λ ∈ Cn(i÷�, j) fixes all non-degree-2 vertices. Since each
vr

a is uniquely identified by its distances from ua and ua+i, all degree-2 vertices
are also fixed by γ−1 ◦ λ. Thus, γ−1 ◦ λ is the identity, and so, γ = λ.

To extend the action of α′ = (s, t) to the degree-2 vertices, first assume
ti ≡ i. Then, (s, t) · (ua+i) = us+t(a+i) = u(s+ta)+i. In this case, we map
the path of degree-2 vertices between ua and ua+i to the path of degree-2
vertices between us+ta and u(s+ta)+i, in the same order. If ti ≡ −i, then
(s, t) · (ua+i) = us+(a+i)t = u(s+ta)−i. In this case, we map the path of degree-
2 vertices between ua and ua+i to the path of degree-2 vertices between us+ta

and u(s+ta)−i, in ‘reverse order.’ It can be easily verified that α is respects
adjacency and nonadjacency by checking that the action on the three types
of edges: uaua±j for a ∈ Zn, vr

avr±1
a for a ∈ Zn, and uavr

b with a ∈ Zn and
(b, r) ∈ {(a, 1), (a − i, �)}. �

Theorem 17. Assume Cn(i, j) is connected. Then, Aut(Cn(i÷�, j)) = Zn �H ′,
with the action of elements of Zn � H ′ as defined in Eq. 2.

Proof. By Lemma 16, we have Zn �H ′ ⊆ Aut(Cn(i÷�, j)). Thus, we show that
Aut(Cn(i÷�, j)) ⊆ Zn � H ′. Let α ∈ Aut(Cn(i÷�, j)). Since automorphisms
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respect degree, α restricts to a bijection α′ on the set of non-degree-2 vertices,
{ua | a ∈ Zn}. By definition, ua and ub are adjacent as vertices in Cn(i, j)
if and only if, as vertices in Cn(i÷�, j), either they are adjacent or there is a
unique path between them of length � + 1, all of whose interior vertices have
degree 2. These are properties respected by the automorphism α. Thus, ua

and ub are adjacent as vertices in Cn(i, j) if and only if α′(ua) and α′(ub) are
adjacent as vertices in Cn(i, j). Hence, α′ is an automorphism of Cn(i, j) that
does not interchange edges of the form {a, a + i} and {b, b + j}.

If Cn(i, j) is twin-free and not C10(1, 3), then by Theorem 12, α′ ∈ Zn �

H ′ and we are done. If Cn(i, j) has twins, then by Theorem 14, α′ is the
composition of an element of Zn � H ′ and an automorphism ρ that permutes
twins. In each of the four special cases of Lemma 1, namely C4(1, 2) = K4,
C5(1, 2) = K5, C6(1, 3) and C8(1, 3), as well as in the co-twin case C10(1, 3), α
preserves the Hamiltonian cycle in Cn(i÷�, j) induced by edges having at least
one endvertex of degree 2, so α′ is an automorphism of the Hamiltonian cycle
formed by arcs of voltage i = 1. Hence, ρ is trivial. Otherwise, i + j = n/2,
but n 	= 8 and vertex a in Cn(i, j) has unique twin vertex a + i + j. Using the
fact that α respects the set of degree-4 neighbors of vertices in Cn(i÷�, j), we
can show that if ρ exchanges any twin pair in Cn(i, j), then it exchanges all
twin pairs, so either ρ is trivial or ρ = (n/2, 1) ∈ Zn � H ′. �
Proposition 18. If H ′ = {±1}, then a minimum determining set of Cn(i÷�, j)
is W = {v1

0} if � ≥ 2 and W = {u0, v
1
0} if � = 1.

Proof. First, assume � ≥ 2. Suppose (s, t) ∈ Aut(Cn(i÷�, j)) fixes v1
0 . We must

show s ≡ 0 and t ≡ 1 in Zn. If t 	≡ 1, then t ≡ −1, so by Eq. 2 we have
(s, t) · (v1

0) = v�
s−i. Since v1

0 is fixed, this implies � = 1, contradicting our
assumption. Hence, t ≡ 1, and (s, t) · (v1

0) = v1
s yields that s ≡ 0.

Next, assume � = 1. Suppose (s, t) fixes both v1
0 and u0. Since (s, t) fixes

u0, s ≡ 0. If t 	≡ 1, then t ≡ 1 and by Eq. 2, we have (s, t) · (v1
0) = v1

−i. Since
0 < i < n/2, −i 	≡ 0, contradicting our assumption that (s, t) fixes v10 . Hence,
t ≡ 1 and {u0, v

1
0} is a determining set.

For minimality, any determining set is nonempty as Cn(i÷�, j) has non-
trivial automorphisms. In the case � = 1, neither {ua} nor {v1

a} can be deter-
mining as they are fixed by the nontrivial automorphisms (2a,−1) and (i,−1),
respectively. �

Now, assume H ′ 	= {±1}. This means that Cn(i, j) is not edge-transitive
and H ′ = {±1,±t} for some 1 	= t ∈ U(n), such that ti ≡ i and tj ≡ −j. Also,
neither i nor j is a unit. We require some additional algebraic results.

Lemma 19. Let 0 < i < n/2. If i 	∈ U(n), then there exists a prime dividing n
that does not divide i if and only if there exists b ∈ N, such that b 	∈ U(n) but
b − i ∈ U(n).

Proof. First, assume there exists at least one prime dividing n that does not
divide i. Let b be the product of all such primes. Then, gcd(n, b) = b > 1, so
b 	∈ U(n). Since no prime dividing n divides both b and i, gcd(n, b − i) = 1,
meaning that b − i ∈ U(n).
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Conversely, assume that every prime dividing n also divides i. For any
b 	∈ U(n), some prime p divides both n and b. By assumption, p also divides i,
and thus, p divides b − i. Thus b − i 	∈ U(n). �
Corollary 20. Let n, i, j satisfy gcd(n, i, j) = 1 and 0 < i < j ≤ n/2. If
H ′ 	= {±1}, then there exists a ∈ U(n), such that a + i /∈ U(n).

Proof. Assume H ′ 	= {±1}. Since j is not a unit, there is a prime p dividing n
that also divides j. However, p cannot divide i, because gcd(n, i, j) = 1. Hence,
by Lemma 19, there exists b 	∈ U(n), such that b− i ∈ U(n). Let a ≡ b− i. �
Proposition 21. Let n, i, j satisfy gcd(n, i, j) = 1 and 0 < i < j ≤ n/2, and
assume H ′ 	= {±1}. Let a ∈ U(n), such that a+ i /∈ U(n). Then, W = {u0, v

1
a}

is a minimum determining set of Cn(i÷�, j).

Proof. Suppose (s, t) ∈ Aut(Cn(i÷�, j)) fixes {u0, v
1
a}. Since (s, t) fixes u0,

s ≡ 0. By Eq. 2, (0, t) · (v1
a) is v1

at or v�
at−i depending on whether ti ≡ i or

ti ≡ −i. In the former case, since v1
a is fixed, at ≡ a. Since a ∈ U(n), this

implies t ≡ 1. In the latter case, � = 1 and at − i ≡ a. By substitution,
at + it ≡ a, so (a + i)t = a. By assumption, a, t ∈ U(n), but a + i 	∈ U(n), a
contradiction. Thus, the only automorphism fixing W = {u0, v

1
a} is the identity

automorphism (0, 1).
We have already seen that for any a ∈ Zn, (2a,−1) is a nontrivial auto-

morphism fixing ua, so {ua} is not a determining set. By Corollary 10, there
exists 1 	= t ∈ U(n), such that ti ≡ i and tj ≡ −j. For any a ∈ Zn, (a − at, t)
is a nontrivial automorphism fixing vr

a for all r ∈ {1, 2, . . . , �}, and so, {vr
a} is

not a determining set. Thus, Det(Cn(i÷�, j) ≥ 2. �
Theorem 22. If � ≥ 2 and H ′ = {±1}, then

Det(Cn(i÷�, j)) = 1, Dist(Cn(i÷�, j)) = 2 and ρ(Cn(i÷�, j)) = 1.

Otherwise, Det(Cn(i÷�, j)) = Dist(Cn(i÷�, j)) = ρ(Cn(i÷�, j)) = 2.

Proof. If � ≥ 2 and H ′ = {±1}, then by Proposition 18, Cn(i÷�, j) has a
one-element determining set. Any graph with determining number 1 has dis-
tinguishing number 2 and cost 1, as shown in [4].

If � = 1 and H ′ = {±1}, then by Proposition 18, W = {u0, v
1
0} is a

minimum determining set. If H ′ 	= {±1}, then by Proposition 21, there exists
a ∈ Z, such that {ua, v1

0} is a minimum determining set. In each case, the
two vertices in the determining set have different degrees. Thus, coloring these
vertices red and the other vertices blue produces a 2-distinguishing coloring
with cost 2. Since Det(Cn(i÷�, j)) = 2, no distinguishing 2-coloring can have
a color class of size 1. �

Our discussion of Cn(i÷�, j) relies several times on the fact that i 	= n/2
under the overall assumption 0 < i < j ≤ n/2. For example, this allowed us
to conclude that ua+i and ua−i are distinct vertices, and that the subscripts
on the degree-2 vertices vr

a are unambiguous. The other overall assumption of
this paper is that gcd(n, i, j) = 1, in which i and j play interchangeable roles.
Thus, our results on Cn(i÷�, j) carry over to the case Cn(i, j÷�) when j < n/2.
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Theorem 23. Assume Cn(i, j) is connected and j < n/2. For any α′ = (s, t) ∈
Zn � H ′, there is a unique α ∈ Aut(Cn(i, j÷�)), such that α(ua) = α′(ua) for
all a ∈ Zn. The action of the unique extension α is defined as

α(x) =

⎧

⎪

⎨

⎪

⎩

us+ta, x = ua,

vr
s+at, x = vr

a and tj ≡ j,

v
(�+1)−r
s+ta−j , x = vr

a and tj ≡ −j.

(3)

Then, Aut(Cn(i÷�, j)) = Zn � H ′, with the action of elements of Zn � H ′ as
defined in Eq. 3.

Proof. In general, we can simply modify the proofs of Lemma 16 and The-
orem 17 by interchanging i and j. We must be more careful in the portion
of the proof dealing with the case where Cn(i, j) has twins or co-twins. The
special cases C4(1, 2) and C6(1, 3) do not satisfy j < n/2. The other special
cases, C5(1, 2), C8(1, 3) and C10(1, 3) have gcd(n, j) = 1. Thus, the edges in
Cn(i, j÷�) having at least one endvertex of degree 2 again induce a Hamilton-
ian cycle. Since any α ∈ Aut(Cn(i, j÷�)) must respect this Hamiltonian cycle,
the restriction α′ must respect the n-cycle in Cn(i, j) induced by the edges
corresponding to the arcs of voltage j, and so, we can again conclude that α′

is an element of the dihedral group D2n. �

If j < n/2, then Proposition 18, Lemma 19, Corollary 20, and Proposi-
tion 21 all hold with the roles of i and j interchanged.

Theorem 24. Assume j < n/2. If � ≥ 2 and H ′ = {±1}, then
Det(Cn(i, j÷�)) = 1, Dist(Cn(i, j÷�)) = 2 and ρ(Cn(i, j÷�)) = 1.

Otherwise, Det(Cn(i, j÷�)) = Dist(Cn(i, j÷�)) = ρ(Cn(i, j÷�)) = 2.

7.2. Cn(i, j÷�), j = n/2
We recall some results for Cn(i, j) with j = n/2. In this case, n = 2j and
j ≡ −j. From Lemma 1, C2j(i, j) is twin-free except in two cases: C4(1, 2),
in which any two vertices are twins, and C6(1, 3), in which ua and ua+2 are
twins for all a ∈ Z6. These are also the only C2j(i, j) that are edge-transitive.
From Lemma 6, if C2j(i, j) is twin-free, then for all a ∈ Z2j , we have N(ua) ∩
N(ua+2i) = {ua+i} and N(ua) ∩ N(ua+i+j) = {ua+i, ua+j}, and these are the
only possibilities for two vertices to have common neighbors.

If we subdivide the loop with voltage j in the voltage graph with � vertices
of degree 2, then in the derived graph, the single (undirected) edge between
ua and ua+j is replaced with two paths

(ua, v1
a, v2

a, . . . , v�
a, ua+j) and (ua+j , v

1
a+j , v

2
a+j , . . . , v

�
a+j , ua+2j = ua).

Thus, N(ua) = {v1
a, v�

a+j , ua−i, ua+i}. Examples C8(1, 4÷1) and C10(2, 5÷2)
appear in Fig. 5.

Lemma 25. (1) If � ≥ 2, then C2j(i, j÷�) is twin-free.
(2) If � = 1, then for distinct a, b, N(v1

a) = N(v1
b ) if and only if b = a + j,

and N(ua) = N(ub) if and only if (2j, i, j) = (4, 1, 2) and b = a + 2.
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Figure 5. C8(1, 4÷1) and C10(2, 5÷2)

Figure 6. C4(1, 2÷1) and its twin quotient graph, P4

Proof. First, assume � ≥ 2. Then, each ua has a distinct pair of degree-2
neighbors, and so, no two such vertices can be twins. Moreover, each vertex vk

a

has at least one neighbor of the form vk±1
a , meaning that for a 	≡ b, vertices vk

a

and v�
b cannot be twins. Finally, vertices vk

a and v�
a with k < � cannot be twins,

because either ua (when k = 1) or vk−1
a (when k > 1) is in N(vk

a)\N(v�
a).

Next, assume � = 1. Then, N(v1
a) = {ua, ua+j} = N(v1

a+j). Next, as-
sume N(ua) = N(ub). For ua and ub to have the same degree-2 neighbors,
b = a + j. For them to have the same degree-4 neighbors, {ua−i, ua+i} =
{ua+j−i, ua+j+i}. Since j 	≡ 0, this implies a − i ≡ a + j + i and a + i ≡
a + j − i, so 2i ≡ j. The general assumption that gcd(n, i, j) = 1 implies
(2j, i, j) = (4, 1, 2). �

Example 2. In the special case C4(1, 2÷1), each vertex is in a set of k = 2
mutual twins, and so, we can use the techniques of Sect. 3. See Fig. 6. The
minimum twin cover T = {u0, u1, v

1
0 , v

1
1} is also a minimum determining set, so

Det(C4(1, 2÷1)) = 4. The twin quotient graph is P4, which has distinguishing
number 2. By Theorem 4, Dist(C4(1, 2÷1)) = 3.

In general, if � = 1 and n = 2j ≥ 6, then the set T = {v1
0 , v

1
1 , . . . , v

1
j−1}

is a minimum twin cover, but not a determining set. To see this, we must
investigate the automorphism group of C2j(i, j÷�).

Applying Lemma 9 when n = 2j yields H ′ = {±1}, so Z2j � H ′ is
the dihedral group D4j . If C2j(i, j) is twin-free, Aut(C2j(i, j)) = Z2j � H ′ =
D4j by Theorem 12. For C6(1, 3), by Theorem 14, every automorphism is the
composition of an element of D12 and an automorphism that permutes twin
pairs.
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Figure 7. Action of the automorphism βa = βa+j

When n = 2j, j ≡ −j, so for any a ∈ Z2j and (s, t) ∈ Z2j � H ′, (s, t) ·
(ua+j) = us+ta+j . Thus, when extending (s, t) ∈ Z2j � H ′ to the degree-2
vertices in Cn(i, j÷�), we can simply set (s, t) · (vr

a) = vr
s+ta.

Unlike the situation for C2j(i÷�, j), there are additional automorphisms
of C2j(i, j÷�) beyond these extensions of the automorphisms in Z2j � H ′. For
each a ∈ Z2j , there is an automorphism βa that ‘flips’ the degree-2 vertices
on the two paths between ua and ua+j and leaves all other vertices fixed; see
Fig. 7. More precisely, βa · (ub) = ub for all b ∈ Zn and

βa · (vr
b ) =

{

v
(�+1)−r
b+j , if b ∈ {a, a + j},

vr
b , if b ∈ Z2j\{a, a + j}.

Since βa = βa+j , there are j such automorphisms. The subgroup generated
by these automorphisms is B = 〈βa | 0 ≤ a < j〉 ∼= (Z2)j ; we denote its
identity by ιB. An element β ∈ B is of the form β = βe0

0 · · · βej−1
j−1 , where

e0, . . . , ej−1 ∈ {0, 1}.

Theorem 26. The automorphism group of C2j(i, j÷�) is

Aut(C2j(i, j÷�)) = (Z2)j
� (Z2j � {±1}) = Z2j � D4j .

An element is denoted β ◦ (s, t), where β ∈ B and (s, t) ∈ Z2j � {±1}.
Proof. It is routine to verify that the extension of each (s, t) ∈ Z2j � {±1} to
the degree-2 vertices and each β ∈ B are indeed automorphisms of C2j(i, j÷�).
Thus, both Z2j �{±1} and B are subgroups of Aut(C2j(i, j÷�)). It is similarly
routine to verify that for all a ∈ Z2j and (s, t) ∈ Z2j � {±1}, (s, t) ◦ βa =
βs+ta ◦ (s, t), so B is a normal subgroup of Aut(C2j(i, j÷�)). Notice, B ∩Z2j �

{±1} = ∅. It now suffices to show that every automorphism of C2j(i, j÷�) is
the composition of an element of B and an element of Z2j � {±1}.

Let α ∈ Aut(C2j(i, j÷�)). Then, α restricts to a bijection α′ on the
set of degree-4 vertices, {ua | a ∈ Z2j}. By the same reasoning as in the
proof of Theorem 17, α′ ∈ Aut(C2j(i, j)). If C2j(i, j) is twin-free, then α′ ∈
Aut(C2j(i, j)) = Z2j � {±1} by Theorem 12. In the cases with twins, namely
C4(1, 2) and C6(1, 3), the edges corresponding to arcs of voltage i = 1 induce
a Hamiltonian 2j-cycle in C2j(i, j). Thus, α′ respects this 2j-cycle. We can
conclude that α′ ∈ D4j = Zn � {±1}.

Thus, in all cases, α′ = (s, t) for some s ∈ Z2j and t ∈ {±1}. Since
Z2j � {±1} is a subgroup of Aut(C2j(i, j÷�)), both (s, t) and (−s, t) are in
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Aut(C2j(i, j÷�)). Then, γ = α ◦ (−s, t) is an automorphism of C2j(i, j÷�) that
fixes every degree-4 vertex. We will show that γ ∈ B.

Let a ∈ Z2j . There are exactly two degree-2 vertices that are both adja-
cent to ua and distance �+1 from ua+j , namely v1

a and v�
a+j . Thus, to respect

adjacency among degree-2 vertices, γ must either fix or interchange the two
paths between ua and ua+j that have all interior vertices of degree 2. If it fixes
them, let ea = 0, and if it switches them, let ea = 1. Note that ea = ea+j .
Then, γ = βe0

0 βe1
1 · · · βej−1

j−1 ∈ B. Since we defined γ = α ◦ (−s, t), we have
α = γ ◦ (s, t). �

Proposition 27. If j ≥ 3, then a minimum determining set of C2j(i, j÷�) is
W = {v1

0 , v
1
1 , . . . , v

1
j−1} if � ≥ 2 and W = {u0, v

1
0 , v

1
1 , . . . , v

1
j−1} if � = 1.

Proof. First note that for each a ∈ Zn, a determining set must contain at least
one degree-2 vertex on the two paths between ua and ua+j , for otherwise βa

is a nontrivial automorphism fixing the set.
Assume � ≥ 2. The set W = {v1

0 , v
1
1 , . . . , v

1
j−1} contains exactly one

degree-2 vertex on each pair of paths between ua and ua+j . Thus, any automor-
phism fixing this set cannot include any βa, so it is of the form ιB◦(s, t) = (s, t).
Since u0 is the only degree-4 vertex adjacent to v1

0 , any (s, t) fixing W also fixes
u0, and so, s ≡ 0. By definition, (0, t) · (v1

1) = v1
t , so the assumption that (0, t)

fixes W implies t ≡ 1. The automorphism ιB ◦ (0, 1) is the identity of Aut(C2j

(i, j÷�), and so, W is determining.
Next, assume � = 1. By Lemma 25, v1

a and v1
a+j are twins for all 0 ≤ a < j.

Note that βa is an automorphism that interchanges these twin vertices and
leaves all other vertices fixed. However, no minimum twin cover is determining,
because it is fixed by the nontrivial automorphism (β0β1 · · · βj−1) ◦ (j, 1). On
the other hand, the set W = {u0, v

1
0 , v

1
1 , . . . , v

1
j−1} is determining. Since u0 ∈

W , any automorphism fixing W is of the form β ◦ (0, t), where β = βe0
0 ·

βe1
1 · · · · · β

ej−1
j−1 for some e0, e1, . . . , ej−1 ∈ {0, 1}, and t ≡ ±1. If t ≡ 1, then

(0, 1) fixes every element of W . If ea = 1 for any a ∈ {0, 1, . . . , j − 1}, then
(β ◦ (0, 1)) · (v1

a) = v1
j+a 	= v1

a, a contradiction. This would imply that β = ιB
and β ◦(0, 1) is the identity. Therefore, for β ◦(0, t) to be nontrivial, we require
t ≡ −1. Then

[β ◦ (0,−1)] · (v1
1) = β · (v1

2j−1) =

{

v1
2j−1, if e1 = 0,

v1
j−1, if e1 = 1.

Since 2j − 1 	≡ 1 and j − 1 	≡ 1 (by the assumption that j ≥ 3), there is no
β ∈ B for which β ◦ (0,−1) fixes W , and and so W is a determining set. �

Theorem 28. Assume C2j(i, j÷�) is connected.
(1) If � ≥ 2, then Det(C2j(i, j÷�)) = j, Dist(C2j(i, j÷�)) = 2, and

ρ(C2j(i, j÷�)) =

{

j + 1, � = 2 and j ∈ {2, 3, 4, 5}, or � = j = 3,

j, otherwise.

(2) If � = 1, then Det(C4(1, 2÷1)) = 4 and Dist(C4(1, 2÷1)) = 3. If j ≥ 3,
Det(C2j(i, j÷1)) = j+1, Dist(C2j(i, j÷1)) = 2, and ρ(C2j(i, j÷1)) = j+3.
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Proof. We first prove (2); assume � = 1. For each a ∈ Z2j , βa interchanges
twins v1

a and v1
a+j , and fixes all other vertices. Thus, v1

a and v1
a+j must be in

different color classes in any distinguishing coloring.
If j = 2, we have C4(1, 2÷1). The determining and distinguishing number

are discussed in Example 2. The cost of 2-distinguishing is undefined in this
case.

Now, suppose j ≥ 3. By Proposition 27, Det(C2j(i, j÷1)) = j + 1. Since
i and j are nonadjacent in C2j(i, j), ui and uj are nonadjacent in C2j(i, j÷�).
Color the vertices in R = {u0, ui, uj , v

1
0 , v

1
1 · · · , v1

j−1} red and all other vertices
blue, and assume β ◦ (s, t) ∈ B � (Z2j � {±1}) preserves these two color
classes. Among the degree-4 vertices in R, u0 and ui are adjacent to each
other but neither is adjacent to uj . Thus, [β ◦ (s, t)] · (uj) = uj . This implies
that j ≡ s + tj ≡ s + j, so s ≡ 0. Note that [β ◦ (0, t)] · (u0) = u0. Then, ui

must also be fixed by β ◦ (0, t) so ti ≡ i and so t ≡ 1. In order for β ◦ (0, 1)
to fix all of the degree-2 vertices in R, β = ιB . Thus, this is a 2-distinguishing
coloring with |R| = j + 3 red vertices and (by the assumption that j ≥ 3) at
least j + 3 blue vertices. Hence, ρ(C2j(i, j÷�)) ≤ j + 3.

To find a lower bound on cost, first note that since v1
a and v1

a+j must be
in different color classes for all a ∈ Z2j , each color class in a 2-distinguishing
coloring contains exactly j degree-2 vertices. Suppose there is just one degree-4
vertex, ua, in the minimum size color class. We know that (s, t) = (2a,−1)
fixes ua. For each b ∈ Z2j , (2a,−1) exchanges v1

b and v1
2a−b. If v1

b and v1
2a−b

have opposite colors, then let eb = 1, and otherwise, let eb = 0. By the first
sentence of the paragraph, eb+j = eb. Then, let

β =
∏

{βb | eb = 1 and 0 ≤ b < j}.

Then, β ◦ (2a,−1) preserves the color classes, so the coloring is not distin-
guishing. Suppose instead that there are exactly two degree-4 vertices, ua and
ub, in the minimum color class. Using the same process as above, we can find
β ∈ B, such that

β ◦ (a + b,−1) preserves the color classes, so the coloring is not distin-
guishing. Thus, ρ(C2j(i, j÷�)) > j + 2.

We now prove (1); assume � ≥ 2. In this case, Det(C2j(i, j÷�)) = j by
Proposition 27. To show that C2j(i, j÷�) is 2-distinguishable, color the vertices
in R = {u0, v

1
0 , v

1
1 , . . . , v

1
j−1} red and all other vertices blue and assume β◦(s, t)

preserves the color classes. Since u0 is the only degree-4 vertex in R, it is fixed
by β ◦ (s, t), so s ≡ 0. If t ≡ −1

[β ◦ (0,−1)] · (v1
1) = β · (v1

2j−1) =

{

v1
2j−1, if ej−1 = 0,

v�
j−1, if ej−1 = 1.

Since neither v1
2j−1 nor v�

j−1 is in R, no automorphism of the form β ◦ (0,−1)
preserves R. Hence, t ≡ 1. Since (s, t) = (0, 1) fixes every degree-2 vertex in
R, β = ιB , and so, β ◦ (s, t) is the identity. This is therefore a 2-distinguishing
coloring, so Dist(C2j(i, j÷�)) = 2 and ρ(C2j(i, j÷�)) ≤ j + 1.
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For a lower bound on cost, note that in any 2-distinguishing coloring, vr
a

and v�+1−r
a+j must have different colors for at least one 1 ≤ r ≤ �; otherwise, βa

preserves the color classes. Thus, each color class must have at least j vertices.
What remains is to establish when we can find a 2-distinguishing color-

ing with exactly j vertices in a color class. In any 2-distinguishing coloring,
candidates for a color class of size j in a 2-distinguishing coloring are sets of
the form

R = {vr0
a0

, vr1
a1

, . . . , vrj−1
aj−1

}.

If every such R is preserved by some nontrivial automorphism, then the cost is
j+1. Conversely, if we can find one such R preserved only by the identity, then
the cost is j. In the case � = 2 and j ∈ {2, 3, 4, 5}, one can computationally
verify the result. For � = 2, j ≥ 6, the set R = {v1

0 , v
1
1 , v

1
j+2, v

1
3 , . . . , v

1
j−1} is

only preserved by the identity; see [7] for details.
Now, assume � ≥ 3. Let R = {v2

0 , v
1
1 , . . . , v

1
j−2, v

�
j−1}. Assume β ◦ (s, t)

preserves R. The only element of R not adjacent to a degree-4 vertex is v2
0 , so

it is fixed by β ◦ (s, t), implying that s ≡ 0 and e0 = 0. Suppose that t ≡ −1.
Then, β = β1β2 · · · βj−1 and the image of R is

{v2
0 , v

1
1 , v

�
2, . . . , v

�
j−1}. (4)

For j = 2 and j > 3, the set in (4) is not R. We conclude t ≡ 1, which
in turn implies β = ιB, and so, the only automorphism preserving R is the
identity. However, for j = 3, the set (4) is R. If � ≥ 4, this problem is easily
addressed by replacing R with R′ = {v1

0 , v
2
1 , v

2
2}. However, if j = � = 3, it can

be computationally shown that the cost of 2-distinguishing cannot be j; see [7]
for details. �

8. Future Work

A natural extension of our work is to find symmetry parameters for con-
nected Cn(A) where |A| > 2. Note that if A denotes the complement of A

in {1, 2, . . . , n}, then Cn(A) = Cn(A). It is known that the determining num-
ber, distinguishing number and, if relevant, the cost of 2-distinguishing are
equal for a graph and its complement. This means that it suffices to find these
symmetry parameters for connected Cn(A), where 2 < |A| ≤ n/2.

For two-generator circulant graphs, we have found it fruitful to divide
into cases depending on the presence of twins or co-twins. The obvious gener-
alization of Theorem 12 would be that if Cn(A) is is twin-free and co-twin-free,
then Aut(Cn(A)) = Zn � H where H = Aut(Zn, A). Equivalently, by Godsil’s
result, if Cn(A) is twin-free and co-twin-free, then Zn is a normal subgroup of
Aut(Cn(A)). For Cn(A) with twins, we can use the results of Sect. 3 to com-
pute the symmetry parameters in terms of those of the twin quotient graph
C̃n(A). By vertex transitivity, if one vertex in Cn(A) has k twins, then so does
every vertex. It follows that the degree of every vertex is a multiple of k. To-
gether, these imply that the twin quotient graph is a twin-free circulant graph
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of order n/k with fewer generators. A similar approach is helpful in considering
circulant graphs with co-twins.

Another direction for future research would be to investigate the symme-
try parameters of other subdivisions of connected Cn(i, j), such as Cn(i÷�, j÷m)
when i 	= j and when i = j but � 	= m.
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