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Abstract. Partitions with initial repetitions were introduced by George
Andrews. We consider a subclass of these partitions and find Legendre
theorems associated with their respective partition functions. The re-
sults in turn provide partition-theoretic interpretations of some Rogers–
Ramanujan identities due to Lucy J. Slater.
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1. Introduction

A partition of n is a non-increasing sequence of positive integers: (λ1, λ2, λ3, . . . ,
λs) such that

∑s
i=1 λi = n. The summands λi’s are called parts and the

length of a partition is the total number of parts (counting multiplicity). In-
stead of the ‘vector notation’ , we sometimes use the multiplicity notation
(μm1

1 , μm2
2 , μm3

3 , . . . , μm�

� ) in which mi denotes the multiplicity of the part μi

and μ1 > μ2 > · · · > μ�. If mi = 1 for all i, we have a partition into distinct
parts.

The union of two partitions λ and β, denoted by λ ∪ β, is simply the
multiset union where λ and β are treated as multisets. For instance, if λ =
(93, 72, 13) and β = (74, 53, 4, 13), then λ ∪ β = (93, 76, 53, 4, 16).
For a partition λ = (μm1

1 , μm2
2 , μm3

3 , . . . , μm�

� ), the conjugate of λ is denoted by
λ′ and it is given by

λ′ =

⎛

⎝

(
r∑

i=1

mi

)μ�

,

(
�−1∑

i=1

mi

)μ�−1−μ�

, . . . ,mμ1−μ2
1

⎞

⎠ .

We shall use upper case letters for sets and lower case for counting functions.
If A(n) denotes the set of partitions of n with a certain property, then a(n)
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denotes the cardinality of A(n), i.e., a(n) = |A(n)|. An element of A(n) shall
be referred to as an a(n)-partition.

We shall use D(n) to denote the set of partitions of n into distinct parts
and so by our notation above, d(n) = |D(n)|. For instance, d(5) = 3 and the
d(5)-partitions are (5), (4, 1) and (3, 2). Let de(n) (resp. do(n)) be the number
of d(n)-partitions with even (resp. odd) length. Legendre [14] proved that

de(n) − do(n) =

{
(−1)j , if n = j(3j ± 1)/2, j ≥ 0;
0, otherwise.

(1.1)

a result that later became known as Legendre’s theorem. Note that (1.1) is also
known as the pentagonal number theorem because the numbers j(3j±1)/2, j ∈
Z are the generalized pentagonal numbers. In fact, the numbers appearing in
all our theorems in this paper are generalized polygonal numbers (or multiples
thereof).

An interesting bijective proof of (1.1) was given by Franklin (see [5]). For
related work in partition theory, see [1,8–10,15–17].
Fine [11] studied partitions without gaps. A partition without gaps whose
parts are in the set A is one in which every part is in A and every positive
integer that is less than the largest part appears as a part. For instance, for
A = {1 + 2j : j = 0, 1, 2, 3, . . .}, we can talk about partitions into odd parts
without gaps. We shall also use the terminology gap-free partitions to mean
partitions without gaps. If the set A is not explicitly stated, we assume that
A = {1, 2, 3, 4, 5, . . .}.
Motivated by Fine’s work on partitions into odd parts without gaps and an
observation that partitions without gaps are in one-to-one correspondence with
partitions into distinct parts, George Andrews [3] introduced partitions with
initial repetitions. His definition is given as follows:

Definition 1.1. A partition of n with initial k-repetitions is one in which either
(a) every part appears at most k − 1 times

or
(b) there is some part j which appears at least k times and every positive

integer less than j appears at least k times as a part.

For example, the partition (102, 7, 43, 33, 25, 14) is a partition with initial 3-
repetitions.

Among several results, in the same paper [3], Andrews was able to show
that if fe(m,n) (rep. fo(m,n)) denotes the number of partitions of n with
initial 2-repetitions with m different parts and an even (resp. odd) number of
distinct parts, then

fe(m,n) − fo(m,n) =

{
(−1)j , if m = j, n = j(j + 1)/2, j ≥ 0;
0, otherwise.

Statements of the type (1.1) are called Legendre theorems or identities of Euler
pentagonal type.
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In this paper, we find Legendre theorems associated with partitions with ini-
tial repetitions. Our first consideration is Andrews’ partitions with initial 2-
repetitions. We look at subsets of these partitions in Sect. 2 and derive an
interesting identity. In Sect. 3, we find several Legendre theorems. Conse-
quently, these theorems provide partition-theoretic interpretations of the fol-
lowing identities of Rogers–Ramanujan type due to Slater [18]:

∞∏

n=1

(1 − qn)
∞∑

n=0

qn(n+1)

(q2; q2)n
=

∞∏

n=1

(1 − q4n)(1 − q4n−1)(1 − q4n−3) (1.2)

∞∏

n=1

(1 − q2n)
∞∑

n=0

qn(2n+1)

(q; q)2n+1
=

∞∏

n=1

(1 − q4n)(1 + q4n−1)(1 + q4n−3) (1.3)

∞∏

n=1

(1 − qn)
∞∑

n=0

qn(n+1)

(q; q)n
=

∞∏

n=1

(1 − q5n)(1 − q5n−1)(1 − q5n−4) (1.4)

∞∏

n=1

(1 − q2n)
∞∑

n=0

q2n(n+1)

(q; q)2n+1
=

∞∏

n=1

(1 − q8n)(1 + q8n−1)(1 + q8n−7) (1.5)

∞∏

n=1

(1 − q4n)
∞∑

n=0

q4n2
(q; q2)2n

(q4; q4)2n

=
∞∏

n=1

(1 − q12n)(1 − q12n−5)(1 − q12n−7) (1.6)

∞∏

n=1

(1 − q4n)
∞∑

n=0

q4n(n+1)(q; q2)2n+1

(q4; q4)2n+1

=
∞∏

n=1

(1 − q12n)(1 − q12n−1)(1 − q12n−11) (1.7)

∞∏

n=1

(1 − q4n)
∞∑

n=0

q4n(n+1)(−q; q2)2n+1

(q4; q4)2n+1

=
∞∏

n=1

(1 − q12n)(1 + q12n−1)(1 + q12n−11) (1.8)

∞∏

n=1

(1 − q2n)
(1 + q2n−1)

∞∑

n=0

qn(n+2)(−q; q2)n+1(−q2; q4)n

(q2; q2)2n+1

=
∞∏

n=1

(1 − q16n)(1 − q16n−4)(1 + q16n−12) (1.9)

Throughout our discussion, we assume that |q| < 1 and some of the tools
that we use include the following identities:

∞∑

n=−∞
znqn(n+1)/2 =

∞∏

n=1

(1 − qn)(1 + zqn)(1 + z−1qn−1) (1.10)
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where z �= 0 and
∞∑

n=−∞
(−1)nqn2

=
∞∏

n=1

1 − qn

1 + qn
. (1.11)

For reference, see Theorem 11 of [6] and Corollary 2.10 of [5].

2. On Andrews’ Partitions with 2-Initial Repetitions

We first record the following result.

Lemma 2.1. For |q| < 1, the following factorizations hold:
∞∑

n=1

q2n2−n

(q; q)2n−1
= (−q; q)∞

∞∑

n=1

(−1)n+1qn2
, (2.1)

∞∑

n=0

q2n2+n

(q; q)2n
= (−q; q)∞

∞∑

n=0

(−1)nqn2
. (2.2)

Proof. Since d(n) = de(n) − do(n) + 2do(n), we have
∞∑

n=0

d(n)qn =
∞∑

n=0

(de(n) − do(n))qn + 2
∞∑

n=0

do(n)qn.

2
∞∑

n=0

do(n)qn = (−q; q)∞ −
∞∑

n=0

(de(n) − do(n))qn

= (−q; q)∞ − (q; q)∞

= (−q; q)∞

(

1 − (q; q)∞
(−q; q)∞

)

= (−q; q)∞

(

1 −
∞∑

n=−∞
(−1)nqn2

)

(by (1.11))

= 2(−q; q)∞
∞∑

n=1

(−1)n+1qn2
.

Thus, it is not difficult to see that
∞∑

n=0

do(n)qn =
∞∑

n=1

qn(2n−1)

(q; q)2n−1

from which (2.1) follows. For (2.2), we have
∞∑

n=0

de(n)qn =
∞∑

n=0

d(n)qn −
∞∑

n=0

do(n)qn

= (−q; q)∞ + (−q; q)∞
∞∑

n=1

(−1)nqn2
(by (2.1))

= (−q; q)∞
∞∑

n=0

(−1)nqn2
.
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It can easily be shown that

∞∑

n=0

de(n)qn =
∞∑

n=0

qn(2n+1)

(q; q)2n

and so (2.2) follows. �

We prove the following theorem.

Theorem 2.1. Let be(n) be the number of partitions of n with initial 2-repetitions
in which either all parts are distinct or the largest repeated part is even. Simi-
larly, let bo(n) denote the number of partitions of n with initial 2-repetitions in
which at least one part is repeated and the largest repeated part is odd. Then,

be(n) − bo(n) =

{
1, if n = j(j+1)

2 ;
0 otherwise.

Proof. Note that

∞∑

n=0

be(n)qn =
∞∏

j=1

(1 + qj) +
∞∑

m=1

q2(1+2+3+···+2m)

(q; q)2m

∞∏

j=2m+1

(1 + qj)

=
∞∑

m=0

q2(1+2+3+···+2m)

(q; q)2m

∞∏

j=2m+1

(1 + qj)

=
∞∑

m=0

q2m(2m+1)

(q; q)2m

∞∏

j=2m+1

(1 − q2j)
(1 − qj)

=
∞∑

m=0

q2m(2m+1)

(q; q)2m(q2m+1; q)∞

∞∏

j=2m+1

(1 − q2j)

=
1

(q; q)∞

∞∑

m=0

q2m(2m+1)

∏∞
j=1(1 − q2j)

∏2m
j=1(1 − q2j)

=
(q2; q2)∞
(q; q)∞

∞∑

m=0

q2m(2m+1)

(q2; q2)2m

and
∞∑

n=0

bo(n)qn =
∞∑

m=1

q2(1+2+3+···+2m−1)
(q; q)2m−1

∞∏

j=2m

(1 + qj)

=
∞∑

m=1

q2(1+2+3+···+2m−1)

(q; q)2m−1

∞∏

j=2m

1 − q2j

1 − qj

=
∞∑

m=1

q2m(2m−1)

(q; q)2m−1(q2m; q)∞

∞∏

j=2m

(1 − q2j)
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=
1

(q; q)∞

∞∑

m=1

q2m(2m−1)

∏∞
j=1(1 − q2j)

∏2m−1
j=1 (1 − q2j)

=
(q2; q2)∞
(q; q)∞

∞∑

m=1

q2m(2m−1)

(q2; q2)2m−1
.

Thus
∞∑

n=0

(be(n) − bo(n))qn

=
(q2; q2)∞
(q; q)∞

( ∞∑

n=0

q2n(2n+1)

(q2; q2)2n
−

∞∑

n=1

q2n(2n−1)

(q2; q2)2n−1

)

=
(q4; q4)∞
(q; q)∞

( ∞∑

n=0

(−1)nq2n2 −
∞∑

n=1

(−1)n+1q2n2

)

(
by (2.1) and (2.2) withqreplaced byq2

)

=
(q4; q4)∞
(q; q)∞

( ∞∑

n=−∞
(−1)nq2n2

)

=
(q4; q4)∞
(q; q)∞

(q2; q2)∞
(−q2; q2)∞

(by (1.11) withqreplaced byq2)

=
(q4; q4)∞(−q; q)∞

(−q2; q2)∞
= (q4; q4)∞(−q; q4)∞(−q3; q4)∞

=
∞∑

n=−∞
q2n2+n (by (1.10) withqreplaced byq4andzreplaced byq−1)

=
∞∑

n=0

qn(n+1)/2.

For the last equality, see Equation (1.4.9) of [12]. �

3. Combinatorial Proof of Theorem 2.1

Let B(n) be the set of partitions of n with initial 2-repetitions. If λ ∈ B(n),
write λ = α∪β with α a distinct partition and β a partition whose parts have
even multiplicity. Then, β is gap-free and β′ (the conjugate of β) is a distinct
partition with even parts. The goal is to prove that

|{λ = α ∪ β ∈ B(n) : �(β′) even}| − |{λ = α ∪ β ∈ B(n) : �(β′) odd}|

=

{
1, if n = j(j+1)

2

0 otherwise.

We further write α = (αo, αe), where αo (respectively αe) consists of the odd
(respectively even) parts of α. Since (αe, β) is a pair of distinct partitions with
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even parts, by doubling all parts in partitions in the proof of [7, Proposition
2], one proves that

|{λ=αo∪αe∪β ∈ B(n) : �(β′) even}|−|{λ = αo ∪ αe ∪ β ∈ B(n) : �(β′) odd}|
= |{λ = αo ∪ γ ∈ C(n) : �(γ) even}| − |{λ = αo ∪ γ ∈ C(n) : �(γ) odd}|,

where C(n) is the set of partitions μ = αo ∪ γ of n with αo a partition into
distinct odd pats and γ a partition into parts divisible by 4.

This shows combinatorially that
∞∑

n=0

(be(n) − bo(n))qn = (q4; q4)∞(−q; q2)∞ = (q4; q4)∞(−q; q4)∞(−q3; q4)∞.

To finish the combinatorial proof, one uses a combinatorial proof of the Jacobi
triple product. For example, one can use the proof in [13]. Note that [13] gives
a combinatorial proof for

(q4; q4)∞(q; q4)∞(q3; q4)∞ =
∞∑

n=0

(−1)TnqTn ,

where Tn = n(n+1)/2, but the parity of the number of odd parts in a partition
is determined by the parity of the size.

4. Related Partition Functions

In this section, we explore various partition functions for partitions with ini-
tial repetitions. We give several Legendre theorems and as a result, partition-
theoretic interpretation of equations (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), (1.8)
and (1.9) are established.

Let c1(n) denote the number of partitions of n in which either
(a) all parts are distinct, the only odd part that may appear is 1 and even

parts are at least 8 and divisible by 4 or
(b) the largest repeated even part 2j appears exactly 4 times, all positive

even integers < 2j appear exactly 4 times, even parts > 2j are at least
8j + 8, distinct and divisible by 4, odd parts are distinct and at most
4j + 1.

Let c1,e(n) (resp. c1,o(n)) denote the number of c1(n)-partitions in which the
number of distinct even parts is even ( resp. odd). Then, we have

Theorem 4.1. For all n ≥ 0,

c1,e(n) − c1,o(n) =

{
1, ifn = j(6j + 5), j ∈ Z;
0, otherwise.

Proof. Since
∞∑

n=0

c1(n)qn =
∞∑

n=0

q4(2+4+6+···+2n)(−q; q2)2n+1(−q8n+8; q4)∞,
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we must have
∞∑

n=0

(c1,e(n) − c1,o(n))qn =
∞∑

n=0

q4(2+4+6+···+2n)(−q; q2)2n+1(q8n+8; q4)∞

=
∞∑

n=0

q4n(n+1)(−q; q2)2n+1(q4(2n+2); q4)∞

=
∞∑

n=0

q4n(n+1)(−q; q2)2n+1
(q4; q4)∞

(q4; q4)2n+1

= (q4; q4)∞
∞∑

n=0

(−q; q2)2n+1
q4n(n+1)

(q4; q4)2n+1

=
∞∏

n=1

(1 + q12n−11)(1 + q12n−1)(1 − q12n) (by (1.8))

=
∞∑

n=−∞
qn(6n+5) (by (1.10)).

�
Let c2(n) be the number of partitions of n in which either
(a) even parts are distinct and 1 is the only odd part that may appear or
(b) there exists j ≥ 1 such that an even part 2j appears twice, all positive

integers < 2j appear twice, any even part > 2j is distinct and the largest
odd part is at most 2j + 1.
Furthermore, let c2,e(n) (resp. c2,o(n)) be the number of c2(n)-partitions

with an even (resp. odd) number of distinct even parts. Then, we have the
following.

Theorem 4.2. For all n ≥ 0,

c2,e(n) − c2,o(n) =

{
1, n = 4j2 + 3j, j ∈ Z;
0, otherwise.

Since
∞∑

n=0

c2(n)qn =
(−q2; q2)∞

1 − q
+

∞∑

n=1

q2+2+4+4+6+6+···+2n+2n

(1 − q)(1 − q3) . . . (1 − q2n+1)
(−q2n+2; q2)∞

=
∞∑

n=0

q2+2+4+4+6+6+···+2n+2n

(1 − q)(1 − q3) . . . (1 − q2n+1)
(−q2n+2; q2)∞,

we have
∞∑

n=0

(c2,e(n) − c2,o(n))qn =
∞∑

n=0

q2n(n+1)(q2n+2; q2)∞
(q; q2)n+1

=
∞∑

n=0

q2n(n+1)(q2; q2)∞
(q; q2)n+1(q2; q2)n
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= (q2; q2)∞
∞∑

n=0

q2n(n+1)

(q; q2)n+1(q2; q2)n

= (q2; q2)∞
∞∑

n=0

q2n(n+1)

(q; q)2n+1
(by (1.5))

=
∞∏

n=1

(
1 + q8n−1

) (
1 + q8n−7

) (
1 − q8n

)

=
∞∑

n=−∞
q4n2+3n.

Example 4.1. Consider n = 10.

The c2(10)-partitions are:

(10), (8, 2), (8, 12), (6, 4), (6, 22), (6, 2, 12), (6, 14),
(4, 22, 12), (4, 2, 14), (4, 16), (32, 22), (3, 22, 13),
(22, 16), (2, 18), (110)

From the above, note that c2,e(10)-partitions are:

(8, 2), (6, 4), (6, 2, 12), (4, 2, 14), (32, 22), (3, 22, 13), (22, 16), (110)

and c2,o(10)-partitions are: (10), (8, 12), (6, 22), (6, 14), (4, 22, 12), (4, 16), (2, 18).
Thus,

c2,e(10) − c2,o(10) = 1.

This agrees with the theorem because the only integer solution to 4j2+3j = 10
is j = −2

Let c3(n) denote the number of partitions of n in which the largest odd part
2j + 1(j ≥ 0) occurs at least j times, even parts are distinct and greater than
2j + 1.

Note that c3(n)-partitions are a subset of the set of partitions of n with
odd parts below even parts. Partitions with parts separated by parity have
received quite a bit of attention lately, see [2,4].
Let c3,e(n) (resp. c3,o(n)) be the number of c3(n)-partitions with an even (resp.
odd) number of even parts. Then,

Theorem 4.3. For all n ≥ 0,

c3,e(n) − c3,o(n) =

{
1, n = 2j2 + j, j ∈ Z;
0, otherwise.

Proof. We have

∞∑

n=0

c3(n)q
n =

∞∑

n=0

q

n times
︷ ︸︸ ︷
(2n+ 1) + (2n+ 1) + (2n+ 1) + · · · + (2n+ 1)

(1 − q)(1 − q3) . . . (1 − q2n+1)
(−q2n+2; q2)∞
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and thus,
∞∑

n=0

(c3,e(n) − c3,o(n))qn

=
∞∑

n=0

q

n times
︷ ︸︸ ︷
(2n + 1) + (2n + 1) + (2n + 1) + · · · + (2n + 1)

(1 − q)(1 − q3) . . . (1 − q2n+1)
(q2n+2; q2)∞

=
∞∑

n=0

qn(2n+1)(q2n+2; q2)∞
(q; q2)n+1

=
∞∑

n=0

qn(2n+1)(q2; q2)∞
(q; q2)n+1(q2; q2)n

= (q2; q2)∞
∞∑

n=0

qn(2n+1)

(q; q)2n+1

=
∞∏

n=1

(1 + q4n−1)(1 + q4n−3)(1 − q4n) (by (1.3))

=
∞∑

n=−∞
q2n2+n.

�

Let c4(n) be the number of partitions of n in which either

(a) all parts are distinct or
(b) the largest repeated part j appears twice, all positive integers less than

j appear twice. Note that parts greater than j are distinct.

Similar to the previous formulations, let c4,e(n) (resp.c4,o(n)) be the number
of c4(n)-partitions with an even (resp. odd) number of distinct parts.

Theorem 4.4. For all n ≥ 0,

c4,e(n) − c4,o(n) =

{
(−1)j , n = (5j2 + 3j)/2, j ∈ Z;
0, otherwise.

Proof. Clearly,
∞∑

n=0

c4(n)qn =
∞∑

n=0

q1+1+2+2+3+3+···+n+n(−qn+1; q)∞ =
∞∑

n=0

qn(n+1)(−qn+1; q)∞

so that
∞∑

n=0

(c4,e(n) − c4,o(n))qn =
∞∑

n=0

qn(n+1)(qn+1; q)∞

=
∞∑

n=0

qn(n+1)(q; q)∞
(q; q)n
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=
∞∏

n=1

(
1 − q5n−1

) (
1 − q5n−4

) (
1 − q5n

)
(by (1.4))

=
∞∑

n=−∞
(−1)nq

5n2+3n
2 .

�

Example 4.2. Consider n = 7.

The c4(7)-partitions are:

(7), (6, 1), (5, 2), (5, 12), (4, 3), (4, 2, 1), (3, 2, 12).

c4,e(7)-partitions are:

(6, 1), (5, 2), (4, 3), (3, 2, 12)

and the c4,o(7)-partitions are:

(7), (5, 12), (4, 2, 1).

Thus, c4,e(7) − c4,o(7) = 1. Indeed, this verifies the theorem as 7 = [5(−2)2 +
3(−2)]/2. Note that j = −2 is the only integer solution to the equation 7 =
(5j2 + 3j)/2.
Let c5(n) be the number of partitions of n in which either
(a) all parts are distinct or
(b) there exists j ≥ 1 such that all odd positive integers ≤ j appear twice

or thrice and other odd parts are distinct, all even positive integers ≤ j
appear twice, even parts > 2j are distinct and no even integer in the
interval (j, 2j] appears.

Let c5,e(n) (resp. c5,o(n)) denote the number of c5(n)-partitions with an even
(resp. odd) number of distinct even parts. Then,

∞∑

n=0

c5(n)qn =
∞∑

n=0

q1+1+2+2+···n+n(−q2n+2; q2)∞(−q; q2)∞

=
∞∑

n=0

qn(n+1)(−q2n+2; q2)∞(−q; q2)∞

and
∞∑

n=0

(c5,e(n) − c5,o(n))qn =
∞∑

n=0

qn(n+1)(q2n+2; q2)∞(−q; q2)∞.

Observe that
∞∑

n=0

(c5,e(n) − c5,o(n))(−q)n =
∞∑

n=0

(−q)n(n+1)((−q)2n+2; q2)∞(−(−q); (−q)2)∞

= (q; q2)∞
∞∑

n=0

qn(n+1)(q2n+2; q2)∞
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= (q; q2)∞
∞∑

n=0

qn(n+1)(q2; q2)∞
(q2; q2)n

= (q; q)∞
∞∑

n=0

qn(n+1)

(q2; q2)n

=
∞∏

n=1

(
1−q4n−1

) (
1−q4n−3

) (
1−q4n

)
(by (1.2))

=
∞∑

n=−∞
(−1)nq2n2+n.

We have the following result.

Theorem 4.5. For all n ≥ 0,

c5,e(n) − c5,o(n) =

{
1, n = 2j2 + j, j ∈ Z;
0, otherwise.

Let c6(n) be the number of partitions of n in which either

(a) all parts are even, distinct and divisible by 4 or
(b) the largest repeated part is 2j − 1 (for some j ≥ 1) and appears exactly

4 times or 5 times, all positive odd integers < 2j − 1 appear 4 times or 5
times, any other odd part is distinct and is at most 4j − 1 in part size,
even parts are ≥ 8j + 4, distinct and divisible by 4.

Let c6,e(n) (resp. c6,o(n)) denote the number of c6(n)-partitions with an even
(resp. odd) number of distinct even parts. Then,

∞∑

n=0

c6(n)qn =
∞∑

n=0

q4(1+3+5+···+2n−1)(−q8n+4; q4)∞(−q; q2)2n

so that
∞∑

n=0

(c6,e(n) − c6,o(n))qn =
∞∑

n=0

q4n2
(q8n+4; q4)∞(−q; q2)2n

which implies
∞∑

n=0

(−1)n(c6,e(n) − c6,o(n))qn

=
∞∑

n=0

q4n2
(q8n+4; q4)∞(q; q2)2n

=
∞∑

n=0

q4n2
(q4; q4)∞(q; q2)2n

(q4; q4)2n

= (q4; q4)∞
∞∑

n=0

q4n2
(q; q2)2n

(q4; q4)2n
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=
∞∏

n=1

(
1 − q12n−5

) (
1 − q12n−7

) (
1 − q12n

)
(by (1.6))

=
∞∑

n=−∞
(−1)nq6n2+n.

Hence, we have

Theorem 4.6. For all n ≥ 0,

c6,e(n) − c6,o(n) =

{
1, n = 6j2 + j, j ∈ Z;
0, otherwise.

Let c7(n) denote the number of partitions of n in which either

(a) the smallest odd part, if it appears, is at least 3 and even parts are distinct
and at least 4 or

(b) there exists j ≥ 1 such that j appears three or four times if j ≡ 2 (mod 4)
and appears exactly three times if j �≡ 2 (mod 4), all positive integers
i < j appear exactly twice or thrice if i ≡ 2 (mod 4) and appear exactly
twice if i �≡ 2 (mod 4), an even part greater than j but less than 4j is
distinct and congruent to 2 (mod 4), any other even part is ≥ 4j +4 and
distinct, odd parts > j are at least 2j + 3.

Let c7,e(n) (resp. c7,o(n)) be the number of c7(n)-partitions in which the
number of distinct even parts if (a) holds is even (resp. odd) or the number of
distinct even parts that are ≥ 4j +4 (where j is the largest repeated part with
the property that every integer less than j is repeated) is even (resp. odd) if
(b) holds. Clearly,

∞∑

n=0

c7(n)qn =
(−q4; q2)∞
(q3; q2)∞

+
∞∑

n=1

q1+1+2+2+···+n−1+n−1+n+n+n(−q2; q4)n(−q4n+4; q2)∞
(q2n+3; q2)∞

=
∞∑

n=0

qn(n+2)(−q2; q4)n(−q4n+4; q2)∞
(q2n+3; q2)∞

and thus

∞∑

n=0

(c7,e(n) − c7,o(n))q
n =

∞∑

n=0

qn(n+2)(−q2; q4)n(q4n+4; q2)∞
(q2n+3; q2)∞

=
∞∑

n=0

qn(n+2)(−q2; q4)n(q; q2)n+1(q2; q2)∞
(q; q2)∞(q2; q2)2n+1

=
(q2; q2)∞
(q; q2)∞

∞∑

n=0

qn(n+2)(−q2; q4)n(q; q2)n+1

(q2; q2)2n+1



D. Nyirenda, B. Mugwangwavari

=

∞∏

n=1

(
1 − q16n−4

) (
1 − q16n−12

) (
1 − q16n

)
(by (1.9))

=

∞∑

n=−∞
(−1)nq8n

2+4n.

This leads to the theorem below.

Theorem 4.7. For all n ≥ 0,

c7,e(n) − c7,o(n) =

{
(−1)j , n = 8j2 + 4j, j ∈ Z;
0, otherwise.

From the theorem, it can be observed that, if n �= 8j2 + 4j for all j, then
c7,e(n) − c7,o(n) = 0 so that

c7(n) ≡ c7,e(n) − c7,o(n) ≡ 0 (mod 2).

We record this result below.

Corollary 4.1. If n is not four times a triangular number, then c7(n) ≡ 0
(mod 2).

Let c8(n) be the number of partitions of n in which either

(a) even parts are distinct, greater than 6 and divisible by 4 and the only
odd part that may appear is 1 and is distinct. or

(b) the largest repeated part is 2j (for some j ≥ 1) and appears exactly 4
times, all positive even integers < 2j appear four times, any even part
> 2j is at least 8j + 8, distinct and divisible by 4, odd parts are distinct
and are at most 4j + 1 in part size.

Let c8,e(n) (resp. c8,o(n)) denote the number of c8(n)-partitions with an
even (resp. odd) number of distinct even parts. Then,

∞∑

n=0

c8(n)qn =
∞∑

n=0

q4(2+4+6+···+2n)(−q8n+8; q4)∞(−q; q2)2n+1

so that
∞∑

n=0

(c8,e(n) − c8,o(n))qn =
∞∑

n=0

q4n(n+1)(q8n+8; q4)∞(−q; q2)2n+1

which implies
∞∑

n=0

(−1)n(c8,e(n) − c8,o(n))qn

=
∞∑

n=0

q4n(n+1)(q8n+8; q4)∞(q; q2)2n+1

=
∞∑

n=0

q4n(n+1)(q4; q4)∞(q; q2)2n+1

(q4; q4)2n+1
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= (q4; q4)∞
∞∑

n=0

q4n(n+1)(q; q2)2n+1

(q4; q4)2n+1

=
∞∏

n=1

(
1 − q12n−1

) (
1 − q12n−11

) (
1 − q12n

)
(by (1.7))

=
∞∑

n=−∞
(−1)nq6n2+5n.

Hence, we have

Theorem 4.8. For all n ≥ 0,

c8,e(n) − c8,o(n) =

{
1, n = 6j2 + 5j, j ∈ Z;
0, otherwise.

Example 4.3. Consider n = 39.

The c8(39)-partitions are

(28, 3, 24), (9, 5, 44, 24, 1), (7, 5, 44, 3, 24).

c8,e(39)-partitions are

(9, 5, 44, 24, 1), (7, 5, 44, 3, 24)

and the c8,o(39)-partitions are

(28, 3, 24).

Thus, c8,e(39)−c8,o(39) = 1. Indeed, this verifies the theorem as 39 = 6(−3)2+
5(−3) and 39 − 3 = 36. Note that j = −3 is the only integer solution to the
equation 6j2 + 5j = 39.
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