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On Graphs Embeddable in a Layer of a
Hypercube and Their Extremal Numbers

Maria Axenovich , Ryan R. Martin and Christian Winter

Abstract. A graph is cubical if it is a subgraph of a hypercube. For a
cubical graph H and a hypercube Qn, ex(Qn, H) is the largest number
of edges in an H-free subgraph of Qn. If ex(Qn, H) is at least a positive
proportion of the number of edges in Qn, then H is said to have positive
Turán density in the hypercube; otherwise it has zero Turán density.
Determining ex(Qn, H) and even identifying whether H has positive or
zero Turán density remains a widely open question for general H. In
this paper we focus on layered graphs, i.e., graphs that are contained in
an edge layer of some hypercube. Graphs H that are not layered have
positive Turán density because one can form an H-free subgraph of Qn

consisting of edges of every other layer. For example, a 4-cycle is not
layered and has positive Turán density. However, in general, it is not
obvious what properties layered graphs have. We give a characterization
of layered graphs in terms of edge-colorings. We show that most non-
trivial subdivisions have zero Turán density, extending known results on
zero Turán density of even cycles of length at least 12 and of length
8. However, we prove that there are cubical graphs of girth 8 that are
not layered and thus having positive Turán density. The cycle of length
10 remains the only cycle for which it is not known whether its Turán
density is positive or not. We prove that ex(Qn, C10) = Ω(n2n/ loga n),
for a constant a, showing that the extremal number for a 10-cycle behaves
differently from any other cycle of zero Turán density.

1. Introduction

The hypercube Qn, where n is a natural number, is a graph on a vertex set
{A : A ⊆ [n]} and an edge set consisting of all pairs {A,B}, where A ⊆ B
and |A| = |B| − 1. Here, [n] = {1, . . . , n}. We often identify vertices of Qn

with binary vectors that are indicator vectors of respective sets. If a graph is
a subgraph of Qn, for some n, it is called cubical. We denote the number of
vertices and the number of edges in a graph H by |H| and ||H||, respectively.
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For a graph H, let the extremal number of H in Qn, denoted ex(Qn,H),
be the largest number of edges in a subgraph G of Qn such that there is
no subgraph of G isomorphic to H. A graph H is said to have zero Turán
density in the hypercube if ex(Qn,H) = o(||Qn||). Otherwise, we say that H
has positive Turán density in the hypercube. Note that using a standard double
counting argument, the sequence ex(Qn,H)/||Qn|| is non-increasing, thus the
above density notions are well-defined. When clear from context, we simply say
Turán density instead of Turán density in a hypercube. The behavior of the
function ex(Qn,H) is not well understood in general and it is not even known
what graphs have positive or zero Turán density. Currently, the only known
cubical graphs of positive Turán density are those containing a 4- or a 6-cycle
as a subgraph. Conlon [19] observed a connection between extremal numbers in
the hypercube and classical extremal numbers for uniform hypergraphs. That
permitted the determination of a large class of graphs with zero Turán density.
For more results on extremal numbers in the hypercube, see [1,2,5,8,9,42,44].

Another class of graphs that are of particular importance as a superset of
all graphs of zero Turán density corresponds to so-called layered graphs. The
kth vertex layer, denoted Vk, of Qn is

(
[n]
k

)
, the set of all vertices that are k-

element subsets of [n]. The kth edge layer of Qn is the subgraph of Qn induced
by the kth and (k − 1)st vertex layers. For other standard graph theoretic
notions, we refer the reader to Diestel [21]. A cubical graph is called layered if
it is a subgraph of some edge layer of Qn, for some n. Note for example, that
C4 is not layered and C2� is layered for any � ≥ 3. It is an easy observation
that cubical graphs that are not layered have positive Turán density. Indeed,
a subgraph of Qn that is a union of its even (or odd) edge layers contains only
layered connected graphs as subgraphs.

In this paper, we focus on layered graphs. First, we give a characterization
of layered graphs in terms of edge-colorings. We say that an edge-coloring of a
graph is nice if for any cycle, each color appears an even number of times and
in any path with at least one edge there is a color that appears odd number of
times. We say that an edge coloring of a graph G is very nice if it is nice and
for any two edges of the same color, any path between them that has no edges
of that color has an even length. We extend a result by Havel and Moravek
[32] to layered graphs.

Theorem 1. A graph is layered if and only if it has a very nice edge-coloring.

Theorem 1 shows in particular that graphs with no very nice coloring
have positive Turán density. A natural question to consider is whether there
are sparse cubical graphs that have positive Turán density. We show that
most subdivisions have zero Turán density, but there are graphs of girth at
least eight that have positive Turán density. Let Kt and Kt,t be complete and
balanced complete bipartite graphs on t and 2t vertices, respectively. For a
graph G and a positive integer k, let Tk(G) be a k-subdivision of G, i.e., a
graph obtained from G by subdividing each edge with k new vertices. Since
an even subdivision of an odd cycle is an odd cycle, that is not cubical, we
consider even subdivisions of bipartite graphs only.
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Theorem 2. Let k and t be positive integers. Then T2k+1(Kt) and T2k(Kt,t)
are layered. Moreover, ex(Qn, T2k+1(Kt)) = O(nb2n) = o(||Qn||), where b =
1 − (k + 1)−1t−k. If, in addition, k ≥ 4 is even, then ex(Qn, T2k(Kt,t)) =
O(nb′

2n) = o(||Qn||), where b′ = 1 − (2t3 + 4t)−1k−t2 .

Theorem 3. There is a cubical graph of girth 8 that is not layered.

A lot of research was done on even cycles and their extremal numbers
in a hypercube. Here, a 2�-cycle is denoted C2�. The fact that ex(Qn, C4) =
Ω(||Qn||) and ex(Qn, C6) = Ω(||Qn||) was shown by Chung [16], Conder [18],
and Brass et al. [14]. Chung [16] showed that ex(Qn, C4k) = o(||Qn||), for
any integer k ≥ 2. Füredi and Özkahya [26,27] extended Chung’s results
by showing that ex(Qn, C4k+2) = o(||Qn||), for any integer k ≥ 3. Thus
C2� has zero Turán density for � = 4 and � ≥ 6. Considering more spe-
cific upper bounds for cycles with zero Turán density, Conlon [19] proved
for k ≥ 2 that ex(Qn, C4k) ≤ ckn−1/2+1/(2k)||Qn||. Improving on results
of Füredi and Özkahya [26,27], Axenovich [7] showed that for an odd inte-
ger � ≥ 7, ex(Qn, C2�) = O

(
n5/6+1/(3(�−3))2n

)
. Tomon [45] independently

proved a better upper bound for large �: ex(Qn, C2�) = O(n2/3+δ2n), for some
δ = O((log �)/�).

It remains unknown whether C10 has zero or positive Turán density.
While we still could not answer this question we improve on the known lower
bounds of ex(Qn, C10):

Theorem 4. ex(Qn, C10) = Ω
(

n
loga n2n

)
, where a = log2 3.

The rest of the paper is structured as follows. We prove Theorem 1 as an
immediate corollary of Theorem 6 in Sect. 2. In Sect. 3, we address subdivisions
and prove Theorems 10 and 11, that imply Theorem 2. Theorem 3 is proved
in Sect. 4 and Theorem 4 is proved in Sect. 5. We give some density properties
of layered graphs in Sect. 6. Section 7 contains concluding remarks and open
questions. In Appendix A we present an alternative proof for an upper bound
on extremal numbers for graphs of zero Turán density. In Appendix B we
provide a symmetric layered embedding of a hypercube.

After this paper was accepted for publication, two of the questions from
this paper were answered. First, it was shown by Grebennikov and Marciano
[29] that C10 has positive Turán density in the hypercube using a construction
for daisy-free hypergraphs by Ellis, Ivan, and Leader [22]. Second, Behague,
Leader, Morrison, and Williams [10] showed that there is a cubical graph of
arbitrarily high girth that is not layered.

2. Characterization of Layered Graphs in Terms of Very Nice
Colorings, Proof of Theorem 1

Recall that an edge-coloring of a graph is nice if, for any cycle, each color
appears an even number of times and in any path with at least one edge there
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is a color that appears an odd number of times. An edge-coloring of a graph
G is very nice if it is nice and, for any two edges of the same color, any path
between them that has no edges of that color has an even length.

Theorem 5. (Havel and Moravek [32]) A graph is cubical if and only if there
is a nice edge-coloring of the graph.

Here, we extend this characterization to layered graphs. Recall that the
distance between two edges in a connected graph is the length of a shortest
path between some endpoint of one edge and some endpoint of the other edge.
Similarly, the distance between a vertex v and a set of edges S is the smallest
distance between v and an edge from S. For an edge of Qn, let its direction
be the coordinate at which its endpoints differ. We shall also represent an
edge AB, A ⊆ B in Qn by a sequence of length n, where the ith position is
occupied by 0 if i /∈ B, by 1 if i ∈ A and by � if i ∈ B \ A. We call this a
star representation and refer to a position occupied by a � as a star position,
that in turn corresponds to the direction of the edge. A color class in an edge-
coloring of a graph is a set of all edges having the same color. The following
theorem immediately implies Theorem 1. The following theorem contains some
additional properties of very nice colorings that are of independent interest.

Theorem 6. A graph is layered if and only if it has a very nice edge-coloring.
Moreover, if a graph is embedded in a layer and its edges are assigned colors
corresponding to directions of the edges, then this coloring is very nice. In
addition, any color class in a very nice coloring of a connected graph is a cut.

Proof. One direction of the proof is easy. Consider a connected graph G with
all edges in one layer of Qn. Let c : E(G) → [n] be a coloring such that c(e) is
equal to the direction of e. Then it is easy to see and was verified in [32], that
c is nice. Consider two edges e and e′ of the same color and a path between
them not using that color. It is clear that the path must be of even length.

For the other direction, consider a graph G with a very nice coloring c.
We can assume that it is connected. Fix a vertex v of G. Consider all color
classes with even distance to v and let C+ be the set of colors on these color
classes. Let C− be the set of all other colors used on G. We shall consider
an embedding f of G that puts an edge in a direction corresponding to its
color. Assume that [n] = C+ ∪ C−. Formally, let f : V (G) → V (Qn) be
defined as follows. Let v be mapped to a vertex f(v) = C− in the kth layer,
Vk, where k = |C−|. Assume that a vertex u has been mapped and u′ is a
neighbor of u. We define f(u′) to be the vertex in Qn such that f(u) and
f(u′) are adjacent and the direction of f(u)f(u′) is equal to c(uu′). I.e., either
f(u) \ f(u′) = c(uu′) or f(u′)\f(u) = c(uu′). Let G′ be a graph resulted from
this map, i.e., V (G′) = {f(u) : u ∈ V (G)}, E(G′) = {f(u)f(u′) : uu′ ∈ E(G)}.

First of all, we have that the function f is indeed an injective map into
Qn preserving adjacencies exactly as shown in [32]. For completeness we repeat
the argument here. The function f is well-defined since for any v, u-path in G
and any color, the number of edges of that color has the same parity among
all such paths, since the coloring is nice. Indeed, otherwise in the union of two
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paths with different parity of the number of edges of say color j, we would find
a cycle with an odd number of edges colored j. If f(u) = f(u′) for distinct
vertices u and u′, consider a closed walk formed by taking a union of f(v), f(u)-
and f(v), f(u′)-paths in G′. A smallest cycle C ′ in this walk containing f(u)
corresponds to a u, u′-path P ′ in G. Let W be the multiset of colors used by c
on P ′. By definition, W corresponds to the multiset of directions of the edges
of C ′, so each direction in W appears an even number of times. However, the
niceness of c implies that some color appears an odd number of times in W ,
a contradiction. So, the map is well-defined, injective, and it clearly preserves
adjacencies.

Now, we shall show that f maps the vertex set of G into a subset of
Vk ∪ Vk+1. Consider an arbitrary vertex u and a v, u-path P . We claim by
induction on the length of P that V (P ) is mapped to a subset of Vk ∪ Vk+1.
The basis for induction is trivial since f(v) ∈ Vk. Let P have length at least
one, let u′ be the neighbor of u in P , and P ′ = P − u. Then by induction
V (P ′) is mapped onto a subset of Vk ∪ Vk+1. Let j = c(uu′).

Let x0 be the number of edges between v and the first edge of color j on
P , and let x1 be the number of edges of color j in P ′. Recall that the number
of edges between consecutive edges of color j on any path is even. Thus we
have that ||P ′|| is even if and only if x0 + x1 is even. Furthermore, recall that
x0 is even if and only if j ∈ C+, or equivalently j �∈ f(v). This implies that
j �∈ f(u′) if and only if x0 + x1 is even. Therefore, if x0 + x1 is even, we
have that ||P ′|| is even, thus f(u′) ∈ Vk and additionally j �∈ f(u′). Then by
the rules of embedding f(u) = f(u′) ∪ {j} ∈ Vk+1. If x0 + x1 is odd, then
||P ′|| is odd, so f(u′) ∈ Vk+1, and j ∈ f(u′). Then by the rules of embedding
f(u) = f(u′) − {j} ∈ Vk.

To see that any color class in a very nice coloring of a connected graph
G is a cut, assume the opposite, i.e., assume that removing the edges of some
color, i, results in a connected graph G′. Then, the endpoints of some edge e
of color i are connected by a path in G′. This path, together with the edge e
is a cycle with color i represented on exactly one edge, thus contradicting the
fact that the coloring is nice. �

3. Subdivisions—Layered Embeddings and Extremal Numbers,
Proof of Theorem 2

We shall need some preliminary definitions and known results to prove Theo-
rem 2.

3.1. Partite Representations, Extremal Numbers for Hypergraphs, and Ex-
tremal Numbers in a Hypercube

We say that a subgraph H of Qn has a k-partite representation H if H is
isomorphic to a graph H ′ with a vertex set contained in

(
[n]
k

)∪(
[n]

k−1

)
such that

V (H ′)∩(
[n]
k

)
is an edge set of a k-partite k-uniform hypergraph. We say that a

graph has a partite representation if it has a k-partite representation for some k.
Moreover, we call the map that brings V (H) to V (H ′), a k-partite embedding of
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H. For example, if H is an 8-cycle, it has a 2-partite representation with edges
12, 23, 34, 14 corresponding to an 8-cycle with vertices 1, 12, 2, 23, 3, 34, 4, 14, 1,
in order. For a k-uniform hypergraph H, exk(t,H) denotes the largest number
of edges in a k-uniform t-vertex hypergraph with no subgraph isomorphic to
H.

Theorem 7. (Conlon [19]) Let H be a cubical graph with k-partite representa-
tion H, for a fixed k. If exk(t,H) ≤ αtk, then ex(Qn,H) = O(α1/kn2n).

Theorem 8. (Erdős [23]) Let k ≥ 2 be an integer and Kk(�1, . . . , �k) be the
complete k-partite k-uniform hypergraph with parts of sizes �1, . . . , �k. Then
exk(t,Kk(�1, . . . , �k)) = O(tk−1/δ), where δ = �1 · · · �k−1.

Theorem 8 implies in particular, that exk(t,H) ≤ αtk for α < t−a, for
some positive a. Therefore, one can conclude the following fact about the Turán
density of graphs having partite representation.

Corollary 9. If H is a cubical graph that has a partite representation then
ex(Qn,H) = o(||Qn||).

Note that having a partite representation is not a characterization for
graphs H with ex(Qn,H) = o(||Qn||) as shown by the first author in [6]. For
more recent results on such extremal hypergraph numbers, see Ma, Yuan, and
Zhang [38], as well as Mubayi and Verstraëte [41].

3.2. Subdivisions of Cliques and Bi-cliques

For a graph G, we say that a graph H is a k-subdivision of G and denote
it Tk(G) if H is obtained from G by “inserting” k vertices in each edge of
G. Formally, V (H) = V (G) ∪ ⋃

e∈E(G) Ve, where V (G) and Ve’s are pairwise
disjoint, |Ve| = k for each e ∈ E(G), and such that G is a union of paths Pe

for e ∈ E(G), where Pe is a path on vertex set {x, y} ∪ Ve with endpoints x
and y, for e = xy. We shall call vertices from V (G) branch vertices, paths Pe

subdivision paths, and vertices in
⋃

e∈E(G) Ve subdivision vertices. If k is odd,
we say that Tk(G) is an odd subdivision of G, if k is even, we say that Tk(G)
is an even subdivision of G. Marquardt [40] showed that Tk(Qn) has a partite
representation for any odd k and any n. Here we prove a more general result
about an odd subdivision of any graph.

Theorem 10. For any integer k ≥ 0 and any positive integer t, T2k+1(Kt) is
layered. Moreover, for k ≥ 1, ex(Qn, T2k+1(Kt)) = O(nb2n) = o(||Qn||), where
b = 1 − 1

(k+1)tk .

Proof. Let G = T2k+1(Kt). We shall be constructing an embedding of G in
Qn, where the ground set [n] is partitioned as follows:

[n] =
⋃

x∈V (Kt)

Ax ∪
⋃

e∈E(Kt)

Be,

where Be’s and Ax’s are pairwise disjoint, for each x ∈ V (Kt) and e ∈ E(Kt).
For k = 0, let Ax = {x1} and Be = ∅, e ∈ E(Kt). For k ≥ 1, let Ax =
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Table 1. Indicator vectors for f(x), f(z1), . . . , f(z2k+1), f(y),
respectively, restricted to Be ∪ Ax ∪ Ay, for k = 1, 2, and 3

k = 1 k = 2 k = 3
be x1 y1 be x1 x2 y1 y2 be x1 x2 x3 y1 y2 y3

f(x) 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0
f(z1) 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0
f(z2) 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0
f(z3) 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0
f(z4) 1 0 0 1 0 1 0 0 1 1 0 0
f(z5) 1 0 0 1 1 1 0 0 1 1 1 0
f(z6) 1 0 0 0 1 1 0
f(z7) 1 0 0 0 1 1 1
f(y) 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1

{x1, . . . , xk} and Be = {be}, e ∈ E(Kt). So, n = tk +
(

t
2

)
, for k ≥ 1 and n = t

for k = 0.
We shall define an embedding f of V (G) into V (Qn). Recall that V (Qn)

is the set of subsets of [n]. If x ∈ V (Kt), we also denote the respective branch
vertex of G by x. Let f(x) = Ax.

Now, consider two vertices x, y ∈ V (Kt) forming an edge e. Let the xy-
subdividing path be x, z1, . . . , z2k+1, y.

If k = 0, then f(x) = {x1}, for any x ∈ V (Kt), let f(z1) = {x1, y1}.
If k ≥ 1, let f(z1) = {be}∪f(x), f(z2k+1) = {be}∪f(y). For 1 ≤ i ≤ k−1,

let f(z2i+1) = f(z2i−1)−{xi}∪{yi}. For 1 ≤ i ≤ k, let f(z2i) = f(z2i−1)−{xi}.
The embedding f is illustrated in Table 1.

This embedding is injective since distinct branch vertices are clearly
mapped into distinct vertices of Qn not containing be for any e ∈ E(Kt).
On the other hand, any vertex subdividing an edge e is mapped into one con-
taining be, and not containing be′ for any e′ ∈ E(Kt), e′ �= e. Thus a vertex
subdividing e and a vertex subdividing e′ for e �= e′ are mapped into distinct
vertices.

Finally, we see that the embedding is (k+1)-partite with parts {x1 : x ∈
V (Kt)}, {x2 : x ∈ V (Kt)}, . . . , {xk : x ∈ V (Kt)}, and {be : e ∈ E(Kt)},
of sizes t, t, . . . , t, and

(
t
2

)
, respectively. By Theorem 8 with k + 1 instead of k,

�1 = · · · = �k = t, and δ = �1 · · · �k = tk,

exk+1(n,K(k+1)(�1, . . . , �k+1)) = O(n(k+1)−1/δ) = O(αnk+1),

where α = n−t−k

. Thus by Theorem 7, we have that

ex(Qn, G) = O
(
α

1
k+1 n2n

)
= O

(
n− t−k

k+1 n2n

)
= o(||Qn||).

�
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Next we consider even subdivisions. Since an even subdivision of an odd
cycle is an odd cycle, that is not cubical, we only restrict ourselves to even sub-
divisions of bipartite graphs. We shall consider even subdivisions of complete
bipartite graphs. Note that it is easy to see that G = T2k(Kt,t) is cubical: We
shall consider an embedding f of G into Qn = Q2t+2k−1. Let the parts of G be
ordered sets A and B. Let [n] = X ∪Y ∪Q, where X,Y,Q are pairwise disjoint
sets, X = {x1, . . . , xt}, Y = {y1, . . . , y2k−1}, Q = {q1, . . . , qt}, |X| = |Q| = t,
|Y | = 2k − 1.

If a ∈ A is the ith vertex from A, let f(a) = X − {xi}. If b ∈ B is the
jth vertex from B, let f(b) = {qj} ∪ Y ∪ X. For the ith vertex of A, a, and
for the jth vertex of B, b, let the ab-subdivision path be a, z1, z2, . . . , z2k, b,
where zi = zi(a, b), i = 1, . . . , 2k. Furthermore, let f(z1) = f(a)∪{qj}, f(z�) =
f(z�−1) ∪ {y�−1}, � = 2, . . . 2k. Note that f(z2k) = Y ∪ {qj} ∪ X − {xi}. The
following theorem proves that G is layered, which in particular implies that
G is cubical. However, the embedding presented in the theorem is a bit more
involved.

Theorem 11. For any positive integers k and t, T2k(Kt,t) is layered. Moreover,
for any even integer k ≥ 4, and any positive integer t, ex(Qn, T2k(Kt,t)) =
O(nb2n) = o(||Qn||), where b = 1 − 1

2t(t2+2)kt2 .

Proof. Let G = T2k(Kt,t). Let partite sets of Kt,t be A and B, and respective
sets of branch vertices in G also be A and B. We shall show that G is layered
for k ≥ 1. In case when k ≥ 4 and even, we show that it has zero Turán density.
Case k = 1. We shall embed G into Qn = Q2t+1 using the embedding f as
follows. Let [n] = X ∪ Y ∪ {q}, X = {x1, . . . , xt}, Y = {y1, . . . , yt}, where X,
Y and {q} are pairwise disjoint. For the ith vertex a in A, let f(a) = {xi}∪Y .
For the jth vertex b of B, let f(b) = Y − {yj} ∪ {q}. For the ab-subdivision
path a, z1, z2, b, let f(z1) = f(a) − {yj} and f(z2) = f(z1) ∪ {q}. Then this is
an embedding in layers t and t + 1.
Case k = 2. We shall embed G into Qn = Q2t+3 using the embedding f as
follows. Let [n] = X ∪ Y ∪ {q1, q2, q3}, X = {x1, . . . , xt}, Y = {y1, . . . , yt},
where X, Y and {q1, q2, q3} are pairwise disjoint. For the ith vertex a in A, let
f(a) = {xi}∪Y ∪{q3}. For the jth vertex b of B, let f(b) = Y −{yj}∪{q1, q2}.
For the ab-subdivision path a, z1, z2, z3, z4, b, let f(z1) = f(a) − {yj}, f(z2) =
f(z1) ∪ {q1}, f(z3) = f(z2) − {q3}, and f(z4) = f(z3) ∪ {q2}. This is an
embedding in layers t + 1 and t + 2.

This embedding is injective since for any subdivision vertex z of the edge
ab of Kt,t, where a is the ith and b is the jth vertex of respective parts A and
B, it must be the case that f(z) ∩ (X ∪ Y ) = {xi} ∪ Y − {yj}. So subdivision
vertices for distinct edges are mapped into distinct vertices. Other pairs of
distinct vertices of G are mapped to distinct vertices as witnessed by A, B, or
{q1, q2, q3}.
Case k ≥ 3. We shall show that G is embeddable in a layer and for even k ≥ 4,
G has a partite representation. Let n = 2t + 1 + t2(k − 1). Let

[n] = A ∪ B ∪ {c} ∪
⋃

e∈E(Kt,t)

Se,
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Table 2. Indicator vectors for f(a), f(z1), . . . , f(z2k), f(b),
respectively, restricted to a, b, c, s1

e, s
2
e, . . . , s

k−1
e in order, for

k = 3, 4, and 5

k = 3 k = 4 k = 5
a b c s1

e s2
e a b c s1

e s2
e s3

e a b c s1
e s2

e s3
e s4

e

f(a) 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0
f(z1) 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0
f(z2) 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0
f(z3) 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0
f(z4) 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0
f(z5) 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0
f(z6) 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0
f(z7) 0 1 0 0 0 1 0 1 0 0 0 1 0
f(z8) 0 1 0 1 0 1 0 1 0 0 0 1 1
f(z9) 0 1 0 0 0 0 1
f(z10) 0 1 0 1 0 0 1
f(b) 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0

where A, B, {c}, and Se’s are all pairwise disjoint, and for any e ∈ E(Kt,t),
Se = {s1

e, s
2
e, . . . , s

k−1
e }, |Se| = k − 1.

We shall define an embedding f of V (G) into V (Qn). Recall that vertices
of Qn are subsets of [n]. Consider first the branch vertices. Let S = {s1

e : e ∈
E(Kt,t)}. For any a ∈ A, let f(a) = {a, c} ∪ S and for any b ∈ B, let f(b) =
{b} ∪ S.

Now, consider two vertices a, b ∈ V (Kt,t) forming an edge e. Let the ab-
subdividing path be a, z1, . . . , z2k, b. Let S′

e = {s1
e′ : e′ �= e}. Then we see that

f(a) = {a, c} ∪ S = {a, c, s1
e} ∪ S′

e and f(b) = {b} ∪ S = {b, s1
e} ∪ S′

e. Let

f(z1) = {a, c} ∪ S′
e, f(z2) = {a, c, s2

e} ∪ S′
e

f(z3) = {c, s2
e} ∪ S′

e, f(z4) = {b, c, s2
e} ∪ S′

e

f(z5) = {b, s2
e} ∪ S′

e, f(z2k) = f(z2k−1) ∪ {s1
e}.

Furthermore, for k ≥ 4 and 1 ≤ i ≤ k − 3, let

f(z6+2i−2) = f(z6+2i−3) ∪ {s2+i
e } and f(z6+2i−1) = f(z6+2i−2) − {s1+i

e }.

This is an embedding into layers t2 and t2 + 1 because each S′
e has size

t2 − 1. In Table 2, we illustrate this embedding.
This embedding is injective since distinct branch vertices are clearly

mapped into distinct vertices of Qn. Moreover, any branch vertex x and any
subdivision vertex z are mapped to different vertices by f because f(x) ∩⋃

e∈E(Kt,t)
Se = S and f(z) ∩ ⋃

e∈E(Kt,t)
Se �= S. For any two vertices z, z′

subdividing an edge e, it is clear from the definition that f(z) �= f(z′). Finally
for a vertex z subdividing an edge e and vertex z′ subdividing an edge e′,
e �= e′, f(z) ∩ Se �= f(z′) ∩ Se′ .
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We see that, for even k ≥ 4, this embedding gives a partite representation
with parts

• A ∪ B,
• {s1

e, s
2
e, s

4
e, s

6
e, . . .}, e ∈ E(Kt,t), and

• {c} ∪ ⋃
e∈E(Kt,t)

{s3
e, s

5
e, s

7
e, . . .}.

The sizes �1, . . . , �t2+2 of the parts are at most 2t, k, k, . . . , k, kt2, respec-
tively. By Theorem 8, with q = t2+2 instead of k, and δ = �1 · · · �q−1 ≤ 2t·kt2 ,

exq(n,Kq(�1, . . . , �q)) = O
(
nq− 1

δ

)
= O(αnq),

where α = n−1/δ. Note that α
1
q = n− 1

λ for λ = 2t(t2+2)kt2 . Thus, by Theorem
7, we have that

ex(Qn, G) = O
(
α

1
q n2n

)
= O

(
n− 1

λ n2n
)

= o(||Qn||).
�

4. Layered Embedding of Theta Graphs, Non-layered Graphs of
Girth Eight, Proof of Theorem 3

A graph is a theta graph with legs of length �1, . . . , �k and poles v and v′ if it is
a union of k paths of lengths �1, . . . , �k with endpoints v and v′ whose vertex
sets pairwise share only {v, v′}. Here, we shall denote the Hamming distance
between two sets or two binary sequences x, y as dH(x, y). Note that C4 is a
theta graph with two legs of length 2 and it is not a layered graph.

Lemma 12. If G is a theta graph with arbitrary number of legs of length m ≥ 3
each, then G is cubical. If G is a theta graph with 3 legs of length 2 each, i.e.,
G = K2,3, then G is not cubical.

Proof. We shall define an edge-coloring of G as follows. Let the edges of the
ith leg incident to the poles be colored i, i = 1, . . . , m. Let all edges at distance
k from the first pole be colored xk, k = 1, . . . ,m − 2, for distinct x1, . . . , xm−2

different from any of 1, . . . ,m. Then this coloring satisfies the properties of
Havel–Moravek, [32]. To prove the second statement of the lemma, observe
that a nice coloring must assign colors 1, 2, 1, 2 to the edges of any C4 up to
renaming the colors. This is impossible to maintain in a K2,3. �

Lemma 13. Let G be a theta graph with poles a and a′ and t legs of length m
each, t > �m

2 �. If G is a subgraph of a layer, then dH(a, a′) < m.

Proof. Assume that dH(a, a′) ≥ m. Since there is a path of length m between
a and a′, dH(a, a′) = m. Assume without loss of generality that a is in a lower
or the same layer as a′. Let S be the set of m coordinates where a and a′

differ. Since the number of 0’s in a and a′ differ by at most one, a has at most
�m

2 � zeros in positions from S. Then for any a, a′-path P of length m, and any
s ∈ S, there should be an edge with a star with position in s. Thus, each edge
of P has stars only in positions from S. Moreover, a first edge of P can have
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u = 01001
10001 00101 u′ = 00011

a = 11001
01101 10011

a′ = 00111

01000

00000

00010

11101 01111

11111

(i) (ii)

ua

a′ u′

u′′
a′′

P

Figure 1. (i) Embedding of G8 into Q5, (ii) the layered graph
G8 ∪ Pa ∪ Pu

stars only in positions corresponding to 0’s of a. Hence, there are at most �m
2 �

such edges. Thus, t ≤ �m
2 �. �

Lemma 14. Let G be a theta graph with poles a and a′ with 3 legs of length 3
each. Then G is not embeddable in a layer.

Proof. Assume that G is layered. By Lemma 13 we have that dH(a, a′) < 3.
Since a and a′ are in different vertex layers, dH(a, a′) = 1. Then the edge aa′

and one of the legs of G form a C4, a contradiction since C4 is not a layered
graph. �

Let G′
8 be a theta graph with poles a and a′, three legs of length 4 each,

a vertex u adjacent to a on one leg and a vertex u′ adjacent to a′ on another
leg. Let G8 be a union of G′

8 and a u, u′-path of length 4 internally disjoint
from G′

8. See Fig. 1 (i).
Now, Theorem 3 follows immediately from the following lemma.

Lemma 15. The graph G8 is cubical, girth 8 and not layered.

Proof. To see that G8 is cubical, see an embedding in Q5 shown in Fig. 1 (i).
From now on, we assume that G8 is embedded into two vertex layers V� and
V�+1 of Qn for some n. Let X = V� ∪ V�+1.

By Lemma 13 and using parity, dH(u, u′) = dH(a, a′) = 2 and thus in
particular, u and u′ are in the same layer of Qn and a and a′ are in the same
layer of Qn. Consider internal vertices a′′, u′′ on a shortest a, a′-path Pa and
u, u′-path Pu in Qn, respectively, such that a′′, u′′ ∈ X. We see that a′′ �= u′′

and a′′, u′′ �∈ V (G8) since otherwise G8 contains a 4-cycle. Then G8 ∪ Pa ∪ Pu

is embedded in X and thus has a very nice coloring c. We know that the edges
in any 6-cycle in Qn have exactly three directions giving a very nice coloring,
123123, up to renaming the colors. In particular, for the 6-cycle uaa′′a′u′u′′u
we have that c(ua) = c(u′a′). However, there is a path P of length 3 between
ua and u′a′, see Fig. 1 (ii), contradicting the fact that c is very nice. �
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5. Lower Bounds for ex(Qn,C10), Proof of Theorem 4

In order to obtain a lower bound on ex(Qn, C10), we shall make a construction
that uses a construction by Conder [18] several times. Conder’s construction
uses an edge-coloring of Qn that we call a prefix coloring. Recall that we
represent an edge AB, A ⊆ B in Qn by a sequence of length n, where the ith
position is occupied by 0 if i /∈ B, by 1 if i ∈ A and by � if i ∈ B\A. If e is a
vector of 1s, 0s, and a star, let pre(e) be the number of 1’s in the positions of
e preceding the star position and suf(e) be the number of 1’s in the positions
of e following the star position. Let

f(e) = pre(e) − suf(e) (mod 3).

Then f is called the prefix coloring of e. For example f(01001�01) = 2−1 = 1
mod 3.

Proof of Theorem 4. We are to prove that ex(Qn, C10) = Ω
(

n2n

loga n

)
, where

a = log2 3. Let π be a permutation of [n]. For an edge e = (x1, . . . , xn) of
Qn given in star representation, we let eπ be the representation of e with
respect to π, that is, a vector (xπ(1), . . . , xπ(n)). Let Π be a smallest set of
permutations of [n] such that for any ordered set (a, b, c), with distinct elements
a, b, c ∈ [n], there is π ∈ Π such that π−1(a) < π−1(b) and π−1(a) < π−1(c).
By a result of Spencer [43], there exists such a set with |Π| ≤ log2 log2 n. Let
Π = {π1, π2, . . .}.

We shall define an edge-coloring g of E(Qn) as follows. Let, for e ∈
E(Qn),

g(e) =
(
g0(e), gπ1(e), . . . , gπ|Π|(e)

)
,

where for any π ∈ Π we have that gπ(e) is a prefix coloring, i.e., gπ(e) = f(eπ)
and g0(e) is equal to the parity of a layer containing e, i.e., g0(e) is 0 if e is in
an even layer and it is 1 if e is in an odd layer.

Since each prefix coloring uses exactly three colors, the total number of
colors used by g is 2 · 3|Π|. We shall argue that there is no monochromatic C10

under this coloring. Then taking a largest color class of g, we obtain a desired
C10-free subgraph of Qn.

Consider a copy C of C10 in Qn. If C is monochromatic under g, it is
in particular monochromatic under g0. Note that since C is connected, and
g0 distinguishes even and odd edge layers, C must be contained in some edge
layer. Consider a very nice coloring η of C corresponding to the directions of
its edges. Each color in η must appear an even number of times. If there is a
color in η that appears 4 times, there are two edges of that color that are at
distance at most 1, contradicting the fact that η is very nice. Thus each color
in η appears exactly twice. Let these colors be a, b, c, d, e. I.e., C has exactly 5
star positions on its edges and these positions are a, b, c, d, e. All vertices of C
coincide on all other positions.

Consider a hypergraph HC on the vertex set {a, b, c, d, e}, whose hyper-
edges correspond to non-zero positions of edges of C, restricted to {a, b, c, d, e}.
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a

b

cd

e

ab bc cd de ea

a b c d e

a

b

cd

e

H1

abc bcd cde dea eab

ab bc cd de ea

H2

a

b

cd

e

H4

a

b

cd

e

ebc bcd cde dea eab

eb bc cd de ea

H3

abc bcd cde bde bda

ab bc cd de bd

Figure 2. Hypergraphs H1, H2, H3 and H4 with correspond-
ing 10-cycle C

Table 3. Star representation of edges in C where HC = Hi,
i ∈ [4]

Because the number of 1s in every edge must be the same, HC is a uniform
hypergraph of uniformity 2, 3, or 4, such that in some of the edge-orderings,
considering intersections of consecutive edges, gives us 5 distinct sets. As can be
seen by inspection, the possible such hypergraphs HC , up to a permutation of
{a, b, c, d, e} are H1 = {ab, bc, cd, de, ea}, H2 = {abc, bcd, cde, dea, eab}, H3 =
{cde, dea, aeb, ebc, bcd}, H4 = {abc, bcd, cde, bde, bda}, or H5 =
{abcd, bcde, cdea, deab, eabc}, as shown in Fig. 2. See the respective edges of
H1,H2,H3 and H4 in the list below. Note that H5 is very similar to H1 and is
obtained by switching 1’s and 0’s in the star representations of the edges. We
shall thus not consider H5.

We show that C is not monochromatic under some gπ, π ∈ Π. We dis-
tinguish four cases depending on i ∈ [4] with HC = Hi. Note that in the first
three cases we actually prove that C is not monochromatic under any gπ. Fix
an arbitrary permutation π ∈ Π and assume that C is monochromatic under
gπ.

For any two distinct x, y ∈ {a, b, c, d, e} we define an indicator function−→xy = −→xyπ that is equal to 1 if x appears before y in π, and it is equal to −1
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otherwise. Note that −→xy = −−→yx, in particular −→xy �= −→yx. In the remainder of
the proof all equations are considered modulo 3. Let ex

1 and ex
2 be any two

edges in C with star position at the same x ∈ {a, b, c, d, e}. Then let Xj ={
y ∈ {a, b, c, d, e} : ex

j has a 1 at position y
}

for j ∈ [2]. Note that the prefix
coloring of ex

j with respect to permutation π and restricted to {a, b, c, d, e} is
equal to the sum

∑
y∈Xj

−→yxπ. In every position other than {a, b, c, d, e} both
ex
1 and ex

2 coincide. Thus, if ex
1 and ex

2 have the same color, then
∑

y∈X1

−→yx =
∑

y∈X2

−→yx. (∗)

For example consider the two edges ea
1 and ea

2 in C with star position at a,
where HC = H2, as indicated in Table 3. Then X1 = {b, c} and X2 = {d, e}
and the edges differ only in positions X1 ∪ X2, therefore ea

1 and ea
2 have the

same color only if
−→
ba + −→ca =

−→
da + −→ea.

Case 1. HC = H1.
Applying (∗) for the two edges of C with star position at a provides that−→
ba = −→ea.

Similarly, considering edges with star positions at b, c, d, and e, we have−→
ab =

−→
cb,

−→
bc =

−→
dc,

−→
cd =

−→
ed,

−→
de = −→ae. Then

−→
ba = −→ea = −−→

de =
−→
cd = −−→

bc =
−→
ab.

This is a contradiction.
Case 2. HC = H2.
Applying (∗) for pairs of edges with star positions in {a, b, c, d, e} we

obtain five equations, which we then add up:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−→
ba + −→ca =

−→
da + −→ea−→

cb +
−→
db =

−→
eb +

−→
ab

−→ac +
−→
bc =

−→
dc + −→ec−→

bd +
−→
cd =

−→
ed +

−→
ad

−→ae +
−→
be = −→ce +

−→
de

=⇒
{−→

ba +
−→
cd + −→ae +

−→
be = −→ea +

−→
eb +

−→
ab +

−→
dc.

As a result 0 = −→ea +
−→
eb +

−→
ab +

−→
dc. If −→ea =

−→
ab, the transitivity in π

implies that
−→
eb = −→ea =

−→
ab. Recall that all equations are considered modulo 3.

Therefore, −→ea+
−→
eb+

−→
ab = 0, so

−→
dc = 0, which is a contradiction. Thus, −→ae =

−→
ab.

By a symmetric argument
−→
ab =

−→
cb,

−→
bc =

−→
dc,

−→
cd =

−→
ed,

−→
de = −→ae. This is exactly

the condition obtained in Case 1, a contradiction.
Case 3. HC = H3.

In this case, again consider pairs of edges with star positions at a, b, etc. and
for each pair set up an equation:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−→ea +
−→
ba =

−→
da + −→ea−→

cb +
−→
db =

−→
eb +

−→
ab−→

dc + −→ec =
−→
bc + −→ec−→

bd +
−→
cd =

−→
ad +

−→
ed

−→ce +
−→
be = −→ce +

−→
de

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−→
ba =

−→
da−→

bc +
−→
bd =

−→
be +

−→
ba−→

dc =
−→
bc−→

db +
−→
dc =

−→
da +

−→
de−→

be =
−→
de

=⇒
{−→

dc +
−→
bd =

−→
de +

−→
da−→

db +
−→
dc =

−→
da +

−→
de.
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Thus
−→
bd =

−→
db, which is a contradiction.

Case 4. HC = H4.
In each of the prior cases, we showed that C cannot be monochromatic under
any π ∈ Π. In this case, there may be exist a permutation π ∈ Π such that C
is monochromatic under gπ, see for example, the order of a, b, c, d, e as in Table
3. Thus for H4, we will only show that C is not monochromatic for some gπ′ ,
π′ ∈ Π. Assume that C is monochromatic under g. Then for any permutation
π ∈ Π, considering pairs of edges with star positions at b and e, the following
two equations hold:

{−→
cb +

−→
db =

−→
eb +

−→
db

−→ce +
−→
de =

−→
be +

−→
de

=⇒
{−→

cb =
−→
eb = −→ec.

Thus c is between e and b. By the way Π was selected, there is some
permutation π′ ∈ Π such that c precedes both b and e, a contradiction.

Thus, in at least some coloring gπ, π ∈ Π, C is not monochromatic.
Therefore, C is not monochromatic under the coloring g. The number of colors
used by g is 2 · 3|Π| ≤ 2 · 3log2 log2 n = 2 · (log2 n)log2 3. Consider a largest color
class of g having n2n−1/2 · (log2 n)log2 3 edges. It contains no copy of C10. �

Next, we remark that there is a lower bound on ex(Qn, C10) using a
special extremal function for a smaller graph.

Let ex∗(Qn, C−
6 ) be the largest number of edges in a subgraph G of Qn

such that G contains no C−
6 , that is a subgraph H of Qn on 6 vertices and

5 edges such that H is a subgraph of C6 in Qn. Note, that C−
6 forms a path

of length 5, but not every path of length 5 is a C−
6 . For example, the path

00000, 00001, 00011, 00111, 01111, 11111 is not a C−
6 because its edges do not

form a subgraph of a 6-cycle.

Lemma 16. ex∗(Qn, C−
6 )/3 ≤ ex(Qn, C10).

Proof. Let G be a C−
6 -free subgraph of Qn. Let c be a prefix coloring of G

and let G′ be a subgraph of G on at least ||G||/3 edges such that the edges
of G′ have the same color under c. We have that ||G′|| ≥ ex∗(Qn, C−

6 )/3. We
shall argue that G′ is C10-free. To see that G′ has no induced C10 we refer to
[5], where this fact was verified using a case analysis similar to the proof of
Theorem 4 presented in Sect. 5. Consider a non-induced copy C of C10. It is
formed by a union of two 6-cycles that share exactly one edge, and removing
their common edge. So, in this case C contains C−

6 as a subgraph. Since G′

does not contain C as a subgraph, G′ is C10-free. �
We have an exact value for ex∗(Qn, C−

6 ) if n = 3:

Lemma 17. ex∗(Q3, C
−
6 ) = 8.

Proof. To see that ex∗(Q3, C
−
6 ) ≥ 8 consider a subgraph of Q3 that is a ver-

tex disjoint union of two C4’s. For the upper bound it suffices to show that
ex(Q3, C6) ≤ 9. Let G be a subgraph of Q3 on 10 edges. It is easy to check
that in each configuration of the two non-present edges, there is a 6-cycle, see
Fig. 3. �
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Figure 3. 6-cycle in Q3 in each configuration of non-present
edges (dotted)

6. Density of Layered Graphs

In this section we prove some results about density of layered graphs. We show
that under classical compression operation the density of a layered graph is not
decreased. Moreover, if the compressed graph corresponds to initial intervals
in colex order, we can show that the asymptotic density of the graph is at most
half of the largest density of a cubical graph on the same number of vertices.

Let k and n be integers, 0 ≤ k ≤ n, A ⊆ (
[n]
k

)
, and B ⊆ (

[n]
k−1

)
. Then we

define the graph Q(n, k;A,B) to be a bipartite graph with vertex set A ∪ B
where A ∈ A is adjacent to B ∈ B if and only if B ⊂ A, i.e., a graph induced
by A ∪ B in Qn.

Fix integers k, i, and j, where 0 ≤ k ≤ n, 1 ≤ i < j ≤ n, and let A ⊆ (
[n]
k

)

and B ⊆ (
[n]

k−1

)
. Let Rij be the shift operator also called compression operator.

That is, for any set X ∈ A ∪ B,

Rij(X) =
{

(X − {j}) ∪ {i}, if i �∈ X, j ∈ X, and(X − {j}) ∪ {i} �∈ A ∪ B;
X, else.

Note that this is a classical shift operator used in proving, for example, the
Kruskal–Katona theorem, see a survey by Frankl and Tokushige [25]. For a
nice account of the properties of the shift operation, see a summary by Das
[20]. A family X is called compressed if for any i < j, Rij(X ) = X , where
Rij(X ) = {Rij(X) : X ∈ X}. Note that |X | = |Rij(X )|.

The following lemma shows that the compression does not decrease the
size of a layered graph.

Lemma 18. Let k, i, j and n be integers, 0 ≤ k ≤ n, 1 ≤ i < j ≤ n, A ⊆ (
[n]
k

)
,

and B ⊆ (
[n]

k−1

)
.

||Q(n, k;A,B)|| ≤ ||Q(n, k;Rij(A), Rij(B))||.
Proof. Define A′ = Rij(A) and B′ = Rij(B). Let G = Q(n, k;A,B) and
G′ = Q(n, k;A′,B′). We shall show that ||G|| ≤ ||G′||. Let us denote Rij(B)
as B′ for any B ∈ B and Rij(A) as A′ for any A ∈ A.

Consider B ∈ B and i < j. If the set B − {j} ∪ {i} ∈ B − {B}, we denote
this set as B∗, i.e., B∗ = B − {j} ∪ {i} and say that B∗ is the successor of B
and B is the predecessor of B∗. Note that B∗ itself does not have a successor,
each B ∈ B has at most one successor and at most one predecessor. Let
B = B0 ∪ B1, where B0 consists of all B’s from B that have neither successors
nor predecessors and B1 = B − B0, a set that can be partitioned into pairs
B,B∗. We shall treat elements of B0 as singletons and split elements of B1 into
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sets of size two consisting of a set and its successor. We shall argue that any
vertex from B0 after the shift has a degree in G′ as high as its degree in G. In
addition, we shall argue that for any pair {B,B∗} in B1, the number of edges
incident to B or B∗ after the shift in G′ is as large as the number of edges
incident to B or B∗ in G. This will immediately imply that ||G|| ≤ ||G′||.

We consider the cases:
1. B ∈ B0

(a) i �∈ B and j ∈ B
In this case B′ = B − {j} ∪ {i}. If AB ∈ E(G), then A = B ∪ {t},
t �= j. If t = i, then A′ = A and A′B′ ∈ E(G′). If t �= i, then i �∈ A.
If A′ = A − {j} ∪ {i}, then A′B′ ∈ E(G′). If t �= i and A′ = A, we
have that At = A−{j}∪{i} ∈ A. Then we have that AtB

′ ∈ E(G′).
We see that degG′(B′) = degG(B).

(b) i ∈ B or j �∈ B
In this case B′ = B. If i ∈ B, then for any A ∈ A such that
AB ∈ E(G), i ∈ A, thus A′ = A. Thus, A′B′ ∈ E(G′) in this
case. If i �∈ B and j �∈ B and AB ∈ E(G), we have two subcases.
If A′ = A, then A′B′ ∈ E(G′). Otherwise j ∈ A, i �∈ A. Then
A′ = A − {j} ∪ {i} and A′B′ ∈ E(G′).

2. B ∈ B1

In this case we shall consider a pair B,B∗ assuming without loss
of generality that B has successor B∗. We shall argue that degG(B)+
degG(B∗) ≤ degG′(B′) + degG′(B∗′).

We have i �∈ B, j ∈ B, and B′ = B. Thus, we have that
{B′, B∗′} = {B,B∗}. If AB ∈ E(G) and AB∗ ∈ E(G) then A =
B ∪ {i} and A′ = A. Then A′B′, A′B∗′ ∈ E(G′). If AB ∈ E(G) and
AB∗ �∈ E(G), then j ∈ A, i �∈ A. Thus either A′B∗ ∈ E(G′) or
A′B ∈ E(G′) depending whether A′ �= A or A′ = A, respectively. If
AB �∈ E(G) and AB∗ ∈ E(G), then j �∈ A, i ∈ A. Thus, A′ = A and
A′B′ ∈ E(G′). So, we see that for any A′ ∈ A, A′ sends at least as
many edges to {B,B∗} in G′ as A to {B,B∗} in G.

This shows that ||G|| ≤ ||G′||. Now, we repeat this shift operation for all
pairs i < j and produce two compressed families A′′ ⊆ (

[n]
k

)
and B′′ ⊆ (

[n]
k−1

)
,

|A| = |A′′|, |B| = |B′′|, as well as a graph G′′ = Q(n, k,A′′,B′′) such that
||G′′|| ≥ ||G||, as desired. �

We say that the graph is in the kth layer if its edges are in the kth edge
layer of some hypercube.

So, we see that in order to find a largest density of a t-vertex layered
graph, it is sufficient to find such a density for a compressed graph. A special
class of compressed set families are those corresponding to the initial inter-
val in colex order. Unfortunately there are compressed families, for example
{{1, 2}, {1, 3}, {1, 4}} that do not form an initial interval in colex order.

Next, we shall consider only families forming initial segments in colex
order. A set A is less than set B in the colex order if the largest element in the
symmetric difference of A and B is in B. For positive integers NA and NB , we
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define the graph Q(n, k;NA, NB) to be the graph Q(n, k;A,B) where A ⊆ (
[n]
k

)

and B ⊆ (
[n]

k−1

)
, are families, of sizes NA and NB respectively, that form initial

intervals in colex order. We call a graph a colex-interval or colex-interval graph
if it is equal to Q(n, k;NA, NB) for some n, k,NA, and NB .

A layered graph in the kth layer is a super-colex-interval if it is a colex-
interval and equal to Q(a, k;A,B) for some integer a, where

(
[a−1]

k

) ⊂ A ⊆ (
[a]
k

)

and
(
[a−1]
k−1

) ⊆ B ⊆ (
[a]

k−1

)
. In particular, if G is a super-colex-interval graph

on t vertices and in layer k, then
(
a−1

k

)
+

(
a−1
k−1

)
< t ≤ (

a
k

)
+

(
a

k−1

)
, i.e.,

(
a
k

)
< t ≤ (

a+1
k

)
.

Lemma 19. Let k and t be natural numbers. Let G be a colex-interval graph in
layer k with |G| = t. Then the number of edges in G is either at most 2t or at
most the number of edges in a super-colex-interval graph on t vertices in layer
k.

Proof. Let G = Q(n, k;A,B), where |G| = |A| + |B| = t, for some n, and G
has a largest number of edges among colex-interval graphs on t vertices. We
can assume that 3 ≤ k ≤ n − 2, because otherwise the degrees of vertices in
one part of G are at most 2, so ||G|| ≤ 2t and we are done.

Since G is a colex-interval, A and B are initial segments in colex order.
We assume also that A and B are non-empty. Thus,

(
[a − 1]

k

)
⊂ A ⊆

(
[a]
k

)
and

(
[b − 1]
k − 1

)
⊂ B ⊆

(
[b]

k − 1

)
,

for some positive integers a and b. If b = a or B =
(
[a−1]
k−1

)
, then G is a super-

colex-interval. Otherwise we shall find a contradiction. We shall be treating A
and B as linearly ordered sets with respect to colex order.

Assume that b > a. Then any vertex B ∈ B that contains b has no
neighbors in A. We can replace B with A′, the member of

(
[n]
k

) − A which is
smallest in colex order. Then A′ has some neighbors in B −{B}, contradicting
the maximality of ||G||.

Now assume that b ≤ a − 1 and B �= (
[a−1]
k−1

)
. In this case we can take

n = a. We assumed in the beginning of the proof that k ≤ n − 2 = a − 2.
Let A be the last vertex of A in colex order. Note that a ∈ A, thus A has at
most one neighbor in B. We replace A with the vertex B′ ∈ (

[a−1]
k−1

)
such that

B′ �∈ B and it follows the last member of B in colex order. Since A contains
all k-element subsets of [a − 1] and a ≥ k + 2, we see that B′ has at least two
neighbors in A−{A}. This results in a graph on a larger number of edges than
G and that is a colex-interval, a contradiction. �

Proposition 20. If G is a layered graph on t vertices that is a colex-interval
graph, then ||G|| ≤ 1

4 t log t(1 + o(1)).

Proof. Let G be in layer k, for some k. We can assume by Lemma 19 that G
is a super-colex-interval.

Let x be the real number such that t =
(
x
k

)
. Then G ⊆ Qa for a satisfying

a < x ≤ a + 1. Since G is in layer k of Qa, we have that k ≤ a.
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Case 1. 2k − 2 ≤ x ≤ 2k + 2
In this case 2k − 3 ≤ a ≤ 2k + 2. Then t =

(
2k
k

)
C(1 + o(1)), where 1

4 ≤ C ≤ 4.
In particular, k = 1

2 log t(1+ o(1)). The degree of any vertex of G from layer k
is at most k, the degree of any vertex of G in layer k −1 is at most a−k +1 ≤
(2k + 2) − k + 1 = k + 3. So ||G|| ≤ (k + 3)t/2 = 1

4 t log t(1 + o(1)), as desired.
Case 2. x > 2k + 2

In particular, t =
(
x
k

)
>

(
2k
k

)
. Let k′ be the integer such that

(
2(k′−1)
(k′−1)

)
< t ≤

(
2k′

k′
)
. In particular k′ > k. Let G′′ be obtained by shifting G to layer k′, i.e.,

V (G′′) =
{
v∪{a+1, . . . , a+(k′ −k)} : v ∈ V (G)

}
. We have that ||G′′|| = ||G||

and |G′′| = |G| = t. Lemma 19 gives a graph G′ that is super-colex-interval in
layer k′, and such that |G′| = t and ||G′|| ≥ ||G′′||. Let x′ be the real number
such that t =

(
x′

k′
)
. By the choice of k′ we have

(
2k′−2
k′−1

)
<

(
x′

k′
) ≤ (

2k′

k′
)
. The

second inequality implies that x′ ≤ 2k′. We shall use the first inequality to show
that x′ ≥ 2k′ − 2. If not, then x′ < 2k′ − 2 and t =

(
x′

k′
)

<
(
2k′−2

k′
)

<
(
2k′−2
k′−1

)
, a

contradiction. So, 2k′ − 2 ≤ x′ ≤ 2k′ and we are done by Case 1 with k and x
replaced by k′ and x′.

Case 3. x < 2k − 2
Recall that a < x and k ≤ a, so in particular k ≤ a ≤ 2k−3 in this case. Then
consider a vertex-wise complement G′′ of G, i.e., an induced subgraph of Qa

with a vertex set {[a]−v : v ∈ V (G)}. Then G′′ is in the layer k′′ = a+1−k, it
is isomorphic to G, so |G1| = t and ||G1|| = e(t). Let y be the real number such
that t =

(
y

k′′
)
. Assume as before that G′′ is a super-colex-interval. If y ≥ 2k′′−2,

we are done by Cases 1 and 2. So assume that y < 2k′′ − 2 = 2a − 2k. Let
b = 2k − a. Note that 3 ≤ b ≤ k, 2a − 2k = a − b and k′′ = k − b + 1. Then

(
a

k

)
<

(
x

k

)
= t =

(
y

k′′

)
<

(
2a − 2k

k′′

)
=

(
a − b

k − b + 1

)
.

We have for any integers 0 < t ≤ s that
(
s+1
t+1

)
>

(
s
t

)
. Thus,

(
a

k

)
>

(
a − b + 1
k − b + 1

)
>

(
a − b

k − b + 1

)
,

a contradiction.
Therefore, ||G|| ≤ 1

4 t log t(1 + o(1)).
Note that if G′ is a middle edge layer of a hypercube Qn for some even n,

then |G′| = t =
(

n
n/2

)
+

(
n

n/2−1

)
and ||G′|| =

(
n

n/2

)
n
2 = 1

4 t log t(1 + o(1)). This
implies that the largest size of a t-vertex layered graph is 1

4 t log t(1+ o(1)), for
any t expressible as the sum

(
n

n/2

)
+

(
n

n/2−1

)
, for some even n. This shows that

the upper bound in Proposition 20 is tight for infinitely many values of t. �

7. Conclusions

The focus of this paper is to investigate the class of layered graphs and their
Turán density in the hypercube. Recall that graphs that are not layered have
positive Turán density in a hypercube. First, we developed a characterization
of layered graphs in terms of very nice colorings, that is a convenient tool
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to analyze them. Then, we proved that any odd subdivision of a complete
graph is layered and has zero Turán density. Similarly, we showed that any
even subdivision of any complete bipartite graph is layered, and for such a k-
subdivision, where k is divisible by 4 and k ≥ 8, it also has zero Turán density.
This leaves first question:

Question 1. Which graphs out of T2(Kt,t), T4(Kt,t), and T6(Kt,t) have
zero Turán density for any t?

In addition, we showed that there are some cubical graphs that have girth
8 and that are not layered. In particular, there are graphs of girth 8 and of
positive Turán density in the hypercube. This extends known results on graphs
of girth 6 and leads to another question:

Question 2. Are there graphs of arbitrarily large girth that are cubical
but not layered?

As mentioned in the introduction, very recently this question was an-
swered in the positive by Behague, Leader, Morrison, and Williams [10].

Since the density of layered graphs could be close to the density of gen-
eral cubical graphs, it seems to be difficult to find such a graph using direct
probabilistic methods. Nevertheless, the following question is of independent
interest:

Question 3. What is the largest number of edges in a layered graph on
t vertices for any positive integer t?

Graham [28], see also Bollobás [13], Hart [31], and Chung, Füredi, Gra-
ham, and Seymour [17], determined the largest possible size of a cubical t-
vertex graph by considering edge-cuts that are matching corresponding to
color classes of nice colorings. Using Theorem 6 we have that any color class
in a very nice coloring of a layered graph is a cut that is an induced matching.
This property might allow one to determine the largest density of a layered
graph exactly. Although we did not manage to find the largest number of
edges in a t vertex layered graph even asymptotically, we believe that the an-
swer should be 1

4 t log t(1+o(1)), i.e., half of the corresponding quantity in case
of cubical graphs. This question is related to a class of classical isoperimetric
questions since maximizing the number of edges in an induced subgraph of a
regular graph is equivalent to minimizing the number of edges “leaving” this
subgraph. Finally, we remark that it was proved by Haussler et al. [33,34],
that the largest number of edges in a subgraph of a hypercube induced by t
vertices is at most t times the VC-dimension of the set family corresponding
to the vertex set.

We made modest progress towards determining the extremal number of
C10 in Qn, the remaining case for cycles in a hypercube for which it is not
known whether the Turán density is zero or not. We proved that C10 definitely
behaves differently from known cycles of zero Turán density in its extremal
function, i.e., ex(Qn, C10) = Ω(n2n/ logb n), b > 0, whereas for any other cycle
C of zero Turán density ex(Qn, C) = O(na2n), for some a < 1. After this
paper was accepted for publication, Grebennikov and Marciano [29] proved
that C10 has positive Turán density on the hypercube.
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We note that the bounds on extremal numbers for subdivisions we obtain
could be improved using a more efficient embedding. In Appendix A, we recall
a general approach introduced by Chung that might give better upper bounds
for some 1-subdivisions. Finally, by explicitly constructing partite embeddings
of subdivisions, we came up with a quite symmetric way to embed vertices
of a hypercube in a layer of a larger hypercube such that adjacent vertices
are embedded into pairs of vertices at a fixed distance. As it might be of
independent interest, we present this construction in Appendix B.
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8. Appendix A: Another Upper Bound on Extremal Number
for Subdivisions

Theorem 21. Let H ′ be a bipartite graph such that H = T1(H ′) is cubical.
Then ex(Qn,H) = o(||Qn||).

http://creativecommons.org/licenses/by/4.0/
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Proof. We shall use a typical argument introduced by Chung [16]. Fix any
positive constant c and consider a spanning subgraph G of Qn with c||Qn||
edges. Then the average degree of G is cn. For each vertex v, create an auxiliary
graph Gv with vertex set N(v) in Qn and two vertices x, x′ ∈ N(v) adjacent
in Gv if and only if there is a vertex w �= v and two edges wx,wx′ in G. Note
that w �∈ N(v) because Qn is triangle-free. We claim that there is a vertex v
such that ||Gv|| ≥ c′n2 for a positive constant c′.

Note that there is no copy of K2,3 in Qn. Moreover, for any two vertices
at distance 2 in Qn there are exactly two paths of length 2 in Qn having these
two vertices as endpoints. Thus, for each path xwy of length 2 in G there is a
unique vertex v such that xy ∈ E(Gv). In addition, for any edge xy ∈ E(Gv)
there is exactly one path xwy, w �= v in G. So, the set of edges of all Gv’s,
v ∈ Qn is in a bijective correspondence with the set of paths of length 2 in
G. The number of such paths is

∑
u∈V (Qn)

(
d(u)

2

) ≥ (
cn
2

)
2n. Thus, there is a

v such that ||Gv|| ≥ (
cn
2

)
2n/2n = c′n2, for a positive constant c′. Since H ′ is

bipartite, ex(n,H ′) = o(n2), thus Gv contains H ′ as a subgraph. For any two
distinct edges e and e′ of this copy of H ′, there are vertices w,w′ �∈ {v}∪N(v)
such that w and the endpoints of e form a path of length 2. Similarly w′

and the endpoints of e′ form a path length 2 with w and w′ being central
vertices on these paths. Note that w and w′ are distinct since K2,3 is not a
subgraph of Qn. Thus G contains T1(H ′) as a subgraph. This implies that
ex(Qn,H) = o(||Qn||). �

9. Appendix B: Embedding of Vertices of Qn into Two
Consecutive Layers of QN with Adjacent Vertices in Qn at a
Fixed Given Distance in QN

While we presented a layered embedding of the subdivision of any bipartite
graph in the main body of the paper, here we present a more symmetric
embedding of V (Qn). It in turn could be extended to embed subdivisions of Qn

and not only their branch vertices. This contributes to a large body of research
on embeddings in hypercubes that focuses on more efficient embeddings, see
for example [3,4,11,12,15,24,30,35–37,39,46,47].

Theorem 22. For any integer m ≥ 2 and any positive integer n, there exist
an integer N and a function F : V (Qn) → V (QN ), such that for any two
vertices u and v which are adjacent in Qn, dH(F (u), F (v)) = m and F maps
all vertices of Qn either in one vertex layer of QN (if m is even) or in two
consecutive vertex layers of QN (if m is odd).

Proof. Here, we shall present functions f, f ′, fk mapping V (Qn) into the vertex
set of some larger hypercube, for a fixed k ∈ N ∪ {0} such that for any two
adjacent in Qn vertices u and v, dH(f(u), f(v)) = dH(f ′(u), f ′(v)) = 3 and
dH(fk(u), fk(v)) = 2k + 2. Moreover, both f and f ′ map vertices of Qn into
two consecutive vertex layers and fk maps vertices of Qn into one layer. We
shall then define F based on one of the functions f, f ′, or fk.



On Graphs Embeddable in a Layer

For any vector w, let w[i] denote the ith component of w and ||w|| denote
the number of 1’s in w.

Let [(2k+2)n] be split into n consecutive intervals of length 2k+2. For a
binary vector w of length (2k+2)n, let w[[i]] be w restricted to the ith interval
of length 2k + 2. Formally, w[[i]] = w[(2k + 2)(i − 1) + 1]w[(2k + 2)(i − 1) +
2] · · · w[(2k + 2)i]. We define fk : V (Qn) → V (Q(2k+2)n) as follows:

fk(v)[[i]] =

{
0101 · · · 01, if v[i] = 0,
1010 · · · 10, if v[i] = 1.

Let [2n + 1] be split into n consecutive intervals of length 2 and one
last element. For a binary vector w of length 2n + 1, let w[[i]] be a triple
corresponding to w restricted to the ith interval and the last element, i.e.,
w[[i]] = w[2i − 1]w[2i]w[N ′]. We define f : V (Qn) → V (Q2n+1) as follows:

f(v)[[i]] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

010, if v[i] = 0 and ||v|| is even,
100, if v[i] = 1 and ||v|| is even,
011, if v[i] = 0 and ||v|| is odd,
101, if v[i] = 1 and ||v|| is odd.

It is clear here that if u and v are adjacent in Qn, the images f(u) and
f(v) are at Hamming distance 3.

Let [3n] be split into n consecutive intervals of length 3. For a binary
vector w of length 3n, let w[[i]] be a triple corresponding to w restricted to the
ith interval w[[i]] = w[3i − 2]w[3i − 1]w[3i]. We define f ′ : V (Qn) → V (Q3n)
as follows:

Let

f ′(v)[[i]] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

010, if v[i] = 0,
100, if v[i] = 1 and ||v|| is even,

101, if v[i] = 1, v[j] = 0 for any j > i, and ||v|| is odd,

100, if v[i] = 1, v[j] = 1 for some j > i, and ||v|| is odd.

Assume that v and u are adjacent in Qn and differ in position i such that
v is zero in this position. We shall verify that the distance between f(v) and
f(u) is 3. Note that f(v) and f(u) coincide in all triples corresponding to 0’s
of u. Moreover, they coincide on those triples �, where u[�] = 1, j �= i, and � is
not a position of the last 1 of u or v. Let j be the last position of 1 in u. Note
that i could be equal to j.

If w(v) is even, then w(u) is odd and f(u)[[j]] = 101. If i = j, then
f(v)[[j]] = 010 and f(u) and f(v) coincide in all other triples. If i < j, then
u[j] = v[j] = 1, f(u)[[j]] = 101, f(v)[[j]] = 100, f(u)[[i]] = 100, and f(v)[[i]] =
010. On all other triples f(v) and f(u) coincide. We see that in both cases
f(u) and f(v) are at distance 3.

If w(v) is odd, then w(u) is even and f(u)[[i]] = 100. Let k be the last
position of 1 in v. So, f(v)[[k]] = 101. We also have f(u)[[k]] = 100 and
f(v)[[i]] = 010. Then f(u) and f(v) are at distance 3.
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Now, let m ≥ 2 be given. If m is even, let m = 2k + 2, for non-negative
integer k. Then let F (u) = fk(u) for any u ∈ V (Qn). If m is odd and m = 3
let F (u) = f(u) for any u ∈ V (Qn). If m is odd and m = 3 + 2� for some
positive integer �, we define F by considering either f or f ′ and adjusting
2� coordinates to each embedded vertex that are 0 · · · 01 · · · 1 or 1 · · · 10 · · · 0,
depending whether the vertex is embedded in one layer of the other. Formally,
in case of f , for example, let N = 2n + 1 + 2� and let for any vertex u of
Qn, F (u) restricted to the first 2n + 1 coordinates be f(u). In addition, if
w(u) is even, let the last 2� coordinates of F (u) be 0 · · · 01 · · · 1 and if w(u) is
odd, let the last 2� coordinates of F (u) be 1 · · · 10 · · · 0, with � 0’s and � 1’s,
respectively. �
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[23] P. Erdős. On extremal problems of graphs and generalized graphs. Israel J. Math.
2 (1964) 183–190.

[24] J. Fang, J. Hsiao and C. Tang. Embedding cycles and meshes onto incomplete
hypercubes. Int. J. Comput. Math. 75 (2000), no. 1, 1–19.

[25] P. Frankl and N. Tokushige. The Kruskal-Katona theorem, some of its analogues
and applications. Extremal problems for finite sets (Visegrád, 1991), 229–250,
Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994.

[26] Z. Füredi and L. Özkahya. On even-cycle-free subgraphs of the hypercube. Elec-
tronic Notes in Discrete Mathematics 34 (2009), 515–517.
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