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Abstract. In this paper, we give a combinatorial proof of a positivity result
of Chern related to Andrews’s EO∗-type partitions. This combinatorial
proof comes after reframing Chern’s result in terms of copartitions.Using
this new perspective, we also reprove an overpartition result of Chern
by showing that it comes essentially “for free” from our combinatorial
proof and some basic properties of copartitions. Finally, the application
of copartitions leads us to more general positivity conjectures for families
of both infinite and finite products, with a proof in one special case.
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1. Introduction

In [2], the authors introduce copartitions. Copartitions reframe and generalize
Andrews’s EO∗-type partitions [1], which arose in a study of the combinatorics
of the mock theta function ν(q). Each (a, b,m)-copartition is comprised of three
partitions:

• a partition into parts ≡ a (mod m), which we call the ground;
• a partition into parts ≡ b (mod m), which we call the sky; and
• a rectangular partition that unites them.

We denote the number of (a, b,m)-copartitions of n as cpa,b,m(n). Andrews’s
EO∗(n) counts the number of partitions of n with all even parts smaller than
all odd parts and only the largest even part appearing an odd number of
times. We call the set of partitions counted by EO∗ “EO∗-type partitions.” A
straightforward bijection reveals that cp1,1,2(n) = EO∗(2n), and so we may
recast any EO∗-type partition result in terms of copartitions (see [2]).
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This paper is motivated by a study into a weighted version of the EO∗(n)
function completed by Chern [4]. In Chern’s study, he assigned a weight of −1
to the partition λ if the largest even part of λ is 2 (mod 4) and 1 otherwise.
We restate Chern’s result in the language of copartitions. Let cpo

a,b,m(n) (resp.
cpe

a,b,m(n)) be the number of (a, b,m)-copartitions of n with an odd (resp.
even) number of ground parts.

Theorem 1.1. (Chern [4]) For all n ≥ 0,

cpo
1,1,2(n)

{
≤ cpe

1,1,2(n) if n is even

= cpe
1,1,2(n) if n is odd.

Chern called for a direct combinatorial proof of Theorem 1.1, and we achieve
this in Sect. 3.

Chern also studied the overpartition analogue of Andrews’s set of parti-
tions and proved an overpartition analogue of Theorem 1.1. In Sect. 4, we show
that Chern’s overpartition analogue follows “for free” from basic properties of
overpartitions and our combinatorial proof of Theorem 1.1.

We note that throughout we have adopted Chern’s notation, rewriting
Andrews’s original EO(n) from [1] as EO∗(n). Chern [3] renamed EO(n) to
more easily discuss the overpartition analogue.

Both Andrews’s EO∗-type partitions and (a, b,m)-copartitions have gen-
erating functions that enjoy nice infinite product forms. Thus, Theorem 1.1 is
equivalent to the non-negativity of the coefficients of

(−q2; q2)∞
(−q; q2)∞(q; q2)∞

.

Similarly, considering a weighted version of the generating function for (a, b,m)-
copartitions leads naturally to a question about the more general q-products

(−qa+b; qm)∞
(−qa; qm)∞(qb; qm)∞

. (1)

Many researchers are interested in the positivity of families q-products (see
[7]), and in Sect. 5, we consider this product and offer a conjecture.

2. Background on Copartitions

In this section, we recall the definition of an (a, b,m)-copartition and give
some relevant background. By a partition of n, we mean a multiset of positive
integers λ = {λ1, λ2, λ3, . . . , λr} such that λ1 + λ2 + · · · + λr = n. We use
ν(λ) = r to denote the number of parts of the partition λ.

An (a, b,m)-copartition is a triple of partitions (γ, ρ, σ) such that all parts
in γ are congruent to a (mod m), all parts in σ are congruent to b (mod m),
and ρ consists of exactly ν(σ) parts of size m·ν(γ). To handle the cases where a
or b is larger than m, we add the condition that the parts in γ must have size at
least a and the parts in σ must have size at least b. We call γ the ground of the
copartition and σ the sky. Note that one can represent an (a, b,m)-copartition



On the Positivity of Infinite...

graphically by appending the m-modular diagram for σ to the right of the m-
modular diagram for ρ and then appending the conjugate of the m-modular
diagram for γ below ρ.

The graphical representation allows for a straightforward conjugation
map on copartitions by reflecting the diagram about the line y = −x. Equiv-
alently, one can define the conjugate of the (a, b,m)-copartition (γ, ρ, σ) as
the (b, a,m)-copartition (σ, ρ′, γ), where ρ′ is the conjugate of the m-modular
diagram for ρ.

Example 2.1. The following diagram represents the (a, b,m)-copartition ({4m+
a, 3m+a, a, a}, {4m, 4m}, {3m+ b, 3m+ b}) and its conjugate ({3m+ b, 3m+
b}, {2m, 2m, 2m, 2m}, {4m + a, 3m + a, a, a}).

m m m m b m m m

m m m m b m m m

a a a a

m m

m m

m m

m

m m a m m m m

m m a m m m

m m a

m m a

b b

m m

m m

m m

We also define the enlarged sky of a copartition, written as ρ|σ, by adding
the ith part of σ to the ith part of ρ for each i. For example, in the (3, 1, 4)-
copartition ({11, 11, 7}, {12, 12, 12, 12}, {13, 9, 9, 1}), the enlarged sky is the
partition {25, 21, 21, 13}. Note that, because of the required dimensions of ρ,
the smallest part of ρ|σ must be of size at least m times ν(γ).

The EO∗-type partition corresponding to the (1, 1, 2)-copartition (γ, ρ, σ)
is obtained by creating two copies of each part of ρ|σ and doubling each part
of γ′. For example, the (1, 1, 2)-copartition (γ, ρ, σ) = ({7, 7, 3}, {6, 6}, {5, 1})
has ρ|σ = {11, 7} and γ′ = {3, 3, 3, 2, 2, 2, 2}. Thus (γ, ρ, σ) corresponds to the
EO∗-type partition {11, 11, 7, 7, 6, 6, 6, 4, 4, 4, 4}.

In [2], the authors define cpa,b,m(w, s, n) to be the number of (a, b,m)-
copartitions of size n that have w ground parts and s sky parts and prove the
following infinite product form of the generating function for cpa,b,m(w, s, n).

Theorem 2.2. (Burson–Eichhorn [2]) We have

cpa,b,m(x, y, q) :=
∞∑

n=0

∞∑
w=0

∞∑
s=0

cpa,b,m(w, s, n)xsywqn

=
(xyqa+b; qm)∞

(xqb; qm)∞(yqa; qm)∞
.

By setting x = 1 and y = −1 in Theorem 2.2, we immediately get the
following corollary, which interprets (1) as a difference of copartition functions.
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Corollary 2.3. For a, b,m ∈ N and n ∈ N0,
∞∑

n=0

(cpe
a,b,m(n) − cpo

a,b,m(n))qn =
(−qa+b; qm)∞

(−qa; qm)∞(qb; qm)∞
. (2)

3. Combinatorial Proof of Theorem 1.1

In this section, we give a combinatorial proof of Theorem 1.1 by describing
an injection φ : CPo

1,1,2(n) → CPe
1,1,2(n), where CPo

1,1,2(n) (resp. CPe
1,1,2(n))

is the set of copartitions counted by the function cpo
1,1,2(n) (resp. cpe

1,1,2(n)).
We will also show that, when n is odd, this injection is a bijection.

We begin with a general outline of the injection. For (γ, ρ, σ) ∈ CP1,1,2(n),
we define the map φ : CPo

1,1,2(n) → CPe
1,1,2(n) by iterating the process of

removing the largest part and largest even part of γ′ (the conjugate partition
of γ), and adding the sum of the removed parts to ρ|σ as a new part. Note
that the map is well defined when the largest part of γ′ is odd. However,
while iterating this process, we may obtain objects that are no longer (1, 1, 2)-
copartitions. Thus, to show the details, we begin by defining a set of pairs of
partitions that slightly generalize copartitions.

Definition. For pairs of partitions (γ̃, σ̃), define �(γ̃) to be the largest part of
γ̃, or 0 if γ̃ = ∅. Similarly, define �e(γ̃) to be the largest even part of γ̃, or 0
if γ̃ has no even parts. Also, define s(σ̃) to be the smallest part of σ̃, or ∞ if
σ̃ = ∅.

Define CP ′(n) to denote the set of pairs of partitions (γ̃, σ̃) with total
size n such that

• all parts of σ̃ are odd
• s(σ̃) ≥ �(γ̃) + �e(γ̃)
• if �e(γ̃) 	= 0, there is exactly one part in γ̃ appearing an odd number of

times and this part must be either the largest part or the largest even
part.

• if �e(γ̃) = 0, then �(γ̃) is the only part in γ̃ that may appear an odd
number of times. Then, define o(γ̃) to be the unique part in γ̃ appearing
an odd number of times, or we define o(γ̃) = 0 if no such part exists.

Note that, if (γ, ρ, σ) ∈ CP1,1,2(n), then (γ′, ρ|σ) ∈ CP ′(n). Furthermore,
we can divide CP ′(n) into two sets according to the parity of the unique part of
γ̃ that appears an odd number of times. We write CP ′(n) = CP ′

o(n) ∪ CP ′
e(n),

where CP ′
o(n) consists of all pairs in which the largest part of γ̃ is odd and

appears an odd number of times, and CP ′
e(n) consists of all pairs in which

either the largest even part of γ̃ (which may or may not also be the largest
part of γ̃) is the only part of γ̃ appearing an odd number of times, or no part
of γ̃ appears an odd number of times.

For (γ̃, σ̃) ∈ CP ′(n), we define f((γ̃, σ̃)) = (γ̃f , σ̃f ) to be the pair obtained
by removing the largest part and the largest even part of γ̃ and adding a part
of size �(γ̃) + �e(γ̃) to σ̃. Note that, when �(γ̃) 	= �e(γ̃), f is size-preserving,
and we will not apply f in the case where �(γ̃) = �e(γ̃). Additionally, we define
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g((γ̃, σ̃)) = (γ̃g, σ̃g) to be the pair obtained by removing the smallest part from
σ̃ and adding one or two new parts to γ̃:

• If o(γ̃) > 0, we add one part of size o(γ̃) and one part of size s(σ̃) − o(γ̃).
• If o(γ̃) = 0, we add one part of size s(σ̃).

Example 3.1. Consider (γ̃, σ̃) = ({7, 6, 6, 3, 3, 2, 2, 2, 2}, {15, 15, 13}) ∈ CP ′
o(76) ⊂

CP ′(76). Note that o(γ̃) = �(γ̃) = 7, �e(γ̃) = 6, and s(σ̃) = 13. Then,

f(γ̃, σ̃) = ({6, 3, 3, 2, 2, 2, 2}, {15, 15, 13, 13}) ∈ CP ′
e(76)

and
g(γ̃, σ̃) = ({7, 7, 6, 6, 6, 3, 3, 2, 2, 2, 2}, {15, 15}) ∈ CP ′

e(76).

We now give three lemmas which may appear to be quite technical, but
they simply clarify the domain and range of f and g and demonstrate that

f : {(γ̃, σ̃) ∈ CP ′(n) | �(γ̃) > �e(γ̃)}
−→ {(γ̃, σ̃) ∈ CP ′(n) | (γ̃, σ̃) ∈ CP ′

e(n) with σ̃ 	= ∅ or

(γ̃, σ̃) ∈ CP ′
o(n) with s(σ̃) < 2�(γ̃)}

and

g :{(γ̃, σ̃) ∈ CP ′(n) | (γ̃, σ̃) ∈ CP ′
e(n) with σ̃ 	= ∅ or

(γ̃, σ̃) ∈ CP ′
o(n) with s(σ̃) < 2�(γ̃)}

−→ {(γ̃, σ̃) ∈ CP ′(n) | �(γ̃) > �e(γ̃)}
are inverses of each other. Note that o(γ̃) and o(γ̃f ) have opposite parity since
both f and g change the number of appearances of �(γ̃) and �e(γ̃) by exactly
one (this statement holds even if the number of appearances of a part changes
from zero to one or from one to zero). Thus, we obtain the following lemma.

Lemma 3.2.

(1) If (γ̃, σ̃) ∈ CP ′
o(n), then f((γ̃, σ̃)) ∈ CP ′

e(n) and σ̃f 	= ∅.
(2) If (γ̃, σ̃) ∈ CP ′

e(n) with �(γ̃) > �e(γ̃), then f((γ̃, σ̃)) ∈ CP ′
o(n) with

s(σ̃f ) < 2�(γ̃f ).
(3) If (γ̃, σ̃) ∈ CP ′

o(n) with s(σ̃) < 2�(γ̃), then g((γ̃, σ̃)) ∈ CP ′
e(n) and

�(γ̃g) > �e(γ̃g).
(4) If (γ̃, σ̃) ∈ CP ′

e(n) and σ̃ 	= ∅, then g((γ̃, σ̃)) ∈ CP ′
o(n).

For two partitions λ and π, we define their union, denoted λ∪π, to be the
partition with all of the parts of λ and π, with each part having multiplicity
equal to the sum of that part’s multiplicity in λ and that part’s multiplicity
in π.

Lemma 3.3. For (γ̃, σ̃) ∈ CP ′(n) with �(γ̃) > �e(γ̃), g ◦ f((γ̃, σ̃)) = (γ̃, σ̃).

Proof. Let (γ̃, σ̃) ∈ CP ′(n) such that �(γ̃) > �e(γ̃). We can decompose γ̃ as
{�(γ̃), �e(γ̃)} ∪ γ̂. Then, we get that f((γ̃, σ̃)) = (γ̂, σ̃ ∪ {�(γ̃) + �e(γ̃)}). Now,
we consider two cases as follows:
Case 1: (γ̃, σ̃) ∈ CP ′

o(n). In this case, we note that o(γ̃f ) = o(γ̂) = �e(γ̂) =
�e(γ̃). Thus, g ◦ f(γ̃, σ̃) = ({�(γ̃), �e(γ̃)} ∪ γ̂, σ̃) = (γ̃, σ̃).
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Case 2: (γ̃, σ̃) ∈ CP ′
e(n). In this case, we note that o(γ̃f ) = o(γ̂) = �(γ̂) =

�(γ̃). Furthermore, s(σ̃f ) − o(γ̃f ) = �(γ̃) + �e(γ̃) − �(γ̃) = �e(γ̃).
Therefore, g ◦ f(γ̃, σ̃) = ({�(γ̃), �e(γ̃)} ∪ γ̂, σ̃) = (γ̃, σ̃).

�

Lemma 3.4. For (γ̃, σ̃) ∈ CP ′
e(n) with σ̃ 	= ∅ or (γ̃, σ̃) ∈ CP ′

o(n) with s(σ̃) <
2�(γ̃), f ◦ g((γ̃, σ̃)) = (γ̃, σ̃).

Proof. Let (γ̃, σ̃) ∈ CP ′
e(n) with σ̃ 	= ∅ or (γ̃, σ̃) ∈ CP ′

o(n) with s(σ̃) < 2�(γ̃).
We can decompose σ̃ as {s(σ̃)} ∪ σ̂. Then, g((γ̃, σ̃)) = (({s(σ̃) − o(γ̃), o(γ̃)} ∪
γ̃), σ̂). We consider two cases as follows:

Case 1: (γ̃, σ̃) ∈ CPo(n) with s(σ̃) < 2�(γ̃). Thus, o(γ̃) = �(γ̃) > �e(γ̃). Note
that, because s(σ̃) < 2�(γ̃) and o(γ̃) = �(γ̃), s(σ̃) − o(γ̃) = s(σ̃) −
�(γ̃) < �(γ̃). Moreover, because s(σ̃) ≥ �(γ̃) + �e(γ̃), s(σ̃) − o(γ̃) ≥
�e(γ̃). Thus, since �(γ̃) = o(γ̃) is odd, s(σ̃) − o(γ̃) is even and must
become �e(γ̃g), so �e(γ̃g) = s(σ̃) − o(γ̃) = s(σ̃) − �(γ̃). Therefore,
f ◦ g((γ̃, σ̃)) = (γ̃, σ̂ ∪ {s(σ̃) − �(γ̃) + �(γ̃)}) = (γ̃, σ̃).

Case 2: (γ̃, σ̃) ∈ CPe(n). Thus, o(γ̃) = �e(γ̃). Then, �e(γ̃g) = �e(γ̃) = o(γ̃)
and �(γ̃g) = s(σ̃) − �e(γ̃). Therefore, f ◦ g(γ̃, σ̃) = (γ̃, σ̂ ∪ {s(σ̃) −
�e(γ̃) + �e(γ̃)}) = (γ̃, σ̃).

�

We are now ready to prove Theorem 1.1.

Proof. Let n ∈ N. Note that we can recast any (γ, ρ, σ) ∈ CPo
1,1,2(n) as

(γ′, ρ|σ) ∈ CP ′
o(n), where s(ρ|σ) > 2�(γ′), and we can recast any (γ̂, ρ̂, σ̂) ∈

CPe
1,1,2(n) as (γ̂′, ρ̂|σ̂) ∈ CP ′

e(n), where �(γ̂′) = �e(γ̂′). We now explicitly give
an injection φ : {(γ̃, σ̃) ∈ CP ′

o(n) : s(σ̃) > 2�(γ̃)} → {(γ̃, σ̃) ∈ CP ′
e(n) : �(γ̃) =

�e(γ̃)}, which equivalently gives an injection φ̄ : CPo
1,1,2(n) → CPe

1,1,2(n) in
the natural way.

By Lemma 3.2 (1) and (2), we have shown that

f : {(γ̃, σ̃) ∈ CP ′(n) | �(γ̃) > �e(γ̃)}
−→ {(γ̃, σ̃) ∈ CP ′(n) | (γ̃, σ̃) ∈ CP ′

e(n) with σ̃ 	= ∅ or

(γ̃, σ̃) ∈ CP ′
o(n) with s(σ̃) < 2�(γ̃)}.

Similarly, be Lemmas 3.2 (3) and (4), we see that

g :{(γ̃, σ̃) ∈ CP ′(n) | (γ̃, σ̃) ∈ CP ′
e(n) with σ̃ 	= ∅ or

(γ̃, σ̃) ∈ CP ′
o(n) with s(σ̃) < 2�(γ̃)}

−→ {(γ̃, σ̃) ∈ CP ′(n) | �(γ̃) > �e(γ̃)}.

Note that each application of f reduces the number of parts of γ̃ by either 1
or 2. Thus, for each (γ̃, σ̃) ∈ CP ′

o(n) with s(σ̃) > 2�(γ̃), letting (γ̃fk , σ̃fk) :=
fk((γ̃, σ̃)), there must be some minimum positive integer k such that either
the largest part remaining in γ̃fk is even or γ̃fk is empty. In other words,
fk((γ̃, σ̃)) ∈ CP ′

e(n) with �(γ̃fk) = �e(γ̃fk). For each (γ̃, σ̃) ∈ CP ′
o(n) with
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s(σ̃) > 2�(γ̃), define φ((γ̃, σ̃)) = fk((γ̃, σ̃)) ∈ CP ′
e(n), where k is that minimum

positive integer described above.
By Lemmas 3.3 and 3.4, we have that f and g are inverses of each other.

Therefore, φ is an injection.
We now show that when our copartition has odd size, φ is a bijection. It

suffices to show that for any (γ̃, σ̃) ∈ CP ′
e(n) with |γ̃|+|σ̃| odd and �(γ̃) = �e(γ̃),

there is a positive integer k such that gk((γ̃, σ̃)) ∈ CP ′
o(n) with s(σ̃gk) >

2�(γ̃gk). Let (γ̃, σ̃) ∈ CP ′
e(n). Thus, |γ̃| must be even. Then, because |γ̃|+ |σ̃| is

odd and σ̃ has odd parts, ν(σ̃) must be odd. Thus, either gν(σ̃)(γ̃, σ̃) ∈ CP ′
o(n)

or there is some minimum integer j < ν(σ̃) such that gj(γ̃, σ̃) is not well
defined. In the first case, our proof is complete, so we assume we are in the
second case. By Lemma 3.2, parts 3.2 and 3.2, the first case where gj(γ̃, σ̃) is
not well defined is when gj−1(γ̃, σ̃) ∈ CP ′

o(n) and s(σ̃gj−1) ≥ 2�(γ̃gj−1). Since
s(σ̃gj−1) is always odd and 2�(γ̃gj−1) is always even, we must have s(σ̃gj−1) >
2�(γ̃gj−1), as desired.

Since φ is an injection, and when our copartition has odd size, φ is a
bijection, Theorem 1.1 follows. �

Now, we illustrate the above proof with some examples.

Example 3.5. Consider the copartition

(γ, ρ, σ) = ({9, 9, 9, 9, 5, 5, 3}, {14, 14, 14}, {5, 5, 3}) ∈ CPo
1,1,2(104).

Then γ′ = {7, 7, 7, 6, 6, 4, 4, 4, 4} and ρ|σ = {19, 19, 17}, so we work with

({7, 7, 7, 6, 6, 4, 4, 4, 4}, {19, 19, 17}) ∈ CP ′
o(104).

By iteratively applying f , we obtain the following sequence:

({7, 7, 7, 6, 6, 4, 4, 4, 4}, {19, 19, 17})
f−−−−→ ({7, 7, 6, 4, 4, 4, 4}, {19, 19, 17, 13})
f−−−−→ ({7, 4, 4, 4, 4}, {19, 19, 17, 13, 13})
f−−−−→ ({4, 4, 4}, {19, 19, 17, 13, 13, 11})

∈ CP ′
e(104).

Thus, f3(({7, 7, 7, 6, 6, 4, 4, 4, 4}, {19, 19, 17})) = ({4, 4, 4}, {19, 19, 17, 13, 13, 11}).
Furthermore, we can conjugate the first partition and separate the second par-
tition to get

φ̄(({9, 9, 9, 9, 5, 5, 3},{14, 14, 14}, {5, 5, 3}))

= ({3, 3, 3, 3}, {8, 8, 8, 8, 8, 8}, {11, 11, 9, 5, 5, 3}).

Note that ({3, 3, 3, 3}, {8, 8, 8, 8, 8, 8}, {11, 11, 9, 5, 5, 3}) ∈ CPe
1,1,2(104).

Example 3.6. Here, we show an example of a copartition in CPe
1,1,2(48) that

is not in the range of φ. Consider (∅, ∅, {13, 13, 9, 7, 3, 3}) ∈ CPe
1,1,2(48), which

corresponds to (γ̃, σ̃) = (∅, {13, 13, 9, 7, 3, 3}) ∈ CP ′
e(n). Now, observe that we
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can iteratively apply g to (∅, {13, 13, 9, 7, 3, 3}) without obtaining an element
(δ̃, τ̃) ∈ CP ′

o(48) with 2�(δ̃) < s(τ̃) as follows.

(∅, {13, 13, 9, 7, 3, 3})
g−−−−→ ({3}, {13, 13, 9, 7, 3})
g−−−−→ ({3, 3}, {13, 13, 9, 7})
g−−−−→ ({7, 3, 3}, {13, 13, 9})
g−−−−→ ({7, 7, 3, 3, 2}, {13, 13})
g−−−−→ ({11, 7, 7, 3, 3, 2, 2}, {13})
g−−−−→ ({11, 11, 7, 7, 3, 3, 2, 2, 2}, ∅).

Note that we can no longer apply g, and we could not construct an ele-
ment of CPo

1,1,2(48) at any point in our process, so (∅, ∅, {13, 13, 9, 7, 3, 3}) /∈
φ(CPo

1,1,2(48)).

Remark. We can characterize the set CPe
1,1,2(n)\φ(CPo

1,1,2(n)) by considering
the pairs of partitions that result from iteratively applying g to the pair in
CP ′

e(n) corresponding to any partition in CPe
1,1,2(n). Note that, by Lemma

3.2, parts 3.2 and 3.2, for any (γ̃, σ̃) ∈ CP ′(n), either
(1) (γ̃, σ̃) ∈ CP ′

e(n) with σ̃ = ∅;
(2) (γ̃, σ̃) ∈ CP ′

e(n) and g((γ̃, σ̃)) ∈ CP ′
o(n);

(3) (γ̃, σ̃) ∈ CP ′
o(n) and can be recast as a copartition in CPo

1,1,2(n); or
(4) (γ̃, σ̃) ∈ CP ′

o(n) and g((γ̃, σ̃)) ∈ CP ′
e(n).

Therefore, beginning from a pair in CP ′
e(n) corresponding to a copartition in

CPe
1,1,2(n), we can iteratively apply the map g until we reach a pair (γ̃, σ̃) such

that either (γ̃, σ̃) corresponds to a copartition in CPo
1,1,2(n) or (γ̃, σ̃) ∈ CP ′

e(n)
and σ̃ = ∅. A similar argument shows that iteratively applying f to any pair
(γ̃, σ̃) such that either (γ̃, σ̃) corresponds to a copartition in CPo

1,1,2(n) or
(γ̃, σ̃) ∈ CP ′

e(n) and σ̃ = ∅ eventually results in a pair that corresponds to
a copartition in CPe

1,1,2(n). Thus, CPe
1,1,2(n) \ φ(CPo

1,1,2(n)) is equinumerous
with the set of partitions π such that either �e(π) is the only part size appearing
an odd number of times or �e(π) = 0 and there is no part appearing an odd
number of times.

We now obtain the generating function for such partitions by generating
the even parts and the odd parts separately. The generating function for par-
titions into odd parts with each part size appearing an even number of times
is 1/(q2; q4)∞. By conjugation, we see that the number of partitions of n into
even parts with either no parts at all or only the largest part appearing an
odd number of times is also equal to the number of partitions of n into odd
parts with each part size appearing an even number of times. Thus the set of
partitions π such that �e(π) is the only part size appearing an odd number of
times or �e(π) = 0 and there is no part appearing an odd number of times has
the generating function

1
(q2; q4)2∞

.
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Thus, beyond proving Theorem 1.1, we have obtained a fully combinatorial
proof that

∞∑
n=0

(cpe
1,1,2(n) − cpo

1,1,2(n))qn =
1

(q2; q4)2∞
.

Recasting this in terms of the family of infinite products mentioned in the
introduction, we have proven that

∞∑
n=0

(cpe
1,1,2(n) − cpo

1,1,2(n))qn =
1

(q2; q4)2∞
=

(q4; q4)∞
(q2; q2)∞(q2; q4)∞

=
(−q2; q2)∞

(−q; q2)∞(q; q2)∞

has non-negative coefficients.

4. Overpartition Analogues

In [4], Chern also treated an overpartition analogue of Andrews’s EO∗-type
partitions. In particular, using q-series techniques, he showed that his equiva-
lent form of Theorem 1.1 holds for overpartitions.

Theorem 4.1. (Chern [4]) Let EO∗
0(n) (resp. EO∗

2(n)) be the number of over-
partitions of n such that all even parts are smaller than all odd parts and that
the largest even part is congruent to 0 (resp. 2) modulo 4 and is the only part
appearing an odd number of times. Then,

EO∗
0(n)

{
= EO∗

2(n) if n is not divisible by 4
≥ EO∗

2(n) if n is divisible by 4.

Chern also called for a direct combinatorial proof of Theorem 4.1. By rewriting
this identity in the language of (1, 1, 2)-copartitions, we now show that a com-
binatorial proof follows directly from basic properties of overpartitions along
with the combinatorics of copartitions established in the previous sections.

Recall that for any set of partitions P, the associated set of overpartitions
P is the set of all partitions from P where the first occurrence (equivalently,
the final occurrence) of a part may be overlined [5]. Overpartitions may also
be counted as a sum over the original set of partitions.

Proposition 4.2. (Corteel–Lovejoy [5]) Let P be a set of partitions and let P
be the associated set of overpartitions. Then,

|P| =
∑
λ∈P

2dv(λ), (3)

where dv(λ) denotes the diversity, or number of different part sizes, of the
partition λ.
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This proposition holds because for each distinct part size, there are two options;
either the first appearance of that part size is overlined or it is not. One
implication of this proposition is that an overpartition identity follows directly
from an underlying ordinary partition identity if the underlying identity can
be refined to hold for partitions with a fixed diversity.

Since copartitions are not a set of ordinary partitions, we define the over-
partition analogue of copartitions in the following way.

Definition. An (a, b,m)-overcopartition is a triple (γ̄, ρ, σ̄), where γ̄ is an over-
partition with each of its parts at least a and congruent to a (mod m), σ̄ is
an overpartition with each of its parts at least b and congruent to b (mod m),
and ρ is an ordinary partition with the same number of parts as σ̄, each of
which have size equal to m times the number of parts of γ̄.

When a, b,m ≥ 1, we let cpa,b,m(n) denote the number of (a, b,m)-
overcopartitions of size n, and we let CPa,b,m(n) denote the set of (a, b,m)-
overcopartitions of size n.

Also, we define the diversity of a copartition to be the sum of the diver-
sities of the ground and the sky. That is, dv((γ, ρ, σ)) = dv(γ) + dv(σ). Note
that, since diversity is preserved under conjugation, dv((γ, ρ, σ)) is equal to the
number of different row sizes in the graphical representation of the copartition
(γ, ρ, σ).

Note that the map φ in the proof of Theorem 1.1 preserves diversity. To
see this, notice that in creating all of the new parts of σ̃ of some fixed size x,
we must exhaust all of the parts of some fixed size in γ̃. Thus for each new part
size created by φ in σ̃, exactly one part size in γ̃ vanishes. Since φ preserves
diversity, (3) implies that

cpo
1,1,2(n)

{
≤ cpe

1,1,2(n) if n is even
= cpe

1,1,2(n) if n is odd.
(4)

Next, note that the diversity of a (1, 1, 2)-copartition aligns with the
diversity of its corresponding EO∗-type partition. Thus, (4) implies Theorem
4.1.

Although we do not treat more general overcopartition functions here,
we can write down the general overcopartition generating function.

Theorem 4.3. Let cpa,b,m(r, n) denote the number of (a, b,m)-overcopartitions
of size n with r overlined parts. Then,

∞∑
n=0

∞∑
r=0

cpa,b,m(r, n)zrqn =
(−zqb+m; qm)∞

(qb; qm)∞

∞∑
w=0

(−zqm, qm)w(qb, qm)wqaw

(qm; qm)w(−zqb+m, qm)w
.

(5)

Readers familiar with the notations of basic hypergeometric series will notice

that the sum on the right side of (5) is just 2φ1

(−zqm, qb

−zqb+m
; qm, qa

)
.
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Proof. We begin by noting that we may represent an overlined part in γ̄ or σ̄ by
shading in the last cell of that part in their m-modular diagram. Furthermore,
qaw(−zqm;qm)w

(qm;qm)w
is the generating function for an overpartition into exactly w

parts of size a (mod m) and qbs(−zqm;qm)s
(qm;qm)s

is the generating function for an
overpartition into exactly s parts of size b (mod m), where, in both products,
z keeps track of the number of overlined parts. Thus, by summing over all
possible dimensions of ρ, we can see that

∞∑
n=0

∞∑
r=0

cpa,b,m(r, n)zrqn =
∞∑

w=0

∞∑
s=0

qmsw+aw+bs(−zqm; qm)w(−zqm; qm)s

(qm; qm)w(qm; qm)s
.

Using the q-binomial theorem, we obtain
∞∑

w=0

∞∑
s=0

qmsw+aw+bs(−zqm; qm)w(−zqm; qm)s

(qm; qm)w(qm; qm)s

=
∞∑

w=0

qaw(−zqm; qm)w

(qm; qm)w

(−zqm(w+1)+b; qm)∞
(qmw+b; qm)∞

=
(−zqb+m; qm)∞

(qb; qm)∞

∞∑
w=0

qaw(−zqm; qm)w(qb; qm)w

(qm; qm)w(−zqb+m; qm)w
,

as desired. �

Remark. Note that, in the special case where a = b and m = 2a, we can,
following the work of Chern [4], define cpe

a,a,2a(r, n) (resp. cpo
a,a,2a(r, n)) to be

the number of (a, a, 2a)-overcopartitions with an even (resp. odd) number of
ground parts and then further simplify a weighted version of (5) as follows

∞∑
n=0

∞∑
r=0

(cpe
a,a,2a(r, n) − cpo

a,a,2a(r, n))zrqn =
(−q2a; q2a)∞(−zq2a; q4a)2∞

(q2a; q4a)∞
. (6)

Since, the map φ in the proof of Theorem 1.1 preserves diversity, it makes
sense that, when extended to overpartitions, the overpartitions in CPe

1,1,2(n) \
φ(CPo

1,1,2(n)) are in bijective correspondence with overpartitions of size n
where all parts except the largest even part appear an even number of times.
By the argument given at the end of Sect. 3, this latter set is a combinatorial
interpretation of the coefficients of the right-hand side of (6).

5. A More General Conjecture

Note that our combinatorial proof of Theorem 1.1 in Sect. 3 relies heavily
on specific properties of (1, 1, 2)-copartitions. However, computational data
suggests that Theorem 1.1 is a special case of a broader conjecture, which we
state below.

Conjecture 5.1. For a, b,m ∈ N and n ∈ N0, if b|a, then

cpo
a,b,m(n) ≤ cpe

a,b,m(n).
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Equivalently, the q-series

(−qa+b; qm)∞
(−qa; qm)∞(qb; qm)∞

has non-negative coefficients when b|a.

Note that, in [6], motivated by the connection to a type of Lie algebra
called a seaweed algebra, Craig proved that the q-series

1
(−q3; q4)∞(q; q4)∞

has non-negative coefficients. Since (−q4; q4)∞, has obviously non-negative
coefficients, Craig’s result implies the special case of Conjecture 5.1 when a =
3, b = 1, and m = 4.

Additionally, we now observe that Conjecture 5.1 holds when a = b.

Theorem 5.2. For a,m ∈ N and n ∈ N0,

cpo
a,a,m(n) ≤ cpe

a,a,m(n).

Equivalently, the q-series

(−q2a; qm)∞
(−qa; qm)∞(qa; qm)∞

has non-negative coefficients.

Proof. In the special case where a = b, we can simplify the right side of (2) as
follows:

∞∑
n=0

(cpe
a,a,m(n) − cpo

a,a,m(n))qn =
(−q2a; qm)∞

(−qa; qm)∞(qa; qm)∞

=
(−q2a; qm)∞
(q2a; q2m)∞

. (7)

Note that, because the coefficients of (7) are all non-negative, we know that
cpe

a,a,m(n) ≥ cpo
a,a,m(n) for all n ≥ 0 and all a,m ≥ 1. �

It is still an open problem to find a combinatorial proof of (7). We note
that our proof from Sect. 3 does not easily extend beyond the case m = 2a.

It is natural to ask if finite versions of (1) might also have non-negative
coefficients. Among many possible finite versions, we find that the following
one seems to be well poised and appears to have non-negative coefficients.

Conjecture 5.3. For a, b,m,N,M ∈ N, if b|a and a + b = m, then the q-series

(−qm; qm)N+M−1

(−qa; qm)N (qb; qm)M

has non-negative coefficients when N ≤ M .
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When we say that this version is well poised, we mean that it satisfies a
nice recursion, much like the Gaussian binomial coefficients do. If we define

ga,b,m(N,M ; q) = g(N,M) =
(−qm; qm)N+M−1

(−qa; qm)N (qb; qm)M
,

then

g(N,M) = g(N,M − 1) + qmM−ag(N − 1,M).

Note that Conjecture 5.3 would imply Conjecture 5.1.
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