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Abstract. The B-polynomial and quasisymmetric B-function, introduced
by Awan and Bernardi, extends the widely studied Tutte polynomial and
Tutte symmetric function to digraphs. In this article, we address one of
the fundamental questions concerning these digraph invariants, which is,
the determination of the classes of digraphs uniquely characterized by
them. We solve an open question originally posed by Awan and Bernardi,
regarding the identification of digraphs that result from replacing every
edge of a graph with a pair of opposite arcs. Further, we address the more
challenging problem of reconstructing digraphs using their quasisymmet-
ric functions. In particular, we show that the quasisymmetric B-function
reconstructs partially symmetric orientations of proper caterpillars. As a
consequence, we establish that all orientations of paths and asymmet-
ric proper caterpillars can be reconstructed from their quasisymmetric
B-functions. These results enhance the pool of oriented trees distinguish-
able through quasisymmetric functions.
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1. Introduction

The digraph polynomials and functions arising through the colorings are in-
variants that encode various statistics associated with the digraphs. One of
the most sought-after problems with respect to these digraph invariants is the
following: can the invariants uniquely determine the digraphs? If not, which
classes of digraphs are distinguishable by these invariants? These questions
have been investigated for various invariants [1–5], and are sort of digraph
analogues of the Stanley’s Tree Isomorphism conjecture, which posits that the
chromatic symmetric function of trees distinguishes them up to isomorphism.
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Our digraph polynomials of interest in the above context are the B-
polynomial and the quasisymmetric B-function introduced by Awan and Bernardi
in [6]. These invariants respectively extend the Tutte polynomial [7] and Tutte
symmetric function [8] to digraphs using the Potts model as an intermediary.

Definition 1 [6, Theorem 3.1]. For a digraph D(V,A), the B-polynomial
BD(x, y, z) is the unique trivariate polynomial, such that for every positive
integer k,

BD(k, y, z) =
∑

f :V →[k]

yasc(f)zdsc(f),

where [k]:={1, 2, . . . , k} and asc(f) (resp. dsc(f)) denotes the number of arcs
uv in A such that f(u) < f(v) (resp. f(u) > f(v)). Moreover, the expansion
of the B-polynomial in the binomial basis is given by

BD(x, y, z) =
|V |∑

p=1

(
x

p

) ⎛

⎝
∑

g∈Surj(V,p)

yasc(g)zdsc(g)

⎞

⎠ , (1.1)

where Surj(V, p) is the collection of surjective colorings from V to [p].

The Tutte polynomial has been extensively studied in various fields and
remains an active area of study, primarily due to its universal deletion-contraction
property. A detailed survey of results pertaining to the Tutte polynomial can
be found in [9,10].

The B-polynomial is interesting to study in its own right as it simultane-
ously generalizes the chromatic polynomial, strict order polynomial, and weak
order polynomial. It also provides various generating functions formulation of
the above polynomials for digraphs. The B-polynomial extends the Tutte poly-
nomial in the following way. The Tutte polynomial of a graph G is equivalent
to the B-polynomial of the digraph G

↔
obtained by replacing every edge in G

with a pair of opposite arcs. The digraph G
↔

is called as symmetrization of the
graph G.

In the former part of this paper, we solve the following open question
raised in [6] concerning the identification of digraphs obtained by symmetriza-
tion.

Question 2 [6, Question 10.3]. Is it true that BD(x, y, z) is a function of x and
yz if and only if D is a symmetrization of some graph G?

In Theorem 7, we prove that the answer to the above question is in the af-
firmative. In other words, we establish that the B-polynomial differentiates the
classes of digraphs obtained through symmetrization from all other digraphs.

The next natural question would be to examine which classes of digraphs
are distinguished by the B-polynomial, that is, to determine the class D of
digraphs such that every pair of non-isomorphic digraphs in it have distinct
B-polynomial. Unfortunately, the B-polynomial is ineffective in distinguishing
orientations of a fixed graph, as there are numerous pairs of non-isomorphic di-
graphs with the same B-polynomial (for example, see Fig. 1a). This is one of the
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motivations for introducing a quasisymmetric extension of the B-polynomial
and investigating the classes of digraphs that can be distinguished by this ex-
tension. One may view this phenomenon as an analogy to the fact that all
trees of a fixed order have the same chromatic polynomial, but the chromatic
symmetric function holds the potential to distinguish all trees.

Definition 3 [6, Section 8]. Let P be the set of positive integers and x =
(x1, x2, . . . ) denote the list of commutative indeterminates. For a digraph
D(V,A), the quasisymmetric B-function is defined as

BD(x; y, z) =
∑

f : V →P

(
x

|f−1(1)|
1 x

|f−1(2)|
2 x

|f−1(3)|
3 · · ·

)
yasc(f)zdsc(f). (1.2)

The above digraph invariant is a quasisymmetric analog of the Tutte sym-
metric function, and determines other digraph and poset invariants like order
quasisymmetric function, P -partition enumerator and chromatic quasisymmet-
ric function [11,12]. Note that by symmetrizing non-isomorphic graphs with
equal Tutte Symmetric functions, one may obtain non-isomorphic digraphs
with the same quasisymmetric B-functions. Therefore, we are interested in
the investigation of the following general question.

Question 4 [6, Ques 10.7(i)]. Does quasisymmetric B-function distinguish
acyclic digraphs?

A canonical way to obtain a poset from an acyclic digraph D is by defin-
ing a partial order u � v iff there is a directed path from u to v in D. Under
this correspondence, the study of distinguishing digraphs and posets by their
quasisymmetric functions is closely related and actively investigated: In [2],
it was proven that the order quasisymmetric function distinguishes naturally
labeled posets that are (N, ��)-free, a class that includes rooted trees. Fur-
thermore, in [4], they demonstrated that all N-free naturally labeled posets
can be distinguished by the P -partition enumerator. Additionally, in [5], la-
beled rooted trees, along with certain weak edges, are distinguished by their
(P, ω)-partition enumerator.

A stronger and somewhat more challenging problem than distinguishing
digraphs is their “reconstruction”. The previously mentioned results focus on
distinguishing non-isomorphic orientations but do not provide a mechanism
for their reconstruction. However, J. Zhou has addressed the reconstruction of
rooted trees based on their order quasisymmetric function in [3].

In this paper, we primarily focus on the reconstruction of digraphs from
their quasisymmetric B-functions. Certainly, the quasisymmetric B-function
is a stronger invariant than the chromatic quasisymmetric function and P -
partition enumerator (see Fig. 1). One of the main reasons for this is that the
quasisymmetric B-function encodes the in-out degree sequence and the height-
profile of digraphs [6, Pg 230]. However, these quantities are not sufficient to
distinguish the orientations of even simple graphs such as paths. For example,
Fig. 2 depicts non-isomorphic orientations of paths with the same in-out degree
sequence and height-profile.
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(a) Non-isomorphic digraphs with the
same B-polynomial and chromatic qua-
sisymmetric function.

(b) Digraphs whose corresponding poset
have the same P -partition enumerator.

Figure 1. The pair of digraphs in a and b have distinct qua-
sisymmetric B-functions
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Figure 2. Two non-isomorphic oriented paths containing
‘N’, and having the same in-out degree sequence and height-
profile (3, 3, 2)

Therefore, the problem of distinguishing orientations of paths by qua-
sisymmetric functions is still open.

In the latter part of this paper, we show that partially symmetric ori-
entations (see Definition 15) of certain caterpillars can be reconstructed from
their quasisymmetric B-functions.

A tree is said to be a caterpillar if all the vertices of degree at least two
induce a (unique) path, which we call as the spine of the caterpillar. We now
define the following subclasses of caterpillars.

Definition 5. (a) A proper caterpillar is a caterpillar that has every vertex
of the spine adjacent to at least one pendant vertex.

(b) A proper caterpillar is said to be an asymmetric proper caterpillar if the
number of pendant vertices adjacent to each spine vertex is distinct.

The class of caterpillars has been shown to be reconstructible from chro-
matic symmetric functions [13–15]. Since the chromatic symmetric function of
the underlying digraph is determined by the quasisymmetric B-function, it is
sufficient to focus on the reconstruction problem of the orientations while fixing
the underlying caterpillar. For proper caterpillars, we establish in Theorem 16
that their partially symmetric orientations are reconstructible. Implementing
the methods involved in reconstruction of the spine, we are able to reconstruct
all the orientations of paths up to isomorphism. Using this and the fact that
in-out degree sequence is extractible from the quasisymmetric B-functions, we
prove the reconstruction of all orientations of asymmetric proper caterpillars
in Theorem 17.

To the best of our knowledge, Corollary 14 along with Theorems 16 and
17 mark the first instance of reconstructing digraphs containing ‘N’ using a
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quasisymmetric function. Furthermore, these results offer a partial solution
to the problem presented in [6, Question 10.7(ii)] and also encourage further
exploration of [5, Conjectures 1.2 and 1.3].

The paper is structured as follows: we begin by introducing graph no-
tations and preliminary concepts. Next, we present the proof of Theorem 7.
In Sect. 4, we focus on proving Theorems 16 and 17. We conclude with a
discussion on further questions and future prospects related to the study of
B-polynomial and the quasisymmetric B-function.

2. Notations and Preliminaries

A graph G is an ordered pair (V (G), E(G)), alternatively written as G(V,E),
where V (G) is a finite set of vertices, and E(G) is a multiset of edges. An
edge {u, v} is incident to vertices u and v. Similarly, a digraph D is an ordered
pair (V (D), A(D)), where V (D) represents the finite set of vertices and A(D)
represents the multiset of arcs in D. An arc uv ∈ A(D) is said to be outgoing
from u and incoming to v. It is important to note that adjacency in a graph
is a symmetric relation, but this symmetry need not hold in a digraph. The
cardinality of the multiset of arcs incoming to v and outgoing from v is referred
to as the in-degree and out-degree of vertex v, respectively. The underlying
graph of D, denoted as D, is the graph obtained by replacing every arc uv in
D with the edge {u, v}. Henceforth, whenever we refer to an edge in a digraph,
we mean the corresponding edge in the underlying graph.

The set of integers, positive integers, and the set of rationals are denoted
by Z, P, and Q, respectively. For a positive integer p and a graph G(V,E) (or
D(V,A)), a p-coloring of G is a mapping that assigns a color from the set [p]
to each vertex in V . An edge (or arc) is said to be non-monochromatic under
a coloring if its endpoints are assigned distinct colors.

For a commutative ring R with unity, we denote the ring of polyno-
mials over indeterminates x1, x2, . . . , xn by R[x1, x2, . . . , xn]. The notation
[xδ1

1 xδ2
2 · · · xδn

n ]f(x1, x2, . . . , xn) denotes the coefficient of the monomial
xδ1
1 xδ2

2 · · · xδn
n in the polynomial f(x1, x2, . . . , xn). Let QSymR(x) denote the

collection of formal power series in commutative indeterminates x = (x1, x2, . . . )
with coefficients in ring R such that for (δ1, δ2, . . . , δk) ∈ P

k, every function
f ∈ QSymR(x) satisfies

[xδ1
i1

xδ2
i2

. . . xδk
ik

]f = [xδ1
j1

xδ2
j2

. . . xδk
jk

]f,

for all increasing k-tuples i1 < i2 < · · · < ik and j1 < j2 < · · · < jk. The
ring QSymR(x) is called the ring of quasisymmetric functions over R, and
QSymn

R(x) denotes the collection of quasisymmetric functions of degree n.
For an integer composition δ = (δ1, . . . , δk) � n, the quasisymmetric

monomial function Mδ is defined as

Mδ :=
∑

i1<i2<···<ik

xδ1
i1

xδ2
i2

· · · xδk
ik

,
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where the sum is over all increasing k-tuples of positive integers. The collec-
tion {Mδ}δ�n forms an R-basis of QSymn

R(x)(see [16]). For a quasisymmetric
function f , let [Mδ]f denote the coefficient of Mδ obtained by expressing f in
the monomial quasisymmetric basis over R.

It is evident that BD(x; y, z) lies in QSym|V |
Z[y,z](x)(since any two colorings

of D differing by an order-preserving bijection, have the same set of ascents and
descents). The following proposition expresses the quasisymmetric B-function
in the above monomial basis.

Proposition 6 [6]. For any digraph D(V,A), we have

BD(x; y, z) =
|V |∑

p=1

∑

f∈Surj(V,p)

Mtype(f)y
asc(f)zdsc(f),

where type(f) is the tuple (|f−1(1)|, |f−1(2)|, . . . , |f−1(p)|) called the type of f .

We briefly recall that the in-out degree sequence of a digraph can be
recovered from its quasisymmetric B-function. Given a digraph D(V,A) and
v ∈ V , consider the coloring fv that assigns color 1 to the vertex v and color
2 to the remaining vertices. Observe that every surjective coloring of type
(1, |V | − 1) uniquely corresponds to a coloring fv for some v ∈ V , and satisfies
yasc(fv)zdsc(fv) = youtdegree of vzindegree of v . Therefore, we have

[M(1,|V |−1)]BD(x; y, z) =
∑

v∈V

yasc(fv)zdsc(fv) =
∑

v∈V

youtdegree of vzindegree of v.

(2.3)
For an integer composition β of n, we define the following multisets con-

taining the monomials of fixed degree corresponding to the surjective colorings.

Mond(β):={yasc(f)zdsc(f) | type(f) = β and asc(f) + dsc(f) = d}
Mon(β):=

⋃

d≥0

Mond(β)

3. B-polynomial of Symmetric Digraphs

For the digraph G
↔

obtained by symmetrizing an undirected graph G, its B-
polynomial is contained in Q[x, yz]. This follows from the observation that, for
any coloring of G

↔
, the count of ascents and descents is the same. We establish

that its converse is true as well.

Theorem 7. A digraph D is a symmetrization of some undirected graph G if
and only if its B-polynomial is a function of x and yz.

Prior to the proof of the aforementioned theorem, we present a subset-
sum expansion for BD(x, y, z). This expansion is derived through the repetitive
application of the following recurrence relation concerning opposite arcs proved
in [6, Lemma 4.1]. For a digraph D(V,A), and pair of opposite arcs e = {uv, vu}
in A,

BD(x, y, z) = (yz)BD\e(x, y, z) + (1 − yz)BD/e(x, y, z). (3.4)
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v1 v2 v3

v4 v5 v6

D(V,A)

v1 v2 v3

v4 v5 v6

D(V,A′)

v1 v2 v3

v4 v5 v6

D(V,A′′)

Figure 3. Partition of the arc set A into arc sets A′ =
{v1v4, v3v2, 2 · v4v5, v5v2, v6v2} and A′′ =

{{v1v2, v2v1},

{v1v4, v4v1}, 2 · {v5v6, v6v5}
}

Let A = A′ � A′′ be a partition of the arc set A such that A′′ is expressible
as a disjoint union of opposite arc pairs {uv, vu}, and A′ consists of arcs uv
such that the opposite arc vu does not belong to A′ (see Fig. 3). The following
proposition presents a subset-sum expansion of B-polynomial with respect to
the set A′′.

Proposition 8. For digraph D(V,A), we have

BD(x, y, z) =
∑

R�S=A′′
(yz)|R|(1 − yz)|S|BD\R/S(x, y, z), (3.5)

where A′′ is the set of doubletons containing pair of opposite arcs, and D\R/S
is the digraph obtained by deleting and contracting the pair of opposite arcs in
R and S, respectively.

Proof. The proof is straightforward using (3.4) and induction on |A′′|. �

We now proceed to the proof of Theorem 7. The main idea of the proof in-
volves eliminating pair of opposite arcs using the proposition mentioned above
and extract the highest degree term of the B-polynomial.

Proof. (Proof of Theorem 7) (⇐) We prove that if a digraph D(V,A) is not
a symmetrization of any undirected graph G, then its B-polynomial does not
lie in Q[x, yz]. We treat BD(x, y, z) as a polynomial over x with coefficients in
ring Q[y, z]. From (1.1), it follows that the largest exponent of x in BD(x, y, z)
is equal to the number of vertices of D. Since contraction of arcs reduces the
number of vertices, the largest exponent x|V | appears only in the summand
where no pair of opposite arcs is contracted, that is, when R = A′′ in (3.5).
This leads to the following equality.

[(
x

|V |
)]

BD(x, y, z) =
[(

x

|V |
)]

(yz)|A′′|BD\A′′(x, y, z)

= (yz)|A′′| ∑

g∈Surj(V,|V |)
yascA′ (g)zdscA′ (g).

This implies that the leading coefficient of the B-polynomial of D is precisely
(yz)|A′′| times the leading coefficient of D(V,A′). Hence it suffices to prove
the existence of a |V |-coloring of D(V,A′) with distinct number of ascents and



S. S. Sawant

descents. Since D �=
↔
G, the set of arcs A′ is non-empty. Let uv ∈ A′ and f

be any surjective |V |-coloring such that f(u) = |V | − 1 and f(v) = |V |. If
the number of ascents and descents of f are distinct, we are done. Suppose
to the contrary that asc(f) = dsc(f). We define the coloring g obtained by
interchanging the colors of u and v under f as follows:

g(w) =

⎧
⎪⎨

⎪⎩

|V | w = u,

|V | − 1 w = v,

f(w) otherwise.

Let fa (or fd) and ga (or gd) denote the multiset of arcs occurring as
ascents (or descents) under f and g, respectively. Note that the set of ascents
and descents of f and g restricted to A′ \ {uv} are the same, whereas {uv} =
fa\ga = gd\fd. This implies that asc(g) = asc(f)−1 and dsc(g) = dsc(f)+1,
and consequently asc(g) �= dsc(g). Thus BD(x, y, z) /∈ Q[x, yz]. �

4. Distinguishing Orientations of Caterpillars

In this section, we show that the quasisymmetric B-function (henceforth ab-
breviated as QBF) distinguishes certain orientations of proper caterpillars up
to isomorphism. Moreover, we prove that all orientations of the paths and
asymmetric proper caterpillars are reconstructible up to isomorphism from
their QBFs.

An equivalent characterization of a caterpillar is that it is a tree where
deletion of all its pendant vertices results in a path. This resultant path is in
fact the spine of the caterpillar. For a caterpillar C, we denote its spine by
〈v1, v2, . . . , v�〉 that starts at v1 and ends at v�. Let uk1, uk2, . . . denote the
pendant vertices adjacent to vk. Let Comp(C) be the unique integer compo-
sition (α1, α2, . . . , α�) associated to C such that for i = 1, 2, . . . , �, the spine
vertex vi has exactly αi − 1 many neighbors with degree 1. Note that the in-
teger compositions associated with isomorphic caterpillars are either the same
or reverses of each other.

For an oriented caterpillar C
→

and its spine vertex vk, let Ok and Ik

denote the number of outgoing and incoming pendant arcs of vk. The tuple
P (vk):=(Ok, Ik) is called as the pendant vector of the spine vertex vk. For
instance, the pendant vector of the spine vertex v4 in Fig. 4 is (2, 1). Note
that any orientation of a fixed caterpillar C is uniquely determined by (a) the

v1 v2 v3 v4 v5 v6 v7

u11 u21 u31 u32 u41 u42 u43 u51 u61 u62 u71

Figure 4. An oriented proper caterpillar with associated
composition (2, 2, 3, 4, 2, 3, 2)
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orientation of the spine 〈v1, v2, . . . , v�〉, and (b) the pendant vector P (vk) of
each spine vertex vk.

For an integer composition δ � |V (T )|, let FT (δ) denote the set of surjec-
tive colorings of T having type δ with exactly �(δ)−1 many non-monochromatic
edges. The following observations enable us to characterize the colorings of
trees, their non-monochromatic arcs and the corresponding monomials.

Observation 9. Let T (V,E) be a tree and β = (β1, β2, . . . , βk) be an integer
composition of |V |. Then

(a) A coloring f is in FT (β) if and only if the deletion of its non-monochromatic
edges results in k many connected components of orders β1, β2, . . . , βk.

(b) If each component of β is greater than 1, then the endpoints of the non-
monochromatic edges of colorings in FT (β) must have degree greater than
1 in T . Particularly for caterpillars, the non-monochromatic edges of such
colorings must lie on the spine.

The above observations follow from the fact that every edge of a tree is
a cut-edge. We begin with the classification of the spine edges of all cater-
pillars according to the partial sums of the corresponding integer composi-
tions. Let C(V,E) be a caterpillar with associated composition Comp(C) =
(α1, α2, . . . , α�). For p = 1, 2, . . . , �, let Lp:=

∑p
i=1 αi and Rp:=

∑p
i=1 α�−i+1

be the left and right justified partial sums of Comp(C), respectively. We now
define the bilateral edges based on the equality of these partial sums. Let

B =
{
(p, p′) ∈ [�] × [�]

∣∣ Lp = Rp′ and Lp, Rp′ ≤ �|V |/2} .

For (p, p′) ∈ B, let Bp,p′ denote the set of edges
{{vp, vp+1}, {v�−p′ , v�−p′+1}

}
.

We call Bp,p′ as a bilateral set, and a spine edge is said to be bilateral if it
belongs to Bp,p′ for some 1 ≤ p, p′ ≤ �. Note that |Bp,p′ | is either one or two,
and the former scenario occurs if and only if |V | is even and Lp = Rp′ = |V |/2.
For an oriented caterpillar, we denominate the orientation of the bilateral set
Bp,p′ according to its bilateral edges as follows:

Definition 10. Let
→
C(V,E) be an oriented caterpillar. For 2 ≤ Lp = Rp′ ≤

�|V |/2, the bilateral set Bp,p′ admitting the orientation

• {vpvp+1, v�−p′v�−p′+1} are called right directed (Fig. 5:(i)),
• {vp+1vp, v�−p′+1v�−p′} are called left directed (Fig. 5:(ii)),
• {vpvp+1, v�−p′+1v�−p′} is called inward directed (Fig. 5:(iii)),
• {vp+1vp, v�−p′v�−p′+1} is called outward directed (Fig. 5:(iv)).

A bilateral set is called uni-directed if it is either left directed or right directed.
For example, the bilateral sets B1,1 and B3,3 in Fig. 4 are inward and right
directed, respectively.

The following proposition asserts that the orientation of the spine arcs
can be read from the multiset Mon1(s, |V | − s) up to uni-direction of bilateral
sets.
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vp vp+1 v�−p′ v�−p′+1

(i) {vpvp+1, v�−p′v�−p′+1}

vp vp+1 v�−p′ v�−p′+1

(ii) {vp+1vp, v�−p′+1v�−p′}

vp vp+1 v�−p′ v�−p′+1

(iii) {vpvp+1, v�−p′+1v�−p′}

vp vp+1 v�−p′ v�−p′+1

(iv) {vp+1vp, v�−p′v�−p′+1}

Figure 5. Orientations of the bilateral set Bp,p′

Proposition 11. Let
→
C(V,E) be an oriented caterpillar with Comp(C) =

(α1, α2, . . . , α�). For Lp, Rp′ ≤ �|V |/2 such that the arcs with endpoints
{vp, vp+1} and {v�−p′ , v�−p′+1} are not bilateral, the multiset

Mon1(Lp, |V | − Lp) =

{
{y} iff vpvp+1 ∈ A,

{z} iff vp+1vp ∈ A.
(4.6)

and

Mon1(Rp′ , |V | − Rp′) =

{
{y} iff v�−p′+1v�−p′ ∈ A,

{z} iff v�−p′v�−p′+1 ∈ A.
(4.7)

For the bilateral set Bp,p′ with s = Lp = Rp′ , we have

Mon1(s, |V | − s) =

⎧
⎪⎨

⎪⎩

{y, z} iff Bp,p′ is uni-directed,

{2y} iff Bp,p′ is inward directed,

{2z} iff Bp,p′ is outward directed.

(4.8)

Proof. According to Observation 9(b), the non-monochromatic edges of the
colorings from FC(Lp, |V | − Lp) and FC(Rp′ , |V | − Rp′) are {vp, vp+1} and
{v�−p′ , v�−p′+1}, respectively. The coloring(s) in FC(Lp, |V | − Lp)
(resp. FC(Rp′ , |V | − Rp′)) assigns color 1 to the vertex vp (resp. v�−p′+1).
Therefore, the orientations of the non-monochromatic edges correspond to the
asserted multisets in (4.6), (4.7) and (4.8). �

This leads us to the following corollary.

Corollary 12. Let C
→

(V,E) be an oriented caterpillar. If none of the bilateral
set Bp,p′ of C

→
is uni-directed, then the orientation of the spine can be deter-

mined by the QBF.

It is worth noting that the information of the non-uni-directed bilateral
sets, along with the already known digraph-statistics from the QBF like in-out
degree sequence and height-profile are insufficient to distinguish the orienta-
tion of the spine. In fact, there exist non-isomorphic orientations of paths
that agree on the above quantities (see Fig. 2). Therefore the determination
of uni-directed bilateral sets is crucial and non-trivial. By imposing certain
conditions on the underlying caterpillars, we show that the orientations of the
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spine including the uni-directed bilateral sets can be reconstructed from the
QBF.

4.1. Proper Caterpillars

Recall that a caterpillar is said to be proper if every vertex of the spine is
adjacent to at least one pendant vertex. Equivalently, they are the caterpil-
lars whose associated compositions have each component of size at least two.
The advantage of studying the proper caterpillars over non-proper caterpil-
lars is that the composition corresponding to proper caterpillars have all parts
greater than 1. Therefore the compositions obtained by adding some consec-
utive components must also have all parts greater than 1. From Observation
9(b), it follows that the non-monochromatic edges of the colorings of these type
always lie on the spine. This avoids the conflict arising due to the involvement
of the pendant vector while retrieving the spine. With this, we begin with
reconstructing the spine of the proper caterpillars.

Proposition 13. The orientation of the spine of oriented proper caterpillars
can be reconstructed from their quasisymmetric B-functions.

Proof. Let C
→

be an orientation of a proper caterpillar C such that Comp(C) =
(α1, α2, . . . , α�) is lexicographically smaller than its reverse. Let θ be the least
positive integer (if exists) such that Bθ,θ′ is uni-directed. In the first step of
the proof, we use Bθ,θ′ as our pivot to determine whether the other bilateral
sets are oriented in the same direction as Bθ,θ′ or not. In the second step,
we aim to determine the direction of this Bθ,θ, which will in turn discern
the orientation of every other uni-directional bilateral set. Let π be the least
positive integer (if exists) such that the edge {vπ, vπ+1} is not a bilateral edge.
The choice of Comp(C) being lexicographically smaller than its reverse implies
Lπ ≤ �|V/2|. Since the orientation of the non-uni-directed bilateral sets is
determined by QBF (from Proposition 11), the orientation of edge {vπ, vπ+1}
in C

→
is known. This arc acts as our pivot in the second step to determine the

orientation of the uni-directed bilateral set Bθ,θ′ .

Any two uni-directed bilateral sets of C
→

are said to be in unison if either
both are left directed or both are right directed.
(Step I): We proceed by induction on s ∈ {Lp | Bp,p′ is uni-directed, p ≥
θ, p′ ≥ θ′}. Suppose that for all q < p and q′ < p′, we know whether Bq,q′ is in
unison with Bθ,θ′ or not. To determine the direction of Bp,p′ , we consider the
surjective 3-colorings whose non-monochromatic arcs belong to Bp,p′ or Bθ,θ′ .
In particular, to have

{{vθ, vθ+1}, {vp, vp+1}
}

or
{{v�−θ′ , v�−θ′+1}, {v�−p′ , v�−p′+1}

}
(4.9)

as non-monochromatic edges, the natural choice would be to consider the color-
ings such that removal of their non-monochromatic edges results in connected
components of order Lθ, Lp − Lθ and |V | − Lp. While doing so, we may en-
counter some other colorings in this set. However by induction hypothesis,
the orientations of the non-monochromatic edges of these intermediary color-
ings are already known. The occurrence of the intermediary arcs is based on
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Table 1. Set of colorings FC(Li,Lj − Li, |V | − Lj) =
{g1, g2, . . . , g6} and FC(Li, |V |−Li, Lj −Li) = {f1, f2, . . . , f6}
where Li = Ri′ , Lj = Rj′ and Lj − Li = Lk = Rk′

Colorings Spine vertices corresponding to color classes

v1, . . . , vi vi+1, . . . , vj vj+1, . . . , v�

g1 1 2 3
f1 1 3 2

v1, . . . , vi vi+1, . . . , v�−k′ v�−k′+1, . . . , v�

g2 1 3 2
f2 1 2 3

v1, . . . , vk vk+1, . . . , vj vj+1, . . . , v�

g3 2 1 3
f3 3 1 2

v1, . . . , vk vk+1, . . . , v�−i′ v�−i′+1, . . . , v�

g4 2 3 1
f4 3 2 1

v1, . . . , v�−j′ v�−j′+1, . . . , v�−k′ v�−k′+1, . . . , v�

g5 3 1 2
f5 2 1 3

v1, . . . , v�−j′ v�−j′+1, . . . , v�−i′ v�−i′+1, . . . , v�

g6 3 2 1
f6 2 3 1

whether Lp − Lθ occurs as a partial sum of parts of Comp(C). The proof fol-
lows from the case-by-case analysis of the non-monochromatic arcs of these
intermediary colorings. We accomplish this by considering set of colorings
FC(Lθ, Lp − Lθ, |V | − Lp) or FC(Lθ, |V | − Lp, Lp − Lθ). We show that for
each possible orientation of intermediary arcs, the multisets associated with
the unison of Bp,p′ and Bθ,θ′ differs from the case when they are not in unison.
If none of the partial sum of the parts equal Lp − Lθ, then

Mon2(Lθ, |V | − Lp, Lp − Lθ) =

⎧
⎨

⎩
{2yz} if Bp,p′ and Bθ,θ′ are in unison,

{y2, z2} otherwise.

(Case 1): Lp − Lθ = Lq = Rq′ for some q ≤ p and q′ ≤ p′.
The computation of monomials in Mon2(Lθ, Lp − Lθ, |V | − Lp) and

Mon2(Lθ, |V | − Lp, Lp − Lθ) in accordance with Table 1 (where i = θ, j = p
and k = q) lead to the following. In the first three rows of the following com-
putation table, we calculate the multiset Mon2(Lθ, Lp − Lθ, |V | − Lp), while
the last row represents the multiset Mon2(Lθ, |V | − Lp, Lp − Lθ).
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Orientation of Bq,q′ Bp,p′ is in unison
with Bθ,θ′

Bp,p′ is not in uni-
son with Bθ,θ′

inward directed {2y2, 2yz, 2z2} {y2, 4yz, z2}
outward directed {2y2, 2yz, 2z2} {y2, 4yz, z2}
not in unison with Bθ,θ′ {3y2, 3z2} {y2, 4yz, z2}
unison with Bθ,θ′ {y2, 4yz, z2} {3y2, 3z2}

(Case 2): Either Lp −Lθ is equal to Lp for some q ≤ p, or Rq′ for some q′ ≤ p′

(but not both).
Apart from (4.9), the other non-monochromatic edges of the colorings in

FC(Lθ, |V | − Lp, Lp − Lθ) are
{{vq, vq+1}, {vp, vp+1}

}
,
{{vq, vq+1}, {v�−θ′ , v�−θ′+1}

}
if Lp − Lθ = Lq,

{{v�−q′ , v�−q′+1}, {vp, vp+1}
}
,
{{v�−q′ , v�−q′+1}, {v�−θ′ , v�−θ′+1}

}
if Lp − Lθ = Rq′ .

Therefore, when vqvq+1 or v�−q′+1v�−q′ occur in C
→

, we have

Mon2(Lθ, |V | − Lp, Lp − Lθ) =

⎧
⎨

⎩
{3yz, z2} if Bp,p′ and Bθ,θ′ are in unison,

{y2, yz, 2z2} if Bp,p′ and Bθ,θ′ are not in unison.

Otherwise if vq+1vq or v�−q′v�−q′+1 occur in C
→

, we get

Mon2(Lθ, |V | − Lp, Lp − Lθ) =

{
{y2, 3yz} if Bp,p′ and Bθ,θ′ are in unison,

{2y2, yz, z2} if Bp,p′ and Bθ,θ′ are not in unison.

Since the multisets associated with the unison of Bp,p′ and Bθ,θ′ are
distinct from the case when they are not in unison, we conclude that the uni-
directed bilateral arcs that are in unison with Bθ,θ′ can be determined from
the QBF.

Note that if the underlying proper caterpillar C is a palindrome, then ev-
ery edge is a bilateral edge. Therefore, by assuming Bθ,θ′ being right directed,

we are fixing an orientation from the isomorphism class of C
→

, and the direc-
tion of every other bilateral set in this orientation can be determined. Thus,
if Comp(C) is a palindrome, then orientation of spine can be reconstructed
from (Step I). We now proceed to determine the direction of Bθ,θ′ when the
underlying composition is not a palindrome.
(Step II): The direction of Bθ,θ′ is discerned by comparing it with the orienta-
tion of the pivot non-bilateral edge {vπ, vπ+1}. Note that the edge {vπ, vπ+1}
may occur either before or after the bilateral edge {vθ, vθ+1} on the spine (see
Fig. 6), that is, either π < θ (in the former scenario) or π > θ (in the latter
scenario).

For π < θ, the computations are based on the Table 1 with i = π, j = θ
and k = q.
(Case 1.a): Suppose π < θ, and Lθ − Lπ is not a partial sum of components
of Comp(C).
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v1 v2 v3 v4 v5 v6

(a) A partially symmetric orientation with pivot
v2v1 and uni-directed bilateral sets B2,1 and B3,2.

v1 v2 v3 v4 v5 v6

(b) A partially symmetric orientation with pivot
v2v3 and uni-directed bilateral sets B1,1 and B3,2.

Figure 6. Proper caterpillars with associated compositions
a (2,2,2,2,2,4) and b (2,2,2,2,4,2)

The multiset Mon2(Lπ, |V | − Lθ, Lθ − Lπ) contains a unique monomial
contributed by the coloring with non-monochromatic edge set{{vπ, vπ+1}, {vθ, vθ+1}

}
. From Table 1, we conclude that

Mon2(Lπ, |V |−Lθ, Lθ−Lπ) =

⎧
⎪⎨

⎪⎩

{y2} if vπvπ+1 ∈ A and Bθ,θ′ is right directed,

{z2} if vπ+1vπ ∈ A and Bθ,θ′ is left directed,

{yz} otherwise.

(Case 1.b): Let Lθ −Lπ be either Lq or Rq′ (but not both) for some 1 ≤ q ≤ θ
and 1 ≤ q′ ≤ θ′.
The distinctness of the multiset Mon2(Lπ, |V | − Lθ, Lθ − Lπ) is exhibited in
the respective scenarios by the following:

Bθ,θ′ vπvπ+1 vπ+1vπ

Right directed Left directed Right directed Left directed

vqvq+1 {2yz} {2y2} {yz, z2} {y2, yz}
vq+1vq {yz, z2} {y2, yz} {2z2} {2yz}
v�−q′v�−q′+1 {y2, 2yz} {3y2} {2yz, z2} {y2, 2yz}
v�−q′+1v�−q′ {2yz, z2} {y2, 2yz} {3z2} {2yz, z2}

where the first two rows and the last two rows corresponds to Lθ − Lπ being
Lq or Rq′ , respectively.
(Case 1.c): Let Lθ − Lπ = Lq = Rq′ for some 1 ≤ q ≤ θ and 1 ≤ q′ ≤ θ′.

By the choice of Bθ,θ′ (least uni-directed bilateral set), the bilateral sets
Bq,q′ must be either inward directed or outward directed. The monomials com-
puted using Table 1 gives the following:

Bq,q′ and Bθ,θ′ vπvπ+1 vπ+1vπ

Right directed Left directed Right directed Left directed

Inward directed {3yz, z2} {y2, 2yz, z2} {yz, 3z2} {2yz, 2z2}
Outward directed {2y2, 2yz} {3y2, yz} {2yz, 2z2} {y2, 3yz}

where the the multiset Mon2(Lθ, |V |−Lπ, Lπ −Lθ) is computed corresponding
to the orientation of Bq,q′ , Bθ,θ′ and {vπ, vπ+1}.

This concludes that the direction of Bθ,θ′ can be reconstructed when the
pivot arc {vπ, vπ+1} occurs before the bilateral set Bθ,θ′ .
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We now proceed with the final case, that is θ < π. The monomials are
computed using Table 1 with i = θ, j = π and k = q.
(Case 2.a): If Lπ − Lθ is not equal any partial sum, then the multisets
Mon2(Lθ, |V | − Lπ, Lπ − Lθ) is the same as (Case 1.a) with the roles of
θ and π interchanged.
(Case 2.b): Suppose Lπ −Lθ = Lq = Rq′ for some 1 ≤ q ≤ π and 1 ≤ q′ ≤ π′.
We resolve this case pertaining to the orientation of the bilateral set Bq,q′ .
The colorings from the first four rows of Table 1 contribute the monomials
occurring in the multisets.

Bq,q′ and Bθ,θ′ vπvπ+1 vπ+1vπ

Right directed Left directed Right directed Left directed

Inward
directed

{3yz, z2} {2yz, 2z2} {y2, yz, 2z2} {2yz, 2z2}

Outward
directed

{2y2, 2yz} {2y2, yz, z2} {2y2, 2yz} {y2, 3yz}

Unison
with Bθ,θ′

{y2, 2yz, z2} {2y2, 2z2} {2y2, yz, z2} {y2, 2yz, z2}

Not in unison
with Bθ,θ′

{3y2, z2} {y2, 2yz, z2} {y2, 2yz, z2} {y2, 3z2}

where the multiset Mon2(Lθ, |V |−Lπ, Lπ −Lθ) is computed for the first three
rows, and the last row corresponds to the multiset Mon2(Lθ, Lπ−Lθ, |V |−Lπ).

For fixed orientations of {vπ, vπ+1} and Bq,q′ , the multisets correspond-
ing to Bθ,θ′ being right directed and left directed are distinct. Therefore the
orientation of Bθ,θ′ can be reconstructed. This completes the proof. �

The following corollary is an immediate consequence of the above Propo-
sition.

Corollary 14. The orientations of paths can be reconstructed from their qua-
sisymmetric B-function up to isomorphism.

Proof. We associate the integer composition (1, 1, . . . , 1) of length |V | to the
oriented path P

→
(V,A). The orientations of the bilateral sets Bp,p for p =

1, 2, . . . , �|V |/2 can be obtained from (4.8) up to uni-direction. The method
for determining the uni-directed bilateral sets is identical to the (Step I) in
the proof of Proposition 16. �

Even though the non-uni-directed bilateral sets are straightforward to
determine from the QBF, they cause hindrance in recovering the pendant
vectors (see Fig. 7). This imposes the constraint of considering orientations of
proper caterpillars in which certain pendant vectors corresponding to inward
and outward directed bilateral sets exhibit symmetry.

Definition 15. Let C be a proper caterpillar. An orientation C
→

is said to be
partially symmetric if for every inward and outward directed bilateral set Bp,p′ ,
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the pendant vectors P (vp) and P (v�−p′+1) are equal. We denote the set of
isomorphism classes of partially symmetric orientation of C by O(C).

The oriented proper caterpillar in Fig. 4 is a partially symmetric orien-
tation, whereas the oriented caterpillars in Fig. 7 are not. We now prove that
the pendant vectors in partially symmetric orientations of proper caterpillars
can be retrieved from the QBF.

Theorem 16. The partially symmetric orientations of proper caterpillars can
be reconstructed from their quasisymmetric B-functions.

Proof. We have already established the reconstruction of spine in Proposition
13. It suffices to prove that the pendant vectors in partially symmetric orienta-
tions can be determined by their QBF. Let C

→
be a partially symmetric orienta-

tion of a proper caterpillar C. The idea involves consideration of in-out degree
sequence of the digraph, and surjective 3-colorings whose non-monochromatic
edges comprise of one spine edge and one pendant edge. In particular, we are
examining the multiset Mon(1, |V | − 1), and colorings in which the deletion
of non-monochromatic edges leads to connected components of sizes either
1, Lp − 1 and |V | − Lp, or 1, Rp′ − 1 and |V | − Rp′ .

We prove by induction on s ∈ {
Lp, Rp′ | 2 ≤ Lp, Rp′ ≤ �|V |/2 and p, p′ ≥

1
}

where the Comp(C) is lexicographically smaller than its reverse. We prove
the base step by using the multiset Mon2(1, |V | − 1) that encodes the in-out
degree sequence of the vertices of degree 2 (see (2.3)). For the base step s = 2,
we have either s = L1 �= R1 or s = L1 = R1. In the former scenario, v1 is the
unique vertex of degree 2 in C, and therefore the multiset

Mon2(1, |V | − 1) =

⎧
⎪⎨

⎪⎩

{y2} iff v1v2 ∈ A and P (v1) = (1, 0),
{z2} iff v2v1 ∈ A and P (v1) = (0, 1),
{yz} otherwise.

In the latter case, v1 and v� are the only vertices of degree 2, and we have
four possibilities for the orientation of B1,1. The following computation table
depicts that in all four cases, the multiset Mon2(1, |V |−1) encoding the in-out
degree of v1 and v� distinguishes the occurrences of the pendant vectors of
P (v1) and P (v�) in partially symmetric orientations.

Orientation of bilateral set B1,1

Right directed Left directed Inward directed Outward directed Mon2(1, |V | − 1)

P (v1) P (v�) P (v1) P (v�) P (v1) P (v�) P (v1) P (v�)

(1, 0) (0, 1) (0, 1) (1, 0) {y2, z2}
(1, 0) (1, 0) (1, 0) (1, 0) {y2, yz}
(0, 1) (0, 1) (0, 1) (0, 1) {yz, z2}
(0, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0) {2yz}

(1, 0) (1, 0) {2y2}
(0, 1) (0, 1) {2z2}

Assume by induction that we already have the knowledge of the pendant
vectors P (vq) and P (v�−q′+1) for Lq, Rq′ < s. Now, consider the case where
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s = Lp = Rp′ . According to Observation 9, we deduce that the set of non-
monochromatic edges of the colorings in FC(s − 1, |V | − s, 1) are

{{vp, vp+1},

{vq, uqi}
}

or
{{v�−p, v�−p+1}, {v�−q′+1, u�−q′+1 i}

}
for q = 1, 2, . . . , p and q′ =

1, 2, . . . , p′. Let [y2], [z2] and [yz] denote the multiplicity of y2, z2 and yz in
Mon2(s − 1, |V | − s, 1) respectively. Then, the partial sums of pendant vectors
are given by:

p∑

k=1

P (vk) =

{
([y2], s − p − [y2]) if Bp,p′ is right directed,

(s − p − [z2], [z2]) if Bp,p′ is left directed.
(4.10)

p′∑

k=1

P (v�−k+1) =

{
(s − p′ − [z2], [z2]) if Bp,p′ is right directed,

([y2], s − p′ − [y2]) if Bp,p′ is left directed.
(4.11)

p∑

k=1

P (vk) +
p′∑

k=1

P (v�−k+1) =

{
([y2], [yz]) if Bp,p′ is inward directed,

([yz], [z2]) if Bp,p′ is outward directed.

(4.12)

This implies that we can determine both P (vp) and P (v�−p′+1) when Bp,p′

is uni-directed. On the other hand, if {vp, vp+1} and {v�−p′ , v�−p′+1} are not
bilateral edges, then (4.10) and (4.11) can be used to derive the pendant vectors
of P (vp) and P (v�−p′+1) as well. However, when Bp,p′ is not uni-directed, we
can extract P (vp) + P (v�−p′+1), and therefore compute the pendant vectors

of both vertices vp and v�−p′+1 when C
→

is a partially symmetric orientation.
Note that if |V |/2 /∈ {Lp}�

p=1, then there exist a unique spine vertex vt such
that Lt−1 ≤ �|V |/2 < Lt (For example, in Fig. 4, the partial sum L3 ≤ 8 <
L4). The equations mentioned above cover the computation of all pendant
vectors except for P (vt). Nonetheless, we can determine this pendant vector
by subtracting

∑
k∈[�]\{t} Ik and

∑
k∈[�]\{t} Ok from the multiplicity of y and

z in the degree multiset Mon(1, |V | − 1), respectively. Thus, the orientation of
C
→

can be reconstructed from the QBF up to isomorphism. �

4.2. Asymmetric Proper Caterpillars

Recall the Definition 5(b) of asymmetric proper caterpillars, which dictates
that the components of their associated composition must be distinct. We
show that all oriented asymmetric proper caterpillars can be reconstructed
from their QBFs. We use the fact that no more than two pairs of non-pendant
vertices can have the same degree. Consequently, we can sequentially com-
pute the pendant vectors by removing the terms contributed by the spine arcs
connected to each spine vertex.

Theorem 17. Let C
→

(V,A) be an oriented asymmetric proper caterpillar. Then
C
→

can be reconstructed from its quasisymmetric B-function up to isomorphism.

Proof. Without loss of generality, we assume that Comp(C) = (α1, α2, . . . , α�)
is lexicographically smaller than its reverse. For i = 1, 2, . . . , �, let hi be the
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coloring in FC(1, |V | − 1) that assigns the unique color 1 to the spine vertex
vi. Thus, we have

mhi
:=yasc(hi)zdsc(hi) = youtdegree of vi zindegree of vi (4.13)

From Proposition 13, the orientation of spine of C
→

is known. This implies that
the above monomials can be computed from the pendant vector of the vertices.
On the other hand, the internal vertices can be identified with their unique
corresponding monomials due to the equality of degree, and the pendant vector
of such vertices can be retrieved by the following:

P (vi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(degy

mhi

y2
,degz

mhi

y2
) if vivi−1, vivi+1 ∈ A,

(degy

mhi

z2
,degz

mhi

z2
) if vi−1vi, vi+1vi ∈ A,

(degy

mhi

yz
,degz

mhi

yz
) otherwise.

(4.14)

Due to asymmetry of the caterpillar, all the monomials in Mon(1, |V | − 1) \
{mh1 ,mh�

} have distinct total degrees. Consequently, we can easily identify
the corresponding internal vertices and compute their pendant vectors using
(4.14). Therefore it suffices to compute the pendant vertices P (v1) and P (v�).
Note that α1 �= α� implies that {v1, v2} is not a bilateral edge, allowing us to
compute P (v1) from Theorem 16. Furthermore, the pendant vector for P (v�)
can be determined using Theorem 16, except when a non-uni-directed bilat-
eral set Bk,1 exists. However, when there exists a non-uni-directed bilateral set
Bk,1, we use (4.12) to determine the partial sum P (v�) +

∑k
i=1 P (vi). Since

the P (v1) is known, and the degree of the internal vertices v2, v3, . . . , vk are
less than deg(v�), their corresponding monomials in Mon(1, |V | − 1) \ {mh1}
can be identified. This enables us to compute the pendant vectors of the in-
ternal vertices v2, v3, . . . , vk, and as a result, the pendant vector P (v�) can be
computed as well. This completes the proof. �

5. Future Prospects

Partially symmetric orientations constitute a large class of orientations for
proper caterpillars. Furthermore, for each proper caterpillar and its non-partially
symmetric orientation (up to isomorphism), we can associate distinct partially
symmetric orientations (up to isomorphism) by replacing inward and outward
directed bilateral sets with right and left directed bilateral sets, respectively. In
other words, partially symmetric orientations constitute more than half of the
orientations for proper caterpillars. Moreover, for certain proper caterpillars,
every orientation is partially symmetric. Examples include caterpillars with
associated compositions (4, 4), (2, 3, 3) and (2, 2, 4).

However, the statistics discussed in Sect. 4 are insufficient to distinguish
non-partially symmetric orientations. Figure 7 exhibits two non-isomorphic ori-
ented proper caterpillars for which the statistics discussed in the proofs of
Theorem 16 are equal, but their corresponding QBFs are distinct.
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Figure 7. Two non-isomorphic graphs having the same in-
out degree sequence, height-profile and aforementioned statis-
tics

Also, we do not know how to distinguish partially symmetric orientations
from non-partially symmetric orientations. Nevertheless, we believe that the
method to distinguish these two types of orientations will shed light on recon-
structing the non-partially symmetric orientations. We would like to highlight
that the proof was based on examining monomials of degree at most 2 of
surjective 3-colorings and the degree-multiset. Moreover, the methods used in
Proposition 13 and Theorem 16 can be applied to determine the partial orien-
tation of trees in which vertices with a degree of at least 3 induce a path. In
particular, certain orientations of proper q-caterpillars [17], introduced by the
author and others, can be reconstructed from their QBFs. Computational ev-
idence suggests that the higher degree terms can distinguish the non-partially
symmetric orientations, but providing their combinatorial interpretation with
respect to the caterpillar is a tedious task. As mentioned earlier, the challenge
in studying non-proper caterpillars lies in dealing with the presence of pen-
dant arcs while investigating the orientation of the spine. However, we hope
that one may overcome this obstacle by considering the examination of various
coefficients together.

Note that the B-polynomial of a digraph D and its reverse rev(D) are
the same. Investigating the uniqueness of B-polynomials of digraphs up to
isomorphism and reversal is an interesting question worth exploring.

Question 18. Does the B-polynomial distinguish acyclic digraphs up to isomor-
phism and reverses?

The computations using SageMath affirm the question above for oriented
trees up to order 8.

Next, we pose a conjecture regarding identification of self-reverse (di-
graphs satisfying D � rev(D)) digraphs by their QBFs. It is evident from
the definition that the quasisymmetric B-functions of both D and rev(D)
satisfy BD(x; y, z) = Brev(D)(x; z, y). Consequently, when the digraph D is
self-reverse, we have

BD(x; y, z) = Brev(D)(x; y, z) = BD(x; z, y). (5.15)

This implies that the quasisymmetric B-function of self-reverse digraphs
is symmetric with respect to the variables y and z, or equivalently, it can be
expressed as a function of x, y + z, and yz. This observation leads to the
following conjecture:
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Figure 8. Non-isomorphic digraphs with the same quasisym-
metric B-function and containing a unique directed cycle

Conjecture 19. The quasisymmetric B-function of digraph D is symmetric
with respect to the variables y and z if and only if D is isomorphic to the
digraph rev(D).

Observe that the characterizing properties of self-reverse proper caterpil-
lars are (a) the underlying caterpillar is a palindrome, (b) all the bilateral sets
are uni-directed and (c) the pendant vector (Ok, Ik) = (I�−k+1, O�−k+1) for all
k = 1, 2, . . . , ��/2�. The proof of Theorem 16 demonstrates the equivalence be-
tween the symmetry of variables y and z, and the conditions mentioned above.
This implies the validity of the Conjecture 19 for oriented proper caterpillars
and paths.

The methods used to prove Theorems 16 and 17 relied on the assumption
that the underlying graph is a tree. An intriguing avenue of research would
be to explore these questions in the context of non-tree graphs, particularly
Question 4. In [13], various classes of unicyclic graphs, such as asymmetric
crabs and squids, were shown to be distinguishable by chromatic symmetric
functions. We believe that our methods hold the potential to provide insights
into the reconstruction of orientations of these unicyclic graphs. For example,
given a fixed asymmetric crab containing a directed cycle, its orientations can
be uniquely determined by the in-out degree sequence (and using (4.14)).

Regarding the study of equality of quasisymmetric B-function, the con-
struction of non-isomorphic graphs with equal Tutte symmetric function in
[18] leads to the following non-isomorphic digraphs with equal quasisymmet-
ric B-function (verified using SageMath). Moreover, these digraphs contain a
unique pair of opposite arcs.

We conclude with the following questions regarding digraphs with equal
quasisymmetric B-functions.

Question 20. Does there exist
(a) infinitely many pairs of non-isomorphic digraph containing a unique di-

rected 2-cycle and equal quasisymmetric B-function?
(b) pair of non-isomorphic digraphs without containing a 2-cycle and equal

quasisymmetric B-function?
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