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Insertion Algorithms for Gelfand S,-Graphs
Eric Marberg® and Yifeng Zhang

Abstract. The two tableaux assigned by the Robinson—Schensted corre-
spondence are equal if and only if the input permutation is an involution,
so the RS algorithm restricts to a bijection between involutions in the
symmetric group and standard tableaux. Beissinger found a concise way
of formulating this restricted map, which involves adding an extra cell at
the end of a row after a Schensted insertion process. We show that by
changing this algorithm slightly to add cells at the end of columns rather
than rows, one obtains a different bijection from involutions to standard
tableaux. Both maps have an interesting connection to representation
theory. Specifically, our insertion algorithms classify the molecules (and
conjecturally the cells) in the pair of W-graphs associated with the unique
equivalence class of perfect models for a generic symmetric group.

1. Introduction

The well-known Robinson—Schensted (RS) correspondence is a bijection w —
(Prs(w), Qrs(w)) from permutations to pairs of standard Young tableaux of
same shape. This correspondence can be described by the row bumping process

known as Schensted insertion [18]. In this formulation, the tableau Prs(w) :=

0 LR w1 CH Wo LIS wy, is built up from the empty shape by

inserting the values of w. Here, T 2 4 is the tableau formed by inserting a
number a into the first row of T, where either the smallest number b > a is
bumped and recursively inserted into the next row, or a is added to the end
of the row if no such b exists. For example

2]

L[3] rs.
4

2 =

’Aklw —

since 2 bumps 3 in the first row, which bumps 4 in the second row, which is
added to the end of the third row. See Sect. 2.1 for more background on this
algorithm.
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The two tableaux Pgs(w) and Qrs(w) are equal if and only if w = w™1.

Thus, the RS algorithm restricts to a bijection between involutions in the sym-
metric group and standard tableaux. In [3], Beissinger shows how to directly
construct this restricted bijection using a modified form of Schensted insertion,
which we refer to as row Beissinger insertion. This operation inserts an integer
pair (a,b) with @ < b into a tableau T to form a larger tableau T LS (a,b). If
a =", then T S (a,b) is given by adding a to the end of the first row of T
If @ < b and the operation &5 4 adds a box to T in row i, then T S (a,b)

is formed from T <~ ¢ by adding b to the end of row 7 + 1. For example, we
have

1]2]
23| r 21415 113 r 3
i ‘£(575)_i | ‘7 i ‘£(275):T )
5]
1|2
and i1’> 4‘&(2,5): 34
— 5

Beissinger [3, Thm. 3.1] proves that if w = w=! € S,, and (a1, 1), (a2, b2), - ..,
(aq,bq) are the integer pairs (a,b) with 1 < a < b = w(a) < n, ordered such
that by < by < --- < by, then

Prs(w) = Qrs(w) = 0 <= (a1,by) <= (ag,by) <= ... L& (ag,bq). (1.1)

We will review more properties of row Beissinger insertion in Sect. 2.2.

There is a “column” version of Beissinger’s insertion algorithm that gives
another bijection from involutions in the symmetric group to standard tableaux.
This map does not appear to have been described previously in the literature
and is the starting point of this article. The main idea is as follows. Suppose
(a,b) is an integer pair with a < b and T is a tableau. If a = b, then we define

T <& (a,b) by adding a to the end of the first column of T. If a < b and

& 4 adds a box to T in column Jj, then we define T < (a,b) from T LA

by adding b to the end of column j + 1. This operation, which we call col-
umn Beissinger insertion, is given in exactly the same way as row Beissinger
insertion, just replacing the bold instances of the word “row” in the previous
paragraph by “column.” For example, we have

2[3] 1]2
23] 8 (55 a7, LB o5 13751
4] 5] 4] 4

1[4] 8 _[1]2]5]

and 3 <—(2,5)—34 .

Our first main result (see Theorem 2.12) is to show that if (a;,b;) are as in
(1.1), then the map

w s Pg(w) = 0 < (a1,01) <& (a2,b2) < -+ <L (ag,b,)  (1.2)
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is another bijection from involutions w = w™! € S,, to standard tableaux with
n boxes.

Remark 1.1. Considering our terminology, it would be equally natural to de-
fine “column Beissinger insertion” by making a different substitution in the

definition of T «=- (a,b), namely by inserting a using Schensted column in-
sertion rather than the usual row bumping algorithm, and then still adding b
to the end of row 7 + 1 if this adds a box in row 4. If we write this alternative
operation as T £ (a,b), then we always have T'T £ (a,b) = (T L (a,b))7
where T denotes the usual transpose on tableaux. Therefore, replacing B
with <& in (1.2) leads to essentially the same bijection, as P.g(w)" =0 £
cB cB cB
(alabl) — (a27b2) — = (aqybq)'

In general, there does not seem to be a simple relationship between Peg(w)
and Prs(w), and we do not know of any natural way to extend the domain of
P.g from involutions to all permutations. We provide a detailed analysis of both
algorithms in Sects. 2.2 and 2.3. In particular, we exactly characterize when
two involutions y and z are such that P.g(y) and P.g(z) differ by a single dual
equivalence operation; see Theorem 2.13. The version of this result for Prs can
be derived in a more elementary way from known properties of (dual) Knuth
equivalence, and was discussed previously in [15]; see Theorem 2.9.

We were unexpectedly lead to consider these maps for applications in
representation theory, specifically to the problem of classifying the cells and
molecules in certain W-graphs for the symmetric group W = S,,. Recall that
each Coxeter group W has an associated Iwahori—-Hecke algebra H which is
equipped with both a standard basis {H,, : w € W} and a Kazhdan—Lusztig
basis {H,, : w € W}. The action of the standard basis on the Kazhdan—
Lusztig basis by left and right multiplication is encoded in two directed graphs,
called the left and right Kazhan—Lusztig graphs of W. These objects are the
motivating examples of W -graphs, which are certain weighted directed graphs
that encode H-representations with canonical bases analogous to {H,, : w €
W}, For the precise definition of a W-graph, see Sect. 3.1.

The principal combinatorial problem related to a given W-graph is to
classify its cells, which are its strongly directed components. This is because
the original W-graph structure restricts to a W-graph on each cell. Moreover,
the collection of cells is naturally a directed acyclic graph which induces a
filtration on the W-graph’s associated H-module. A related problem is to de-
scribe the molecules in W-graph: these consist of the connected components
in the undirected graph whose edges are the pairs of W-graph vertices {z,y}
with edges * — y and y — « in both directions.

Finding the molecules in a W-graph is easier than identifying its cells,
and each cell is a union of one or more molecules. However, in some special
cases of interest, the cells and molecules in a W-graph coincide. Most notably,
this occurs for the left and right Kazhdan—Lusztig graphs of the symmetric
group [4, §6.5]. The molecules (equivalently, the cells) in these W-graphs are
the subsets on which Qrs and Prs are, respectively, constant [9, Thm. 1.4].
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Our results in Sect. 3 show that the row! and column Beissinger insertion
algorithms described above have a similar relationship to the molecules (and
conjecturally, the cells) in a different pair of W-graphs for W = S,,. In [12],
we introduced the notion of a perfect model for a finite Coxeter group. A
perfect model consists of a set of linear characters of subgroups satisfying
some technical conditions; the name derives from the requirement that each
subgroup be the centralizer of a perfect involution in the sense of [16] in a
standard parabolic subgroup. Each perfect model gives rise to a pair of W-
graphs whose underlying H-representations are Gelfand models, meaning that
they decompose as multiplicity-free sums of all irreducible H-modules.

Our previous paper [13] classified the perfect models in all finite Coxeter
groups up to a natural form of equivalence. For the symmetric group .S,, when
n ¢ {2,4}, there is just one equivalence class of perfect models [13, Thm. 3.3],
and this defines a canonical pair of Gelfand S, -graphs I'"™" and T'®. We review
the explicit construction of these graphs in Sect. 3.2. Their underlying vertex
sets are certain subsets of fixed-point-free involutions in Ss,, whose images
under both forms of Beissinger insertion are standard tableaux with 2n boxes.
We can summarize our main result connecting I'™" and I'®° to Beissinger
insertion as follows:

Theorem. The molecules in the S,-graphs T™ (respectively, T ) are the sets
of vertices whose images under row (respectively, column) Beissinger insertion
have the same shape when the boxes containing n+1,n+2,...,2n are omitted.

This result combines Theorems 3.15 and 3.18, which are proved in Sect. 3.4;
see also Theorems 3.14 and 3.17. At present, it is an open problem to upgrade
this result to a classification of the cells in '™ and I'°°". One reason this is
difficult is that the W-graphs I'"™" and I'®® are not admissible in the sense of
[14,19]. We suspect that the following is true, however:

Conjecture. [12, Conj. 1.16] Every molecule in the S, -graphs T™ and T is
a cell.

We have done computer calculations to verify this conjecture for n < 10.
By dimension considerations, this statement is equivalent to the claim that
the cell representations for I'"™ and I'®® are all irreducible, which we stated
earlier as [12, Conj. 1.16].

The rest of this paper is organized as follows. Section 2 contains some
preliminaries on the Robinson—Schensted correspondence and Knuth equiva-
lence, as well as our main results on Beissinger insertion. Section 3 reviews the
construction of the S,-graphs I'"™" and I'°® and then proves our results about
the molecules in these graphs. Appendix A, finally, carries out the technical
proof of Theorem 2.13.

LFor parallelism, it is convenient to refer to “row Beissinger insertion” but note from (1.1)
that this gives the same output when applied to w = w~! € S, as Robinson—Schensted
insertion.
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2. Insertion Algorithms

Throughout, n is a fixed positive integer, S, is the group of permutations of
n] :={1,2,...,n}, I, ;== {w € S, : w = w™'} is the set of involutions in S,
and ITPF is the subset of fixed-point-free elements of I,, (which is empty if n
is odd). Let s; denote the simple transposition (4,7 + 1) € S,,.

2.1. Schensted Insertion

The (Young) diagram of an integer partition A = (A1 > Ay > -+- > X > 0) is
the set of positions Dy := {(i,7) € [k] x Z:1 < j < X\;}. A tableau of shape A
is a map T : D) — Z, which we envision as an assignment of numbers to some
set of positions in a matrix.

A tableau is semistandard if its rows are weakly increasing and its columns
are strictly increasing. A tableau is standard if its rows and columns are strictly
increasing and its entries are the numbers 1,2, 3, ..., n for some n > 0 without
any repetitions. Most of the tableaux considered in this article will be semi-
standard but with all distinct entries; we refer to such tableaux as partially
standard.

As already discussed in the introduction, the Robinson—Schensted (RS)
correspondence is a bijection from permutations to pairs of standard tableaux
of the same shape, which can be described using the following insertion process.

Definition 2.1. (Schensted insertion) Suppose T is a partially standard tableau
and x is an integer. Start by inserting x into the first row of T' by finding the
row’s first entry y greater than x and replacing y by z. If there is no such
entry y, then x is placed at the end of the row, and otherwise, one proceeds by
inserting y into the next row by the same process. Continue in this way until

a new box is added to the end of a row of T'. Denote the result by T’ SR

115 RS 1|2
Ezample. We have |3|6|«——2=|3|5|
14 416

Definition 2.2. (RS correspondence) For a permutation w = wyws - - - wy, € Sy,
let

RS RS RS RS
Prs(w) := 0 —— wy «— wy «— -+ —— wp,

and let Qrs(w) be the tableau of the same shape with 4 in the box added by

the <> w; step.

1][2]5]

1[3]5]
3[4 '

Ezample. One can check that Prs(31425) = 511

and Qrs(31425) =

It is well known that if w € S,,, then Prs(w™!) = Qrs(w); see, e.g., [5,
Thm. 6.4].

1][2]5]

Ezample. It holds that Prs(24135) = 5] and Qrs(24135) =
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The row reading word of a tableau T is the sequence vow(T) given by
reading the rows of T' from left to right, but starting with the last row. For

é Z 5] = 34125. Tt is easy to see that Prs(vom(T)) =1T.

Fix a standard tableau T' with n boxes. Given a permutation w € Sy, let
w(T) be the tableau formed by applying w to each entry of T'. For each integer
1 < i < n, the elementary dual equivalence operator D; is the map acting on

T by

example, tot

$i—1(T) if i + 1 lies between ¢ and ¢ — 1 in voro(7T),
D;(T) := < s;(T) if 4 — 1 lies between ¢ and 7 + 1 in vow (7)), (2.1)
T if 7 lies between ¢ — 1 and 4 + 1 in vow (7).

This definition follows [2], and is equivalent to the one given by Haiman in [7].
It is an instructive exercise to check that the operator D; is an involution and
always produces another standard tableau [2, §2.3].

Suppose a < b < c¢ are integers. There are four permutations of these
numbers that are not strictly increasing or strictly decreasing, namely, acb,
bac, bea, and cab. A Knuth move on these words exchanges the a and c letters.
Thus, acb and cab are connected by a Knuth move, as are bca and bac.

Suppose v,w € S, and ¢ is an integer with 1 < i < n. We write v f:z/ w
and say that a Knuth move exists between v and w if either

(a) w is obtained from v by performing a Knuth move on v;_1v;v;41, or
(b) w is equal to v and the subword v;_1v;v;41 is in monotonic order.

Similarly, we write v fKJ w and say that a dual Knuth move exists between v

and w if v™! fl% w™!. Two permutations that are connected by a sequence of

(dual) Knuth moves are called (dual) Knuth equivalent. For example, we have
95431 = 52431 2 54231 and 43251 ~ 53241 ~ 54231.
K K dK dK

These relations are connected to the RS correspondence by the following iden-
tities.

Theorem 2.3. [5,7] Let v,w € Sy, and 1 < i <n. Then:

(a) One has vf%w if and only if Prs(v) = Prs(w) and Qrs(v) = D;(Qrs(w)).

(b) One has vffKJw if and only if Prs(v) = D;(Prs(w)) and Qrs(v) = Qrs(w).

(¢) The permutations v and w are Knuth equivalent if and only if Prs(v) =
Prs(w), and dual Knuth equivalent if and only if Qrs(v) = Qrs(w).

This well-known theorem is usually attributed to Edelman—Greene [5] or
Haiman [7]. It takes a bit of reading to find equivalent statements in those
sources, however. These can be found in one place in the expository reference
[15, §4.1]. Specifically, parts (a) and (b) are [15, Thm. 4.2 and Cor. 4.2.1]; see
also [17]. Part (c) is equivalent to [5, Thm. 6.6 and Cor. 6.15].
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Remark. Let T' and U be two standard tableaux of the same shape. Then, it
is well known that there exists a sequence of dual equivalence operators with
T=D;D,,...D; (U). For example

1[2[5] p.ps [1[3]5] p. [1[3]4] b, [1[3]4]
3[4 2[4 2[5 2[5]

This property can be deduced from Theorem 2.3. There are unique permuta-
tions v and w with Prs(v) = T and Qrs(v) = Prs(w) = Qrs(w) = U. These
permutations must be dual Knuth equivalent by part (c) of the theorem and
so there exists a chain of dual Knuth moves

i1 ik
Vo~ -~ W.
dK dK

Then by part (b) of the theorem T = Prs(v) = D, D;, ... D;, (Prs(w)) =
D;,D;,...D; (U).

2.2. Row Beissinger Insertion

. . . . B cB
Here and in the next section, we consider two variants T «— (a,b) and T «—

(a,b) of the Schensted insertion algorithm T 55 4. These variants insert a
pair of integers (a,b) with a < b into a partially standard tableau T'. The first
operation is given below.

Definition 2.4. (Row Beissinger insertion) Let (i,j) be the box of T LCAY
that is not in 7. If @ < b, then form T' <= (a,b) by adding b to the end of row

i+1of T <& g Ifa = b, then form T AR (a,b) by adding b to the end of
the first row of T

Ezample. We have 411 2|3‘£(5,5): i 2|3|5‘and Zl’) 4|6‘JE(2,5):
1]2]6] o o o

34

1]

The operation T' L (a,b) is identical to the one which Beissinger denotes
as T + (a,b) in [3, Alg. 3.1], so we refer to it as row Beissinger insertion. The
motivation for this operation in [3] is to describe the Robinson—Schensted
correspondence restricted to involutions. Since Prs(w™1) = Qrs(w), we have
Prs(w) = Qrs(w) if and only if w = w™t € I,.

Definition 2.5. (Row Beissenger correspondence) Given z € I, let (aq,by1),
.., (aq,bq) be the list of pairs (a,b) € [n] x [n] with ¢ < b = z(a), ordered
with by < -+ < by, and define

Pi(2) =0 < (a1,b1) <= (ag,by) <= -+ <2 (ag, by).

Ezample. We have P,g(4231) =0 LS (2,2) LR (3,3) LS (1,4) =

’»Jklw =
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If @ < b are arbitrary positive integers, then T MR (a,b) may fail to
be partially standard or even semistandard (this is easy to see when a = b).
Therefore, it is not obvious that Pg(z) is standard. This turns out to hold
because of the particular order in which the pairs (a;,b;) are inserted. For
example, we will only insert (a;, b;) with a; = b; if all numbers in the previous
tableau are smaller than a;. This sequencing allows the following to hold:
Theorem 2.6. Beissinger [3, Thm. 3.1] If z € I, then Pg(z) = Prs(z) =
Qrs(2).

A row or column of a tableau is odd if it has an odd number of boxes.

Theorem 2.7. [3] The operation P defines a bijection from I, to the set of
standard Young tableaux with n boxes. This map restricts to a bijection from
the set of involutions in S, with k fized points to the set of standard Young
tableaur with n boxes and k odd columns.

Proof. This follows from Theorem 2.6, since the operation B (a,b) preserves
the number of odd columns when a < b and increases the number of odd
columns by one when a = b. O

In view of this result, it is natural to introduce a relation ,\;J on I, for
r

each 1 < i < n, defined by requiring that y fiBa z if and only if Pg(y) =
r

D;(Pg(z)). The following shows that ~ is the same as what is called an

B
involutive transformation in [15, §4.2].

Lemma 2.8. Let y,z € I,. Then, y r% z if and only if y r% w :fKJ z for some

w € S,.

Proof. Tt y ,% w ;i% z, then Prs(y) = Prs(w) = D;(Prs(z)) by Theorem 2.3,

SO ¥y f-iB/ z. Conversely, if y r-iBJ z, so that Prs(y) = Qrs(y) = Di(Prs(2)) =
r r

D;(Qrs(z)), then y r% w ffKJ z for the element w € S,, with Prs(w) = Prs(y)

and Qrs(w) = Qrs(z) by Proposition 2.3. O
Ifyel, and 1 <i < n, then y r% z for a unique z € I,,, which has this

characterization:

Theorem 2.9. Ify,z € I,, have y r\; z and A:={i—1,i,i+ 1}, then

y if y(A) # A and y(7) is between y(i — 1) and y(i + 1)
(i —1,%)y(i —1,7) if y(A) # A and y(i + 1) is between y(i — 1) and y(i)
) Gyi+ Dy(i, i+ 1) if y(A) # A and y(i — 1) is between y(i) and y(i + 1)

(i—1,i4+Dyti—1,i+1) ify(A) = A.

Remark. Besides the first case, we can also have y = z in the fourth case if
y restricts to either the identity permutation or reverse permutation of {i —
14,94+ 1},
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Proof. The arc diagram of y € I, is the matching on [n] whose edges give
the cycles of y. This is typically drawn, so that the vertices corresponding to
1,2,3,...,n are arranged from left to right. The theorem can be derived by
inspecting [15, Figure 4.11], which lists the ways that the arc diagrams of y

and z can differ if yr% z # y. Translating [15, Figure 4.11] into our formulation

is not entirely straightforward, so we include a self-contained proof below.
First, suppose y(A) = A and define z = (¢ — 1,4+ 1)y(i — 1,4+ 1). Then,
the sequence y(i — 1)y(¢)y(i + 1) is either

(i—1)i(i+1), (i+1)i(i—1), i(i—1)G+1), or (i—1)(i+1)i,

and it is straightforward to check that we have y fi—/ y sz y = z in the first two
cases, Y rl% YS; g% z in the third case, and y fl% YSi_1 ;% z in the last case. Thus,

by Lemma 2.8, we conclude that y r% z as needed.
r

For the rest of this proof, we assume y(A) # A. Define a < b < ¢ to be
the numbers with {a,b,c} = {y(i —1),y(9),y(i+1)} = y(A). If y(3) is between
y(i — 1) and y(i + 1) then the sequence y(i — Dy(i)y(i + 1) is either abe or
cha, soywy—y Ny -1 —yandyr-syasclalmed

Suppose 1nstead that y(i+1) is between y(i—1) and y(2). Then, y(i —
Dy(d)y(i + 1) is either cab or ach, so y ? ysi—1 and y ;T(/ si—1Yy. The relative

order of 1 —1, 7, and i+ 1 in the one-line notation of ys;_1 can only differ from
that of y if {y(i—1),y(i)} = {a,c} C {i—1,4,4+ 1}, which would require us to
have y(A) ={a<b<c}={i—1<i<i+1} = A As we assume y(A4) # A,
the relation y rjz s;_1y implies that ys; 1 rjz Si—1YSi_1, SO Y rriBJ Si_1YSi_1 as
claimed.

Finally, suppose y(i—1) is between y() and y(i+1). Then, y(i—1)y(i)y(i+
1) is either bea or bac, so y r% ys; and y ﬁz s;y. Now, the relative order of i — 1,
i, and 7 + 1 in the one-line notation of ys; can only differ from that of y if
{y(@),y(i + 1)} = {a,c} C {i — 1,i,i + 1}, which again would force us to have
y(A) = A. Therefore, y fiz s;y implies that ys; ;% 8;YSi, SO Y rr% SiYS;. d

2.3. Column Beissinger Insertion

Again suppose T is a partially standard tableau and a < b are integers. Chang-
ing “row” to “column” in Definition 2.4 gives the following insertion operation,
which is the main topic of this section:

Definition 2.10. (Column Beissinger insertion) Let (4, j) be the box of T' RLCRp
that is not in 7. If @ < b, then form T <= (a,b) by adding b to the end of

column j +1 of T B g Ifa= b, then form T <8 (a,b) by adding b to the
end of the first column of T'.
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1[2]3]
Ezample. We have i 2|3‘£ (5,5) = [4] and Zl’) 4|6‘£ (2,5) =
=] 5 2]
1]2]6 o
314(5(

By symmetry, we refer to < as column Beissinger insertion, although
this operation is not considered in [3] and does not appear to have been studied
previously.

Definition 2.11. (Column Beissinger correspondence) Given z € I,,, let (a1, b1),
.., (aq,bq) be the list of pairs (a,b) € [n] x [n] with ¢ < b = z(a), ordered
with by < -+ < by, and define

P (2) =0 <2 (a1, b1) <= (ag,by) <= - <2 (ay, b,).

4]

1
Ezample. We have Peg(4231) = 0 <= (2,2) <& (3,3) <& (1,4) =[2]
3

As with row Beissinger insertion, for an arbitrary pair a < b, the tableau

T <& (a,b) may fail to be partially standard. Thus, the fact that P.g(2) is
always standard, which is part of Theorem 2.12, depends on the particular
order in which the pairs (a;, b;) are inserted in the preceding definition.

There does not seem to be any simple relationship between Pg(z) and
P(z). Nevertheless, we will see that the formal properties of the map P
closely parallel those of Pg.

One can perform inverse Schensted insertion starting from any corner box
in a partially tableau T' to obtain another partially standard tableau U and an

integer x, such that T'=U RS Here, U and x are uniquely determined by

requiring that T = U &5 4 and that the shape of U be the shape of T with
the relevant corner box deleted. The explicit algorithm starts by removing the
corner box, say with entry ¢ in row k41, and inserting c into row k. We replace
the last entry b < ¢ in row k by ¢ and then insert b into row k — 1 by the same
procedure (replacing the last entry a < b by b, then inserting a into row k — 2,
and so on). We continue in this way to form U, and let = be the entry replaced
in the first row.

Theorem 2.12. The operation P.g defines a bijection from I, to the set of
standard Young tableaux with n boxes. This map restricts to a bijection from
the set of involutions in S, with k fixed points to the set of standard Young
tableauzr with n boxes and k odd rows.

Proof. We show that P.g is a bijection by constructing the inverse algorithm.
Suppose T is a partially standard tableau with n boxes. Find the largest entry
b in T. If this is in the first column, then let a := b and delete this box to
form a smaller tableau U. Otherwise, let x be the entry in 7' that is at the
end of the column preceding b. Delete the box of T' containing b to form a
tableau 7. Then, x is an a corner box of T7 so we can do inverse Schensted
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insertion starting from z to obtain a tableau U and an integer a, such that

T & 4 =U. In either case, we obtain a partially standard tableau U and a

pair of integers ¢ < b with T =U <L (a,b).
If we apply this operation successively to a standard tableau T with
n boxes, then we obtain a sequence of pairs (a;,b;) with a; < b; and T =

n <= (a1,b1) <L (ag,b2) LA (aq,bq). By construction, these pairs
satisfy b; < b; and {a;,b;} N {a;,b;} = @ for all ¢ < j while having [n| =
{a1,b1,a2,ba,...,aq,by}. Hence, there is a unique involution y € I,, whose

disjoint (but possibly trivial) cycles are (a;,b;) for i € [¢] and this element has
Pg(y) = T. The map P3!(T) := y is the two-sided inverse of Peg.
The reason why P.g turns fixed points into odd rows, finally, is because

<L (a,b) preserves the number of odd rows when a < b and increases the

number of odd rows by one when a = b. O

Continuing our parallel stories, for each 1 < i < n, let f% be the relation
C

on I, with y r% z if and only if Pg(y) = D;(Psg(z)). For any y € I, and
C

1 < i < n, there is a unique z € I,, with y ~ 2. This element has a slightly

cB
more complicated characterization than Theorem 2.9.

Theorem 2.13. Suppose y,z € I, have y r% z for some 1 < i < n. For j €
C
{i—1,i,i+ 1}, let

y(i) ify() ¢{i—1,4,i+1}
e(j):=9-7 iyl =7 (22)
J ifj#y(j)é{i—l,i,i+1}.

Then, it holds that
Yy if e(i) is between e(i — 1) and e(i + 1)
2= (t—1,0)y(i —1,9) ife(i+ 1) is between e(i — 1) and e(7)
(4,04 Dy(i,i + 1) ife(i — 1) is between e(i) and e(i + 1).

Our proof of this result is quite technical. We postpone the details of the
argument to Appendix A to avoid sidetracking our present discussion.

Comparing P,g and P suggests an interesting operation ¥ on involu-
tions: for each y € I,,, there is a unique z € I,,, such that Pg(y) = P(2)',
where T denotes the transpose, and we define ¥(y) := z. Since taking trans-
poses turns odd rows into odd columns, the map ¥ is a permutation of I,
which preserves each element’s number of fixed points, or equivalently which
preserves the S,-conjugacy classes in I,,. In addition, ¥ commutes with the
natural inclusion I, — I,,4+1 adding n + 1 as a fixed point to each element of
I,,. For example, if n = 4, then

TU: 1—1, (1,2)—(1,2), (1,3)—(2,3)~ (1,3),
(1,4) — (2,4) — (3,4) — (1,4),
(1,2)(3,4) = (1,3)(2,4) = (1,4)(2,3) — (1,2)(3,4).
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For large n, this map is fairly mysterious. Its longest cycles forn = 1,2,3,...,10
have sizes 1, 1, 2, 3, 12, 15, 46, 131, 630, 1814, and in general, ¥ is very close
to a derangement:

Proposition 2.14. The only fized points of ¥ : I,, — I, are 1 and s1 = (1,2).

This result was a conjecture in an earlier version of this article. The
following proof was shown to us by Joel Lewis.

Proof. We have ¥(1) = 1, since P,g(12---n) = Pg(12---n)" 12} -{n|

3} 1n]

while U(s;) = sy, since Pg(213---n) = CB(213~--n)T = . To

(o] =]

S

prove that ¥ has no other fixed points, choose w € I,, and let (a1, b1), (az,b2),
.., (aq,bq) be the integer pairs (a,b) with 1 < a < b = w(a) < n, ordered
such that by < by < --- < b,. For each i € [¢], let

~—

T, = & (a1,b1) LR (agz,bs) LB (ag,b;).

Also define g as in Remark 1.1 and let

U, .= 0 é (ahbl) g (a2,b2) g é (a“bz)

Then, we have Pg(w) = T, and Pg(w)" = U,,.

Assume w # 1. Then, there is a maximal j € [¢] with a; < b;. The tableau
T, is formed from T} by adding b;y1,b;42,...,b to the end of the first row,
while U, is formed in the same way from U;. We, therefore, have T, = U, if
and only if T = Uj.

Further suppose a; > 1. Since Tj; and U, are standard, the number 1 must
be present in both 7;_; and U;_1. As T;_; and U;_; are partially standard, the
number 1 is necessarily in box (1, 1) of both tableaux. However, this means that

a; will appear in the first row but not the first column of 7 = Tj_; A (aj,b;),
since T is formed by row inserting a; into 7;_; and then adding an extra box
containing b;. On the other hand, a; will appear in the first column but not

the first row of U; = U;_; £ U;_1, since U; is formed by column inserting
a; into U;_; and then adding b;. Thus, T; # Uj, so also T, # U,.

Instead, suppose a; = 1 but b; > 2. Then, the number 2 must appear in
box (1,1) of both T;_; and Uj;_1, since these tableaux are partially standard

and do not contain 1. Therefore, when we form T; = T};_4 B (1,b;), our row

insertion of 1 will bump 2 to box (2,1), but when we form U; = U;_4 £
(1,b), our column insertion of 1 will bump 2 to box (1,2). Thus, we again
have T; # U; as these tableaux contain the number 2 in different positions
(2,1) # (1,2). We conclude as before that T, # U,.

In the remaining case, when a; = 1 and b; = 2, the maximality of j
implies that w = s;. Hence, if w ¢ {1, s1}, then Pg(w) = T, is distinct from
Pg(w)" =U,, so ¥(w) # w. O
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3. Molecules in Gelfand W-Graphs

In this section, we explain how the row and column Beissenger insertion algo-
rithms are related to certain W-graphs (for W = S,,) studied in [12]. The latter
objects are derived from a pair of Iwahori-Hecke algebra modules described in
Sect. 3.2.

3.1. Iwahori-Hecke Algebras and W-Graphs

We briefly review some general background material from [8, Chapter 7]. The
Twahori-Hecke algebra H = H(W) of an arbitrary Coxeter system (W, S) with
length function ¢ : W — N is the Z[z,z~1]-algebra with basis {H,, : w € W}
satisfying

HoH, — {st if ((sw) > 4(w)

fi € S and we W.
How + (x — 2~ Hy if f(sw) < Lw) 0522w

The unit of this algebra is H; = 1. There is a unique ring involution of H,
written h — h and called the bar operator, such that T = ! and H, =
H;' = Hy — (x — 27 1) for all s € S. More generally, an H-compatible bar
operator for an H-module A is a Z-linear map A — A, also written a — @,
such that ha = h-@ for all h € H and a € A.

Following the conventions in [19], we define a W-graph to be a triple
I' = (V,w,7) consisting of a set V with maps w : V x V — Z[x,z~!] and
7 : V — {subsets ofS}, such that the free Z[z,z~1]-module with basis {Y, :
v € V} has a left H-module structure in which

zY if s ¢ 7(v)

v
HY, =< —27'Y, + Z w,w)Y, ifser(v) foralls € SandwveV.
wevV
s¢T(w)
(3.1)
w(v,w)

We view T' as a weighted digraph with edges v ——= w for each v,w € V
with w(v, w) # 0.

Remark 3.1. The values of w(v,w) when 7(v) C 7(w) play no role in the
formula (3.1). Thus, when considering the problem of classifying W-graphs,
it is natural to impose the further condition (called reducedness in [19]) that
w(v,w) = 0if 7(v) C 7(w). Although we adopted this convention in [12], we

omit it here. This simplifies some formulas.

Ezxample 3.2. The left and right Kazhdan—Lusztig W -graphs are described as
follows. The Kazhdan—Lusztig basis of H is the unique set of elements {H,, :
w € W} satisfying

H,=H,cH,+ Y z 'Zz'|H,. (3.2)

yeWw
£(y)<t(w)

The uniqueness of this set can be derived by the following simple argument.
Since for any w € W, we have Hy € Hu + 32 <i(w) Zlz,z~'1H,, the only
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element of 271 Z[z~']-span{H,, : y € W} that is bar invariant is zero. However,
if Cyy € H has Cy = Coy € Hu + Yy couy @ Z[x 7] Hy, then the difference
H,, — Cy is such a bar invariant element, so we must have H, = C,.

Let hy,, € Z[z™"] be the unique polynomials, such that i, = >°, cyy hyuw
H,, and define 4, to be the coefficient of 2! in hy,,. It turns out that hy,, = 0
unless y < w in the Bruhat order on W [8, §7.9], so it would be equivalent to
define H,, as the unique element of H with

H,=H,€H,+ Z r 2z YH,.

yeWw
y<w

This formulation is more common in the literature than (3.2), but (3.2) will
serve as a slightly better prototype for our definitions in the next section.
Finally, set wki (¥, w) = tyw + fwy for y,w € W and define

Ascp(w) :={s € S:l(sw) > L(w)} and Ascr(w):={s€S:Ll(ws)>L(w)}.

The triples (W, wky, Ascy) and (W, wki, Ascg) are both W-graphs, whose as-
sociated H-modules (3.1) are isomorphic to the left and right regular represen-
tations of H [9, Thm. 1.3]. The edge weights of these W-graphs are actually
nonnegative; in fact, one has hy,, € N[z~!] [6, Cor. 1.2].

From this point on, we specialize to the case when H = H(S,,), where S,
is viewed as a Coxeter group with simple generating set S = {s1,2,...,8,-1}-
If we set x = 1, then H becomes the group ring ZS,, and any H-module be-
comes an Sy,-representation. We say that an H-module A is a Gelfand model if
the character of this specialization is the multiplicity-free sum of all irreducible
characters of S,,. This is equivalent to saying that A is isomorphic to the direct
sum of all isomorphism classes of irreducible H-modules when the scalar ring
Z[x, 2~ is extended to the field Q(x); see the discussion in [12, §1.2].

3.2. Gelfand Models

We now review the construction of two Gelfand models for H = H(S,,). The
bases of these models are indexed by the images of two natural embeddings
1, — IQFEF to be denoted tasc and tges. Let 1gpr be the permutation of Z sending
i+ i—(—1)" Choose w € I, and let ¢; < cg < -+ < ¢, be the numbers ¢ € [n]

with w(c) = c. Both tasc(w) and tges(w) will be elements of IEPF sending

i—w(i) for i € [n] \ {c1,¢2,...,¢4} and i 1ppe(3) for i € 2n]\ [n+ q].
The only difference between these two permutations is that we define
tasc(w) i on+1i and  ges(w) i on+qg+1—14 for all 7 € [q].

We refer to tasc as the ascending embedding, since it turns each of n + 1,n +
2,...,n 4+ q — 1 into ascents, and to tqes as the descending embedding. Both
maps are injective. Finally, let

G2 = {lae(w) :w € I} and G := {14es(w) : w € I,,}. (3.3)

The set G2 consists of the elements z € I5PF with no visible descents greater
than n, where an integer 7 is a visible descent of z if z(i + 1) < min{%, 2(¢)}
[11, Prop. 2.9].
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Ezample 8.3. If n = 4 and w = (1,3), then tsc(w) = (1,3)(2,5)(4,6)(7,8)
and tges(w) = (1,3)(2,6)(4,5)(7,8). Is it useful to draw involutions in S, as
matchings on [n] with edges corresponding to 2-cycles. Our examples are given
in terms of such pictures as

TN v s PN
lasce © 1 2 3 4 —~ 1 2 3 4 5 6 7 8,

N —~ —~
ldes : 1 2 3 4 — 1 2 3 4 5 6 7 8.

For each fixed-point-free involution z € IEPF, define
Des™(z):={ien—1]:i+1=20) > 2(t:+1) =i},

Asc™(z):={ie[n—1]:2(:) >nand z(i + 1) > n}. (3-4)

We refer to elements of these sets as weak descents and weak ascents.

Remark. Anindex i € [n—1] belongs to Des™ (z) if and only if z commutes with
s; = (i,i+1). Note that if the involution z belongs to either G35 or G4, then
i € [n—1] is contained in Asc™ (z) if and only if zs,2 € {Sp41, Snt2s- -+, S2n—1}-
Finally, observe that if i € Asc™(z), then we have z(7) < z(i+1) when z € G2%¢,
but z(i) > z(i + 1) when z € Gdes.

For z € IFPF we also define

Des<(z):={i € [n — 1] : 2(i) > 2(i + 1)}\(Asc™(z) U Des™(2)),

AscS(z) :={i € [n—1]:2(i) < z(i + 1)}\Asc™(2). (3:5)

The elements of these sets are strict descents and strict ascents. Write £ :
Sp — N for the length function with ¢(w) = | Inv(w)| where Inv(w) := {(i, j) €
[n] x [n] 14 < j and w(i) > w(j)}.

Proposition 3.4. If z € I, has k fized points, then ((tasc(2)) + k(k — 1) =
U(tges(2)) and

Des™ (tasc(2)) = Des™ (tdes(2)),  Des™ (tase(2)) = Des™ (taes(2)),
ASC (tase(2)) = Asc™ (taes(2)), Asc™ (tase(2)) = Asc™ (taes(2))-

Proof. If ¢; < ¢3 < -+ < ¢ are the fixed points of z € I, in [n], then
Inv(tges(2)) is the disjoint union of Inv(iasc(z)) with the set of pairs (i,7) €
[2n] x [2n] with i < j and either i,5 € {c1,¢2,...,ck} or 4,5 € {n+ 1, n+
2,...,n+ k}, 80 Utdes(2)) = L(tasc(2)) + 2(];) Checking the listed equalities
between the weak/strict descent/ascent sets is straightforward. O

The next two theorems summarize the type A case of a few of the main
results from [12].

Theorem 3.5. [12, Thms. 1.7 and 1.8] Let H = H(S,,) and define M to be the
free Z[x,x~1]-module with basis {M, : z € G2}. There is a unique H-module
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structure on M in which

M. Zf’L S Asc< (Z)
M — 2 Y)M, ifi€ Des<
H,M,—= szs T (1’ x ) z Zfl S es_(z) fOTSZSiE{ShSQ,...,Snfl}.
—x~ 1M, if i € Asc™(2)
xM, if i € Des™(2)

This H-module has the following additional properties:

(a) M is a Gelfand model for H.
(b) M has a unique H-compatible bar operator with M, = M, whenever

Des<(z) = @.
(¢) M has a unique basis {M, : 2 € G2} with M, = M, € M.+ Z !
£(y)<e(2)
Zlz~ ' M,,.

Replacing G2 by G4 and = by —2~! changes Theorem 3.5 to the fol-
lowing:
Theorem 3.6. [12, Thms. 1.7 and 1.8] Let H = H(S,,) and define N to be the

free Z[x, x~1]-module with basis {N, : z € GI}. There is a unique H-module
structure on N in which

sts ’LfZ S ASC< (Z)
sts -zt Nz f i D <
H,N, = +(x “ ) Zfle es,(Z) fOT’S:Si € {81,82,...,8”’,1}.
N if i € Asc™ (2)
—z7IN, if i € Des™(2)

This H-module has the following additional properties:

(a) N is a Gelfand model for H. o
(b) N has a unique H-compatible bar operator with N, = N, whenever

Des<(z) = @.
(c) N has a unique basis {N, : z € Gd*} with N, = N_ € N, + Z r !
£(y)<£(2)
Z[z~N,.

Remark 3.7. The cited results in [12] describe an H-module N with the same
multiplication rule but with G2 rather than G as a basis. Theorem 3.6
still follows directly from [12, Thms. 1.7 and 1.8] in view of Proposition 3.4.
Specifically, the module A in [12] is isomorphic to our version of N via the
Z[x, 2~ ']-linear map sending Ni(z) 7 Nigoo(z) for z € I,

The module M for H = H(S,) was first studied by Adin, Postnikov,
and Roichman in [1]. The results in [10,12,20] give more general constructions
of M and N for classical Weyl groups and affine type A. Despite the formal
similarities between Theorem 3.5 and 3.6, there does not appear to be any
simple relationship between the “canonical” bases {M,} C M and {N,} C N.

By mimicking Example 3.2, one can turn the modules M and N into
W-graphs for the symmetric group W = S,,. Let m,.,n,, € Z[z~'] be the
polynomials indexed by y,z € G2 and y,z € Gd, respectively, such that

n
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M, = Zyegasc my, M, and N, = Zyegdes n,.N,. Write 177, and py, for the

¥4
. _1 .
coefficients of ™" in m,, and n,,. For z € G3*°, define

Asc™(z) := {s; 11 € Asc=(2) U Asc™(2)}
={s;:i€[n—1]and z2(:) < z(: + 1)}
= {s;:i€[n—1] and £(z) < £(s;2s;)} (3.6)
For z € ggei define
Asc®(z) == {s; : i € Asc=(z) LI Des™(2)}
={s;rien—1]and z(4) < z(i+1)or z(i) =i+ 1} (3.7)
={s;:i€[n—1] and £(z) < {(s;2s;)}.
Then, let w'™ : G35 x G35 — 7 and w : G4 x G4 — 7 be the maps with
WOy 2) = and Wy 2) = g R (38)
Unlike the Kazhdan—Lusztig case, these integer coefficients can be negative.

Theorem 3.8. [12] The triples ™% := (G2, w™, Asc™") and ' := (G2, W<,
Asc°°|) are S,-graphs whose associated Iwahori—Hecke algebra modules are

Gelfand models.

The definitions of w™" and w here are simpler than in [12, Thm. 1.10],
following the conventions in Remark 3.1. Also, the version of I'® here differs
from what is in [12, Thm. 1.10] in having G as its vertex set. The two
formulations are equivalent via Remark 3.7.

It is not very clear from our discussion how to actually compute the
integers in (3.8). We mention some inductive formulas from [12] that can be
used for this purpose:

Proposition 3.9. (See [12, Lems. 3.7, 3.15, and 3.27]) Let z € I§PF i € Asc=(2),
and s = s;.

(a) If z € G, then M. = (Hs + 27 1) M, — 3y <), sgase™(y) Fos My
des _ -1 n
(b) If z € G&, then N,,, = (Hs+2 ') N, — D b(y)<t(2), sgAsc () Hy=AV y-

3.3. Bidirected Edges

As explained in the introduction, it is a natural problem to classify the cells
in a given W-graph, where a cell means a strongly connected component. The
cells in the left and right Kazhdan—Lusztig W-graphs are called the left and
right cells of W.

Two vertices in a W-graph I' = (V,w, 1) form a bidirected edge v < w
if w(v,w) # 0 # w(w,v). The molecules of T are the connected components
for the undirected graph on V that retains only the bidirected edges. These
subsets do not inherit a W-graph structure but are easier to classify than
the cells. As mentioned in the introduction, we expect that all cells I'™" and
I are actually molecules [12, Conj. 1.16]. As partial progress toward this
conjecture, we will classify the molecules in T and I' in the next section.

Before this, we need a better understanding of the bidirected edges in
"% and I'°. Fix an integer 1 < i < n and suppose v,w € S, are distinct.
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Let < denote the Bruhat order on any symmetric group. Below, we will often
consider this partial order restricted to the set of fixed-point-free involutions
IfPF. Recall that one has w < ws; if and only if w(i) < w(i + 1) and v < w if
and only if v™! < w™! [4, Chapter 2]. It follows for z € I§PF that » < s;zs; if
and only if z(7) < z(i + 1), which occurs if and only if £(s;zs;) = £(z) + 2.

Using just elementary algebra, one can show that v «» w is a bidirected
edge in the left (respectively, right) Kazhdan—Lusztig S,,-graph if and only if
v fKJ w (respectively, v ,% w) for some 1 < i < n [4, Lems. 6.4.1 and 6.4.2].
It is known that the left and right cells in S, are all molecules [4, §6.5], so
Theorem 2.3 implies that the left (respectively, right) cells in S,, are the subsets
on which Qgrs (respectively, Prs) is constant [9, Thm. 1.4].

Observe that if £(v) < £(w), then v r% w (respectively, v sz w) if and
only if vs < v < vt = w < ws (respectively, sv < v < tv = w < sw) for
s =s;_1 and t = s; or for s = s; and t = s;_1, that is, for some choice of
{s,t} = {si—1, si}. There is a similar description of the bidirected edges in I'"¥

and T, First, let «+— be the relation on G2 that has y < z if and only if
row row

sys<y<tyt=z<szs or szs<z<tzt=y<sys forsome {s,t}
= {si-1,8i}

Next, define <LI> to be the relation on G4 that has y <L|> z if and only if
CO! [e(e}

sys<y <tyt=z<szs or szs<z<tzt=y<sys forsome {s,t}
= {si_1,si}

We can only have y < z or y %» zif [0(y) — £(2)] = 2.

Lemma 3.10. Let y,z € G (respectively, y,z € G3). Then, y < 2 is a
bidirected edge in T™ (respectively T°) if and only if y «— z (respectively
row

y%z)forsomel<i<n.
CO!

Proof. We first characterize the bidirected edges in I'"™". Fix y, z € G2*°. Given
the formula (3.6), the results in our previous paper [12, Cor. 3.14 and Lem.
3.27] assert that y < z is a bidirected edge in T if and only if for some i, j €
[n — 1] either siys; <y < 55Ys; = 2 < §;28; Or $;25; <z <L 55285 = Y < S;YS;.
The last two properties can only hold if |i — j| = 1, so that s; and s; do not
commute: for example, if s;5; = s;5; and s;ys; < y < s;ys; = 2z < 5;25;, then
U(2) < U(sizsi) = L(sisjysjsi) = L(sjsiysisj) < L(siysi) +2 < L(y) +2 = {(z)
which is impossible, and similarly for the other case. Thus, y < z is a bidirected
edge in I precisely when gy «— z for some 1 < i < n.
row

The argument to handle the bidirected edges in I'°® is similar. Fix y, z €
Gdes. Then, it follows from (3.7) and [12, Cor. 3.17 and Lem. 3.27] that y < z
is a bidirected edge in T if and only if for some i,j € [n — 1] either s;ys; <
y < s5ys; = z < 8;28; or 5;28; < z < sjzs; = y < s;ys;. The last two
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properties can again only hold if | — j| = 1, so that s; and s; do not commute:
for example, if s;5; = s;5; and s;ys; <y < s;ys; = 2 < 5;25;, then
U(z) < U(sjzs;) = L(sisjys;si) = L(sjsiysis;) < U(siys;) +2=L(y) < l(2),
which is impossible, and similarly for the other case. Thus, y < z is a bidirected
edge in T precisely when y 4% z for some 1 < i < n. g
COl

3.4. Gelfand Molecules

As noted above, the molecules of the left and right Kazhdan—Lusztig graphs
for S,, (which are the same as the left and right cells) are the subsets on which
Qrs and Pgs are, respectively, constant. The molecules in I and ' have
a similar description as the fibers of slightly modified versions of the maps
P.g = Prs and P.g from Sects. 2.2 and 2.3.

If T is a tableau and X is a set, then let T|x be the tableau formed by
omitting all entries of 7' not in X. Recall the definitions of G2 C I5PF and
Gdes C I5PF from Sect. 3.2.

Definition 3.11. For y € G2 and z € G, define Pg(y) = 'B(y)hn} and
Peg(2) = Pea(2),

Ezample 3.12. We have

2 5 1]2]3]

N . 1(3]|4 Pep(tdes(2134)) = Pp(21654387) = ,
Pro(1asc(2134)) = Pa(21563487) = — ‘ ‘ e (taes(2134)) = Pes( ) =r;
p z 12 \ 4 \ Prp(tdes(3214)) = Pep(36154287) = 12 ‘ 4 ‘
Pra(1ac(3214)) = Pre(35162487) = , .

1]2]
: : BT A
Pip (1a5c(4231)) = Fp(45612387) = — | Pus(tae(4231)) = Pus(46513287) = | 3

4

Let T be a standard tableau with n boxes and k£ odd columns. We form
a standard tableau to(7") with 2n boxes and no odd columns from 7" by the
following procedure. First place the numbers n+1, n+2, ..., n+k at the end
of the odd columns of T going left to right; then add the numbers n 4+ k + 1,
n+k+3,...,2n—1 to the first row; and finally add n+k+2, n+k+4, ...,
2n to the second row to form i (7). For example, if

2(3|411]13
719]10[12|14

2[3]4]
7 then tow(T) =

T =

’mom—n

’OO|CT§ | =

Call an integer i a transfer point of an element z € IfPF if i € [n] and 2(i) €

2n] \ [n].
Lemma 3.13. If z € G2¢) then LmW(P,B (2)) = P(2).

Proof. Fix z € G2 and suppose (a;,b;) € [n] x [n] for i € [p] are the pairs
with a; < b; = z(a;), ordered, such that by < by < -+ < by,. Define U := () LB
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(a1,b1) LS (ag, bs) LELS (ap,bp). This tableau is partially standard

with all even columns, since every insertion MR (a,b) with a < b preserves the
number of odd columns, which begins as zero.

Next, let ¢; < ¢o < .-+ < ¢ denote the transfer points of z, so that
z(¢;) = n+1i for i € [k]. The bumping path of x inserted into U is the sequence

of positions in U whose entries are changed to form U iCh x, together with
the new box that is added to the tableau. If < y, then the bumping path

of y inserted into U FLCR strictly to the right of the bumping path of z
inserted into U.

It follows that the boxes added by successively Schensted inserting ci, co,
..., ¢ into U occur in a strictly increasing sequence of columns and a weakly
decreasing sequence of rows. Since U starts out with all even columns, each
of these k boxes creates a new odd column. Moreover, the result of Schensted

inserting ¢; has no dependence on any of the rows after the box added by

Schensted inserting ¢;_1. The tableau T := U AL c1 AL Co K K Ck

is, therefore, standard with k£ odd columns, and placing the numbers n + 1,
n+2, ..., n+k at the end of these columns going left to right must give the
same result as

U<£(cl,n—ﬁ—l)ﬁ(cz,n+2)<£...<£(ck,n+k).

To turn this tableau into P,g(z), we insert LR (a,a+1)fora=n+k+1,n+
k+3,...,2n—1, but this just adds the numbers n+k+1,n+k+3,...,2n—1
to the first row and n+k+2,n+ k+4,...,2n to the second, as each value of
a is larger than all other entries in the tableau. From this description, we see
that Pg(z) = P(2)|jn) = T and o (T') = Pig(2) as needed. O

Theorem 3.14. The operation P,g defines a bijection from the set of elements
of G2%¢ with k transfer points to the set of standard tableaux with n bozes and
k odd columns.

Proof. The number of odd columns in Pg(z) for z € G=¢ is the number of

columns in Pg(z) with an odd number of entries in [n]. The operation L2
(a,b) preserves this number when n < a < b and increases it by one when
a < n < b. Since we form Ppg(z) for z € G2*¢ by first inserting a sequence
of cycles (a,b) with a < b < n (resulting in a tableau with all even columns
and all entries < n), then inserting the cycles (¢;,n + i) where ¢; < --+ < ¢
are the transfer points z, and finally by inserting a sequence of cycles (a,b)
with n + k < a < b, we see that the number of odd columns in Pg(z) is the
number of transfer points in z. Lemma 3.13 shows that Pg is an injective
map from G2°¢ to the set of standard tableaux with n boxes (with left inverse
Prgl 0 lyow) and, therefore, a bijection as the domain and codomain both have
size |I,|. O
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Let Arow(z) be the partition shape of Pg(z) for z € G2*.

Theorem 3.15. Suppose y,z € G2*¢ are distinct and 1 < i <n. Then, y LIRS
row

if and only if Pa(y) = Di(Pg(2)), so the molecules in T™ are the subsets of
G25¢ on which Awow 15 constant.

Proof. First, suppose y ' 2. Without loss of generality, we may assume that
row

sys <y < tyt = z < szs for some choice of {s,t} = {s;-1,5;:}.

If s = s;,-1 and t = s;, then it follows that y(¢ — 1) > y(i) < y(i + 1) and
si(y(i—1)) < s;(y(i+1)). The second inequality implies that y(i—1) < y(i+1),
since the fact that y is an involution means we cannot have y(i—1) = i+ 1 and
y(i + 1) = 4. Thus, y(i — 1) is between y(¢) and y(i + 1), so by Theorem 2.9,
we have y :% z and Pg(y) = D;(Pg(2)). Therefore

Pe(y) = Pyl = Di(Pe(2))|n) = Di(Pe(2)|m) = Di(Fs(2))

by the definition of D; and the fact that 1 <i < n.

Alternatively, if s = s; and t = s;_1, then y(i + 1) < y(:) > y(i — 1) and
si—1(y(i — 1)) < s;—1(y(i + 1)). The second inequality implies that y(i — 1) <
y(i + 1), since we cannot have y(i — 1) =i and y(i +1) =i —1,so y(i + 1) is
between y(i) and y(i + 1). Then, again by Theorem 2.9, we have y ,-:\3, z and

r

Pg(y) = Di(Pg(z)), and it follows as above that Pg(y) = D;(Pg(z)). We

conclude that if y —— z, then Pig (y) = D;(Pg(2)).
row
For the converse statement, suppose Pg(y) = D;(Pg(2)). Then, we have

P(y) = trow (PrB(y)> = lrow (Di(PrB(Z))> =D; (LrOW(PrB(Z))> = Di(Ps(2)),

using Lemma 3.13 for the first and last equalities, and the definitions of D;
and o for the third equality. The fixed-point-free involution y € G235 C I5PF
cannot preserve the set {i—1,4,i4+1}. Since we also assume y # z, Theorem 2.9
implies that either

e z=3;,1ys;—1 and y(i + 1) is between y(i — 1) and y(i), or
o z =3s;ys; and y(i — 1) is between y(¢) and y(i + 1).

In the first case, one has s;ys; <y < 8;-1ysi—1 = z < s;28; if y(i — 1) < y(i)
or 8;28; < 2 < 8;_128i—1 =y < s;ys; if y(i) < y(i —1). Likewise, in the second
case, one has s;_1ys;—1 < y < s;ys; = z < 8;-128,—1 if y(i) < y(i + 1) or
Si—128i—1 < 2 < 8;28; = Y < 8;—1ySi—1 if y(i + 1) < y(i). Either way we have
y —— 2z as desired. O
row

Now, suppose T is a standard tableau with n boxes and k& odd rows. By
a slightly different procedure, we can form a standard tableau tco|(T") with 2n
boxes and no odd rows from T'. First place the numbers n+1,n+2, ..., n+k
at the end of the odd rows of T going top to bottom; then add n + k + 1,
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n+k+2, ..., 2n to the first row and define to/(T") to be the result. If
1]2]3] 1]2[3[8[i1[12[13[14]
415 415
T= G then 1o(T) = 519 ,
7] 7]10

for example. We have analogues of Lemma 3.13 and Theorems 3.14 and 3.15:
Lemma 3.16. If z € G, then Lco|(PcB(z)) = Pag(z).

Proof. Our argument is similar to the proof of Lemma 3.13. Let (a4, b;) for

i € [p] be the cycles of z € G4 witha; < b; = z(a;) < nand by < by < - -+ < by,

and define U := ) <= (a1,01) L (ag,b2) LB (ap,bp). This tableau

is partially standard with all even rows, since every insertion £ (a,b) with
a < b preserves the number of odd rows, which begins as zero.

Next, let ¢; > ¢co > --- > ¢ denote the transfer points of z, so that
2(¢;) =n+ifori € [k]. If y < z, then the bumping path of y inserted into
UL ais weakly to the left of the bumping path of x inserted into U. This
implies that the boxes added by successively Schensted inserting ¢y, ¢, ...,
¢ into U must occur in a strictly increasing sequence of rows and a weakly
decreasing sequence of columns. Since U starts out with all even rows, each of
these k boxes creates a new odd row, and the result of Schensted inserting c;

has no dependence on any of the columns after the box added by Schensted

inserting ¢;_1. It follows that T := U AiCh c1 K5 Co & AiCh ¢ 1is

standard with k odd rows, and that placing the numbers n + 1, n + 2, ...,

n+k at the end of these rows going top to bottom must give the same result as

UL (c1,m+1) £ (c2,n+2) L L (ck,n+ k). To turn this tableau

into Peg(z), we insert £ (a,a+1)fora=n+k+1,n+k+3,...,2n—1, but
this just adds the numbers n + &k + 1,n 4+ k + 2,...,2n to the first row. From
these observations, we see that Pp(z) = Pg(2)|jn) = T and 1eol(T') = Pep(2)
as needed. 0

Theorem 3.17. The operation Peg defines a bijection from the set of elements
of G4 with k transfer points to the set of standard tableauz with n boxes and
k odd rows.

Proof. The number of odd rows in P.g(z) for z € G3 is the number of rows in
P.g(z) with an odd number of entries in [n]. The operation <L (a, b) preserves
this number when n < a < b and increases it by one when a < n < b. As in the
proof of Theorem 3.14, the definition of Pcg(z) combined with this observation
makes it clear that the number of odd columns in PcB(z) is the number of
transfer points in z. Finally, Lemma 3.16 shows that P is an injective map
(with left inverse chl 0 Leol) from GY¢° to the set of standard tableaux with n
boxes, and therefore a bijection, since both of these sets have size |I,]. O

Let Acoi(2) be the partition shape of Peg(z) for z € Gdes.
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Theorem 3.18. Suppose y, 2 € G4 are distinct and 1 < i < n. Then, y <;|> z
CO!

if and only if Pg(y) = D;(Pg(2)), so the molecules in T are the subsets of
fos on which Ao 18 constant.

Proof. Define ¢(j) for j € {i — 1,4,i + 1} as in (2.2). First, suppose y % z.
Without loss of generality, we may assume that sys < y < tyt = z < s;(; for
some choice of {s,t} = {s;_1, 8}

First, assume s = s;_1 and t = s;, so that ¢ Z y(i — 1) > y(i) < y(i + 1).
If 2 = s;_128;—1, then (i — 1,7 + 1) must be a cycle of y and we must have
y(i) < i — 1, which means that e(: — 1) = i — 1 is between e(i) = y(i) and
e(i+1)=14i+1.If 2 < s;_125,_1, then we must have y(i — 1) < y(i +1); since
y € Gl C I5PF has no fixed points, this means that {y(i) < y(i—1) < y(i+1)}
is disjoint from {i—1,4,i+1},soe(i—1) = y(i—1) is again between e(i) = y(i)
and e(i + 1) = y(i + 1). In both cases, Theorem 2.13 implies that y riBJ Z, S0

C

Pe(y) = P (y)ln) = Di(Pes(2))pn) = Di (Pes(2)lpn)) = Di(Pes(2))
by the definition of D; and the fact that 1 < i < n.

Next, suppose s = s; and t = s;,_1, so that i # y(i +1) < y(i) > y(i — 1).
What needs to be checked follows by a symmetric argument. If z = s;zs;, then
(1 —1,4+ 1) must be a cycle of y and we must have y(¢) > i + 1, which means
that e(i4+1) = i+1is between ¢(i—1) = i—1 and ¢(¢) = y(7). If z < s;2s;, then
we must have y(i — 1) < y(i + 1); since y € G4 C IFPF has no fixed points,
this means that {y(i —1) < y(i +1) < y(¢)} is disjoint from {i —1,7,i+ 1}, so
e(i+1) = y(i+1) is again between e(i —1) = y(i — 1) and e(¢) = y(¢). Thus, we
deduce by Theorem 2.13 that y f;% z and as above that P.g (y) = Di(PcB (2)).

For the converse statement, suppose Peg(y) = D;(Pes(2)). Then, we have

Pea(y) = teo (Pea(®)) = tcor (Dil Pea(2))) = Di (1cor (Pea(2)) ) = Dil(Pea(2)),

using Lemma 3.16 for the first and last equalities, and the definitions of D;
and te for the third equality. Since we assume y # z, Theorem 2.13 implies
that either

(a) z=8;-1ysi—1 and e(i + 1) is between ¢(i — 1) and e(4), or

(b) z = s;ys; and ¢(i — 1) is between ¢(7) and e(i + 1).
If e(j) = y(j) for all j € {i —1,4,%+ 1}, then it is straightforward to deduce

as in the proof of Theorem 3.15 that y <LI> z. If this does not occur, then in
co

case (a) either
o (i—1,i+1)isacycleof y and i + 1 < y(4), s0 s;ys; <y < Si—1YySi—1 =
2 = 8;28;; Or
o (i,i+1l)isacycleof yand i +1 < y(i — 1), so s;28; < 2 < 8;-128;—1 =
Y = SiYS;-
Similarly, if e(j) # y(j) for some j € {i — 1,4,%+ 1}, then in case (b) either
o (i—1,i+1)isacycleof yand y(i) <i—1,50 s;-1Yysi—1 < Yy < 8;ys; =
Z = 8;-128;—1; Or
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e (i—1,é)isacycleof y and y(i + 1) <i— 1,50 $5_128;-1 < z < 8;28; =
Y =S8;-1YSi—1-

i
In every case, we have y peas needed. O
CO!
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A. Proof of Theorem 2.13

This section contains the proof of Theorem 2.13. Unfortunately, the only way
we know to prove this result is by a very technical case analysis. Before com-
mencing this, we need some preliminary notation and a few lemmas.

The bumping path resulting from Schensted inserting a number a into a
tableau T is the sequence of positions (1,b1),(2,b2),..., (k,bx) of the entries
in T that are changed to form T L a, together with the new box that is
added to the tableau. Let Br., denote this sequence. Let br.o(j) := b; be
the column of the jth position in the bumping path, let frowr., := k denote
the length of the path (which is also the index of the path’s “final row”), and
let ivaluer,(j) be the value inserted into row j, so that ivaluer_,(1) = a.
Observe that

breg(l) > >bp_q(k) and ivaluer.,(1) <--- < ivaluep_q (k).
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For example, if a =2 and T'=|4|5|6|, so that T «—— a = 173 , then we
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have br.,(1) =2 and br.,(j) =1 for 2 < j < frowp._, = 4, while
ivaluer (1) = 2 < ivaluer.,(2) = 3 < ivaluep,(3) =4 < ivaluer._,(4) = 7.

Recall that a partially standard tableau is a semistandard tableau with
distinct positive entries. If ¢ and j appear in a tableau T' that has all distinct
entries, then we write ¢ <7 j to indicate that ¢ precedes j in the row reading
word of T. If i — 1, 4, and 7 + 1 are all entries in a partially standard tableau
T, then we can evaluate D;(T') by the formula (2.1), and it holds as usual that
Di(Dy(T)) =T.

Suppose v and w are sequences of distinct positive integers and v contains
i— 1,4, and i + 1 as letters. We write v ijJ w to mean that either

(1) w =v when i is between ¢ — 1 and ¢ + 1 in v, or

(2) w is obtained from v by swapping ¢ and ¢ + 1 if ¢ — 1 is between these
numbers in v, or

(3) w is obtained from v by swapping ¢ — 1 and ¢ if ¢ + 1 is between these
numbers in v.

When we evaluate Prs(v) and Prs(w) by the usual Schensted insertion defi-
nition, it follows from Theorem 2.3 that Prs(v) = D;(Prs(w)) if and only if
v fKJ w.

For the rest of this section, fix y € I,, and suppose by < by < --- < by are
the distinct numbers in [n] with a; := y(b;) < b;, so that y = (a1, b1)(az,b2) - - -
(ak,by). For i € [k], let

Ti = @ i (al,bl) i (ag,bg) i i (ai,bi) and TO = (Z)
We refer to Ty, 11,75, ..., Ty as the partial tableauz for y.

Lemma A.1. Choose indices 1 < i < j < k. Suppose p < q are entries in T;
and there are no entries v in T; with p <r < q. Then, we have p <1, q if and

only if p <1, q.

Proof. We may assume that j =i+ 1, and after standardizing that ¢ = p+ 1.

If a; = b;, then the column Beissinger insertion operation < (a;,b;) clearly
does not change the relative order of p and ¢ in the row reading word of T;.

On the other hand, if a; < b;, then it is well known that the operation L a;
also does not change this order, nor does adding b; to the end of a column.
Therefore, p <7, ¢ if and only if p <7, ¢. d

The following lemma compares two bumping paths. Here, when we say
that one path is strictly (respectively, weakly) to the left of the other path, we
mean that in each row where both paths have positions, the unique position in
the first path is strictly (respectively, weakly) to the left of the unique position
in the other path.
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Lemma A.2. Choose an index 1 < i < k. Suppose a; < b; and a;y1 < bjy1. If
a; < ait1, then the bumping path Br,_| —q, is strictly to the left of Br,—a, .,
and if a; > aiy1, then the bumping path Br, ., is weakly to the left of
BT, —a;y. - Moreover, we have frowr, | o, < frowr,q,., when a;y1 < a; and
frowr,_; —a;, > frowr, —q,,, when a; <b; < a1 < biqr.

However, one can have frowr, .o, < frowr,,,,, when a; < a;4+1 < b; <

i+1
bi+1 .

Proof. The first claim follows from the usual bumping path property for Schen-
sted insertion mentioned earlier. For the second claim, observe that if a;41 <
a;, then ivaluer,—q,,, (frowr—,,) < ivaluer, g, (frowr,_,—q,), so

frowr,_; —a;, < frowr,q,.,. If a; < b; < a1 < biy1, then we have frowr, 4, ,

RS B
= frowyq, , for U:=T;_ 1 «——a; #T; =T;_1 &L (ai, bi), so frowp, g, >

frowr,—q;,, again holds by the usual Schensted bumping path properties. [

Lemma A.3. Let T be a partially standard tableau containing i — 1, i, and
i+ 1. If a < b are such that T B (a,b) is also partially standard, then
Di(T) <= (a,b) = Dy(T <= (a,)).

Proof. The desired property is clear if a = b so assume a < b. Since
j RS

vow(D;(T))a :fKJ vow(T)a, it follows from Theorem 2.3 that D;(T) «—— a =
Prs(vow(D;(T))a) = D;(Prs(vora(T)a)) = D;(T £ a). Suppose the box of
this tableau that is not in 7" is in column j. Then, adding b to the end of column
j+1in Dy(T) SR gives D;(T') &£ (a,b) by definition. However, adding b to
the end of column j+1 in D;(T K a) also apparently gives D; (T £ (a,b)),
since b ¢ {i — 1,4,i+ 1}, so we have D;(T) £ (a,b) = D;(T £ (a,b)). O

For the rest of this section, we fix 1 < ¢ < n, and we define e(: — 1), e(4),
and e(i + 1) by

e(j)i=q-7 ifyQh) =17
i iAyG)efi-Liit1)
as in (2.2). We divide the proof of Theorem 2.13 into three propositions, fol-
lowing this lemma.

Lemma A.4. Suppose a,b € {i —1,i,i+ 1} have |b —a| =1 and e(a) < e(b).
Then, a =<Ps(y) b.

Proof. Let j be the index of the first partial tableau T} for y that contains
both a and b. We write a < b to mean that a <7, b. Lemma A.1 implies that
a < pg(y) b whenever a < b, so it is enough to show that a < b.

If a and b are both fixed points of y, then we must have b = —e(b) <
—e(a) = a, so b is inserted before a when forming Pg(y). In this case, the
partial tableau 7} is formed by adding a to the end of the first column of T;_4,
so we have a < b as claimed.
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Suppose only one of a or b is a fixed point of y. Then, we must have
y(a) = a and y(b) # b, since e(a) < e(b). If the cycle of b is inserted before a
when forming P.g(y), then it follows as in the previous paragraph that a < b.
If instead a is inserted first, then we have two subcases:

(A) Assume y(b) < b. Then, y(b) < a <b=a+1, since |[a—b| =1 and a
is inserted first. Therefore, T;_; is formed from T;_» by adding a to the

end of the first column, and we have T; = Tj_; <L (y(b),b). Since a is
the only entry in its row of T;_y, it follows that a remains the last entry
in the first column of 7}, so we have a < b.

(B) Assume b < y(b). Then, a appears in the first column of 7;_; and Tj is

formed from T};_; Ky by adding an extra box containing y(b). This
means that a appears in the first column of 7}, while b appears in the
first row, so we again have a < b.

Suppose neither a nor b is a fixed point of y. If y(a) = b, then a =
¢(a) < e(b) = b and all entries in T;_; are less than a. In this case, the tableau

T; =T < (a,b) is formed from T;_; by adding a and then b to the end
of the first row, so clearly a < b.

Assume y(a) # b and let ' := y(a) and V' := y(b). f a < b = a+ 1,
then we must have a’ < ¥, since e(a) < e(b), so either @’ < a < b < V' or
a<b<a <bord <l <a<b The first two possibilities will put b in the
first row of T} as in case (B) above, and then a < b necessarily holds.

Assume o' <V < a <b=a+1,so that a is the largest entry in T}_;.
If Schensted inserting o’ into 71 bumps the corner box containing a, then a

will appear in T4 R 1 at the end of the next row in some column C, and

T; will be formed from T};_; £y by adding b to the end of column C' + 1,
so a < b.

If inserting b’ into Tj_; does not bump the box containing a, then Tj is

formed from Tj_o Koy By by adding a and b to the end of columns

p+ 1 and g + 1, respectively, where p is the column of the box added when
inserting a’ into Tj_5 and ¢ is the column of the box added when inserting o’

into Tj_o &2 4/, We have p < g, since the bumping path of a’ is strictly to
the left of the bumping path of ¥/, so again a < b

On the other hand, if b < a = b+ 1, then since e(a) < e(b), we must have
ad <b<a<borb<a<ad <V ord <l <b< a. The first two possibilities

will put b in the first row of T; = T4 <8 (b,b'). In these cases, a = b+ 1
cannot also be in the first row of T}, since if a were in the first row of T};_1,
then a, as the smallest number greater than b, would be bumped into the next
row when b is inserted to form 7. Therefore, a < b holds as needed.

Finally, assume ¢’ < b’ < b < a = b+ 1. Then, by Lemma A.2, the
bumping path that results from Schensted inserting a’ into T;_; is weakly to
the left of the bumping path that results from Schensted inserting b" into T;_»,
and the former path also ends in a later row. Therefore, a appears in T} at
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Case la:

a b i—1lii+1 | @ 4—1ie+1 € | i—1ii4+1 b ¢

Case Ib:

e o o

1—1ii+1

Case Ic:

a b ¢c 7—1ii+1 a b i—1lis+1 ¢

a ¢—1ie4+1 b ¢ 1—1lie+1 @ b ¢

Case Id:

t—1lie+1 €

FIGURE 1. Possibilities for y when e(i — 1) < e(i) < e(i + 1)

the end of a column weakly to the left of the column containing b, so we again
have a < D. d

Proposition A.5. Assume e(i) is between e(i — 1) and e(i+1). Then, Pe(y) =
Di(Pes(y))-

Proof. Tfe(i—1) < e(i) <e(i+1)ore(i+1) <e(i) <e(i—1), then Lemma A.4
implies that i — 1 <pgy(y) @ <pg) it 1ori+1 <pyy) @ <pgy) ¢ — 1, so
Pes(y) = Di(Pea(y))- O

Remark A.6. We can be more specific about the possibilities for y when Propo-
sition A.5 applies. If e(i — 1) < e(i) < e(i + 1), then one of the following must
occur:

(Ta) 4 — 1 is a fixed point of y and e(i + 1) = y(i + 1) > y(i) = e(i).

(Ib) i — 1 is a fixed point of y and y(i + 1) = 1.

(Ie) y(i—1) <y(i) <y(i+1)and {i—1,4,i+1}N{y(i—1),y(7),y(i+1)} = @.
(Id) ye—1)=diand y(i +1) > i+ 1.

If instead e(i + 1) < e(i) < e(i — 1), then we must be in one of the following
cases:

(ITa) i+ 1 is a fixed point of y and e(i — 1) = y(i — 1) > y(i) = e(i).
(Ib) y(i+1) < y(i) <y(i—1)and {i—1,4,e+1}N{y(i—1),y(3),y(:+1)} = @.
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Case Ila:

a b 1—1wui+1 | @ ¢—1wi+1 €| s—1ie4+1 b ¢

Case IIb:

a b ¢ 1—1ii+1 a b i—1lii+1 €

a 4—14e+1 b ¢ t1—1lis+1 @ b ¢

Case Ilc: Case I1d:
- e © @ m o o o
a j—1ii+1 i—1ii4+1 ¢ 1—1ii+1

FIGURE 2. Possibilities for y when e(i 4+ 1) < e(i) < e(i — 1)

(IIc) i and ¢ + 1 are fixed points of y but y(i — 1) # i — 1.
(IId) ¢ —1, 4, i + 1 are all fixed points of y.
Figures 1 and 2 show the arc diagrams of y in these cases.

Our second proposition goes as follows.

Proposition A.7. Assume e(i+1) is between e(i — 1) and e(i). Then, Pp(y) =
D;(P(si-1ysi-1))-

Proof. In this proof, let z := s;_1ys;—1. We wish to show that Pg(y) =

D;(P(z)). By hypothesis, either e(i — 1) < e(i+1) < e(i) or e(i) <e(i+1) <

e(i — 1). If the first set of inequalities holds, then we must be in one of the

following cases:

(1a) i —1is a fixed point of y and e(i + 1) = y(i + 1) < y(2) = e(i).

(1b) y(i—1) <y(i+1) <y(i) and {i—1,2,i+1}N{y(i—1),y(),y(i+1)} = 2.

(Ic) y(i—1)=4+1and y(z) > i+ 1.

If instead e(i) < e(i+ 1) < e(i — 1), then we must be in one of these cases:

(2a) i is a fixed point of y and e(i +1) =y(i +1) <y(i —1) =e(i — 1).

(2b) y(@) <y(i+1)<y(i—1), {i—1,4,i+1}Nn{y(i —1),y(@),y(i + 1)} = @.

(2¢) y@)=i+1land y(i —1) >+ 1.

Figure 3 shows the possibilities for the arc diagrams of y in these cases.
Notice that cases (2a), (2b), and (2c) are obtained from cases (1a), (1b),

and (1c) by interchanging y and z. Since D; is an involution, it suffices to

show that Pg(y) = D;(P(z)) just in cases (1a), (1b), and (1c). We consider

each of these it turn. Throughout this proof, a < b < ¢ are the integers with

{a,b,c} = {y(i — 1),y(i),y(i + 1)}.
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Cases la < 2a:

a b 1—111+1 a b 1—1w1+1
a ¢—1it+1 ¢ a ¢—141+1 C
t—1it+1 b c 1—1lit+1 b c

Cases 1b < 2b:

t—1ii+1 @ b ¢ t—1lit+1 @ b ¢

Cases 1c <« 2c:

1—1it4+1 € 1—1it+1 €

FIGURE 3. Possibilities for y when e(i 4 1) is between e(i — 1)
and e(7)

(la) Assume ¢ — 1 is a fixed point of y and e(i + 1) = y(i + 1) < y(i) = e(3).
Then we are in one of the three possible subcases indicated in Fig. 3:

i. We could havey = ---(i—1,i—1)(b,?)(a,i+1)--- and z = --- (b,i—
1)(¢,i)(a,i + 1) -+ where a < b < ¢ = i — 1. In this case, denote

the partial tableau for y obtained just before inserting (i — 1,4 — 1)

by T. This is also the partial tableau for z obtained just before

inserting (b,7 — 1). Then, let Ty, Ty, and T}’ be the partial tableaux

for y obtained just after inserting (i — 1,7 — 1), (b,4), and (a,i+ 1),
respectively. Define T, T., and T/ relative to z similarly.? Now,

2 That is, let T%, T2, and T be the partial tableaux for z obtained just after inserting
(b,i — 1), (¢,7), and (a,? + 1), respectively. In the next few arguments, we will often make
similar definitions of Ty, Ty, T, and T, T,, TY: the first three objects will be partial
tableaux for y obtained after inserting certain cycles of y, while the last three objects will be
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consider the insertions T}, B (b,i) and T £ (b,i—1). If inserting
b leads to a new box w1th entry d < i — 1, then ¢ — 1 has no effect on
the insertion T}, &£ (b,3), so we have T, = s;,_1(T},). lf d =i — 1,
then the last bump of this insertion will involve some d < 1 —
1 bumping ¢ — 1 to the next row. For T B (b,i — 1), this will
bump d’ into a new row and then put ¢ — 1 in the last box of the
second column. As a result, we have T, = s;_1(Ty) = D;(T}). After
inserting (a,7 + 1), we have i — 1 <1y i+ 1 < by Lemma A.2.
Also, we have T = s;_1(T}/) = D;(T}/). By Lemmas A.1 and A.3,
it follows that:

i—1<py i+1=<pyu? and Pep(z) = Di(Pas(y)).
ii. We could have

y=---(t—1i—1)(a,i+1)---(i,¢)--- and =z
= (i) (ayi+ 1) (i—1,¢)

where a < b =i —1 < i+ 1 < c. In this case, denote the partial
tableau for y obtained just before inserting (i — 1,4 — 1) by 7. This
is also the partial tableau for z obtained just before inserting (i,1%).
Then, let T, be the partial tableau for y obtained just after inserting
(i — 1,4 — 1), let T, be the partial tableau for y obtained just after
inserting (a,i + 1), let 7,/ be the partial tableau for y obtained
just before inserting (i,c), and let T;” be the partial tableau for y
obtained just after inserting (7, ¢). Define T, T., T/, and T?" relative
to z similarly. Then, we have ¢ — 1 < i+1 and by Lemma A.1,
i—1 <7y i+ 1. Also, T is just T}/ after replacing ¢ — 1 by i.

After the insertion «= (i,¢), we get ¢ —1 <qyr i+ 1 <py i. By an
argument similar to case la(i), we have 7" = s; _1(7}") = Di(T}/"),
so Lemmas A.1 and A.3 imply that

i—1<pyy) i+1=<pyu i and Pep(z)= Di(Ps(y)).

ili. Finally, we could havey = ---(i—1,i—1)--- (i+1,0)--- (i,¢)--- and
z=--(4,0)---(i+1,b)---(i—1,¢)--- wherea=i—-1<i+1<b<
c. In this case, the proof is the same as in subcase ii after replacing

any references to (a,i+ 1) by (i + 1,b).
(1b) Assume y(i —1) = a < y(i +1) =b < y(i) = cand {1 — 1,4, + 1} N
{a,b,c} = &. Then, we are in one of the four possible subcases indicated

in Fig. 3:

i. We could have y = --- (a,i — 1)(c,2)(b,i +1)--- and 2 = -+ (¢,i —
1)(a,4)(b,i+1)--- where a < b < ¢ < i—1, so that y and z have

partial tableaux for z obtained after inserting corresponding (but possibly different) cycles
of z.
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arc diagrams

/C/ \ and z = C///g\\

We address this case by considering the insertions into each row
recursively. Denote the partial tableau for y obtained just before
inserting (a,i—1) by T'. This is also the partial tableau for z obtained
just before inserting (c,i — 1). Let T, T,, and T, be the partial
tableaux for y obtained just after inserting (a,i — 1), (c,¢), and
(b,i+1). Define T, T., and T relative to z similarly. Then write

ivalue? (k) := ivaluer—,(k),

ivaluel (k) := ivaluer, —.(k),

ivalue (k) := ivaluer; (k).

Define ivalue? (k), ivaluej (k) and ivalue? (k) similarly. Also, write

frow, (a) := frowr_,, frow,(c) := frowr, ., and frow,(b) := frowTé&b.

j<m

Then define frow,(a), frow,(b), and frow,(c) relative to z similarly.
If

:= min{frow, (a), frow, (), frow, (c), frow(a), frow (b), frow(c)},

then by Lemma A.2 we have ivaluel(j + 1) < ivaluel(j + 1) <
ivalue?(j + 1). Since

ivalue! (j)ivaluel(j)ivalue () = ivalue? (j)ivaluel(j)ivalue} (j)

= ivalueZ (j)ivalue? (j)ivalue; (5),

we see that the jth rows of T} and T’ are the same. Then, without
loss of generality, we can assume m = 1. By Lemma A.2, we have

frowy (c) < frow, (b) and frow,(c) < frow,(a).

First, assume frow,(a) > frow,(c) = 1 < frow, (b). Consider the first
rows of T, and T'. These rows differ only in the entries of their last
box, wh1ch are ¢ for y and ¢ — 1 for z. For the rows above, according
to Lemma A.2, we have Br_, < BTé<_b, S0

i—1 <Ty// i+1 %Té/ 7 and TZH = D7(T£/)

The desired result now follows from Lemma A.3. Next assume frow, (a)
=1 < frowy(c) < frow, (b) and then frow,(c) = frow,(a) = 1. Then,
the insertions into the first row of T}, < ¢, T, < b, and T/ appear
as

a [i—1l|l<c=]| - | a c |[«<b=| | a b
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so ivalue?(2) = ¢ — 1 and ivalue}(2) = c¢. On the other hand, the
insertions into the first row of T, < a, T, < b, and T appear as

c li—1ljl«—a=| - | a [i—1|«<b=| | a b |,

ii.

so ivaluef (2) = c and ivalue; (2) = i — 1. Now, consider the insertion
into the second row. Since there are no numbers greater than ¢ — 1
in the tableau T', we see that frow,(c) = 2. Then, for the second row
of T, « b, we have

1—1| ¢ |«—c=]| --- c )

and ivaluej (3) = i — 1. For the second row of T, « b, we have

c P |—1—=1= - c |1—1

and ivalueg (3) = i. Therefore, we have frow, (b) = 3 and the last two
rows for 7,/ and T are

and

i—1li+1 R A

Since T} = D;(T,/), the desired result now follows from Lemmas A.1
and A.3.

We could have y = -+ - (a,i—1)(b,i+1)--- (i,¢)--- and z = - - - (a, 1)
(byi+1)---(i—1,¢)--- wherea<b<i—1<i+1<e, sothaty
and z have arc diagrams

Yy = //b7<><.\c and z =

In this case, denote the partial tableaux for y after inserting (a,i—1)
and (b,i+1) by T,, and T}. Then, let T,/ be the partial tableau for
y obtained just before inserting (i,c), and let T;" be the partial
tableau for y obtained just after inserting (,c). Define T, T2, TV,
and T7" relative to z similarly. Then write

b o ] ] c

ivalue? (k) := ivaluerq(k),

ivaluey (k) := ivaluer, —s(k),

ivalued (k) := ivaluery (k).
Define ivalue, (k), ivalue; (k) and ivalue] (k) similarly. Also, write
frow, (a) := frowr—q, frow, (b) := frowr, —p, and frow,(c) := frowpy ..

Define frow, (a), frow, (b), and frow,(c) relative to z similarly. Then,
T/ is just Té after replacing i —1 by . Also, by considering the result

of <& (a,i—1) and &L (b,i + 1) for y, by Lemma A.2, we have
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ivalue(j) < ivalue}(j) for all indices j < min{frow,(a), frow,(b)}.
Assume frowy(a) = I. Then, either

frowy (b) =k <1 and i—1 <7y ivaluej(frowy (b)) <77 i+ 1, (A1)
or we have
frow, (b) > 1 and therefore ivaluel(l) < ivalue} (). (A.2)

When (A.2) occurs, in the tableau Ty, we either have (I) ivalue} (/)
and i — 1 are the last two elements in the same row, or (II) ¢ — 1
is in some row I’ < [ and both ivalue¥(l) and i — 1 are the last
element in their rows. In subcase (I), we must have ivalue}/ (1) < i—1,
as otherwise ivalue!(l), ¢ — 1, ivalue}(l) and 7 + 1 will be in the
same row after two insertions, which leads to ivalue} (1) = ¢ which
is impossible. Since there are no elements greater than ¢ — 1 before
inserting (a,i — 1), we have

ivalue (frow, (b)) = ivaluey (I + 1) =i—1 and i—1<p i+ 1.

In subcase (II), we must have frow, (b) = [, because ivalue¥(l) is the
last element in its row in 7, and ivalue} (1) < ivaluej (1). Since i — 1
is in the column directly after the one containing ivalue}(l) in T}, it
must be in the same column in T}', because ivalue}(j) < ivaluey(j)
for all j < 1. Also, ivaluef (1) is in the column directly after the one

containing ivalue (/) in T}', so

ivaluey (frow, (b)) = ivaluej (I + 1) =i —1 and i—1 <7 i+ 1.

iii.

Thus, for both cases (A.1) and (A.2), Lemma A.1 implies that i —
1 =1y i+ 1. By the above discussion, we see that i — 1 and 7 + 1

appear in different rows of T,/. Thus, after the insertion < (i, c),
we have i —1 <y i +1 <7y i. For z, after inserting (i —1,¢), we
similarly have

i =<pm i+l =<pmi—1 and T = Di(T)").

The desired result now follows from Lemmas A.1 and A.3.
We could have y = ---(a,s — 1)--- (¢ + 1,b)--- (i,¢)--- and z =
o (a, i)+ 1,0) - (i—1,¢)--- wherea<i—1<i+1<b<cg,
so that
_ RN

and z = % .
~ 7N N\
Write T, for the partial tableau for y obtained after inserting (a,i—
1). Let T}, be the partial tableau for y obtained after inserting (i +
1,b), let T}/ be the partial tableau for y obtained before inserting
(4,¢), and let T,/ be the partial tableau for y obtained after inserting
(i,¢). Define T, T., T/, T!" relative to z similarly. Then, 77 is just
T, after replacing i — 1 by 4. Also, the insertion (i + 1,b) makes
i—1 <y i+1. Thus, by Lemma A.1l, we havei—1 <7y i+1. Using
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iv.

. . . . cB .
the same argument as in case ii, after the insertion «— (i,¢), we
get i —1 <7 i+ 1 =<7y i. For z, similarly, we get

) =T 1+ 1 =T i1—1 and T!/ = Di(Té//)7

so the desired result follows from Lemmas A.1 and A.3.

Finally, we could have y =---(: — 1,a)--- (i +1,b)--- (i,¢)--- and
z=--(,a)---(t+1,b)---(i—1,¢)--- wherei+1<a<b<e, so
that

e ey

[ ) [} .// N

In this case, the proof is the same as case iii after replacing (a,i—1)
by (i —1,a).

Assume y(i —1) =i+ 1land y(i) >i+1,sothata=i—1<b=i+1<

CcC =

Le) -

y(@). Then,y =---(i—1,i+1)---(4,¢)--- and z = -+ (4,4+1) - - - (i—
have arc diagrams

v N N

[ [ [ J C [ o ® (&

In this case, let T,, denote the partial tableau for y obtained after inserting
(t—1,i+1), let T?; be the partial tableau for y obtained before inserting
(i,¢), and let T;’ be the partial tableau for y obtained after inserting

i

c). Define T, T., and T relative to z similarly. Then, T, is just T,

after replacing i — 1 by i and i —1 <7, i+ 1. Thus, by Lemma A.1, we
have 1 — 1 < i+ 1 Using the same argument as in case 1b(ii), we get

Z —
T//

1 =Ty 1+ 1 =Ty i. For z, similarly, we get ¢ <rri+1<pri—1 and

=D; (T” ), so the desired result follows from Lemmas A.1 and A.3.

In all of these cases, we deduce that P.g(y) = D;(Pes(z)) as needed. O

Our next result is the final piece of the proof of Theorem 2.13.

Proposition A.8. Assume e(i — 1) is between e(i) and e(i+1). Then, P(y) =
D;(Pes(siysi))-

Proof. In this proof let z := s;ys;. We wish to show that P.g(y) = D;(Ps(2)).

By hypothesis, either (i) < e(i—1) <e(t+1)ore(i+1) <e(i—1) <e(i). If
(i) <e(i—1) < e(i+ 1), then we must be in one of the following cases:

(3a) i — 1 and 7 are fixed points of y and e(i + 1) = y(i + 1) # i+ 1.

(3b) i is a fixed point of y and y(i — 1) =i+ 1.

(3¢c) i is the only fixed point of y in {i — 1,4,i + 1} and e(i — 1) = y(i — 1) <

y(i+1) =e(i +1).

y(i) <y(i—1) <y(i+1) and {i—1,4,i+1}0{y(i—1),y(i),y(i+1)} =

y(i—1)=i+1and y(i) <i—1.

If instead e(i + 1) < e(i — 1) < e(4), then we must be in one of these cases:

(4a) ¢ —1 and i + 1 are fixed points of y and e(i) = y(i) # i.

(4b) i+ 1 is a fixed point of y and y(i — 1) = i.

(3d)
(3e)
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Cases 3a < 4a:

a 5—131+1 a g—131+1
e 0 & - e e o o e
1—1it4+1 € 1—1it4+1 €

Cases 3b < 4b:

o o Ve — o e o
t—1it+1 t—1it+1

Cases 3¢ < 4c:

a b 1—1it+1 a b 1—1it+1
a —142+1 C a q¢—14+1 €
i—1lit+1 b c 1—1it4+1 b c

Cases 3d < 4d:

a b c i—1wi+1 a b € i—1wi+1

a b +1—1it4+1 C a b +1—1it+1 C
a ¢—1it+1 b c a ¢—14t4+1 b c

i1—1lic+1 @ b c 1—1lii+1 @ b c

Cases 3e < 4e:

a §—141+1 a —141+4+1

FIGURE 4. Possibilities for y when e(i—1) is between e(i) and
e(i+1)
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(4c) i+1is the only fixed point of y in {i —1,4,i+ 1} ande(i —1) = y(i—1) <
y(i) = e(i).

(4d) y(i+1) <y(i—1) <y(@) and {i—1,4,i+1}N{y(i—1),y(¢),y(i+1)} =

(de) y(i—1)=dand y(i +1) <i—1.

Figure 4 shows the possibilities for the arc diagrams of y in these cases.
Cases (3a)—(3e) are obtained from cases (4a)—(4e) by interchanging y and

z. Thus, it suffices to show that Pg(y) = D;(Peg(2)) just in cases (3a)—(3e).

We consider each of these it turn. As in the proof of the previous proposi-

tion, throughout this argument, we define a < b < ¢ to be the integers with

{a,b, ¢} = {y(i = 1),9(0),y(i + 1)}

(3a) Assume ¢ — 1 and i are fixed points of y and e(i + 1) = y(i + 1) ¢
{i—1,4,341}. Then, the first partial tableau for y containing all three of
i—1,14,and i+ 1 will have ¢ — 1 and ¢ in the first column, with ¢ — 1 in a
row above i. This tableau will also have i+ 1 either in the first row (when
i+ 1 < y(i+1)) or in column two or greater (when y(i +1) < i+ 1).
Either way, it follows from Lemma A.1 that:

i —<P<:B(y) Z - 1 —<PCB(y) Z+ 1.

The first partial tableau for z containing all three of i — 1, 4, and 7 + 1

is obtained from the first partial tableau for y containing all three of

i —1, 4, and ¢ + 1 by interchanging ¢ and ¢ + 1. Therefore, we have
Peg(z) = si(Pe(y)) = Di(Pes(y)) by Lemma A.3.

(3b) Assume i is a fixed point of y and y(i — 1) =i+ 1,sothat a =i —1 <

b=1i<c¢=1i+ 1. In this case, y = -+ (4,4)(i — 1z+1) -~ and z =

- (i—1,9)(i+1,94+1)---. Let T,, and Té denote the partial tableaux for

y obtained after inserting (4,4) and (i —1,7+1). Define T, and T, relative

1]3] , |12
2] andTZ—i

i <7y i—1=<pi+1 and T, =s(T)) = Di(T)).

‘. Hence

to z similarly. If 7 = 2, we have T} =

If ¢ > 2, then ¢ is not in row 1 of T}, but ¢ — 1 and ¢ + 1 are in row 1 of
T,. Therefore, the two insertions Ty, &£ (4,4) and T, «— <B — (i-1,i4+1)

will not interact, and nor will T, <= (it —1,i) and T, — B — (i+1,i+1).
Thus, we have ¢ <1y i—1=<p 1+1 and T, = Sz(T/) = Di(T?;), so by
Lemmas A.1 and A.3

L =<pa) t — 1 <pg) i+ 1 and Pp(z) =D;(Ps(y)).

(3c) Assume i is the only fixed point of y in {i — 1,4,4 + 1} and e(i — 1) =
y(t —1) < y(i+1) =e(i+ 1). Then, we are in one of the three possible
subcases indicated in Fig. 4:

i. We could have y = ---(a,i — 1)(4,2)(b,i +1)--- and z = --- (a,i —
1)(b,4)(i + 1,4+ 1)--- where a < b < i—1 < i = c. In this case,
denote the partial tableaux for y after inserting (a,i— 1), (¢,4), and
(b,i+1) by T, T,, and Ty’. Note that T is also the partial tableau
for z obtained just before inserting (a,i — 1). Define T, and T
relative to z similarly. By an argument similar to case la(i), we get
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T? = s4(T}) = Di(T},), so Lemma A.2 implies ¢ <7y i —1 <qy i+ 1.

According to Lemma A.3, we then have
i =<pgy) t — 1 <pgy i +1 and Pep(z) = Di(Ps(y)).
ii. We could have

y=---(a,i—1)(4,i)---(i+1,¢)- -
and z=---(a,0—1)(i+1,i+1)---(i,¢) -,

where a <1 —1<b=1i<i+ 1< c. In this case, let T denote the
partial tableau for y obtained after inserting (a,?¢ — 1). Then, let T},
be the partial tableau obtained after inserting (i,7), let T}, be the
partial tableau obtained before inserting (i+ 1, ¢), and let Té’ be the
partial tableau obtained after inserting (i + 1, ¢). Define T, T7, and
T/ relative to z similarly. By an argument similar to case la(ii), we
deduce that

) <T1j/ i—1 <Ty// i+1 and T;, = SZ(ZZI) = DZ(ZI/)
Then, by Lemmas A.1 and A.3, we have
i <pg(y) ¢ — 1 <pgy i+1 and Pep(z) = Di(Ps(y)).

ili. We could have y = --- (i — 1,b)--- (4,9)--- (¢ + 1,¢)--- and z =
(i —1,0)--(i+1,i+1)---(4,¢)--- wherea=i<i+1l<b<ec.
In this case, the proof is the same as case ii after replacing (a,i—1)
by (i — 1,b).
(3d) Assume y(i) =a < y(i—1)=b<y(i+1) =cand {i —1,4,i + 1} N
{a,b,c} = &. Then, we are in one of the four possible subcases indicated
in Fig. 4:
i. We could have y = ---(b,i — 1)(a,i)(c,i+1)--- and z = --- (b, i —
1)(¢,i)(a,i4+1)--- where a < b < ¢ < i—1, so that the arc diagrams
of y and z are

= > and z=

a b
We again consider two sequences of successive row insertions. Denote
the partial tableau for y obtained just before inserting (b,i—1) by T
This is also the partial tableau for z obtained just before inserting
(b3 — 1). Then, let T, T,, and T, be the partial tableaux for y
obtained just after inserting (b,i — 1), (a,?), and (¢, + 1). Define
T., T., and T/ relative to z similarly. Note that T, = T,. Then
write

ivalue (k) := ivaluep(k)
ivalue}/ (k) := ivaluer, —q(k),
ivalueg (k) := ivaluer (k).
Define ivalue; (k), ivaluej (k) and ivaluel (k) similarly. Also, write

frowy (b) := frowrp, frowy (a) := frowr, o, and frowy(c) == frowrs ..
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For z, we define frow,(a), frow,(b), frow,(c) similarly. When
J < m := min{frow, (a), frow, (b), frow, (c), frow, (a), frow(b), frow,(c)},

Lemma A.2 implies that we have ivalue,(j + 1) < ivaluey(j + 1) <
ivalue.(j + 1). Since

ivalue} (j)ivalue? (j)ivalue? (j) ~ ivaluey (5)ivalue?(j)ivalue?(j)
= ivaluej (j)ivalueZ (j)ivalue] (j),

the jth rows of T and T are the same. Without loss of generality,
we can assume m = 1. By Lemma A.2, we have

frowy (a) > frow, (b) = frow.(b) and frow.(c) < frow.(a).

Now, we have two cases:

(I) 1 =frowy(c) < frow,(b) < frow,(a) and frow.(c) =1, or

(IT) frowy(b) =1 < frowy(c).
In case (I), consider the first rows of T," and T7'. These rows differ
only in the entries of their last box, which are i 4+ 1 for T} and
¢ for T!. For the other rows, according to Lemma A.2, we have
Br,a < Brs, so we must have

i=ryi—1=<gpi+1 and T/ =s;(T)) = Di(T}),

so the desired result follows from Lemmas A.1 and A.3. Now, sup-
pose we are instead in case (II). We consider the insertions that
construct T,, T,/, T, and T''. The first rows of T}, < a, T} + ¢, and
T, are shown below; here, a’ = ivalue};(2) and we use parentheses
to indicate entries that are only present when a’ < b:

(@) |(-)] b |i—1]«<—a=]|--- a [(--)] () |[i—1]«—c

=S|l a ()] )] e

In this situation, we have ivalue’(2) = o’ < b and ivalue?(2) =i — 1.
Similarly, the first rows of T, < ¢, T, < a, and T/ appear as

(@) |(--)] b |i—1j—c=| - |(a)|(-)]| b ¢ |<—a

=S|l a (6w e |

so ivaluel(2) =i —1 and ivalue(2) = a’ < b. Since frow, (b) = 1, the
length of the second row of T), = T, must be at least 2 less than the
length of the first row. Therefore, we have two further subcases.
e Assume o’ is greater than every entry in row 2 of Tj. Then,
frow,(a) = 2, and the second rows of T « ¢ and T,/ appear
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as

a i |—i—1=]| - | d [i—1]|

so ivalue?(3) = i. Similarly, we have frow,(c) = 2 and the
second rows of T, < a and T/ appear as

i—1] i |«—ad=]| - | d i,

so ivaluel (3) =i — 1. As a result, we have frow,(c) = 3 and the
last two rows of T, and T" appear as

a li=1 N i

and
i |1+1 e li—1l1+1

Therefore, T = D;(T}’) and the desired result follows from
Lemmas A.1 and A.3.

e Alternatively suppose that a’ is not greater than every entry
in row 2 of T},. Then, we have frow, (a) > frow,(c) = 2 and the
second rows of T} « c and T}/ are

! /

a | |eiml=| e | d | i1 )i 1,

so ivalue?(3) = a”. Similarly, we have frow,(c) = 2 and the
second rows of T < c and T/ appear as

i—1] i |«—d=]|- | d | - |i=-1| i |

so ivalueg(3) = a”. As a result, we have ¢ <7 i —1 <7 i+ 1
and T = D;(T,/). Therefore, the desired result again follows
from Lemmas A.1 and A.3.
ii. We could havey =---(b,i—1)(a,i)---(i+1,¢)--- and z = --- (b,i—
(a,i+1)---(i,¢)--- wherea <b<i—1<i+1<e¢, sothat y
and z have arc diagrams

= = / "—\\ .
Y /b/:\.\. — and z C/ —~ ./K:\\C

In this case, denote the partial tableaux for y obtained just after
inserting (b,7 — 1), just after inserting (a,?), just before inserting
(i +1,¢), and just after inserting (i + 1,¢) by T, T, T,, and T}/,
respectively. Define T, T7, and T7 relative to z similarly. Then, T,
is just T}, after replacing ¢ by ¢ + 1. We abbreviate by writing

frow, (b) := frowr_, and frow,(a) := frowr, _q.
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Since a < b, we must have frow,(b) < frow,(a) by Lemma A.2

and then i <7, i — 1. After the insertions Ty &L (i+1,¢) and
T/ <L (i,c), we get
7 ~<Té/ 7—1 <Té/ i+ 1 and TZ/I = SZ(T;I) = DZ(T;),

so the desired result follows from Lemmas A.1 and A.3.

ili. We could have y = ---(a,4)--- (¢ — 1,b)--- (i + 1,¢)--- and z =
ce(ayi41) - (t=1,b)- - (i,¢)--- wherea<i—1<i+1<b<eg,
so that

Y= i ) and z=
a/oﬂb\\c ] o ° b ¢

Let T,, denote the partial tableau for y obtained after inserting (a, 7),
let T} be the partial tableau for y obtained after inserting (i —1,0),
let 7}/ be the partial tableau for y obtained before inserting (i+1, c),
and let T;" be the partial tableau for y obtained after inserting
(i+1,c). Define T,, T/, T/, and T!" relative to z similarly. Then, T
is just T; after replacing ¢ by i + 1, and we have i <7 i — L Thus,
by Lemma A.1, we have i <1y i — 1. Now, consider the insertion

T < (i4+1,¢) and T/ £ (i,¢). Then, i+ 1 is in the first row of

T/, while i is in the first row of 77", so
i =gy i—lgp <i+1 and T = si(T)") = Di(T}").
Thus, the desired result follows from Lemmas A.1 and A.3.

iv. Finally, we could have y = ---(i,a) -+ (i — 1,b) -+ (i + 1,¢) - -- and
z=---(i+1,a)--- (¢ —1,b)---(i,¢)--- wherei+1<a<b<eg, so
that

- and 2= 7 SN
! o/ o/o \a \b c ’ o/ o/ o b \C

In this case, the proof is similar to case iii after replacing (a,%) by

(i,a).
Assume y(i—1) = i+1 and y(i) = a < i—1. In this case, y = - - (a,1) (i —
1,i4+1)--- and z=---(i — 1,4)(a,i+ 1) - - - have arc diagrams

a

Y= and 2z =
(/ o><o \o o e e
Let T denote the partial tableau for y obtained just before inserting (a, 7).
Then, let T}, and T} be the partial tableaux for y obtained after inserting
(a,i) and (i — 1,4+ 1), respectively. Likewise, define T, and 77 to be the
partial tableaux for z obtained after inserting (i — 1,7) and (a,i + 1),
respectively. Then, write

ivalue (k) := ivaluer_q(k) and ivalue! (k) := ivaluer, —;—1(k).
Also, write

frow, (a) := frowr_, and frow,(i — 1) := frowp, ;1.
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There are now two cases, as we either have (I) frowy(a) = 1 or (II)
frow,(a) = j > 1. In case (I), since frow, (a) = 1, the first two rows of T},
and T/ appear as

T;: and TZ/:
i (t+1 e li—=1li+1

Thus, we have i <7y i +1 <7, i — 1 and T, = s;(T}) and the desired
result follows from Lemma A.3. Suppose instead that we are in case (II).
If 4 is in the first row of 7T}, then a and ¢ are the last two elements in
the first row of T},. Thus, T}, and T, appear as below, where we write
f = frowy(a) and a; = ivalue!(j) for j < f (so a = ay)

a1 ) as |t—1| 1
PR a2
T, = and T, =
af
af

After inserting (¢ — 1,7+ 1) into T, and (a,i + 1) = (a1,¢ + 1) into T,

we get
ap [t—1li+1 el ar |t—=1) 4
cen as Z PN as 7/_1’_1
Tl:: and T, = )
af ... a,f

so we have
) =7 i—1 v i+1 and T.= Si—l(Té) = Di(T;).

If 7 is not in the first row of T}, then frow,(a) > frow, (i — 1), so By, N
Br,—i—1 = @. Thus, interchanging the order in which we insert the cycles
involving a and i — 1 does not change anything but the position of i and
1+ 1. Consequently, we have

i=p i—1=<pi+1 and T =s;(T}) = Di(T}).
Either way, the desired result follows from Lemmas A.1 and A.3.
In all of these cases, we deduce that P.g(y) = D;(Pes(z)) as needed. O
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Propositions A.5, A.7, and A.8 address the three cases in Theorem 2.13.
By combining these results, the theorem follows.
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