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Insertion Algorithms for Gelfand Sn-Graphs

Eric Marberg and Yifeng Zhang

Abstract. The two tableaux assigned by the Robinson–Schensted corre-
spondence are equal if and only if the input permutation is an involution,
so the RS algorithm restricts to a bijection between involutions in the
symmetric group and standard tableaux. Beissinger found a concise way
of formulating this restricted map, which involves adding an extra cell at
the end of a row after a Schensted insertion process. We show that by
changing this algorithm slightly to add cells at the end of columns rather
than rows, one obtains a different bijection from involutions to standard
tableaux. Both maps have an interesting connection to representation
theory. Specifically, our insertion algorithms classify the molecules (and
conjecturally the cells) in the pair of W -graphs associated with the unique
equivalence class of perfect models for a generic symmetric group.

1. Introduction

The well-known Robinson–Schensted (RS) correspondence is a bijection w �→
(PRS(w), QRS(w)) from permutations to pairs of standard Young tableaux of
same shape. This correspondence can be described by the row bumping process
known as Schensted insertion [18]. In this formulation, the tableau PRS(w) :=
∅ RS←−− w1

RS←−− w2
RS←−− · · · RS←−− wn is built up from the empty shape by

inserting the values of w. Here, T
RS←−− a is the tableau formed by inserting a

number a into the first row of T , where either the smallest number b > a is
bumped and recursively inserted into the next row, or a is added to the end
of the row if no such b exists. For example

1 3
4

RS←−− 2 =
1 2
3
4

since 2 bumps 3 in the first row, which bumps 4 in the second row, which is
added to the end of the third row. See Sect. 2.1 for more background on this
algorithm.
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The two tableaux PRS(w) and QRS(w) are equal if and only if w = w−1.
Thus, the RS algorithm restricts to a bijection between involutions in the sym-
metric group and standard tableaux. In [3], Beissinger shows how to directly
construct this restricted bijection using a modified form of Schensted insertion,
which we refer to as row Beissinger insertion. This operation inserts an integer
pair (a, b) with a ≤ b into a tableau T to form a larger tableau T

rB←−− (a, b). If
a = b, then T

rB←−− (a, b) is given by adding a to the end of the first row of T .
If a < b and the operation RS←−− a adds a box to T in row i, then T

rB←−− (a, b)
is formed from T

RS←−− a by adding b to the end of row i + 1. For example, we
have

2 3
4

rB←−− (5, 5) = 2 4 5
3 ,

1 3
4

rB←−− (2, 5) =

1 2
3
4
5

,

and 1 4
3

rB←−− (2, 5) =
1 2
3 4
5

.

Beissinger [3, Thm. 3.1] proves that if w = w−1 ∈ Sn and (a1, b1), (a2, b2), . . . ,
(aq, bq) are the integer pairs (a, b) with 1 ≤ a ≤ b = w(a) ≤ n, ordered such
that b1 < b2 < · · · < bq, then

PRS(w) = QRS(w) = ∅ rB←−− (a1, b1)
rB←−− (a2, b2)

rB←−− · · · rB←−− (aq, bq). (1.1)

We will review more properties of row Beissinger insertion in Sect. 2.2.
There is a “column” version of Beissinger’s insertion algorithm that gives

another bijection from involutions in the symmetric group to standard tableaux.
This map does not appear to have been described previously in the literature
and is the starting point of this article. The main idea is as follows. Suppose
(a, b) is an integer pair with a ≤ b and T is a tableau. If a = b, then we define
T

cB←−− (a, b) by adding a to the end of the first column of T . If a < b and
RS←−− a adds a box to T in column j, then we define T

cB←−− (a, b) from T
RS←−− a

by adding b to the end of column j + 1. This operation, which we call col-
umn Beissinger insertion, is given in exactly the same way as row Beissinger
insertion, just replacing the bold instances of the word “row” in the previous
paragraph by “column.” For example, we have

2 3
4

cB←−− (5, 5) =
2 3
4
5

,
1 3
4

cB←−− (2, 5) =
1 2
3 5
4

,

and 1 4
3

cB←−− (2, 5) = 1 2 5
3 4 .

Our first main result (see Theorem 2.12) is to show that if (ai, bi) are as in
(1.1), then the map

w �→ PcB(w) := ∅ cB←−− (a1, b1)
cB←−− (a2, b2)

cB←−− · · · cB←−− (aq, bq) (1.2)
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is another bijection from involutions w = w−1 ∈ Sn to standard tableaux with
n boxes.

Remark 1.1. Considering our terminology, it would be equally natural to de-
fine “column Beissinger insertion” by making a different substitution in the
definition of T

rB←−− (a, b), namely by inserting a using Schensted column in-
sertion rather than the usual row bumping algorithm, and then still adding b
to the end of row i + 1 if this adds a box in row i. If we write this alternative
operation as T

cB⇐== (a, b), then we always have T� cB⇐== (a, b) = (T cB←−− (a, b))�

where 	 denotes the usual transpose on tableaux. Therefore, replacing cB←−−
with cB⇐== in (1.2) leads to essentially the same bijection, as PcB(w)� = ∅ cB⇐==
(a1, b1)

cB⇐== (a2, b2)
cB⇐== · · · cB⇐== (aq, bq).

In general, there does not seem to be a simple relationship between PcB(w)
and PRS(w), and we do not know of any natural way to extend the domain of
PcB from involutions to all permutations. We provide a detailed analysis of both
algorithms in Sects. 2.2 and 2.3. In particular, we exactly characterize when
two involutions y and z are such that PcB(y) and PcB(z) differ by a single dual
equivalence operation; see Theorem 2.13. The version of this result for PRS can
be derived in a more elementary way from known properties of (dual) Knuth
equivalence, and was discussed previously in [15]; see Theorem 2.9.

We were unexpectedly lead to consider these maps for applications in
representation theory, specifically to the problem of classifying the cells and
molecules in certain W -graphs for the symmetric group W = Sn. Recall that
each Coxeter group W has an associated Iwahori–Hecke algebra H which is
equipped with both a standard basis {Hw : w ∈ W} and a Kazhdan–Lusztig
basis {Hw : w ∈ W}. The action of the standard basis on the Kazhdan–
Lusztig basis by left and right multiplication is encoded in two directed graphs,
called the left and right Kazhan–Lusztig graphs of W . These objects are the
motivating examples of W -graphs, which are certain weighted directed graphs
that encode H-representations with canonical bases analogous to {Hw : w ∈
W}. For the precise definition of a W -graph, see Sect. 3.1.

The principal combinatorial problem related to a given W -graph is to
classify its cells, which are its strongly directed components. This is because
the original W -graph structure restricts to a W -graph on each cell. Moreover,
the collection of cells is naturally a directed acyclic graph which induces a
filtration on the W -graph’s associated H-module. A related problem is to de-
scribe the molecules in W -graph: these consist of the connected components
in the undirected graph whose edges are the pairs of W -graph vertices {x, y}
with edges x → y and y → x in both directions.

Finding the molecules in a W -graph is easier than identifying its cells,
and each cell is a union of one or more molecules. However, in some special
cases of interest, the cells and molecules in a W -graph coincide. Most notably,
this occurs for the left and right Kazhdan–Lusztig graphs of the symmetric
group [4, §6.5]. The molecules (equivalently, the cells) in these W -graphs are
the subsets on which QRS and PRS are, respectively, constant [9, Thm. 1.4].
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Our results in Sect. 3 show that the row1 and column Beissinger insertion
algorithms described above have a similar relationship to the molecules (and
conjecturally, the cells) in a different pair of W -graphs for W = Sn. In [12],
we introduced the notion of a perfect model for a finite Coxeter group. A
perfect model consists of a set of linear characters of subgroups satisfying
some technical conditions; the name derives from the requirement that each
subgroup be the centralizer of a perfect involution in the sense of [16] in a
standard parabolic subgroup. Each perfect model gives rise to a pair of W -
graphs whose underlying H-representations are Gelfand models, meaning that
they decompose as multiplicity-free sums of all irreducible H-modules.

Our previous paper [13] classified the perfect models in all finite Coxeter
groups up to a natural form of equivalence. For the symmetric group Sn when
n /∈ {2, 4}, there is just one equivalence class of perfect models [13, Thm. 3.3],
and this defines a canonical pair of Gelfand Sn-graphs Γrow and Γcol. We review
the explicit construction of these graphs in Sect. 3.2. Their underlying vertex
sets are certain subsets of fixed-point-free involutions in S2n, whose images
under both forms of Beissinger insertion are standard tableaux with 2n boxes.
We can summarize our main result connecting Γrow and Γcol to Beissinger
insertion as follows:

Theorem. The molecules in the Sn-graphs Γrow (respectively, Γcol) are the sets
of vertices whose images under row (respectively, column) Beissinger insertion
have the same shape when the boxes containing n+1, n+2, . . . , 2n are omitted.

This result combines Theorems 3.15 and 3.18, which are proved in Sect. 3.4;
see also Theorems 3.14 and 3.17. At present, it is an open problem to upgrade
this result to a classification of the cells in Γrow and Γcol. One reason this is
difficult is that the W -graphs Γrow and Γcol are not admissible in the sense of
[14,19]. We suspect that the following is true, however:

Conjecture. [12, Conj. 1.16] Every molecule in the Sn-graphs Γrow and Γcol is
a cell.

We have done computer calculations to verify this conjecture for n ≤ 10.
By dimension considerations, this statement is equivalent to the claim that
the cell representations for Γrow and Γcol are all irreducible, which we stated
earlier as [12, Conj. 1.16].

The rest of this paper is organized as follows. Section 2 contains some
preliminaries on the Robinson–Schensted correspondence and Knuth equiva-
lence, as well as our main results on Beissinger insertion. Section 3 reviews the
construction of the Sn-graphs Γrow and Γcol and then proves our results about
the molecules in these graphs. Appendix A, finally, carries out the technical
proof of Theorem 2.13.

1For parallelism, it is convenient to refer to “row Beissinger insertion” but note from (1.1)
that this gives the same output when applied to w = w−1 ∈ Sn as Robinson–Schensted
insertion.
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2. Insertion Algorithms

Throughout, n is a fixed positive integer, Sn is the group of permutations of
[n] := {1, 2, . . . , n}, In := {w ∈ Sn : w = w−1} is the set of involutions in Sn,
and IFPFn is the subset of fixed-point-free elements of In (which is empty if n
is odd). Let si denote the simple transposition (i, i + 1) ∈ Sn.

2.1. Schensted Insertion

The (Young) diagram of an integer partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) is
the set of positions Dλ := {(i, j) ∈ [k] × Z : 1 ≤ j ≤ λi}. A tableau of shape λ
is a map T : Dλ → Z, which we envision as an assignment of numbers to some
set of positions in a matrix.

A tableau is semistandard if its rows are weakly increasing and its columns
are strictly increasing. A tableau is standard if its rows and columns are strictly
increasing and its entries are the numbers 1, 2, 3, . . . , n for some n ≥ 0 without
any repetitions. Most of the tableaux considered in this article will be semi-
standard but with all distinct entries; we refer to such tableaux as partially
standard .

As already discussed in the introduction, the Robinson–Schensted (RS)
correspondence is a bijection from permutations to pairs of standard tableaux
of the same shape, which can be described using the following insertion process.

Definition 2.1. (Schensted insertion) Suppose T is a partially standard tableau
and x is an integer. Start by inserting x into the first row of T by finding the
row’s first entry y greater than x and replacing y by x. If there is no such
entry y, then x is placed at the end of the row, and otherwise, one proceeds by
inserting y into the next row by the same process. Continue in this way until
a new box is added to the end of a row of T . Denote the result by T

RS←−− x.

Example. We have
1 5
3 6
4

RS←−− 2 =
1 2
3 5
4 6

.

Definition 2.2. (RS correspondence) For a permutation w = w1w2 · · · wn ∈ Sn,
let

PRS(w) := ∅ RS←−− w1
RS←−− w2

RS←−− · · · RS←−− wn,

and let QRS(w) be the tableau of the same shape with i in the box added by
the RS←−− wi step.

Example. One can check that PRS(31425) = 1 2 5
3 4 and QRS(31425) = 1 3 5

2 4 .

It is well known that if w ∈ Sn, then PRS(w−1) = QRS(w); see, e.g., [5,
Thm. 6.4].

Example. It holds that PRS(24135) = 1 3 5
2 4 and QRS(24135) = 1 2 5

3 4 .
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The row reading word of a tableau T is the sequence row(T ) given by
reading the rows of T from left to right, but starting with the last row. For

example, row
(

1 2 5
3 4

)
= 34125. It is easy to see that PRS(row(T )) = T .

Fix a standard tableau T with n boxes. Given a permutation w ∈ Sn, let
w(T ) be the tableau formed by applying w to each entry of T . For each integer
1 < i < n, the elementary dual equivalence operator Di is the map acting on
T by

Di(T ) :=

⎧⎪⎨
⎪⎩

si−1(T ) if i + 1 lies between i and i − 1 in row(T ),
si(T ) if i − 1 lies between i and i + 1 in row(T ),
T if i lies between i − 1 and i + 1 in row(T ).

(2.1)

This definition follows [2], and is equivalent to the one given by Haiman in [7].
It is an instructive exercise to check that the operator Di is an involution and
always produces another standard tableau [2, §2.3].

Suppose a < b < c are integers. There are four permutations of these
numbers that are not strictly increasing or strictly decreasing, namely, acb,
bac, bca, and cab. A Knuth move on these words exchanges the a and c letters.
Thus, acb and cab are connected by a Knuth move, as are bca and bac.

Suppose v, w ∈ Sn and i is an integer with 1 < i < n. We write v
i∼
K

w

and say that a Knuth move exists between v and w if either

(a) w is obtained from v by performing a Knuth move on vi−1vivi+1, or
(b) w is equal to v and the subword vi−1vivi+1 is in monotonic order.

Similarly, we write v
i∼
dK

w and say that a dual Knuth move exists between v

and w if v−1 i∼
K

w−1. Two permutations that are connected by a sequence of

(dual) Knuth moves are called (dual) Knuth equivalent . For example, we have

25431 2∼
K

52431 3∼
K

54231 and 43251 4∼
dK

53241 3∼
dK

54231.

These relations are connected to the RS correspondence by the following iden-
tities.

Theorem 2.3. [5,7] Let v, w ∈ Sn and 1 < i < n. Then:

(a) One has v
i∼
K

w if and only if PRS(v) = PRS(w) and QRS(v) = Di(QRS(w)).

(b) One has v
i∼
dK

w if and only if PRS(v) = Di(PRS(w)) and QRS(v) = QRS(w).

(c) The permutations v and w are Knuth equivalent if and only if PRS(v) =
PRS(w), and dual Knuth equivalent if and only if QRS(v) = QRS(w).

This well-known theorem is usually attributed to Edelman–Greene [5] or
Haiman [7]. It takes a bit of reading to find equivalent statements in those
sources, however. These can be found in one place in the expository reference
[15, §4.1]. Specifically, parts (a) and (b) are [15, Thm. 4.2 and Cor. 4.2.1]; see
also [17]. Part (c) is equivalent to [5, Thm. 6.6 and Cor. 6.15].
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Remark. Let T and U be two standard tableaux of the same shape. Then, it
is well known that there exists a sequence of dual equivalence operators with
T = Di1Di2 . . . Dik(U). For example

1 2 5
3 4

D2,D3←−−−−→ 1 3 5
2 4

D4←−−→ 1 3 4
2 5

D3←−−→ 1 3 4
2 5 .

This property can be deduced from Theorem 2.3. There are unique permuta-
tions v and w with PRS(v) = T and QRS(v) = PRS(w) = QRS(w) = U . These
permutations must be dual Knuth equivalent by part (c) of the theorem and
so there exists a chain of dual Knuth moves

v
i1∼
dK

· · · ik∼
dK

w.

Then by part (b) of the theorem T = PRS(v) = Di1Di2 . . . Dik(PRS(w)) =
Di1Di2 . . . Dik(U).

2.2. Row Beissinger Insertion

Here and in the next section, we consider two variants T
rB←−− (a, b) and T

cB←−−
(a, b) of the Schensted insertion algorithm T

RS←−− a. These variants insert a
pair of integers (a, b) with a ≤ b into a partially standard tableau T . The first
operation is given below.

Definition 2.4. (Row Beissinger insertion) Let (i, j) be the box of T
RS←−− a

that is not in T . If a < b, then form T
rB←−− (a, b) by adding b to the end of row

i + 1 of T
RS←−− a. If a = b, then form T

rB←−− (a, b) by adding b to the end of
the first row of T .

Example. We have 1 2 3
4

rB←−− (5, 5) = 1 2 3 5
4 and 1 4 6

3
rB←−− (2, 5) =

1 2 6
3 4
5

.

The operation T
rB←−− (a, b) is identical to the one which Beissinger denotes

as T + (a, b) in [3, Alg. 3.1], so we refer to it as row Beissinger insertion. The
motivation for this operation in [3] is to describe the Robinson–Schensted
correspondence restricted to involutions. Since PRS(w−1) = QRS(w), we have
PRS(w) = QRS(w) if and only if w = w−1 ∈ In.

Definition 2.5. (Row Beissenger correspondence) Given z ∈ In, let (a1, b1),
. . . , (aq, bq) be the list of pairs (a, b) ∈ [n] × [n] with a ≤ b = z(a), ordered
with b1 < · · · < bq, and define

PrB(z) := ∅ rB←−− (a1, b1)
rB←−− (a2, b2)

rB←−− · · · rB←−− (aq, bq).

Example. We have PrB(4231) = ∅ rB←−− (2, 2) rB←−− (3, 3) rB←−− (1, 4) =
1 3
2
4

.
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If a ≤ b are arbitrary positive integers, then T
rB←−− (a, b) may fail to

be partially standard or even semistandard (this is easy to see when a = b).
Therefore, it is not obvious that PrB(z) is standard. This turns out to hold
because of the particular order in which the pairs (ai, bi) are inserted. For
example, we will only insert (ai, bi) with ai = bi if all numbers in the previous
tableau are smaller than ai. This sequencing allows the following to hold:

Theorem 2.6. Beissinger [3, Thm. 3.1] If z ∈ In, then PrB(z) = PRS(z) =
QRS(z).

A row or column of a tableau is odd if it has an odd number of boxes.

Theorem 2.7. [3] The operation PrB defines a bijection from In to the set of
standard Young tableaux with n boxes. This map restricts to a bijection from
the set of involutions in Sn with k fixed points to the set of standard Young
tableaux with n boxes and k odd columns.

Proof. This follows from Theorem 2.6, since the operation rB←−− (a, b) preserves
the number of odd columns when a < b and increases the number of odd
columns by one when a = b. �

In view of this result, it is natural to introduce a relation i∼
rB

on In for

each 1 < i < n, defined by requiring that y
i∼
rB

z if and only if PrB(y) =

Di(PrB(z)). The following shows that i∼
rB

is the same as what is called an

involutive transformation in [15, §4.2].

Lemma 2.8. Let y, z ∈ In. Then, y
i∼
rB

z if and only if y
i∼
K

w
i∼
dK

z for some

w ∈ Sn.

Proof. If y
i∼
K

w
i∼
dK

z, then PRS(y) = PRS(w) = Di(PRS(z)) by Theorem 2.3,

so y
i∼
rB

z. Conversely, if y
i∼
rB

z, so that PRS(y) = QRS(y) = Di(PRS(z)) =

Di(QRS(z)), then y
i∼
K

w
i∼
dK

z for the element w ∈ Sn with PRS(w) = PRS(y)

and QRS(w) = QRS(z) by Proposition 2.3. �

If y ∈ In and 1 < i < n, then y
i∼
rB

z for a unique z ∈ In, which has this

characterization:

Theorem 2.9. If y, z ∈ In have y
i∼
rB

z and A := {i − 1, i, i + 1}, then

z =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y if y(A) �= A and y(i) is between y(i − 1) and y(i + 1)

(i − 1, i)y(i − 1, i) if y(A) �= A and y(i + 1) is between y(i − 1) and y(i)

(i, i + 1)y(i, i + 1) if y(A) �= A and y(i − 1) is between y(i) and y(i + 1)

(i − 1, i + 1)y(i − 1, i + 1) if y(A) = A.

Remark. Besides the first case, we can also have y = z in the fourth case if
y restricts to either the identity permutation or reverse permutation of {i −
1, i, i + 1}.
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Proof. The arc diagram of y ∈ In is the matching on [n] whose edges give
the cycles of y. This is typically drawn, so that the vertices corresponding to
1, 2, 3, . . . , n are arranged from left to right. The theorem can be derived by
inspecting [15, Figure 4.11], which lists the ways that the arc diagrams of y

and z can differ if y
i∼
rB

z �= y. Translating [15, Figure 4.11] into our formulation

is not entirely straightforward, so we include a self-contained proof below.
First, suppose y(A) = A and define z = (i − 1, i + 1)y(i − 1, i + 1). Then,

the sequence y(i − 1)y(i)y(i + 1) is either

(i − 1)i(i + 1), (i + 1)i(i − 1), i(i − 1)(i + 1), or (i − 1)(i + 1)i,

and it is straightforward to check that we have y
i∼
K

y
i∼
dK

y = z in the first two

cases, y
i∼
K

ysi
i∼
dK

z in the third case, and y
i∼
K

ysi−1
i∼
dK

z in the last case. Thus,

by Lemma 2.8, we conclude that y
i∼
rB

z as needed.

For the rest of this proof, we assume y(A) �= A. Define a < b < c to be
the numbers with {a, b, c} = {y(i−1), y(i), y(i+1)} = y(A). If y(i) is between
y(i − 1) and y(i + 1), then the sequence y(i − 1)y(i)y(i + 1) is either abc or
cba, so y

i∼
K

y = y−1 i∼
dK

y−1 = y and y
i∼
rB

y as claimed.

Suppose instead that y(i + 1) is between y(i − 1) and y(i). Then, y(i −
1)y(i)y(i + 1) is either cab or acb, so y

i∼
K

ysi−1 and y
i∼
dK

si−1y. The relative

order of i−1, i, and i+1 in the one-line notation of ysi−1 can only differ from
that of y if {y(i−1), y(i)} = {a, c} ⊂ {i−1, i, i+1}, which would require us to
have y(A) = {a < b < c} = {i − 1 < i < i + 1} = A. As we assume y(A) �= A,
the relation y

i∼
dK

si−1y implies that ysi−1
i∼
dK

si−1ysi−1, so y
i∼
rB

si−1ysi−1 as

claimed.
Finally, suppose y(i−1) is between y(i) and y(i+1). Then, y(i−1)y(i)y(i+

1) is either bca or bac, so y
i∼
K

ysi and y
i∼
dK

siy. Now, the relative order of i−1,

i, and i + 1 in the one-line notation of ysi can only differ from that of y if
{y(i), y(i + 1)} = {a, c} ⊂ {i − 1, i, i + 1}, which again would force us to have
y(A) = A. Therefore, y

i∼
dK

siy implies that ysi
i∼
dK

siysi, so y
i∼
rB

siysi. �

2.3. Column Beissinger Insertion

Again suppose T is a partially standard tableau and a ≤ b are integers. Chang-
ing “row” to “column” in Definition 2.4 gives the following insertion operation,
which is the main topic of this section:

Definition 2.10. (Column Beissinger insertion) Let (i, j) be the box of T
RS←−− a

that is not in T . If a < b, then form T
cB←−− (a, b) by adding b to the end of

column j + 1 of T
RS←−− a. If a = b, then form T

cB←−− (a, b) by adding b to the
end of the first column of T .
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Example. We have 1 2 3
4

cB←−− (5, 5) =
1 2 3
4
5

and 1 4 6
3

cB←−− (2, 5) =

1 2 6
3 4 5 .

By symmetry, we refer to cB←−− as column Beissinger insertion, although
this operation is not considered in [3] and does not appear to have been studied
previously.

Definition 2.11. (Column Beissinger correspondence) Given z ∈ In, let (a1, b1),
. . . , (aq, bq) be the list of pairs (a, b) ∈ [n] × [n] with a ≤ b = z(a), ordered
with b1 < · · · < bq, and define

PcB(z) := ∅ cB←−− (a1, b1)
cB←−− (a2, b2)

cB←−− · · · cB←−− (aq, bq).

Example. We have PcB(4231) = ∅ cB←−− (2, 2) cB←−− (3, 3) cB←−− (1, 4) =
1 4
2
3

.

As with row Beissinger insertion, for an arbitrary pair a ≤ b, the tableau
T

cB←−− (a, b) may fail to be partially standard. Thus, the fact that PcB(z) is
always standard, which is part of Theorem 2.12, depends on the particular
order in which the pairs (ai, bi) are inserted in the preceding definition.

There does not seem to be any simple relationship between PrB(z) and
PcB(z). Nevertheless, we will see that the formal properties of the map PcB

closely parallel those of PrB.
One can perform inverse Schensted insertion starting from any corner box

in a partially tableau T to obtain another partially standard tableau U and an
integer x, such that T = U

RS←−− x. Here, U and x are uniquely determined by
requiring that T = U

RS←−− x and that the shape of U be the shape of T with
the relevant corner box deleted. The explicit algorithm starts by removing the
corner box, say with entry c in row k+1, and inserting c into row k. We replace
the last entry b < c in row k by c and then insert b into row k − 1 by the same
procedure (replacing the last entry a < b by b, then inserting a into row k − 2,
and so on). We continue in this way to form U , and let x be the entry replaced
in the first row.

Theorem 2.12. The operation PcB defines a bijection from In to the set of
standard Young tableaux with n boxes. This map restricts to a bijection from
the set of involutions in Sn with k fixed points to the set of standard Young
tableaux with n boxes and k odd rows.

Proof. We show that PcB is a bijection by constructing the inverse algorithm.
Suppose T is a partially standard tableau with n boxes. Find the largest entry
b in T . If this is in the first column, then let a := b and delete this box to
form a smaller tableau U . Otherwise, let x be the entry in T that is at the
end of the column preceding b. Delete the box of T containing b to form a
tableau T̃ . Then, x is an a corner box of T̃ , so we can do inverse Schensted
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insertion starting from x to obtain a tableau U and an integer a, such that
T̃

RS←−− a = U . In either case, we obtain a partially standard tableau U and a
pair of integers a ≤ b with T = U

cB←−− (a, b).
If we apply this operation successively to a standard tableau T with

n boxes, then we obtain a sequence of pairs (ai, bi) with ai ≤ bi and T =
∅ cB←−− (a1, b1)

cB←−− (a2, b2)
cB←−− · · · cB←−− (aq, bq). By construction, these pairs

satisfy bi < bj and {ai, bi} ∩ {aj , bj} = ∅ for all i < j while having [n] =
{a1, b1, a2, b2, . . . , aq, bq}. Hence, there is a unique involution y ∈ In whose
disjoint (but possibly trivial) cycles are (ai, bi) for i ∈ [q] and this element has
PcB(y) = T . The map P−1

cB (T ) := y is the two-sided inverse of PcB.
The reason why PcB turns fixed points into odd rows, finally, is because

cB←−− (a, b) preserves the number of odd rows when a < b and increases the
number of odd rows by one when a = b. �

Continuing our parallel stories, for each 1 < i < n, let i∼
cB

be the relation

on In with y
i∼
cB

z if and only if PcB(y) = Di(PcB(z)). For any y ∈ In and

1 < i < n, there is a unique z ∈ In with y
i∼
cB

z. This element has a slightly

more complicated characterization than Theorem 2.9.

Theorem 2.13. Suppose y, z ∈ In have y
i∼
cB

z for some 1 < i < n. For j ∈
{i − 1, i, i + 1}, let

e(j) :=

⎧⎪⎨
⎪⎩

y(j) if y(j) /∈ {i − 1, i, i + 1}
−j if y(j) = j

j if j �= y(j) ∈ {i − 1, i, i + 1}.

(2.2)

Then, it holds that

z =

⎧⎪⎨
⎪⎩

y if e(i) is between e(i − 1) and e(i + 1)
(i − 1, i)y(i − 1, i) if e(i + 1) is between e(i − 1) and e(i)
(i, i + 1)y(i, i + 1) if e(i − 1) is between e(i) and e(i + 1).

Our proof of this result is quite technical. We postpone the details of the
argument to Appendix A to avoid sidetracking our present discussion.

Comparing PrB and PcB suggests an interesting operation Ψ on involu-
tions: for each y ∈ In, there is a unique z ∈ In, such that PrB(y) = PcB(z)�,
where 	 denotes the transpose, and we define Ψ(y) := z. Since taking trans-
poses turns odd rows into odd columns, the map Ψ is a permutation of In

which preserves each element’s number of fixed points, or equivalently which
preserves the Sn-conjugacy classes in In. In addition, Ψ commutes with the
natural inclusion In ↪→ In+1 adding n + 1 as a fixed point to each element of
In. For example, if n = 4, then

Ψ : 1 �→ 1, (1, 2) �→ (1, 2), (1, 3) �→ (2, 3) �→ (1, 3),

(1, 4) �→ (2, 4) �→ (3, 4) �→ (1, 4),

(1, 2)(3, 4) �→ (1, 3)(2, 4) �→ (1, 4)(2, 3) �→ (1, 2)(3, 4).
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For large n, this map is fairly mysterious. Its longest cycles for n = 1, 2, 3, . . . , 10
have sizes 1, 1, 2, 3, 12, 15, 46, 131, 630, 1814, and in general, Ψ is very close
to a derangement:

Proposition 2.14. The only fixed points of Ψ : In → In are 1 and s1 = (1, 2).

This result was a conjecture in an earlier version of this article. The
following proof was shown to us by Joel Lewis.

Proof. We have Ψ(1) = 1, since PrB(12 · · · n) = PcB(12 · · · n)� = 1 2 · · · n ,

while Ψ(s1) = s1, since PrB(213 · · · n) = PcB(213 · · · n)� = 1 3 · · · n
2 . To

prove that Ψ has no other fixed points, choose w ∈ In and let (a1, b1), (a2, b2),
. . . , (aq, bq) be the integer pairs (a, b) with 1 ≤ a ≤ b = w(a) ≤ n, ordered
such that b1 < b2 < · · · < bq. For each i ∈ [q], let

Ti := ∅ rB←−− (a1, b1)
rB←−− (a2, b2)

rB←−− · · · rB←−− (ai, bi).

Also define cB⇐== as in Remark 1.1 and let

Ui := ∅ cB⇐== (a1, b1)
cB⇐== (a2, b2)

cB⇐== · · · cB⇐== (ai, bi).

Then, we have PrB(w) = Tq and PcB(w)� = Uq.
Assume w �= 1. Then, there is a maximal j ∈ [q] with ai < bj . The tableau

Tq is formed from Tj by adding bj+1, bj+2, . . . , bq to the end of the first row,
while Uq is formed in the same way from Uj . We, therefore, have Tq = Uq if
and only if Tj = Uj .

Further suppose aj > 1. Since Tq and Uq are standard, the number 1 must
be present in both Tj−1 and Uj−1. As Tj−1 and Uj−1 are partially standard, the
number 1 is necessarily in box (1, 1) of both tableaux. However, this means that
aj will appear in the first row but not the first column of Tj = Tj−1

rB←−− (aj , bj),
since Tj is formed by row inserting aj into Tj−1 and then adding an extra box
containing bj . On the other hand, aj will appear in the first column but not

the first row of Uj = Uj−1
cB⇐== Uj−1, since Uj is formed by column inserting

aj into Uj−1 and then adding bj . Thus, Tj �= Uj , so also Tq �= Uq.
Instead, suppose aj = 1 but bj > 2. Then, the number 2 must appear in

box (1, 1) of both Tj−1 and Uj−1, since these tableaux are partially standard

and do not contain 1. Therefore, when we form Tj = Tj−1
rB←−− (1, bj), our row

insertion of 1 will bump 2 to box (2, 1), but when we form Uj = Uj−1
cB⇐==

(1, bj), our column insertion of 1 will bump 2 to box (1, 2). Thus, we again
have Tj �= Uj as these tableaux contain the number 2 in different positions
(2, 1) �= (1, 2). We conclude as before that Tq �= Uq.

In the remaining case, when aj = 1 and bj = 2, the maximality of j
implies that w = s1. Hence, if w /∈ {1, s1}, then PrB(w) = Tq is distinct from
PcB(w)� = Uq, so Ψ(w) �= w. �
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3. Molecules in Gelfand W -Graphs

In this section, we explain how the row and column Beissenger insertion algo-
rithms are related to certain W -graphs (for W = Sn) studied in [12]. The latter
objects are derived from a pair of Iwahori–Hecke algebra modules described in
Sect. 3.2.

3.1. Iwahori–Hecke Algebras and W -Graphs

We briefly review some general background material from [8, Chapter 7]. The
Iwahori–Hecke algebra H = H(W ) of an arbitrary Coxeter system (W,S) with
length function � : W → N is the Z[x, x−1]-algebra with basis {Hw : w ∈ W}
satisfying

HsHw =

{
Hsw if �(sw) > �(w)
Hsw + (x − x−1)Hw if �(sw) < �(w)

for s ∈ S and w ∈ W.

The unit of this algebra is H1 = 1. There is a unique ring involution of H,
written h �→ h and called the bar operator , such that x = x−1 and Hs =
H−1

s = Hs − (x − x−1) for all s ∈ S. More generally, an H-compatible bar
operator for an H-module A is a Z-linear map A → A, also written a �→ a,
such that ha = h · a for all h ∈ H and a ∈ A.

Following the conventions in [19], we define a W -graph to be a triple
Γ = (V, ω, τ) consisting of a set V with maps ω : V × V → Z[x, x−1] and
τ : V → {subsets ofS}, such that the free Z[x, x−1]-module with basis {Yv :
v ∈ V } has a left H-module structure in which

HsYv =

⎧⎪⎨
⎪⎩

xYv if s /∈ τ(v)
−x−1Yv +

∑
w∈V

s/∈τ(w)

ω(v, w)Yw if s ∈ τ(v) for all s ∈ S and v ∈ V.

(3.1)

We view Γ as a weighted digraph with edges v
ω(v,w)−−−−→ w for each v, w ∈ V

with ω(v, w) �= 0.

Remark 3.1. The values of ω(v, w) when τ(v) ⊆ τ(w) play no role in the
formula (3.1). Thus, when considering the problem of classifying W -graphs,
it is natural to impose the further condition (called reducedness in [19]) that
ω(v, w) = 0 if τ(v) ⊆ τ(w). Although we adopted this convention in [12], we
omit it here. This simplifies some formulas.

Example 3.2. The left and right Kazhdan–Lusztig W -graphs are described as
follows. The Kazhdan–Lusztig basis of H is the unique set of elements {Hw :
w ∈ W} satisfying

Hw = Hw ∈ Hw +
∑
y∈W

�(y)<�(w)

x−1
Z[x−1]Hy. (3.2)

The uniqueness of this set can be derived by the following simple argument.
Since for any w ∈ W , we have Hw ∈ Hw +

∑
�(y)<�(w) Z[x, x−1]Hy, the only
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element of x−1
Z[x−1]-span{Hy : y ∈ W} that is bar invariant is zero. However,

if Cw ∈ H has Cw = Cw ∈ Hw +
∑

�(y)<�(w) x−1
Z[x−1]Hy, then the difference

Hw − Cw is such a bar invariant element, so we must have Hw = Cw.
Let hyw ∈ Z[x−1] be the unique polynomials, such that Hw =

∑
y∈W hyw

Hy and define μyw to be the coefficient of x−1 in hyw. It turns out that hyw = 0
unless y ≤ w in the Bruhat order on W [8, §7.9], so it would be equivalent to
define Hw as the unique element of H with

Hw = Hw ∈ Hw +
∑
y∈W
y<w

x−1
Z[x−1]Hy.

This formulation is more common in the literature than (3.2), but (3.2) will
serve as a slightly better prototype for our definitions in the next section.

Finally, set ωKL(y, w) = μyw + μwy for y, w ∈ W and define

AscL(w) := {s ∈ S : �(sw) > �(w)} and AscR(w) := {s ∈ S : �(ws) > �(w)}.

The triples (W,ωKL,AscL) and (W,ωKL,AscR) are both W -graphs, whose as-
sociated H-modules (3.1) are isomorphic to the left and right regular represen-
tations of H [9, Thm. 1.3]. The edge weights of these W -graphs are actually
nonnegative; in fact, one has hyw ∈ N[x−1] [6, Cor. 1.2].

From this point on, we specialize to the case when H = H(Sn), where Sn

is viewed as a Coxeter group with simple generating set S = {s1, s2, . . . , sn−1}.
If we set x = 1, then H becomes the group ring ZSn and any H-module be-
comes an Sn-representation. We say that an H-module A is a Gelfand model if
the character of this specialization is the multiplicity-free sum of all irreducible
characters of Sn. This is equivalent to saying that A is isomorphic to the direct
sum of all isomorphism classes of irreducible H-modules when the scalar ring
Z[x, x−1] is extended to the field Q(x); see the discussion in [12, §1.2].

3.2. Gelfand Models

We now review the construction of two Gelfand models for H = H(Sn). The
bases of these models are indexed by the images of two natural embeddings
In ↪→ IFPF2n to be denoted ιasc and ιdes. Let 1FPF be the permutation of Z sending
i �→ i−(−1)i. Choose w ∈ In and let c1 < c2 < · · · < cq be the numbers c ∈ [n]
with w(c) = c. Both ιasc(w) and ιdes(w) will be elements of IFPF2n sending

i �→ w(i) for i ∈ [n] \ {c1, c2, . . . , cq} and i �→ 1FPF(i) for i ∈ [2n] \ [n + q].

The only difference between these two permutations is that we define

ιasc(w) : ci ↔ n + i and ιdes(w) : ci ↔ n + q + 1 − i for all i ∈ [q].

We refer to ιasc as the ascending embedding , since it turns each of n + 1, n +
2, . . . , n + q − 1 into ascents, and to ιdes as the descending embedding . Both
maps are injective. Finally, let

Gasc
n := {ιasc(w) : w ∈ In} and Gdes

n := {ιdes(w) : w ∈ In}. (3.3)

The set Gasc
n consists of the elements z ∈ IFPF2n with no visible descents greater

than n, where an integer i is a visible descent of z if z(i + 1) < min{i, z(i)}
[11, Prop. 2.9].
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Example 3.3. If n = 4 and w = (1, 3), then ιasc(w) = (1, 3)(2, 5)(4, 6)(7, 8)
and ιdes(w) = (1, 3)(2, 6)(4, 5)(7, 8). Is it useful to draw involutions in Sn as
matchings on [n] with edges corresponding to 2-cycles. Our examples are given
in terms of such pictures as

ιasc : 1 2 3 4 �→ 1 2 3 4 5 6 7 8 ,

ιdes : 1 2 3 4 �→ 1 2 3 4 5 6 7 8 .

For each fixed-point-free involution z ∈ IFPF2n , define

Des=(z) := {i ∈ [n − 1] : i + 1 = z(i) > z(i + 1) = i},

Asc=(z) := {i ∈ [n − 1] : z(i) > n and z(i + 1) > n}.
(3.4)

We refer to elements of these sets as weak descents and weak ascents .

Remark. An index i ∈ [n−1] belongs to Des=(z) if and only if z commutes with
si = (i, i + 1). Note that if the involution z belongs to either Gasc

n or Gdes
n , then

i ∈ [n−1] is contained in Asc=(z) if and only if zsiz ∈ {sn+1, sn+2, . . . , s2n−1}.
Finally, observe that if i ∈ Asc=(z), then we have z(i) < z(i+1) when z ∈ Gasc

n ,
but z(i) > z(i + 1) when z ∈ Gdes

n .

For z ∈ IFPF2n , we also define

Des<(z) := {i ∈ [n − 1] : z(i) > z(i + 1)}\(Asc=(z) � Des=(z)),

Asc<(z) := {i ∈ [n − 1] : z(i) < z(i + 1)}\Asc=(z).
(3.5)

The elements of these sets are strict descents and strict ascents. Write � :
Sn → N for the length function with �(w) = | Inv(w)| where Inv(w) := {(i, j) ∈
[n] × [n] : i < j and w(i) > w(j)}.

Proposition 3.4. If z ∈ In has k fixed points, then �(ιasc(z)) + k(k − 1) =
�(ιdes(z)) and

Des=(ιasc(z)) = Des=(ιdes(z)),

Asc=(ιasc(z)) = Asc=(ιdes(z)),

Des<(ιasc(z)) = Des<(ιdes(z)),

Asc<(ιasc(z)) = Asc<(ιdes(z)).

Proof. If c1 < c2 < · · · < ck are the fixed points of z ∈ In in [n], then
Inv(ιdes(z)) is the disjoint union of Inv(ιasc(z)) with the set of pairs (i, j) ∈
[2n] × [2n] with i < j and either i, j ∈ {c1, c2, . . . , ck} or i, j ∈ {n + 1, n +
2, . . . , n + k}, so �(ιdes(z)) = �(ιasc(z)) + 2

(
k
2

)
. Checking the listed equalities

between the weak/strict descent/ascent sets is straightforward. �

The next two theorems summarize the type A case of a few of the main
results from [12].

Theorem 3.5. [12, Thms. 1.7 and 1.8] Let H = H(Sn) and define M to be the
free Z[x, x−1]-module with basis {Mz : z ∈ Gasc

n }. There is a unique H-module
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structure on M in which

HsMz=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mszs if i ∈ Asc<(z)
Mszs + (x − x−1)Mz if i ∈ Des<(z)
−x−1Mz if i ∈ Asc=(z)
xMz if i ∈ Des=(z)

for s=si∈{s1, s2, . . . , sn−1}.

This H-module has the following additional properties:
(a) M is a Gelfand model for H.
(b) M has a unique H-compatible bar operator with Mz = Mz whenever

Des<(z) = ∅.
(c) M has a unique basis {Mz : z ∈ Gasc

n } with Mz = Mz ∈ Mz+
∑

�(y)<�(z)

x−1

Z[x−1]My.

Replacing Gasc
n by Gdes

n and x by −x−1 changes Theorem 3.5 to the fol-
lowing:

Theorem 3.6. [12, Thms. 1.7 and 1.8] Let H = H(Sn) and define N to be the
free Z[x, x−1]-module with basis {Nz : z ∈ Gdes

n }. There is a unique H-module
structure on N in which

HsNz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Nszs if i ∈ Asc<(z)
Nszs + (x − x−1)Nz if i ∈ Des<(z)
xNz if i ∈ Asc=(z)
−x−1Nz if i ∈ Des=(z)

for s = si ∈ {s1, s2, . . . , sn−1}.

This H-module has the following additional properties:
(a) N is a Gelfand model for H.
(b) N has a unique H-compatible bar operator with Nz = Nz whenever

Des<(z) = ∅.
(c) N has a unique basis {Nz : z ∈ Gdes

n } with Nz = Nz ∈ Nz +
∑

�(y)<�(z)

x−1

Z[x−1]Ny.

Remark 3.7. The cited results in [12] describe an H-module N with the same
multiplication rule but with Gasc

n rather than Gdes
n as a basis. Theorem 3.6

still follows directly from [12, Thms. 1.7 and 1.8] in view of Proposition 3.4.
Specifically, the module N in [12] is isomorphic to our version of N via the
Z[x, x−1]-linear map sending Nιasc(z) �→ Nιdes(z) for z ∈ In.

The module M for H = H(Sn) was first studied by Adin, Postnikov,
and Roichman in [1]. The results in [10,12,20] give more general constructions
of M and N for classical Weyl groups and affine type A. Despite the formal
similarities between Theorem 3.5 and 3.6, there does not appear to be any
simple relationship between the “canonical” bases {Mz} ⊂ M and {Nz} ⊂ N .

By mimicking Example 3.2, one can turn the modules M and N into
W -graphs for the symmetric group W = Sn. Let myz,nyz ∈ Z[x−1] be the
polynomials indexed by y, z ∈ Gasc

n and y, z ∈ Gdes
n , respectively, such that
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Mz =
∑

y∈Gasc
n

myzMy and Nz =
∑

y∈Gdes
n

nyzNy. Write μm
yz and μn

yz for the
coefficients of x−1 in myz and nyz. For z ∈ Gasc

n , define

Ascrow(z) := {si : i ∈ Asc<(z) � Asc=(z)}
= {si : i ∈ [n − 1] and z(i) < z(i + 1)}
= {si : i ∈ [n − 1] and �(z) < �(sizsi)}. (3.6)

For z ∈ Gdes
n , define

Asccol(z) := {si : i ∈ Asc<(z) � Des=(z)}
= {si : i ∈ [n − 1] and z(i) < z(i + 1) or z(i) = i + 1}
= {si : i ∈ [n − 1] and �(z) ≤ �(sizsi)}.

(3.7)

Then, let ωrow : Gasc
n × Gasc

n → Z and ωcol : Gdes
n × Gdes

n → Z be the maps with

ωrow(y, z) := μm
yz + μm

zy and ωcol(y, z) := μn
yz + μn

zy. (3.8)

Unlike the Kazhdan–Lusztig case, these integer coefficients can be negative.

Theorem 3.8. [12] The triples Γrow := (Gasc
n , ωrow,Ascrow) and Γcol := (Gasc

n , ωcol,

Asccol) are Sn-graphs whose associated Iwahori–Hecke algebra modules are
Gelfand models.

The definitions of ωrow and ωcol here are simpler than in [12, Thm. 1.10],
following the conventions in Remark 3.1. Also, the version of Γcol here differs
from what is in [12, Thm. 1.10] in having Gdes

n as its vertex set. The two
formulations are equivalent via Remark 3.7.

It is not very clear from our discussion how to actually compute the
integers in (3.8). We mention some inductive formulas from [12] that can be
used for this purpose:

Proposition 3.9. (See [12, Lems. 3.7, 3.15, and 3.27]) Let z ∈ IFPF2n , i ∈ Asc<(z),
and s = si.
(a) If z ∈ Gasc

n , then Mszs =
(
Hs + x−1

)
Mz − ∑

�(y)<�(z), s/∈Ascrow(y) μm
yzMy.

(b) If z ∈ Gdes
n , then Nszs =

(
Hs + x−1

)
Nz − ∑

�(y)<�(z), s/∈Asccol(y)
μn

yzNy.

3.3. Bidirected Edges

As explained in the introduction, it is a natural problem to classify the cells
in a given W -graph, where a cell means a strongly connected component. The
cells in the left and right Kazhdan–Lusztig W -graphs are called the left and
right cells of W .

Two vertices in a W -graph Γ = (V, ω, τ) form a bidirected edge v ↔ w
if ω(v, w) �= 0 �= ω(w, v). The molecules of Γ are the connected components
for the undirected graph on V that retains only the bidirected edges. These
subsets do not inherit a W -graph structure but are easier to classify than
the cells. As mentioned in the introduction, we expect that all cells Γrow and
Γcol are actually molecules [12, Conj. 1.16]. As partial progress toward this
conjecture, we will classify the molecules in Γrow and Γcol in the next section.

Before this, we need a better understanding of the bidirected edges in
Γrow and Γcol. Fix an integer 1 < i < n and suppose v, w ∈ Sn are distinct.
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Let < denote the Bruhat order on any symmetric group. Below, we will often
consider this partial order restricted to the set of fixed-point-free involutions
IFPF2n . Recall that one has w < wsi if and only if w(i) < w(i + 1) and v < w if
and only if v−1 < w−1 [4, Chapter 2]. It follows for z ∈ IFPF2n that z < sizsi if
and only if z(i) < z(i + 1), which occurs if and only if �(sizsi) = �(z) + 2.

Using just elementary algebra, one can show that v ↔ w is a bidirected
edge in the left (respectively, right) Kazhdan–Lusztig Sn-graph if and only if
v

i∼
dK

w (respectively, v
i∼
K

w) for some 1 < i < n [4, Lems. 6.4.1 and 6.4.2].

It is known that the left and right cells in Sn are all molecules [4, §6.5], so
Theorem 2.3 implies that the left (respectively, right) cells in Sn are the subsets
on which QRS (respectively, PRS) is constant [9, Thm. 1.4].

Observe that if �(v) ≤ �(w), then v
i∼
K

w (respectively, v
i∼
dK

w) if and

only if vs < v < vt = w < ws (respectively, sv < v < tv = w < sw) for
s = si−1 and t = si or for s = si and t = si−1, that is, for some choice of
{s, t} = {si−1, si}. There is a similar description of the bidirected edges in Γrow

and Γcol. First, let i←→
row

be the relation on Gasc
n that has y

i←→
row

z if and only if

sys ≤ y < tyt = z < szs or szs ≤ z < tzt = y < sys for some {s, t}
= {si−1, si}.

Next, define i←→
col

to be the relation on Gdes
n that has y

i←→
col

z if and only if

sys < y < tyt = z ≤ szs or szs < z < tzt = y ≤ sys for some {s, t}
= {si−1, si}.

We can only have y
i←→

row
z or y

i←→
col

z if |�(y) − �(z)| = 2.

Lemma 3.10. Let y, z ∈ Gasc
n (respectively, y, z ∈ Gdes

n ). Then, y ↔ z is a
bidirected edge in Γrow (respectively Γcol) if and only if y

i←→
row

z (respectively

y
i←→
col

z) for some 1 < i < n.

Proof. We first characterize the bidirected edges in Γrow. Fix y, z ∈ Gasc
n . Given

the formula (3.6), the results in our previous paper [12, Cor. 3.14 and Lem.
3.27] assert that y ↔ z is a bidirected edge in Γrow if and only if for some i, j ∈
[n − 1] either siysi ≤ y < sjysj = z < sizsi or sizsi ≤ z < sjzsj = y < siysi.
The last two properties can only hold if |i − j| = 1, so that si and sj do not
commute: for example, if sisj = sjsi and siysi ≤ y < sjysj = z < sizsi, then

�(z) < �(sizsi) = �(sisjysjsi) = �(sjsiysisj) ≤ �(siysi) + 2 ≤ �(y) + 2 = �(z)

which is impossible, and similarly for the other case. Thus, y ↔ z is a bidirected
edge in Γrow precisely when y

i←→
row

z for some 1 < i < n.

The argument to handle the bidirected edges in Γcol is similar. Fix y, z ∈
Gdes

n . Then, it follows from (3.7) and [12, Cor. 3.17 and Lem. 3.27] that y ↔ z
is a bidirected edge in Γcol if and only if for some i, j ∈ [n − 1] either siysi <
y < sjysj = z ≤ sizsi or sizsi < z < sjzsj = y ≤ siysi. The last two
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properties can again only hold if |i− j| = 1, so that si and sj do not commute:
for example, if sisj = sjsi and siysi < y < sjysj = z ≤ sizsi, then

�(z) ≤ �(sizsi) = �(sisjysjsi) = �(sjsiysisj) ≤ �(siysi) + 2 = �(y) < �(z),

which is impossible, and similarly for the other case. Thus, y ↔ z is a bidirected
edge in Γcol precisely when y

i←→
col

z for some 1 < i < n. �

3.4. Gelfand Molecules

As noted above, the molecules of the left and right Kazhdan–Lusztig graphs
for Sn (which are the same as the left and right cells) are the subsets on which
QRS and PRS are, respectively, constant. The molecules in Γrow and Γcol have
a similar description as the fibers of slightly modified versions of the maps
PrB = PRS and PcB from Sects. 2.2 and 2.3.

If T is a tableau and X is a set, then let T |X be the tableau formed by
omitting all entries of T not in X . Recall the definitions of Gasc

n ⊂ IFPF2n and
Gdes

n ⊂ IFPF2n from Sect. 3.2.

Definition 3.11. For y ∈ Gasc
n and z ∈ Gdes

n , define P̂rB(y) := PrB(y)
∣∣
[n]

and

P̂cB(z) := PcB(z)
∣∣
[n]

.

Example 3.12. We have

P̂rB(ιasc(2134)) = P̂rB(21563487) =
1 3 4

2
,

P̂rB(ιasc(3214)) = P̂rB(35162487) =
1 2 4

3
,

P̂rB(ιasc(4231)) = P̂rB(45612387) =
1 2 3

4
,

P̂cB(ιdes(2134)) = P̂cB(21654387) =
1 2 3

4
,

P̂cB(ιdes(3214)) = P̂cB(36154287) =
1 2 4

3
,

P̂cB(ιdes(4231)) = P̂cB(46513287) =

1 2

3

4

.

Let T be a standard tableau with n boxes and k odd columns. We form
a standard tableau ιrow(T ) with 2n boxes and no odd columns from T by the
following procedure. First place the numbers n+1, n+2, . . . , n+k at the end
of the odd columns of T going left to right; then add the numbers n + k + 1,
n + k + 3, . . . , 2n − 1 to the first row; and finally add n + k + 2, n + k + 4, . . . ,
2n to the second row to form ιrow(T ). For example, if

T =
1 2 3 4
5 7
6

then ιrow(T ) =

1 2 3 4 11 13
5 7 9 10 12 14
6
8

.

Call an integer i a transfer point of an element z ∈ IFPF2n if i ∈ [n] and z(i) ∈
[2n] \ [n].

Lemma 3.13. If z ∈ Gasc
n , then ιrow(P̂rB(z)) = PrB(z).

Proof. Fix z ∈ Gasc
n and suppose (ai, bi) ∈ [n] × [n] for i ∈ [p] are the pairs

with ai < bi = z(ai), ordered, such that b1 < b2 < · · · < bp. Define U := ∅ rB←−−
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(a1, b1)
rB←−− (a2, b2)

rB←−− · · · rB←−− (ap, bp). This tableau is partially standard

with all even columns, since every insertion rB←−− (a, b) with a < b preserves the
number of odd columns, which begins as zero.

Next, let c1 < c2 < · · · < ck denote the transfer points of z, so that
z(ci) = n+ i for i ∈ [k]. The bumping path of x inserted into U is the sequence
of positions in U whose entries are changed to form U

RS←−− x, together with
the new box that is added to the tableau. If x < y, then the bumping path
of y inserted into U

RS←−− x is strictly to the right of the bumping path of x
inserted into U .

It follows that the boxes added by successively Schensted inserting c1, c2,
. . . , ck into U occur in a strictly increasing sequence of columns and a weakly
decreasing sequence of rows. Since U starts out with all even columns, each
of these k boxes creates a new odd column. Moreover, the result of Schensted
inserting ci has no dependence on any of the rows after the box added by
Schensted inserting ci−1. The tableau T := U

RS←−− c1
RS←−− c2

RS←−− . . .
RS←−− ck

is, therefore, standard with k odd columns, and placing the numbers n + 1,
n + 2, . . . , n + k at the end of these columns going left to right must give the
same result as

U
rB←−− (c1, n + 1) rB←−− (c2, n + 2) rB←−− . . .

rB←−− (ck, n + k).

To turn this tableau into PrB(z), we insert rB←−− (a, a+1) for a = n+k +1, n+
k+3, . . . , 2n−1, but this just adds the numbers n+k+1, n+k+3, . . . , 2n−1
to the first row and n + k + 2, n + k + 4, . . . , 2n to the second, as each value of
a is larger than all other entries in the tableau. From this description, we see
that P̂rB(z) = PrB(z)|[n] = T and ιrow(T ) = PrB(z) as needed. �

Theorem 3.14. The operation P̂rB defines a bijection from the set of elements
of Gasc

n with k transfer points to the set of standard tableaux with n boxes and
k odd columns.

Proof. The number of odd columns in P̂rB(z) for z ∈ Gasc
n is the number of

columns in PrB(z) with an odd number of entries in [n]. The operation rB←−−
(a, b) preserves this number when n < a ≤ b and increases it by one when
a ≤ n < b. Since we form PrB(z) for z ∈ Gasc

n by first inserting a sequence
of cycles (a, b) with a < b ≤ n (resulting in a tableau with all even columns
and all entries ≤ n), then inserting the cycles (ci, n + i) where c1 < · · · < ck

are the transfer points z, and finally by inserting a sequence of cycles (a, b)
with n + k < a < b, we see that the number of odd columns in P̂rB(z) is the
number of transfer points in z. Lemma 3.13 shows that P̂rB is an injective
map from Gasc

n to the set of standard tableaux with n boxes (with left inverse
P−1
rB ◦ ιrow) and, therefore, a bijection as the domain and codomain both have

size |In|. �
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Let λrow(z) be the partition shape of P̂rB(z) for z ∈ Gasc
n .

Theorem 3.15. Suppose y, z ∈ Gasc
n are distinct and 1 < i < n. Then, y

i←→
row

z

if and only if P̂rB(y) = Di(P̂rB(z)), so the molecules in Γrow are the subsets of
Gasc

n on which λrow is constant.

Proof. First, suppose y
i←→

row
z. Without loss of generality, we may assume that

sys ≤ y < tyt = z < szs for some choice of {s, t} = {si−1, si}.
If s = si−1 and t = si, then it follows that y(i − 1) > y(i) < y(i + 1) and

si(y(i−1)) < si(y(i+1)). The second inequality implies that y(i−1) < y(i+1),
since the fact that y is an involution means we cannot have y(i−1) = i+1 and
y(i + 1) = i. Thus, y(i − 1) is between y(i) and y(i + 1), so by Theorem 2.9,
we have y

i∼
rB

z and PrB(y) = Di(PrB(z)). Therefore

P̂rB(y) = PrB(y)|[n] = Di(PrB(z))|[n] = Di(PrB(z)|[n]) = Di(P̂rB(z))

by the definition of Di and the fact that 1 < i < n.
Alternatively, if s = si and t = si−1, then y(i + 1) < y(i) > y(i − 1) and

si−1(y(i − 1)) < si−1(y(i + 1)). The second inequality implies that y(i − 1) <
y(i + 1), since we cannot have y(i − 1) = i and y(i + 1) = i − 1, so y(i + 1) is
between y(i) and y(i + 1). Then, again by Theorem 2.9, we have y

i∼
rB

z and

PrB(y) = Di(PrB(z)), and it follows as above that P̂rB(y) = Di(P̂rB(z)). We
conclude that if y

i←→
row

z, then P̂rB(y) = Di(P̂rB(z)).

For the converse statement, suppose P̂rB(y) = Di(P̂rB(z)). Then, we have

PrB(y) = ιrow

(
P̂rB(y)

)
= ιrow

(
Di(P̂rB(z))

)
= Di

(
ιrow(P̂rB(z))

)
= Di(PrB(z)),

using Lemma 3.13 for the first and last equalities, and the definitions of Di

and ιrow for the third equality. The fixed-point-free involution y ∈ Gasc
n ⊂ IFPF2n

cannot preserve the set {i−1, i, i+1}. Since we also assume y �= z, Theorem 2.9
implies that either

• z = si−1ysi−1 and y(i + 1) is between y(i − 1) and y(i), or
• z = siysi and y(i − 1) is between y(i) and y(i + 1).

In the first case, one has siysi ≤ y < si−1ysi−1 = z < sizsi if y(i − 1) < y(i)
or sizsi ≤ z < si−1zsi−1 = y < siysi if y(i) < y(i−1). Likewise, in the second
case, one has si−1ysi−1 ≤ y < siysi = z < si−1zsi−1 if y(i) < y(i + 1) or
si−1zsi−1 ≤ z < sizsi = y < si−1ysi−1 if y(i + 1) < y(i). Either way we have
y

i←→
row

z as desired. �

Now, suppose T is a standard tableau with n boxes and k odd rows. By
a slightly different procedure, we can form a standard tableau ιcol(T ) with 2n
boxes and no odd rows from T . First place the numbers n+1, n+2, . . . , n+k
at the end of the odd rows of T going top to bottom; then add n + k + 1,
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n + k + 2, . . . , 2n to the first row and define ιcol(T ) to be the result. If

T =

1 2 3
4 5
6
7

then ιcol(T ) =

1 2 3 8 11 12 13 14
4 5
6 9
7 10

,

for example. We have analogues of Lemma 3.13 and Theorems 3.14 and 3.15:

Lemma 3.16. If z ∈ Gdes
n , then ιcol(P̂cB(z)) = PcB(z).

Proof. Our argument is similar to the proof of Lemma 3.13. Let (ai, bi) for
i ∈ [p] be the cycles of z ∈ Gdes

n with ai < bi = z(ai) ≤ n and b1 < b2 < · · · < bp,

and define U := ∅ cB←−− (a1, b1)
cB←−− (a2, b2)

cB←−− · · · cB←−− (ap, bp). This tableau

is partially standard with all even rows, since every insertion cB←−− (a, b) with
a < b preserves the number of odd rows, which begins as zero.

Next, let c1 > c2 > · · · > ck denote the transfer points of z, so that
z(ci) = n + i for i ∈ [k]. If y < x, then the bumping path of y inserted into
U

RS←−− x is weakly to the left of the bumping path of x inserted into U . This
implies that the boxes added by successively Schensted inserting c1, c2, . . . ,
ck into U must occur in a strictly increasing sequence of rows and a weakly
decreasing sequence of columns. Since U starts out with all even rows, each of
these k boxes creates a new odd row, and the result of Schensted inserting ci

has no dependence on any of the columns after the box added by Schensted
inserting ci−1. It follows that T := U

RS←−− c1
RS←−− c2

RS←−− . . .
RS←−− ck is

standard with k odd rows, and that placing the numbers n + 1, n + 2, . . . ,
n+k at the end of these rows going top to bottom must give the same result as
U

cB←−− (c1, n + 1) cB←−− (c2, n + 2) cB←−− . . .
cB←−− (ck, n + k). To turn this tableau

into PcB(z), we insert cB←−− (a, a+1) for a = n+k+1, n+k+3, . . . , 2n−1, but
this just adds the numbers n + k + 1, n + k + 2, . . . , 2n to the first row. From
these observations, we see that P̂cB(z) = PcB(z)|[n] = T and ιcol(T ) = PcB(z)
as needed. �

Theorem 3.17. The operation P̂cB defines a bijection from the set of elements
of Gdes

n with k transfer points to the set of standard tableaux with n boxes and
k odd rows.

Proof. The number of odd rows in P̂cB(z) for z ∈ Gdes
n is the number of rows in

PcB(z) with an odd number of entries in [n]. The operation cB←−− (a, b) preserves
this number when n < a ≤ b and increases it by one when a ≤ n < b. As in the
proof of Theorem 3.14, the definition of PcB(z) combined with this observation
makes it clear that the number of odd columns in P̂cB(z) is the number of
transfer points in z. Finally, Lemma 3.16 shows that P̂cB is an injective map
(with left inverse P−1

cB ◦ ιcol) from Gdes
n to the set of standard tableaux with n

boxes, and therefore a bijection, since both of these sets have size |In|. �

Let λcol(z) be the partition shape of P̂cB(z) for z ∈ Gdes
n .
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Theorem 3.18. Suppose y, z ∈ Gdes
n are distinct and 1 < i < n. Then, y

i←→
col

z

if and only if P̂cB(y) = Di(P̂cB(z)), so the molecules in Γcol are the subsets of
Gdes

n on which λcol is constant.

Proof. Define e(j) for j ∈ {i − 1, i, i + 1} as in (2.2). First, suppose y
i←→
col

z.

Without loss of generality, we may assume that sys < y < tyt = z ≤ szs for
some choice of {s, t} = {si−1, si}.

First, assume s = si−1 and t = si, so that i �= y(i − 1) > y(i) < y(i + 1).
If z = si−1zsi−1, then (i − 1, i + 1) must be a cycle of y and we must have
y(i) < i − 1, which means that e(i − 1) = i − 1 is between e(i) = y(i) and
e(i + 1) = i + 1. If z < si−1zsi−1, then we must have y(i − 1) < y(i + 1); since
y ∈ Gdes

n ⊂ IFPF2n has no fixed points, this means that {y(i) < y(i−1) < y(i+1)}
is disjoint from {i−1, i, i+1}, so e(i−1) = y(i−1) is again between e(i) = y(i)
and e(i + 1) = y(i + 1). In both cases, Theorem 2.13 implies that y

i∼
cB

z, so

P̂cB(y) = PcB(y)|[n] = Di(PcB(z))|[n] = Di

(
PcB(z)|[n]

)
= Di(P̂cB(z))

by the definition of Di and the fact that 1 < i < n.
Next, suppose s = si and t = si−1, so that i �= y(i + 1) < y(i) > y(i − 1).

What needs to be checked follows by a symmetric argument. If z = sizsi, then
(i − 1, i + 1) must be a cycle of y and we must have y(i) > i + 1, which means
that e(i+1) = i+1 is between e(i−1) = i−1 and e(i) = y(i). If z < sizsi, then
we must have y(i − 1) < y(i + 1); since y ∈ Gdes

n ⊂ IFPF2n has no fixed points,
this means that {y(i − 1) < y(i + 1) < y(i)} is disjoint from {i − 1, i, i + 1}, so
e(i+1) = y(i+1) is again between e(i−1) = y(i−1) and e(i) = y(i). Thus, we
deduce by Theorem 2.13 that y

i∼
cB

z and as above that P̂cB(y) = Di(P̂cB(z)).

For the converse statement, suppose P̂cB(y) = Di(P̂cB(z)). Then, we have

PcB(y) = ιcol

(
P̂cB(y)

)
= ιcol

(
Di(P̂cB(z))

)
= Di

(
ιcol

(
P̂cB(z)

))
= Di(PcB(z)),

using Lemma 3.16 for the first and last equalities, and the definitions of Di

and ιcol for the third equality. Since we assume y �= z, Theorem 2.13 implies
that either
(a) z = si−1ysi−1 and e(i + 1) is between e(i − 1) and e(i), or
(b) z = siysi and e(i − 1) is between e(i) and e(i + 1).

If e(j) = y(j) for all j ∈ {i − 1, i, i + 1}, then it is straightforward to deduce
as in the proof of Theorem 3.15 that y

i←→
col

z. If this does not occur, then in

case (a) either
• (i − 1, i + 1) is a cycle of y and i + 1 < y(i), so siysi < y < si−1ysi−1 =

z = sizsi; or
• (i, i + 1) is a cycle of y and i + 1 < y(i − 1), so sizsi < z < si−1zsi−1 =

y = siysi.
Similarly, if e(j) �= y(j) for some j ∈ {i − 1, i, i + 1}, then in case (b) either

• (i − 1, i + 1) is a cycle of y and y(i) < i − 1, so si−1ysi−1 < y < siysi =
z = si−1zsi−1; or
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• (i − 1, i) is a cycle of y and y(i + 1) < i − 1, so si−1zsi−1 < z < sizsi =
y = si−1ysi−1.

In every case, we have y
i←→
col

z as needed. �
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A. Proof of Theorem 2.13

This section contains the proof of Theorem 2.13. Unfortunately, the only way
we know to prove this result is by a very technical case analysis. Before com-
mencing this, we need some preliminary notation and a few lemmas.

The bumping path resulting from Schensted inserting a number a into a
tableau T is the sequence of positions (1, b1), (2, b2), . . . , (k, bk) of the entries
in T that are changed to form T

RS←−− a, together with the new box that is
added to the tableau. Let BT←a denote this sequence. Let bT←a(j) := bj be
the column of the jth position in the bumping path, let frowT←a := k denote
the length of the path (which is also the index of the path’s “final row”), and
let ivalueT←a(j) be the value inserted into row j, so that ivalueT←a(1) = a.
Observe that

bT←a(1) ≥ · · · ≥ bT←a(k) and ivalueT←a(1) < · · · < ivalueT←a(k).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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For example, if a = 2 and T =
1 3 9
4 5 6
7 8

, so that T
RS←−− a =

1 2 9
3 5 6
4 8
7

, then we

have bT←a(1) = 2 and bT←a(j) = 1 for 2 ≤ j ≤ frowT←a = 4, while

ivalueT←a(1) = 2 < ivalueT←a(2) = 3 < ivalueT←a(3) = 4 < ivalueT←a(4) = 7.

Recall that a partially standard tableau is a semistandard tableau with
distinct positive entries. If i and j appear in a tableau T that has all distinct
entries, then we write i ≺T j to indicate that i precedes j in the row reading
word of T . If i − 1, i, and i + 1 are all entries in a partially standard tableau
T , then we can evaluate Di(T ) by the formula (2.1), and it holds as usual that
Di(Di(T )) = T .

Suppose v and w are sequences of distinct positive integers and v contains
i − 1, i, and i + 1 as letters. We write v

i∼
dK

w to mean that either

(1) w = v when i is between i − 1 and i + 1 in v, or
(2) w is obtained from v by swapping i and i + 1 if i − 1 is between these

numbers in v, or
(3) w is obtained from v by swapping i − 1 and i if i + 1 is between these

numbers in v.
When we evaluate PRS(v) and PRS(w) by the usual Schensted insertion defi-
nition, it follows from Theorem 2.3 that PRS(v) = Di(PRS(w)) if and only if
v

i∼
dK

w.

For the rest of this section, fix y ∈ In and suppose b1 < b2 < · · · < bk are
the distinct numbers in [n] with ai := y(bi) ≤ bi, so that y = (a1, b1)(a2, b2) · · ·
(ak, bk). For i ∈ [k], let

Ti := ∅ cB←−− (a1, b1)
cB←−− (a2, b2)

cB←−− · · · cB←−− (ai, bi) and T0 := ∅.

We refer to T0, T1, T2, . . . , Tk as the partial tableaux for y.

Lemma A.1. Choose indices 1 ≤ i < j ≤ k. Suppose p < q are entries in Ti

and there are no entries r in Tj with p < r < q. Then, we have p ≺Ti
q if and

only if p ≺Tj
q.

Proof. We may assume that j = i + 1, and after standardizing that q = p + 1.
If aj = bj , then the column Beissinger insertion operation cB←−− (aj , bj) clearly
does not change the relative order of p and q in the row reading word of Ti.
On the other hand, if aj < bj , then it is well known that the operation RS←−− aj

also does not change this order, nor does adding bj to the end of a column.
Therefore, p ≺Ti

q if and only if p ≺Tj
q. �

The following lemma compares two bumping paths. Here, when we say
that one path is strictly (respectively, weakly) to the left of the other path, we
mean that in each row where both paths have positions, the unique position in
the first path is strictly (respectively, weakly) to the left of the unique position
in the other path.
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Lemma A.2. Choose an index 1 ≤ i < k. Suppose ai < bi and ai+1 < bi+1. If
ai < ai+1, then the bumping path BTi−1←ai

is strictly to the left of BTi←ai+1 ,
and if ai > ai+1, then the bumping path BTi−1←ai

is weakly to the left of
BTi←ai+1 . Moreover, we have frowTi−1←ai

< frowTi←ai+1 when ai+1 < ai and
frowTi−1←ai

≥ frowTi←ai+1 when ai < bi < ai+1 < bi+1.

However, one can have frowTi−1←ai
< frowTi←ai+1 when ai < ai+1 < bi <

bi+1.

Proof. The first claim follows from the usual bumping path property for Schen-
sted insertion mentioned earlier. For the second claim, observe that if ai+1 <
ai, then ivalueTi←ai+1(frowT←ai

) < ivalueTi−1←ai
(frowTi−1←ai

), so
frowTi−1←ai

< frowTi←ai+1 . If ai < bi < ai+1 < bi+1, then we have frowTi←ai+1

= frowU←ai+1 for U := Ti−1
RS←−− ai �= Ti = Ti−1

cB←−− (ai, bi), so frowTi−1←ai
≥

frowTi←ai+1 again holds by the usual Schensted bumping path properties. �

Lemma A.3. Let T be a partially standard tableau containing i − 1, i, and
i + 1. If a ≤ b are such that T

cB←−− (a, b) is also partially standard, then
Di(T ) cB←−− (a, b) = Di(T

cB←−− (a, b)).

Proof. The desired property is clear if a = b so assume a < b. Since
row(Di(T ))a i∼

dK
row(T )a, it follows from Theorem 2.3 that Di(T ) RS←−− a =

PRS(row(Di(T ))a) = Di(PRS(row(T )a)) = Di(T
RS←−− a). Suppose the box of

this tableau that is not in T is in column j. Then, adding b to the end of column
j+1 in Di(T ) RS←−− a gives Di(T ) cB←−− (a, b) by definition. However, adding b to
the end of column j+1 in Di(T

RS←−− a) also apparently gives Di(T
cB←−− (a, b)),

since b /∈ {i − 1, i, i + 1}, so we have Di(T ) cB←−− (a, b) = Di(T
cB←−− (a, b)). �

For the rest of this section, we fix 1 < i < n, and we define e(i − 1), e(i),
and e(i + 1) by

e(j) :=

⎧⎪⎨
⎪⎩

y(j) if y(j) /∈ {i − 1, i, i + 1}
−j if y(j) = j

j if j �= y(j) ∈ {i − 1, i, i + 1}
as in (2.2). We divide the proof of Theorem 2.13 into three propositions, fol-
lowing this lemma.

Lemma A.4. Suppose a, b ∈ {i − 1, i, i + 1} have |b − a| = 1 and e(a) < e(b).
Then, a ≺PcB(y) b.

Proof. Let j be the index of the first partial tableau Tj for y that contains
both a and b. We write a ≺ b to mean that a ≺Tj

b. Lemma A.1 implies that
a ≺PcB(y) b whenever a ≺ b, so it is enough to show that a ≺ b.

If a and b are both fixed points of y, then we must have b = −e(b) <
−e(a) = a, so b is inserted before a when forming PcB(y). In this case, the
partial tableau Tj is formed by adding a to the end of the first column of Tj−1,
so we have a ≺ b as claimed.
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Suppose only one of a or b is a fixed point of y. Then, we must have
y(a) = a and y(b) �= b, since e(a) < e(b). If the cycle of b is inserted before a
when forming PcB(y), then it follows as in the previous paragraph that a ≺ b.
If instead a is inserted first, then we have two subcases:

(A) Assume y(b) < b. Then, y(b) < a < b = a + 1, since |a − b| = 1 and a
is inserted first. Therefore, Tj−1 is formed from Tj−2 by adding a to the

end of the first column, and we have Tj = Tj−1
cB←−− (y(b), b). Since a is

the only entry in its row of Tj−1, it follows that a remains the last entry
in the first column of Tj , so we have a ≺ b.

(B) Assume b < y(b). Then, a appears in the first column of Tj−1 and Tj is

formed from Tj−1
RS←−− b by adding an extra box containing y(b). This

means that a appears in the first column of Tj , while b appears in the
first row, so we again have a ≺ b.

Suppose neither a nor b is a fixed point of y. If y(a) = b, then a =
e(a) < e(b) = b and all entries in Tj−1 are less than a. In this case, the tableau

Tj = Tj−1
cB←−− (a, b) is formed from Tj−1 by adding a and then b to the end

of the first row, so clearly a ≺ b.
Assume y(a) �= b and let a′ := y(a) and b′ := y(b). If a < b = a + 1,

then we must have a′ < b′, since e(a) < e(b), so either a′ < a < b < b′ or
a < b < a′ < b′ or a′ < b′ < a < b. The first two possibilities will put b in the
first row of Tj as in case (B) above, and then a ≺ b necessarily holds.

Assume a′ < b′ < a < b = a + 1, so that a is the largest entry in Tj−1.
If Schensted inserting b′ into Tj−1 bumps the corner box containing a, then a

will appear in Tj−1
RS←−− b′ at the end of the next row in some column C, and

Tj will be formed from Tj−1
RS←−− b′ by adding b to the end of column C + 1,

so a ≺ b.
If inserting b′ into Tj−1 does not bump the box containing a, then Tj is

formed from Tj−2
RS←−− a′ RS←−− b′ by adding a and b to the end of columns

p + 1 and q + 1, respectively, where p is the column of the box added when
inserting a′ into Tj−2 and q is the column of the box added when inserting b′

into Tj−2
RS←−− a′. We have p < q, since the bumping path of a′ is strictly to

the left of the bumping path of b′, so again a ≺ b
On the other hand, if b < a = b + 1, then since e(a) < e(b), we must have

a′ < b < a < b′ or b < a < a′ < b′ or a′ < b′ < b < a. The first two possibilities
will put b in the first row of Tj = Tj−1

cB←−− (b, b′). In these cases, a = b + 1
cannot also be in the first row of Tj , since if a were in the first row of Tj−1,
then a, as the smallest number greater than b, would be bumped into the next
row when b is inserted to form Tj . Therefore, a ≺ b holds as needed.

Finally, assume a′ < b′ < b < a = b + 1. Then, by Lemma A.2, the
bumping path that results from Schensted inserting a′ into Tj−1 is weakly to
the left of the bumping path that results from Schensted inserting b′ into Tj−2,
and the former path also ends in a later row. Therefore, a appears in Tj at
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Figure 1. Possibilities for y when e(i − 1) < e(i) < e(i + 1)

the end of a column weakly to the left of the column containing b, so we again
have a ≺ b. �

Proposition A.5. Assume e(i) is between e(i− 1) and e(i+1). Then, PcB(y) =
Di(PcB(y)).

Proof. If e(i−1) < e(i) < e(i+1) or e(i+1) < e(i) < e(i−1), then Lemma A.4
implies that i − 1 ≺PcB(y) i ≺PcB(y) i + 1 or i + 1 ≺PcB(y) i ≺PcB(y) i − 1, so
PcB(y) = Di(PcB(y)). �

Remark A.6. We can be more specific about the possibilities for y when Propo-
sition A.5 applies. If e(i − 1) < e(i) < e(i + 1), then one of the following must
occur:
(Ia) i − 1 is a fixed point of y and e(i + 1) = y(i + 1) > y(i) = e(i).
(Ib) i − 1 is a fixed point of y and y(i + 1) = i.
(Ic) y(i−1) < y(i) < y(i+1) and {i−1, i, i+1}∩{y(i−1), y(i), y(i+1)} = ∅.
(Id) y(i − 1) = i and y(i + 1) > i + 1.
If instead e(i + 1) < e(i) < e(i − 1), then we must be in one of the following
cases:
(IIa) i + 1 is a fixed point of y and e(i − 1) = y(i − 1) > y(i) = e(i).
(IIb) y(i+1) < y(i) < y(i−1) and {i−1, i, i+1}∩{y(i−1), y(i), y(i+1)} = ∅.
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Figure 2. Possibilities for y when e(i + 1) < e(i) < e(i − 1)

(IIc) i and i + 1 are fixed points of y but y(i − 1) �= i − 1.
(IId) i − 1, i, i + 1 are all fixed points of y.
Figures 1 and 2 show the arc diagrams of y in these cases.

Our second proposition goes as follows.

Proposition A.7. Assume e(i+1) is between e(i− 1) and e(i). Then, PcB(y) =
Di(PcB(si−1ysi−1)).

Proof. In this proof, let z := si−1ysi−1. We wish to show that PcB(y) =
Di(PcB(z)). By hypothesis, either e(i− 1) < e(i+ 1) < e(i) or e(i) < e(i+ 1) <
e(i − 1). If the first set of inequalities holds, then we must be in one of the
following cases:
(1a) i − 1 is a fixed point of y and e(i + 1) = y(i + 1) < y(i) = e(i).
(1b) y(i−1) < y(i+1) < y(i) and {i−1, i, i+1}∩{y(i−1), y(i), y(i+1)} = ∅.
(1c) y(i − 1) = i + 1 and y(i) > i + 1.
If instead e(i) < e(i + 1) < e(i − 1), then we must be in one of these cases:
(2a) i is a fixed point of y and e(i + 1) = y(i + 1) < y(i − 1) = e(i − 1).
(2b) y(i) < y(i + 1) < y(i − 1), {i − 1, i, i + 1} ∩ {y(i − 1), y(i), y(i + 1)} = ∅.
(2c) y(i) = i + 1 and y(i − 1) > i + 1.
Figure 3 shows the possibilities for the arc diagrams of y in these cases.

Notice that cases (2a), (2b), and (2c) are obtained from cases (1a), (1b),
and (1c) by interchanging y and z. Since Di is an involution, it suffices to
show that PcB(y) = Di(PcB(z)) just in cases (1a), (1b), and (1c). We consider
each of these it turn. Throughout this proof, a < b < c are the integers with
{a, b, c} = {y(i − 1), y(i), y(i + 1)}.
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Figure 3. Possibilities for y when e(i+1) is between e(i−1)
and e(i)

(1a) Assume i − 1 is a fixed point of y and e(i + 1) = y(i + 1) < y(i) = e(i).
Then we are in one of the three possible subcases indicated in Fig. 3:

i. We could have y = · · · (i−1, i−1)(b, i)(a, i+1) · · · and z = · · · (b, i−
1)(i, i)(a, i + 1) · · · where a < b < c = i − 1. In this case, denote
the partial tableau for y obtained just before inserting (i − 1, i − 1)
by T . This is also the partial tableau for z obtained just before
inserting (b, i − 1). Then, let Ty, T ′

y, and T ′′
y be the partial tableaux

for y obtained just after inserting (i − 1, i − 1), (b, i), and (a, i + 1),
respectively. Define Tz, T ′

z, and T ′′
z relative to z similarly.2 Now,

2 That is, let Tz , T ′
z , and T ′′

z be the partial tableaux for z obtained just after inserting
(b, i − 1), (i, i), and (a, i + 1), respectively. In the next few arguments, we will often make
similar definitions of Ty , T ′

y , T ′′
y and Tz , T ′

z , T ′′
z : the first three objects will be partial

tableaux for y obtained after inserting certain cycles of y, while the last three objects will be
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consider the insertions Ty
cB←−− (b, i) and T

cB←−− (b, i−1). If inserting
b leads to a new box with entry d < i−1, then i−1 has no effect on
the insertion Ty

cB←−− (b, i), so we have T ′
z = si−1(T ′

y). If d = i − 1,
then the last bump of this insertion will involve some d′ < i −
1 bumping i − 1 to the next row. For T

cB←−− (b, i − 1), this will
bump d′ into a new row and then put i − 1 in the last box of the
second column. As a result, we have T ′

z = si−1(T ′
y) = Di(T ′

y). After
inserting (a, i + 1), we have i − 1 ≺T ′′

y
i + 1 ≺T ′′

y
i by Lemma A.2.

Also, we have T ′′
z = si−1(T ′′

y ) = Di(T ′′
y ). By Lemmas A.1 and A.3,

it follows that:

i − 1 ≺PcB(y) i + 1 ≺PcB(y) i and PcB(z) = Di(PcB(y)).

ii. We could have

y = · · · (i − 1, i − 1)(a, i + 1) · · · (i, c) · · · and z

= · · · (i, i)(a, i + 1) · · · (i − 1, c) · · · ,

where a < b = i − 1 < i + 1 < c. In this case, denote the partial
tableau for y obtained just before inserting (i − 1, i − 1) by T . This
is also the partial tableau for z obtained just before inserting (i, i).
Then, let Ty be the partial tableau for y obtained just after inserting
(i − 1, i − 1), let T ′

y be the partial tableau for y obtained just after
inserting (a, i + 1), let T ′′

y be the partial tableau for y obtained
just before inserting (i, c), and let T ′′′

y be the partial tableau for y
obtained just after inserting (i, c). Define Tz, T ′

z, T ′′
z , and T ′′′

z relative
to z similarly. Then, we have i − 1 ≺T ′

y
i + 1 and by Lemma A.1,

i − 1 ≺T ′′
y

i + 1. Also, T ′′
z is just T ′′

y after replacing i − 1 by i.

After the insertion cB←−− (i, c), we get i − 1 ≺T ′′′
y

i + 1 ≺T ′′′
y

i. By an
argument similar to case 1a(i), we have T ′′′

z = si−1(T ′′′
y ) = Di(T ′′′

y ),
so Lemmas A.1 and A.3 imply that

i − 1 ≺PcB(y) i + 1 ≺PcB(y) i and PcB(z) = Di(PcB(y)).

iii. Finally, we could have y = · · · (i−1, i−1) · · · (i+1, b) · · · (i, c) · · · and
z = · · · (i, i) · · · (i+1, b) · · · (i−1, c) · · · where a = i−1 < i+1 < b <
c. In this case, the proof is the same as in subcase ii after replacing
any references to (a, i + 1) by (i + 1, b).

(1b) Assume y(i − 1) = a < y(i + 1) = b < y(i) = c and {i − 1, i, i + 1} ∩
{a, b, c} = ∅. Then, we are in one of the four possible subcases indicated
in Fig. 3:

i. We could have y = · · · (a, i − 1)(c, i)(b, i + 1) · · · and z = · · · (c, i −
1)(a, i)(b, i + 1) · · · where a < b < c < i − 1, so that y and z have

partial tableaux for z obtained after inserting corresponding (but possibly different) cycles
of z.
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arc diagrams

y =
a b c • • •

and z =
a b c • • •

.

We address this case by considering the insertions into each row
recursively. Denote the partial tableau for y obtained just before
inserting (a, i−1) by T . This is also the partial tableau for z obtained
just before inserting (c, i − 1). Let Ty, T ′

y, and T ′′
y be the partial

tableaux for y obtained just after inserting (a, i − 1), (c, i), and
(b, i + 1). Define Tz, T ′

z, and T ′′
z relative to z similarly. Then write

ivaluey
a(k) := ivalueT←a(k),

ivaluey
c (k) := ivalueTy←c(k),

ivaluey
b (k) := ivalueT ′

y←b(k).

Define ivaluez
a(k), ivaluez

b(k) and ivaluez
c(k) similarly. Also, write

frowy(a) := frowT←a, frowy(c) := frowTy←c, and frowy(b) := frowT ′
y←b.

Then define frowz(a), frowz(b), and frowz(c) relative to z similarly.
If

j < m := min{frowy(a), frowy(b), frowy(c), frowz(a), frowz(b), frowz(c)},

then by Lemma A.2 we have ivaluey
a(j + 1) < ivaluey

b (j + 1) <
ivaluey

c (j + 1). Since

ivaluey
a(j)ivaluey

c (j)ivaluey
b (j) ∼

K
ivaluey

c (j)ivaluey
a(j)ivaluey

b (j)

= ivaluez
c(j)ivalue

z
a(j)ivaluez

b(j),

we see that the jth rows of T ′′
y and T ′′

z are the same. Then, without
loss of generality, we can assume m = 1. By Lemma A.2, we have

frowy(c) < frowy(b) and frowz(c) < frowz(a).

First, assume frowy(a) > frowy(c) = 1 < frowy(b). Consider the first
rows of T ′′

y and T ′′
z . These rows differ only in the entries of their last

box, which are i for y and i− 1 for z. For the rows above, according
to Lemma A.2, we have BT←a ≤ BT ′

y←b, so

i − 1 ≺T ′′
y

i + 1 ≺T ′′
y

i and T ′′
z = Di(T ′′

y ).

The desired result now follows from Lemma A.3. Next assume frowy(a)
= 1 ≤ frowy(c) < frowy(b) and then frowz(c) = frowy(a) = 1. Then,
the insertions into the first row of Ty ← c, T ′

y ← b, and T ′′
y appear

as

· · · a i − 1 ← c ⇒ · · · a c ← b ⇒ · · · a b ,
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so ivaluey
c (2) = i − 1 and ivaluey

b (2) = c. On the other hand, the
insertions into the first row of Tz ← a, T ′

z ← b, and T ′′
z appear as

· · · c i − 1 ← a ⇒ · · · a i − 1 ← b ⇒ · · · a b ,

so ivaluez
a(2) = c and ivaluez

b(2) = i − 1. Now, consider the insertion
into the second row. Since there are no numbers greater than i − 1
in the tableau T , we see that frowy(c) = 2. Then, for the second row
of T ′

y ← b, we have

· · · i − 1 i ← c ⇒ · · · c i

and ivaluey
b (3) = i − 1. For the second row of T ′

z ← b, we have

· · · c i ← i − 1 ⇒ · · · c i − 1

and ivaluez
b(3) = i. Therefore, we have frowy(b) = 3 and the last two

rows for T ′′
y and T ′′

z are

· · · · · · c i

· · · i − 1 i + 1
and

· · · · · · c i − 1

· · · i i + 1
.

Since T ′′
z = Di(T ′′

y ), the desired result now follows from Lemmas A.1
and A.3.

ii. We could have y = · · · (a, i−1)(b, i+1) · · · (i, c) · · · and z = · · · (a, i)
(b, i + 1) · · · (i − 1, c) · · · where a < b < i − 1 < i + 1 < c, so that y
and z have arc diagrams

y =

a b • • • c

and z =

a b • • • c

.

In this case, denote the partial tableaux for y after inserting (a, i−1)
and (b, i + 1) by Ty and T ′

y. Then, let T ′′
y be the partial tableau for

y obtained just before inserting (i, c), and let T ′′′
y be the partial

tableau for y obtained just after inserting (i, c). Define Tz, T ′
z, T ′′

z ,
and T ′′′

z relative to z similarly. Then write

ivaluey
a(k) := ivalueT←a(k),

ivaluey
b (k) := ivalueTy←b(k),

ivaluey
c (k) := ivalueT ′′

y ←c(k).

Define ivaluez
a(k), ivaluez

b(k) and ivaluez
c(k) similarly. Also, write

frowy(a) := frowT←a, frowy(b) := frowTy←b, and frowy(c) := frowT ′′
y

←c.

Define frowz(a), frowz(b), and frowz(c) relative to z similarly. Then,
T ′

z is just T ′
y after replacing i−1 by i. Also, by considering the result

of cB←−− (a, i − 1) and cB←−− (b, i + 1) for y, by Lemma A.2, we have
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ivaluey
a(j) < ivaluey

b (j) for all indices j ≤ min{frowy(a), frowy(b)}.
Assume frowy(a) = l. Then, either

frowy(b) = k < l and i − 1 ≺T ′
y
ivalueyb (frowy(b)) ≺T ′

y
i + 1, (A.1)

or we have

frowy(b) ≥ l and therefore ivaluey
a(l) < ivaluey

b (l). (A.2)

When (A.2) occurs, in the tableau T ′
y, we either have (I) ivaluey

a(l)
and i − 1 are the last two elements in the same row, or (II) i − 1
is in some row l′ < l and both ivaluey

a(l) and i − 1 are the last
element in their rows. In subcase (I), we must have ivaluey

b (l) < i−1,
as otherwise ivaluey

a(l), i − 1, ivaluey
b (l) and i + 1 will be in the

same row after two insertions, which leads to ivaluey
b (l) = i which

is impossible. Since there are no elements greater than i − 1 before
inserting (a, i − 1), we have

ivaluey
b (frowy(b)) = ivaluey

b (l + 1) = i − 1 and i − 1 ≺T ′
y

i + 1.

In subcase (II), we must have frowy(b) = l, because ivaluey
a(l) is the

last element in its row in T ′
y and ivaluey

a(l) < ivaluey
b (l). Since i − 1

is in the column directly after the one containing ivaluey
a(l) in T ′

y, it
must be in the same column in T ′′

y , because ivaluey
a(j) < ivaluey

b (j)
for all j ≤ l. Also, ivaluey

b (l) is in the column directly after the one
containing ivaluey

a(l) in T ′′
y , so

ivaluey
b (frowy(b)) = ivaluey

b (l + 1) = i − 1 and i − 1 ≺T ′
y

i + 1.

Thus, for both cases (A.1) and (A.2), Lemma A.1 implies that i −
1 ≺T ′′

y
i + 1. By the above discussion, we see that i − 1 and i + 1

appear in different rows of T ′′
y . Thus, after the insertion cB←−− (i, c),

we have i − 1 ≺T ′′′
y

i + 1 ≺T ′′′
y

i. For z, after inserting (i − 1, c), we
similarly have

i ≺T ′′′
z

i + 1 ≺T ′′′
z

i − 1 and T ′′′
z = Di(T ′′′

y ).

The desired result now follows from Lemmas A.1 and A.3.
iii. We could have y = · · · (a, i − 1) · · · (i + 1, b) · · · (i, c) · · · and z =

· · · (a, i) · · · (i + 1, b) · · · (i − 1, c) · · · where a < i − 1 < i + 1 < b < c,
so that

y =
a • • • b c

and z =
a • • • b c

.

Write Ty for the partial tableau for y obtained after inserting (a, i−
1). Let T ′

y be the partial tableau for y obtained after inserting (i +
1, b), let T ′′

y be the partial tableau for y obtained before inserting
(i, c), and let T ′′′

y be the partial tableau for y obtained after inserting
(i, c). Define Tz, T ′

z, T ′′
z , T ′′′

z relative to z similarly. Then, T ′
z is just

T ′
y after replacing i − 1 by i. Also, the insertion (i + 1, b) makes

i−1 ≺T ′
y

i+1. Thus, by Lemma A.1, we have i−1 ≺T ′′
y

i+1. Using
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the same argument as in case ii, after the insertion cB←−− (i, c), we
get i − 1 ≺T ′′′

y
i + 1 ≺T ′′′

y
i. For z, similarly, we get

i ≺T ′′′
z

i + 1 ≺T ′′′
z

i − 1 and T ′′′
z = Di(T ′′′

y ),

so the desired result follows from Lemmas A.1 and A.3.
iv. Finally, we could have y = · · · (i − 1, a) · · · (i + 1, b) · · · (i, c) · · · and

z = · · · (i, a) · · · (i + 1, b) · · · (i − 1, c) · · · where i + 1 < a < b < c, so
that

y =
• • • a b c

and z =
• • • a b c

.

In this case, the proof is the same as case iii after replacing (a, i−1)
by (i − 1, a).

(1c) Assume y(i − 1) = i + 1 and y(i) > i + 1, so that a = i − 1 < b = i + 1 <
c = y(i). Then, y = · · · (i−1, i+1) · · · (i, c) · · · and z = · · · (i, i+1) · · · (i−
1, c) · · · have arc diagrams

y =
• • • c

and z =
• • • c

.

In this case, let Ty denote the partial tableau for y obtained after inserting
(i − 1, i + 1), let T ′

y be the partial tableau for y obtained before inserting
(i, c), and let T ′′

y be the partial tableau for y obtained after inserting
(i, c). Define Tz, T ′

z, and T ′′
z relative to z similarly. Then, Tz is just Ty

after replacing i − 1 by i and i − 1 ≺Ty
i + 1. Thus, by Lemma A.1, we

have i − 1 ≺T ′
y

i + 1. Using the same argument as in case 1b(ii), we get
i − 1 ≺T ′′

y
i + 1 ≺T ′′

y
i. For z, similarly, we get i ≺T ′′

z
i + 1 ≺T ′′

z
i − 1 and

T ′′
z = Di(T ′′

y ), so the desired result follows from Lemmas A.1 and A.3.
In all of these cases, we deduce that PcB(y) = Di(PcB(z)) as needed. �

Our next result is the final piece of the proof of Theorem 2.13.

Proposition A.8. Assume e(i− 1) is between e(i) and e(i+1). Then, PcB(y) =
Di(PcB(siysi)).

Proof. In this proof let z := siysi. We wish to show that PcB(y) = Di(PcB(z)).
By hypothesis, either e(i) < e(i − 1) < e(i + 1) or e(i + 1) < e(i − 1) < e(i). If
e(i) < e(i − 1) < e(i + 1), then we must be in one of the following cases:
(3a) i − 1 and i are fixed points of y and e(i + 1) = y(i + 1) �= i + 1.
(3b) i is a fixed point of y and y(i − 1) = i + 1.
(3c) i is the only fixed point of y in {i − 1, i, i + 1} and e(i − 1) = y(i − 1) <

y(i + 1) = e(i + 1).
(3d) y(i) < y(i−1) < y(i+1) and {i−1, i, i+1}∩{y(i−1), y(i), y(i+1)} = ∅.
(3e) y(i − 1) = i + 1 and y(i) < i − 1.
If instead e(i + 1) < e(i − 1) < e(i), then we must be in one of these cases:
(4a) i − 1 and i + 1 are fixed points of y and e(i) = y(i) �= i.
(4b) i + 1 is a fixed point of y and y(i − 1) = i.
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Figure 4. Possibilities for y when e(i−1) is between e(i) and
e(i + 1)
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(4c) i+1 is the only fixed point of y in {i−1, i, i+1} and e(i−1) = y(i−1) <
y(i) = e(i).

(4d) y(i+1) < y(i−1) < y(i) and {i−1, i, i+1}∩{y(i−1), y(i), y(i+1)} = ∅.
(4e) y(i − 1) = i and y(i + 1) < i − 1.
Figure 4 shows the possibilities for the arc diagrams of y in these cases.

Cases (3a)–(3e) are obtained from cases (4a)–(4e) by interchanging y and
z. Thus, it suffices to show that PcB(y) = Di(PcB(z)) just in cases (3a)–(3e).
We consider each of these it turn. As in the proof of the previous proposi-
tion, throughout this argument, we define a < b < c to be the integers with
{a, b, c} = {y(i − 1), y(i), y(i + 1)}.
(3a) Assume i − 1 and i are fixed points of y and e(i + 1) = y(i + 1) /∈

{i−1, i, i+1}. Then, the first partial tableau for y containing all three of
i − 1, i, and i + 1 will have i − 1 and i in the first column, with i − 1 in a
row above i. This tableau will also have i+1 either in the first row (when
i + 1 < y(i + 1)) or in column two or greater (when y(i + 1) < i + 1).
Either way, it follows from Lemma A.1 that:

i ≺PcB(y) i − 1 ≺PcB(y) i + 1.

The first partial tableau for z containing all three of i − 1, i, and i + 1
is obtained from the first partial tableau for y containing all three of
i − 1, i, and i + 1 by interchanging i and i + 1. Therefore, we have
PcB(z) = si(PcB(y)) = Di(PcB(y)) by Lemma A.3.

(3b) Assume i is a fixed point of y and y(i − 1) = i + 1, so that a = i − 1 <
b = i < c = i + 1. In this case, y = · · · (i, i)(i − 1, i + 1) · · · and z =
· · · (i−1, i)(i+1, i+1) · · · . Let Ty and T ′

y denote the partial tableaux for
y obtained after inserting (i, i) and (i−1, i+1). Define Tz and T ′

z relative

to z similarly. If i = 2, we have T ′
y = 1 3

2 and T ′
z = 1 2

3 . Hence

i ≺T ′
y

i − 1 ≺T ′
y

i + 1 and T ′
z = si(T ′

y) = Di(T ′
y).

If i > 2, then i is not in row 1 of Ty, but i − 1 and i + 1 are in row 1 of

T ′
y. Therefore, the two insertions Ty

cB←−− (i, i) and T ′
y

cB←−− (i − 1, i + 1)

will not interact, and nor will Tz
cB←−− (i − 1, i) and T ′

z
cB←−− (i + 1, i + 1).

Thus, we have i ≺T ′
y

i − 1 ≺T ′
y

i + 1 and T ′
z = si(T ′

y) = Di(T ′
y), so by

Lemmas A.1 and A.3

i ≺PcB(y) i − 1 ≺PcB(y) i + 1 and PcB(z) = Di(PcB(y)).

(3c) Assume i is the only fixed point of y in {i − 1, i, i + 1} and e(i − 1) =
y(i − 1) < y(i + 1) = e(i + 1). Then, we are in one of the three possible
subcases indicated in Fig. 4:

i. We could have y = · · · (a, i − 1)(i, i)(b, i + 1) · · · and z = · · · (a, i −
1)(b, i)(i + 1, i + 1) · · · where a < b < i − 1 < i = c. In this case,
denote the partial tableaux for y after inserting (a, i − 1), (i, i), and
(b, i + 1) by T , Ty, and T ′

y. Note that T is also the partial tableau
for z obtained just before inserting (a, i − 1). Define Tz and T ′

z

relative to z similarly. By an argument similar to case 1a(i), we get
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T ′
z = si(T ′

y) = Di(T ′
y), so Lemma A.2 implies i ≺T ′′

y
i− 1 ≺T ′′

y
i+1.

According to Lemma A.3, we then have

i ≺PcB(y) i − 1 ≺PcB(y) i + 1 and PcB(z) = Di(PcB(y)).

ii. We could have

y = · · · (a, i − 1)(i, i) · · · (i + 1, c) · · ·
and z = · · · (a, i − 1)(i + 1, i + 1) · · · (i, c) · · · ,

where a < i − 1 < b = i < i + 1 < c. In this case, let T denote the
partial tableau for y obtained after inserting (a, i − 1). Then, let Ty

be the partial tableau obtained after inserting (i, i), let T ′
y be the

partial tableau obtained before inserting (i+1, c), and let T ′′
y be the

partial tableau obtained after inserting (i+1, c). Define Tz, T ′
z, and

T ′′
z relative to z similarly. By an argument similar to case 1a(ii), we

deduce that

i ≺T ′′
y

i − 1 ≺T ′′
y

i + 1 and T ′′
z = si(T ′′

y ) = Di(T ′′
y ).

Then, by Lemmas A.1 and A.3, we have

i ≺PcB(y) i − 1 ≺PcB(y) i + 1 and PcB(z) = Di(PcB(y)).

iii. We could have y = · · · (i − 1, b) · · · (i, i) · · · (i + 1, c) · · · and z =
· · · (i − 1, b) · · · (i + 1, i + 1) · · · (i, c) · · · where a = i < i + 1 < b < c.
In this case, the proof is the same as case ii after replacing (a, i− 1)
by (i − 1, b).

(3d) Assume y(i) = a < y(i − 1) = b < y(i + 1) = c and {i − 1, i, i + 1} ∩
{a, b, c} = ∅. Then, we are in one of the four possible subcases indicated
in Fig. 4:

i. We could have y = · · · (b, i − 1)(a, i)(c, i + 1) · · · and z = · · · (b, i −
1)(c, i)(a, i+1) · · · where a < b < c < i−1, so that the arc diagrams
of y and z are

y =
a b c • • •

and z =
a b c • • •

.

We again consider two sequences of successive row insertions. Denote
the partial tableau for y obtained just before inserting (b, i−1) by T .
This is also the partial tableau for z obtained just before inserting
(b, i − 1). Then, let Ty, T ′

y, and T ′′
y be the partial tableaux for y

obtained just after inserting (b, i − 1), (a, i), and (c, i + 1). Define
Tz, T ′

z, and T ′′
z relative to z similarly. Note that Tz = Ty. Then

write
ivaluey

b (k) := ivalueT←b(k),

ivaluey
a(k) := ivalueTy←a(k),

ivaluey
c (k) := ivalueT ′

y←c(k).

Define ivaluez
a(k), ivaluez

b(k) and ivaluez
c(k) similarly. Also, write

frowy(b) := frowT←b, frowy(a) := frowTy←a, and frowy(c) := frowT ′
y←c.
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For z, we define frowz(a), frowz(b), frowz(c) similarly. When

j ≤ m := min{frowy(a), frowy(b), frowy(c), frowz(a), frowz(b), frowz(c)},

Lemma A.2 implies that we have ivaluea(j + 1) < ivalueb(j + 1) <
ivaluec(j + 1). Since

ivaluey
b (j)ivaluey

a(j)ivaluey
c (j) ∼

K
ivaluey

b (j)ivaluey
c (j)ivaluey

a(j)

= ivaluez
b(j)ivalue

z
c(j)ivalue

z
a(j),

the jth rows of T ′′
y and T ′′

z are the same. Without loss of generality,
we can assume m = 1. By Lemma A.2, we have

frowy(a) > frowy(b) = frowz(b) and frowz(c) < frowz(a).

Now, we have two cases:
(I) 1 = frowy(c) < frowy(b) < frowy(a) and frowz(c) = 1, or

(II) frowy(b) = 1 < frowy(c).
In case (I), consider the first rows of T ′′

y and T ′′
z . These rows differ

only in the entries of their last box, which are i + 1 for T ′′
y and

i for T ′′
z . For the other rows, according to Lemma A.2, we have

BTy←a ≤ BT←b, so we must have

i ≺T ′′
y

i − 1 ≺T ′′
y

i + 1 and T ′′
z = si(T ′′

y ) = Di(T ′′
y ),

so the desired result follows from Lemmas A.1 and A.3. Now, sup-
pose we are instead in case (II). We consider the insertions that
construct T ′

y, T ′′
y , T ′

z, and T ′′
z . The first rows of Ty ← a, T ′

y ← c, and
T ′′

y are shown below; here, a′ = ivaluey
a(2) and we use parentheses

to indicate entries that are only present when a′ < b:

· · · (a′) (· · · ) b i − 1 ← a ⇒ · · · a (· · · ) (b) i − 1 ← c

⇒ · · · a (· · · ) (b) c .

In this situation, we have ivaluey
a(2) = a′ ≤ b and ivaluey

c (2) = i − 1.
Similarly, the first rows of Tz ← c, T ′

z ← a, and T ′′
z appear as

· · · (a′) (· · · ) b i − 1 ← c ⇒ · · · (a′) (· · · ) b c ← a

⇒ · · · a (· · · ) (b) c ,

so ivaluez
c(2) = i− 1 and ivaluez

a(2) = a′ ≤ b. Since frowy(b) = 1, the
length of the second row of Ty = Tz must be at least 2 less than the
length of the first row. Therefore, we have two further subcases.

• Assume a′ is greater than every entry in row 2 of Ty. Then,
frowy(a) = 2, and the second rows of T ′

y ← c and T ′′
y appear
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as

· · · a′ i ← i − 1 ⇒ · · · a′ i − 1 ,

so ivaluey
c (3) = i. Similarly, we have frowz(c) = 2 and the

second rows of T ′
z ← a and T ′′

z appear as

· · · i − 1 i ← a′ ⇒ · · · a′ i ,

so ivaluez
c(3) = i−1. As a result, we have frowy(c) = 3 and the

last two rows of T ′′
y and T ′′

z appear as

· · · · · · a′ i − 1

· · · i i + 1
and

· · · · · · a′ i

· · · i − 1 i + 1
.

Therefore, T ′′
z = Di(T ′′

y ) and the desired result follows from
Lemmas A.1 and A.3.

• Alternatively suppose that a′ is not greater than every entry
in row 2 of Ty. Then, we have frowy(a) > frowy(c) = 2 and the
second rows of T ′

y ← c and T ′′
y are

· · · a′ · · · ← i − 1 ⇒ · · · a′ · · · i − 1 i + 1 ,

so ivaluey
a(3) = a′′. Similarly, we have frowz(c) = 2 and the

second rows of T ′
z ← c and T ′′

z appear as

· · · i − 1 i ← a′ ⇒ · · · a′ · · · i − 1 i ,

so ivaluez
a(3) = a′′. As a result, we have i ≺T ′′

y
i − 1 ≺T ′′

y
i + 1

and T ′′
z = Di(T ′′

y ). Therefore, the desired result again follows
from Lemmas A.1 and A.3.

ii. We could have y = · · · (b, i−1)(a, i) · · · (i+1, c) · · · and z = · · · (b, i−
1)(a, i + 1) · · · (i, c) · · · where a < b < i − 1 < i + 1 < c, so that y
and z have arc diagrams

y =
a b • • • c

and z =
a b • • • c

.

In this case, denote the partial tableaux for y obtained just after
inserting (b, i − 1), just after inserting (a, i), just before inserting
(i + 1, c), and just after inserting (i + 1, c) by T , Ty, T ′

y, and T ′′
y ,

respectively. Define Tz, T ′
z, and T ′′

z relative to z similarly. Then, Tz

is just Ty after replacing i by i + 1. We abbreviate by writing

frowy(b) := frowT←b and frowy(a) := frowTy←a.
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Since a < b, we must have frowy(b) < frowy(a) by Lemma A.2

and then i ≺T ′
y

i − 1. After the insertions T ′
y

cB←−− (i + 1, c) and

T ′
z

cB←−− (i, c), we get

i ≺T ′′
y

i − 1 ≺T ′′
y

i + 1 and T ′′
z = si(T ′′

y ) = Di(T ′′
y ),

so the desired result follows from Lemmas A.1 and A.3.
iii. We could have y = · · · (a, i) · · · (i − 1, b) · · · (i + 1, c) · · · and z =

· · · (a, i + 1) · · · (i − 1, b) · · · (i, c) · · · where a < i − 1 < i + 1 < b < c,
so that

y =
a • • • b c

and z =
a • • • b c

.

Let Ty denote the partial tableau for y obtained after inserting (a, i),
let T ′

y be the partial tableau for y obtained after inserting (i − 1, b),
let T ′′

y be the partial tableau for y obtained before inserting (i+1, c),
and let T ′′′

y be the partial tableau for y obtained after inserting
(i+1, c). Define Tz, T ′

z, T ′′
z , and T ′′′

z relative to z similarly. Then, T ′
z

is just T ′
y after replacing i by i + 1, and we have i ≺T ′

y
i − 1. Thus,

by Lemma A.1, we have i ≺T ′′
y

i − 1. Now, consider the insertion

T ′′
y

cB←−− (i + 1, c) and T ′′
z

cB←−− (i, c). Then, i + 1 is in the first row of
T ′′′

y , while i is in the first row of T ′′′
z , so

i ≺T ′′′
y

i − 1T ′′′
y

≺ i + 1 and T ′′′
z = si(T ′′′

y ) = Di(T ′′′
y ).

Thus, the desired result follows from Lemmas A.1 and A.3.
iv. Finally, we could have y = · · · (i, a) · · · (i − 1, b) · · · (i + 1, c) · · · and

z = · · · (i + 1, a) · · · (i − 1, b) · · · (i, c) · · · where i + 1 < a < b < c, so
that

y =
• • • a b c

and z =
• • • a b c

.

In this case, the proof is similar to case iii after replacing (a, i) by
(i, a).

(3e) Assume y(i−1) = i+1 and y(i) = a < i−1. In this case, y = · · · (a, i)(i−
1, i + 1) · · · and z = · · · (i − 1, i)(a, i + 1) · · · have arc diagrams

y =
a • • •

and z =
a • • •

.

Let T denote the partial tableau for y obtained just before inserting (a, i).
Then, let Ty and T ′

y be the partial tableaux for y obtained after inserting
(a, i) and (i − 1, i + 1), respectively. Likewise, define Tz and T ′

z to be the
partial tableaux for z obtained after inserting (i − 1, i) and (a, i + 1),
respectively. Then, write

ivaluey
a(k) := ivalueT←a(k) and ivaluey

i−1(k) := ivalueTy←i−1(k).

Also, write

frowy(a) := frowT←a and frowy(i − 1) := frowTy←i−1.
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There are now two cases, as we either have (I) frowy(a) = 1 or (II)
frowy(a) = j > 1. In case (I), since frowy(a) = 1, the first two rows of T ′

y

and T ′
z appear as

T ′
y =

· · · · · · a i − 1

· · · i i + 1
and T ′

z =
· · · · · · a i

· · · i − 1 i + 1
.

Thus, we have i ≺T ′
y

i + 1 ≺T ′
y

i − 1 and T ′
z = si(T ′

y) and the desired
result follows from Lemma A.3. Suppose instead that we are in case (II).
If i is in the first row of Ty, then a and i are the last two elements in
the first row of Ty. Thus, Ty and Tz appear as below, where we write
f = frowy(a) and aj = ivaluey

a(j) for j < f (so a = a1)

Ty =

· · · a1 i

· · · a2

· · · · · ·

· · · af

and Tz =

· · · a2 i − 1 i

· · · · · ·

· · · af

· · ·

.

After inserting (i − 1, i + 1) into Ty and (a, i + 1) = (a1, i + 1) into Tz,
we get

T ′
y =

· · · a1 i − 1 i + 1

· · · a2 i

· · · · · ·

· · · af

and T ′
z =

· · · a1 i − 1 i

· · · a2 i + 1

· · · · · ·

· · · af

,

so we have

i ≺T ′
y

i − 1 ≺T ′
y

i + 1 and T ′
z = si−1(T ′

y) = Di(T ′
y).

If i is not in the first row of Ty, then frowy(a) > frowy(i − 1), so BT←a ∩
BTy←i−1 = ∅. Thus, interchanging the order in which we insert the cycles
involving a and i − 1 does not change anything but the position of i and
i + 1. Consequently, we have

i ≺T ′
y

i − 1 ≺T ′
y

i + 1 and T ′
z = si(T ′

y) = Di(T ′
y).

Either way, the desired result follows from Lemmas A.1 and A.3.
In all of these cases, we deduce that PcB(y) = Di(PcB(z)) as needed. �
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Propositions A.5, A.7, and A.8 address the three cases in Theorem 2.13.
By combining these results, the theorem follows.
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[11] E. Marberg and B. Pawlowski, Gröbner geometry for skew-symmetric matrix
Schubert varieties, Adv. Math. 405 (2022), 108–488.

[12] E. Marberg and Y. Zhang, Gelfand W -graphs for classical Weyl groups, J. Al-
gebra 609 (2022), 292–336.

[13] E. Marberg and Y. Zhang, Perfect models for finite Coxeter groups, J. Pure
Appl. Algebra 227 (2023), 107303.

[14] V. M. Nguyen, Type A admissible cells are Kazhdan–Lusztig, Algebr. Comb. 3
(2020) no. 1, 55–105.

[15] J. Post, Combinatorics of arc diagrams, Ferrers fillings, Young tableaux and
lattice paths, M.Sc. Thesis, Simon Fraser University (2009).

[16] E. M. Rains and M. J. Vazirani, Deformations of permutation representations
of Coxeter groups, J. Algebr. Comb. 37 (2013), 455–502.



E. Marberg, Y. Zhang

[17] A. Reifegerste, Permutation sign under the Robinson–Schensted–Knuth corre-
spondence, Ann. Combin. 8 (2004), 103–112.

[18] C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math.
13 (1961), 179–191.

[19] J. R. Stembridge, Admissible W -Graphs, Represent. Theory 12 (2008), 346–368.

[20] Y. Zhang, Quasiparabolic sets and affine fixed-point-free involutions, J. Algebra
587 (2021), 522–554.

Eric Marberg
Department of Mathematics
HKUST
Clear Water Bay
Hong Kong
e-mail: emarberg@ust.hk

Yifeng Zhang
Center for Combinatorics
Nankai University
Tianjin
China
e-mail: zhang.yifeng@nankai.edu.cn

Communicated by Nathan Williams

Received: 6 April 2023.

Accepted: 15 May 2024.


	Insertion Algorithms for Gelfand Sn-Graphs
	Abstract
	1. Introduction
	2. Insertion Algorithms
	2.1. Schensted Insertion
	2.2. Row Beissinger Insertion
	2.3. Column Beissinger Insertion

	3. Molecules in Gelfand W-Graphs
	3.1. Iwahori–Hecke Algebras and W-Graphs
	3.2. Gelfand Models
	3.3. Bidirected Edges
	3.4. Gelfand Molecules

	Acknowledgements
	A. Proof of Theorem 2.13
	References


