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Abstract. In recent literature concerning integer partitions one can find
many results related to both the Bessenrodt–Ono type inequalities and
log-concavity properties. In this note, we offer some general approach
to this type of problems. More precisely, we prove that under some mild
conditions on an increasing function F of at most exponential growth sat-
isfying the condition F (N) ⊂ R+, we have F (a)F (b) > F (a + b) for suffi-
ciently large positive integers a, b. Moreover, we show that if the sequence
(F (n))n≥n0 is log-concave and lim supn→+∞ F (n + n0)/F (n) < F (n0),
then F satisfies the Bessenrodt–Ono type inequality.
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1. Introduction

Let N be the set of non-negative integers, N+ the set of positive integers and
R+ = (0,+∞). Moreover, for an integer n0 ≥ 2 we put N≥n0 = {n ∈ N : n ≥
n0}.

For given A ⊂ N+ and n ∈ N by pA(n) we denote the number of partitions
of n with parts in the set A. As usual, we put pA(0) = 1. It is well known that
the ordinary generating function for the sequence (pA(n))n∈N takes the form

∞∑

n=0

pA(n)xn =
∏

a∈A

1
1 − xa

.
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If A = N+ then we simply write p(n) instead of pN+(n). In this case the
partition function is the famous Euler partition function thoroughly studied
by Ramanujan and many others. The number of papers devoted to various
properties of p(n), or more generally, for pA(n) for various choice of the set A
is enormous. The standard reference is the book of Andrews [2] (see also [3]
for less advanced approach).

A few years ago there emerged a broad research devoted to log-behavior
of partition statistics. Let us recall that a sequence (an)n∈N of real numbers is
said to be log-concave if the inequality

a2
n > an−1an+1

is valid for all sufficiently large values of n. On the other hand, it is called log-
convex if the inverse inequality holds. The first who proved the log-concavity
of classical partition function p(n) was Nicolas in [27].

Recently, using analytic methods, DeSalvo and Pak [13] reproved the
Nicolas’ theorem.

Now, there is a wealth of literature devoted to the log-concavity property
for other variations of the partition function. For instance, Bringmann, Kane,
Rolen and Tripp [8] investigated the case of the k-colored partition function
and partly proved the conjecture formulated by Heim and Nauhauser in [18].
This conjecture is a polynomial generalization of a one stated by Chern, Fu,
and Tang in [10]. On the other hand, Dawsey and Masri [11] examined the
Andrews spt-function in that direction. Further, Engel [14] proved that the
overpartition function p(n) is log-concave for every n ≥ 2. Gajdzica [15] dis-
covered a similar phenomenon for the A-partition function when A is finite.
O’Sullivan [28] investigated the number of partitions into powers and proved
a conjecture of Ulas [30]. Ono, Pujahari and Rolen [29] showed that the plane
partition function satisfies the log-concavity property as well.

However, the research devoted to log-behavior of partition functions is
not only bounded by the log-concavity or log-convexity properties. Another
interesting phenomenon is the so-called Bessenrodt–Ono inequality. More pre-
cisely, in 2016, Bessenrodt and Ono [7] showed that for a, b ≥ 2 and a + b > 9
we have

p(a)p(b) > p(a + b). (1.1)

Their proof is based on the asymptotic estimates due to Lehmer [23].
It is worth noting that there are two alternative approaches to derive the
result. Alanazi, Gagola and Munagi [1] showed the Bessenrodt–Ono inequality
in combinatorial manner by constructing appropriate injections between some
sets of partitions. Heim and Neuhauser [19], on the other hand, presented a
proof which is based on the induction on a + b.

Moreover, the inequality (1.1) can be effectively used in practice. For
instance, one can apply it to determine the value of

max p(n) = max {p(λ) : λ is a partition of n},
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where p(λ) denotes the extended partition function defined as p(λ) :=
∏j

i=1 p
(λi) for λ = (λ1, λ2, . . . , λj). For additional information, we refer the reader to
[7].

There are a lot of publications regarding Bessenrodt–Ono type inequal-
ities. For example, Beckwith and Bessenrodt [5] found out similar proper-
ties for the k-regular partition function. Chern, Fu and Tang [10] considered
the k-colored partition function. Dawsey and Masri [11] discovered the analo-
gous phenomenon for the Andrews spt-function. Heim, Neuhauser and Tröger
[21] examined the issue for the plane partition function. Moreover, Heim and
Neuhauser widely generalized the property and investigated the so-called poly-
nomization of the Bessenrodt–Ono inequality for a couple of partition func-
tions [16,17,20,21]. Hou and Jagadeesan [22], and Males [26] discovered the
analogues of the Bessenrodt–Ono inequality for the so-called partition rank
function.

Actually, there are many more properties related to the log-behavior of
partition statistics. We do not discuss them here, but focus on some general cri-
teria for both Bessenrodt–Ono type inequalities and log-concavity problems. It
turns out that
a plenty of the aforementioned results are proved using some asymptotic esti-
mates. Therefore, it would be convenient to possess several conditions which
assert that a function with an appropriate growth is log-concave or fulfills the
Bessenrodt–Ono inequality. Essentially, these goals were the main motivations
for our investigation.

Let us describe the content of the paper in some details. In Sect. 2 we get a
general criterion on the sequence (F (n))n∈N, which guarantees that it satisfies
the Bessenrodt–Ono type inequality. In other words, for all sufficiently large
a, b ∈ N, a ≥ b we have F (a)F (b) > F (a + b). In particular, as an application
we reprove recent result of Heim and Neuhauser which says that the plane
partition function satisfies the Bessenrodt–Ono type inequality. In Sect. 3 we
present some conditions guaranteeing asymptotic log-concavity of the sequence
(F (n))n∈N. As an application we reprove recent result of DeSalvo and Pak
[13, Theorem 1.1]. Finally, in the last section, under some mild condition on
the sequence (F (n))n∈N we show that log-concavity implies the Bessenrodt–
Ono type inequality. We also prove that the opposite implication is not true.
More precisely, we show that for each m ∈ N≥2 the m-ary partition function
bm(n) = pA(n), where A = {mi : i ∈ N}, satisfies the Bessenrodt–Ono type
inequality but is not log-concave.

2. Bessenrodt–Ono Type Inequality Holds for a Class of
Sub-exponential Functions

In this section we offer a general approach to Bessenrodt–Ono type inequalities.
More precisely, we prove the following general result.

Theorem 2.1. Let c1, c2, f, F : N+ → R+ be given and such that the inequalities

c1(n)ef(n) < F (n) < c2(n)ef(n)
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are valid for all positive integers n ≥ N0 for some N0 ∈ N+. Suppose further
that the following conditions hold:
(1) ∃g : N+ → R+, N1 ∈ N+ ∀a ≥ b ≥ N1 : f(a) + f(b) − f(a + b) ≥ g(b);
(2) ∃h : N+ → R+, N2 ∈ N+ ∀a ≥ b ≥ N2 : c2(a + b)/c1(a) ≤ h(b);
(3) ∃N3 ∈ N+ ∀n ≥ N3 : g(n) ≥ log h(n) − log c1(n).

Then, the inequality

F (a)F (b) > F (a + b)

is satisfied for all a, b ≥ max{N0, N1, N2, N3}.
Proof. Let us fix functions c1, c2, f, F and g as in the statement. Since both of
the inequalities

F (a)F (b) > c1(a)c1(b)ef(a)+f(b)

and

F (a + b) < c2(a + b)ef(a+b)

are true for any positive integers a, b ≥ N0, it is enough to prove that the
following inequality

ef(a)+f(b)−f(a+b) ≥ c2(a + b)
c1(a)c1(b)

is satisfied for all sufficiently large values of a and b. From (1), it follows that
the inequality

f(a) + f(b) − f(a + b) ≥ g(b)

holds for every a ≥ b ≥ N1. On the other hand, (2) implies that the inequality

c2(a + b)
c1(a)

≤ h(b)

is valid for any a ≥ b ≥ N2. Hence, it is enough to show that the following

eg(b) ≥ h(b)/c1(b)

holds for all large values of b—but that is a direct consequence of (3), as
required. �

Although the above theorem is very easy we show that it is strong enough
to be applied to classical examples of partition functions.

Example 2.2. Let us consider the partition function p(n). It follows from the
Bessenrodt and Ono’s paper [7] that the inequalities

√
3

12n

(
1 − 1√

n

)
e

π
6

√
24n−1 < p(n) <

√
3

12n

(
1 +

1√
n

)
e

π
6

√
24n−1

hold for every positive integer n. Therefore, we will use Theorem 2.1 with
F (n) := p(n),

f(n) :=
π

6
√

24n − 1, c1(n) :=
√

3
12n

(
1 − 1√

n

)
andc2(n) :=

√
3

12n

(
1 +

1√
n

)
.
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Now, if we assume that a ≥ b ≥ 1, then we have that

f(a) + f(b) − f(a + b) =
π

6
· 2

√
24a − 1

√
24b − 1 − 1√

24a − 1 +
√

24b − 1 +
√

24(a + b) − 1

>
π

6
·

√
24a − 1

√
24b − 1√

24a − 1 +
√

24b − 1
− π

6
· 1
2
√

23 +
√

47

>
π

6
·

√
24a − 1

√
24b − 1√

24a − 1 +
√

24b − 1
− 1

24

≥ π

12

√
24b − 1 − 1

24
=: g(b)

On the other hand, if we assume that a ≥ 9 and 1 ≤ b ≤ a, then one can
derive that

c2(a + b)
c1(a)

=
12a

12(a + b)

(
1 +

1√
a + b

) (
1 +

1√
a − 1

)

<

(
1 +

1√
10

)(
1 +

1√
9 − 1

)
< 2 =: h(b).

Hence, it is enough to observe that

eg(n) ≥ 8
√

3n

(
1 +

1√
n − 1

)

is true for all sufficiently large values of n. In fact, one can show that the above
is valid for every n ≥ 22. Thus, Theorem 2.1 implies that the Bessenrodt–Ono
inequality

p(a)p(b) > p(a + b)

holds for all a ≥ b ≥ 22.

Example 2.3. Let us recall that the number pp(n) of plane partitions of n can
be computed via the generating function (obtained by MacMahon [24])

∞∑

n=0

pp(n)xn =
∞∏

n=1

1
(1 − xn)n

.

From Wright’s formula [32, Formula (2.21)] one can deduce the existence
of (ineffective constants) α, β, γ,N > 0 such that for all n > N the following
inequalities

αn− 25
36

(
1 − β√

n

)
eγn2/3

< pp(n) < αn− 25
36

(
1 +

β√
n

)
eγn2/3

hold. We set F (n) := pp(n),

f(n) := γn2/3, c1(n) := αn− 25
36

(
1 − β√

n

)
and c2(n) := αn− 25

36

(
1 +

β√
n

)
,
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and apply Theorem 2.1. For every a ≥ b ≥ N , we have that

f(a) + f(b) − f(a + b) = γ

(
a

2
3 + b

2
3 − a

2
3

(
1 +

b

a

) 2
3
)

≥ γ

(
a

2
3 + b

2
3 − a

2
3

(
1 +

2b

3a

))

= γ

(
b

2
3 − 2b

3a1/3

)
≥ γ

3
b

2
3 ,

where the first inequality is a consequence of Bernoulli’s inequality. On the
other hand, it is not difficult to see that

c2(a + b)
c1(a)

=
(

1+
b

a

)−25
36

(
1+

β√
a + b

) (
1+

β√
a−β

)
< 1+

2β√
a−β

≤ 2β+1

whenever a ≥ b ≥ max{N, (β +1)2}. Now, it is straightforward to deduce that

e
γ
3 n

2
3 ≥ 2β + 1

α
n

25
36

(
1 +

β√
n − β

)

is satisfied for all but finitely many values of n. In conclusion, we get that pp(n)
fulfills the Bessenrodt–Ono type inequality for all large parameters a and b.

At this point, it is worth saying that Heim et al. [21, Theorem 1.1] com-
pletely solved the Bessenrodt–Ono type inequality for the plane partition func-
tion. More precisely, they showed that the inequality

pp(a)pp(b) > pp(a + b)

is satisfied for every a, b ∈ N≥2 with a + b ≥ 12.

3. Log-Concavity Property Holds for a Class of Sub-exponential
Functions

Let us recall that a sequence (F (n))n∈N (or just a function F : N → R+) is
log-concave if

F (n)2 > F (n − 1)F (n + 1)

for all n ≥ n0, where n0 is some positive integer.
In this section we get a general result which under mild conditions on the

growth of the function F : N → R+ guarantees that F is log-concave.

Theorem 3.1. Let c1, c2, f, F : N → R+ be given and such that the inequalities

c1(n)ef(n) < F (n) < c2(n)ef(n)

are valid for all positive integers n ≥ N0 for some N0 ∈ N. Suppose further
that the following conditions hold:

(1) ∃N1 ∈ N+ ∃h : N+ → R+ ∀n ≥ N1 : h(n) ≤ 2f(n) − f(n − 1) − f(n + 1);
(2) ∃N2 ∈ N+ ∀n ≥ N2 : c2(n + 1)c2(n − 1)/c21(n) ≤ eh(n).
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Then, for all the values of n ≥ max{N0, N1, N2} the inequality

F 2(n) > F (n − 1)F (n + 1)

is true.

Proof. Let c1, c2, f, F, h be as in the statement of the theorem. It follows that
both of the inequalities

F 2(n) > c21(n)e2f(n)

and

F (n − 1)F (n + 1) < c2(n − 1)c2(n + 1)ef(n−1)+f(n+1)

are valid for every n ≥ N0. Therefore, it is enough to show that the inequality

eh(n) ≥ c2(n − 1)c2(n + 1)
c21(n)

is true for all sufficiently large values of n, but this is exactly (2). Hence, we
conclude that the inequality

F 2(n) > F (n − 1)F (n + 1)

is satisfied for all n ≥ max{N0, N1, N2}, as required. �

Example 3.2. For every positive integer n ≥ 37, we have that

c1(n)eμ(n) < p(n) < c2(n)eμ(n), (3.1)

where

μ(n) :=
π

6
√

24n − 1,

c1(n) :=
√

12
24n − 1

(
1 − 1

μ(n)
− 1

μ3(n)

)
,

c2(n) :=
√

12
24n − 1

(
1 − 1

μ(n)
+

1
μ3(n)

)
.

The inequalities (3.1) follow directly from Chen, Jia and Wang [9, Lemma 2.2]
and some numerical computations carried out in Wolfram Mathematica [31].

Now, we want to apply Theorem 3.1 to deduce the log-concavity for p(n).
At first, let us observe that the generalized binomial theorem asserts that for
every |j| < |n| the following inequalities

t−j(n) <
√

n + j < t+j(n) (3.2)

are true, where

t−j(n) = n
1
2 +

1
2
jn− 1

2 − 1
8
j2n− 3

2 − 2 · |j|3n− 5
2

and

t+j(n) = n
1
2 +

1
2
jn− 1

2 − 1
8
j2n− 3

2 + 2 · |j|3n− 5
2 .
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Therefore, we have that

2μ(n) − μ(n − 1) − μ(n + 1) =
√

24π

6

(
2

√
n − 1

24
−

√
n − 25

24
−

√
n +

23
24

)

≥
√

24π

6

(
1
4
n− 3

2 − 55588
13824

n− 5
2

)
.

On the other hand, one can also calculate that

c2(n − 1)c2(n + 1)
c21(n)

=
(

1 +
242

(24n − 1)2 − 242

) 5
2

×
(
μ3(n − 1) − μ2(n − 1) + 1

) (
μ3(n + 1) − μ2(n + 1) + 1

)

(μ3(n) − μ2(n) − 1)2

≤
(

1 +
242

(24n − 1)2 − 242

) 5
2

×
(

1 +
24

√
6

7π3
n− 3

2

)
,

where the last inequality is a consequence of (3.2) and some elementary but
tiresome computations. Hence, it is enough to check under what conditions on
n the inequality

1 +
√

24π

6

(
1
4
n− 3

2 − 55588
13824

n− 5
2

)
≥

(
1 +

242

(24n − 1)2 − 242

) 5
2

×
(

1 +
24

√
6

7π3
n− 3

2

)

is true. One can verify that it holds for all n ≥ 94. Therefore, if we examine
the positivity of p2(n)− p(n− 1)p(n+1) for every 1 ≤ n ≤ 93, then we obtain
Nicolas’ theorem (see, [13, Theorem 1.1] or [27]).

4. Log-Concavity (Usually) Implies Bessendrodt-Ono Type
Inequality

In this section we show a strict connection between log-concavity property and
the Bessenrodt–Ono type inequality.

Theorem 4.1. Let F : N+ → R+ be fixed. Assume further that there exists
n0 ∈ N+ such that (F (n))n≥n0 is log-concave and

lim sup
n→∞

F (n + n0)
F (n)

< F (n0).

Then, the inequality

F (a)F (b) > F (a + b)

holds for all sufficiently large numbers a, b ∈ N+.
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Proof. At first, let us observe that the log-concavity property implies that the
inequality

F (n)
F (n − 1)

>
F (n + 1)

F (n)
(4.1)

is valid for each n ≥ n0. Thus, it is enough to check the validity of the inequality
in

F (a + b) =
F (a + b)

F (a + b − 1)
× · · · × F (a + n0 + 1)

F (a + n0)
F (a + n0)

< F (a)
F (b)

F (b − 1)
× · · · × F (n0 + 1)

F (n0)
F (n0) = F (a)F (b)

for all sufficiently large a and b. However, (4.1) points out that
F (n0 + i + 1)

F (n0 + i)
>

F (a + n0 + i + 1)
F (a + n0 + i)

is true for any i = 0, 1, . . . , b−n0−1. Therefore, the task boils down to proving
that the inequality

F (a + n0)
F (a)

< F (n0)

is true for all large values of a, but it is a direct consequence of the leftover
assumption from the statement. This ends the proof. �

One can easily notice that besides Theorem 4.1, the above proof implies
the following property.

Proposition 4.2. Let F : N+ → R+ be given. Assume further that there exists
n0 ∈ N+ such that (F (n))n≥n0 is log-concave and the inequality

F (n)F (n0) > F (n + n0)

is valid for every n ≥ n0. Then, we have that

F (a)F (b) > F (a + b)

is satisfied for all a, b ≥ n0.

Example 4.3. Suppose that we know that the classical partition function sat-
isfies

p(26)p(a) > p(a + 26)

for every a ≥ 26. Then, from [13, Theorem 1.1] or [27] and Proposition 4.2 we
get that the inequality

p(a)p(b) > p(a + b)

holds for all a, b ≥ 26.

Theorem 4.4. Let F : N → R+ be fixed and such that F (0) ≥ 1. Suppose
further that the sequence (F (n))∞

n=0 is log-concave for every positive integer n.
Then

F (a)F (b) > F (a + b)

is true for all positive integers a and b.
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Proof. The log-concavity property and the assumption that F (0) ≥ 1 imply
that

F (a + b) =
F (a + b)

F (a + b − 1)
× F (a + b − 1)

F (a + b − 2)
× · · · × F (a + 1)

F (a)
F (a)

< F (a)
F (b)

F (b − 1)
× F (b − 1)

F (b − 2)
× · · · × F (1)

F (0)
F (0) = F (a)F (b)

holds for all positive integers a and b. This completes the proof. �

Before we proceed to some applications of Theorem 4.4, it is worth point-
ing out that its first proof was obtained by Asai et al. [4, Theorem 2.1 (a)].
More recently, Benfield and Roy [6] also investigated similar properties for
sequences of positive real numbers.

Example 4.5. Since the sequence (p(n))n≥26 is log-concave by [13, Theorem
1.1] or [27] and we have p(26) = 2436 > 1, Theorem 4.4 implies that the
sequence (p(n + 26))n∈N satisfies the Bessenrodt–Ono type inequality.

Example 4.6. Let us set q(n) := F2n, where Fj denotes the j-th Fibonacci
number, where F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2. From Cassini identity
we deduce that

q2(n) − q(n + 1)q(n − 1) = F 2
2n − F2n−2F2n+2 = 1 > 0.

Thus, the sequence (q(n))n∈N is log-concave. However, it does not satisfy the
Bessenrodt–Ono type inequality. Indeed, one can easily check that φ2n/

√
5 −

1 < F2n < φ2n/
√

5, where φ = (1 +
√

5)/2 is the golden mean. Thus, for
a + b ≥ 3 we have

q(a + b) − q(a)q(b) = F2(a+b) − F2aF2b >

√
5 − 1
5

φ2(a+b) − 1 > 0.

As a consequence, despite the fact that the sequence (q(n))n∈N is log-concave,
it does not satisfy the Bessenrodt–Ono type inequality. In conclusion, we see
that the assumption F (0) ≥ 1 in Theorem 4.4 is crucial.

On the other hand, let us note that for any fixed j ∈ N+ the sequence
(q(n + j))n∈N satisfies the Bessenrodt–Ono type inequality.

Theorem 4.1 asserts that a positive log-concave sequence usually satisfies
the Bessenrodt–Ono inequality. Therefore, there appears a natural question
whether the inverse statement is true. In general, it is not the case as the
following example shows.

Example 4.7. For an arbitrary positive integer m ≥ 2, the m-ary partition
function bm(n) is just pA(n) for A = {mi : i ∈ N}, i.e., bm(n) is the number
of representations of n as sums of powers of m. Let us recall that bm(0) =
1, bm(mn+i) = bm(mn) for i = 1, . . . , m−1 and bm(mn) = bm(mn−1)+bm(n).

The sequence (bm(n))n∈N is not log-concave. Indeed, if we have that n ≡
−1 (mod ∗)m, then bm(n − 1) = bm(n) < bm(n + 1).

On the other hand, the following is true.
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Theorem 4.8. For each m ≥ 2, the inequality

bm(x)bm(y) > bm(x + y)

is valid for all x, y ≥ m2 + m.

Proof. Let us fix m ≥ 2 and x, y ≥ m2 + m. In such a setting, there exist
numbers c ≥ d ≥ m + 1 and i, j ∈ {0, 1, . . . ,m − 1} such that x = cm + i and
y = dm + j. Hence, we get that

bm(x)bm(y) = bm(cm + i)bm(dm + j) = bm(cm)bm(dm).

The right hand side from the Bessenrodt–Ono type inequality might be esti-
mated as follows

bm(x + y) = bm((c + d)m + i + j) ≤ bm((c + d + 1)m)

= bm(c + d + 1) + bm((c + d)m)

= bm(c + d + 1) + bm(c + d) + bm((c + d − 1)m)

= · · · = bm(c + d + 1) + · · · + bm(c + 1) + bm(cm)

≤ (d + 1)bm(2c + 1) + bm(cm).

Therefore, it suffices to show that

(bm(dm) − 1)bm(cm) > (d + 1)bm(2c + 1).

The above might be further simplified to

bm(dm) > d + 2 (4.2)

bm(cm) ≥ bm(2c + 1). (4.3)

At first, let us deal with (4.2). Since d ≥ m+1, it follows that m can be taken
l times as a part of dm, where l ∈ {0, 1, . . . , d}. In such a setting, we may
require that all of the remaining parts of dm are equal to 1. Furthermore, the
assumption that d ≥ m + 1 also guarantees that m2 might occur as a part of
dm, and if that is the case, then we can either take m as a part or not, which
deliver us at least two additional m-ary partitions of dm. Thus, we obtain that

bm(dm) = d + 1 + 2 > d + 2.

In the case of (4.3), let us observe that if m ≥ 3, then bm(cm) ≥ bm(3c) ≥
bm(2c+1). On the other hand, if m = 2, then we just have b2(2c) = b2(2c+1).

In conclusion, both inequalities (4.2) and (4.3) are satisfied for all c, d ≥
m + 1, as required. �

At the end, it is worth noting that despite having Mahler’s theorem (see
[25]), which states that

log bm(n) ∼ (log n)2

2 log m
, (4.4)

we can neither use it nor apply Theorem 2.1 to deduce the Bessenrodt–Ono
type inequality for the m-ary partition function. In order to apply Theorem
2.1 we need to know functions c1, c2, f : N+ → R+ such that

c1(n)ef(n) < bm(n) < c2(n)ef(n).
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However, asymptotic equality (4.4) ensures only that

ed1(n)f(n) < bm(n) < ed2(n)f(n),

where limn→∞ d1(n) = limn→∞ d2(n) = 1. This provides too little information
in order to use Theorem 2.1. Even stronger estimation,

log bm(mn) =
1

2 log m

(
log

n

log n

)2

+
(

1
2

+
1

log m
+

log log m

log m

)
log n

−
(

1 +
log log m

log m

)
log log n + Ψ

(
log n − log log n

log m

)
+ o(1)

given by [12] is not sufficient to conclude the Bessenrodt–Ono type inequality
for the m-ary partition function. Here the main obstruction is the function
Ψ : R+ → R+, which is implicitly given. We only know that Ψ is periodic with
period 1 and bounded.
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