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Abstract. We generalize valuations on polyhedral cones to valuations on
(plane) fans. For fans induced by hyperplane arrangements, we show a cor-
respondence between rotation-invariant valuations and deletion–
restriction invariants. In particular, we define a characteristic polynomial
for fans in terms of spherical intrinsic volumes and show that it coin-
cides with the usual characteristic polynomial in the case of hyperplane
arrangements. This gives a simple deletion–restriction proof of a result
of Klivans–Swartz. The metric projection of a cone is a piecewise-linear
map, whose underlying fan prompts a generalization of spherical intrinsic
volumes to indicator functions. We show that these intrinsic indicators
yield valuations that separate polyhedral cones. Applied to hyperplane
arrangements, this generalizes a result of Kabluchko on projection vol-
umes.
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1. Introduction

Let S be a collection of sets closed under taking intersections. A map ϕ from
S into some abelian group G is a valuation if

ϕ(S ∪ T ) = ϕ(S) + ϕ(T ) − ϕ(S ∩ T ) ,

for any S, T ∈ S, such that S ∪ T ∈ S. For geometric objects such as convex
polytopes, polyhedra, or subspaces, valuations are a gateway between geometry
and combinatorics, amply demonstrated in [5,17]. In particular, Ehrenborg and
Readdy [10] showed how generalizations of Zaslavsky’s famous formula for the
number of regions of a hyperplane arrangement can be easily inferred using
valuations. The purpose of this note is to further the ties between geometry
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and combinatorics by studying valuations on more general arrangements of
geometric objects.

A fan in R
d is a finite collection N of equi-dimensional polyhedral cones

that pairwise meet in faces. A fan N is plane if all cones have the same linear
span. Thus, for plane fans, we can speak of fans relative to subspaces of R

d.
Throughout, we will assume that all fans are plane and will drop the adjective
plane. To define valuations on fans, we adapt Sallee’s notion of weak valua-
tions [24] on polytopes: A map ϕ : Fansd → G is a fan valuation if for every
fan N ∈ Fansd and linear hyperplane H

ϕ(N ) = ϕ(N ∩ H≤) + ϕ(N ∩ H≥) − ϕ(N ∩ H) ,

where H≤,H≥ denote the two halfspaces induced by H. We defer precise def-
initions to Sect. 2. Any arrangement A of linear hyperplanes in some subspace
U ⊆ R

d induces a fan N (A) whose maximal cones are the closures of the
regions in the complement of A. For a hyperplane H ∈ A, we write A/H for
the hyperplane arrangement induced in H by the hyperplanes A\H, called
the restriction of A to H. In Proposition 2.3, we show that fan valuations on
arrangements satisfy

ϕ(N (A)) = ϕ(N (A\H)) + ϕ(N (A/H)) .

Such deletion–restriction-type invariants are well studied in the combinatorial
theory of hyperplane arrangements ([27, Sect. 3.11], [11]) and, more generally,
(simple) matroids [8]. The main difference is that we do not impose special
treatment when H is a coloop of A. The benefit is that these weak deletion–
restriction invariants have the structure of an abelian group. More precisely, let
L(A) be the lattice of flats of A and write w0(A), . . . , wd(A) for the Whitney
numbers of the first kind, i.e., the coefficients of the unsigned characteristic
polynomial of A. Then, the group of weak deletion–restriction invariants is
spanned by the Whitney numbers.

We show that fan valuations invariant under rotation yield precisely the
weak deletion–restriction invariants.

Theorem 1.1. Let ϕ : Fansd → G be a rotation-invariant fan valuation. Then,
there are g0, . . . , gd ∈ G, such that for any hyperplane arrangement A

ϕ(N (A)) = g0w0(A) + · · · + gdwd(A) .

Conversely, for any deletion–restriction invariant ψ on hyperplane arrange-
ments, there is a fan valuation ϕ with ψ(A) = ϕ(N (A)).

For the latter part, we consider fan valuations induced by spherical intrinsic
volumes, also known as projection volumes. Let Bd(v, r) be the closed ball in
R

d centered at v ∈ R
d of radius r, and let Bd = Bd(0, 1), where 0 indicates

the origin. The kth spherical intrinsic volume vk(C) of a cone C ⊂ R
d is the

probability, with respect to the uniform distribution on Bd, that the point of
C closest to a randomly chosen x ∈ Bd is contained in the relative interior of
a face Fx ⊆ C of dimension k. We refer to [2,3] for much more on intrinsic
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volumes. The definition is extended to fans by setting vk(N ) :=
∑

C∈N vk(C).
With that, we define the (unsigned) characteristic polynomial of a fan N by

χN (t) := v0(N ) + v1(N )t + · · · + vd(N )td .

We argue that χN (t) is a suitable generalization of the characteristic poly-
nomial of a hyperplane arrangement. We show that it satisfies Zaslavsky’s
fundamental results

χN (1) = # regions ofNand, ifN is not a single subspace, χN (−1) = 0 .

While the first statement is evident, the second can be found in [2, Corollary
4.4]. We derive the latter from an identity of Hug–Kabluchko [15], for which
we provide a self-contained proof (Theorem 3.13).

Most importantly, we show χN (A)(t) = (−1)dimAχA(−t), where χA(t)
is the usual characteristic polynomial of an arrangement. This gives a sim-
ple deletion–restriction proof of the main result of Klivans–Swartz [18] which
identifies projection volumes with the Whitney numbers of L(A).

Whereas Hadwiger’s famous classification theorem [14] states that the
linear space of continuous and rigid-motion invariant valuations on convex
bodies is spanned by the usual intrinsic volumes, there is no such result for
spherical convex sets. McMullen [13, Problem 49] conjectured that the lin-
ear space of continuous and rotation-invariant valuations on spherical convex
bodies is spanned by the spherical intrinsic volumes. From this perspective,
Theorem 1.1 together with the result of Klivans–Swartz can be seen as an
indication for this conjecture.

In the second part of the paper, we take a more refined look at spherical
intrinsic volumes. The collection of points x ∈ R

d such that the nearest point
in C is contained in a fixed face F ⊆ C is a polyhedral cone ΠF (C) and
M(C) :={ΠF (C) : F ⊆ C face} is a complete fan, which we call the Moreau
fan of C. The face lattice of M(C) is isomorphic to the interval poset of the face
lattice of C. Such fan structures were considered by Björner under the name
of anti-prisms in connection with a question of Lindström and our findings
reconfirm results announced in [7].

It is known that C �→ vk(C) is a cone valuation [22]. We prove a gener-
alization that this holds on the level of simple indicator functions: Consider
the set Πk(C) =

⋃
F ΠF (C), where the union is over all k-dimensional faces

of C. Its simple indicator is the function Vk(C) : R
d → Z that agrees with the

indicator of Πk(C) on a dense open set; see Sect. 3.2 for details. We show that
C �→ Vk(C) is a valuation (Theorem 3.2) and that C can be recovered from
Vk(C) for all dim lineal(C) ≤ k ≤ dim C with 2k 
= d (Theorem 3.5).

For the function Vk(N (A)) =
∑

C∈N (A) Vk(C) of a hyperplane arrange-
ment A, it follows that Vk(N (A))(x) = wk(A) for all generic x ∈ R

d. Kabluchko
[16] showed that the exceptional set {x : Vk(N (A))(x) 
= wk(A)} coincides
with the support of a hyperplane arrangement. We generalize Kabluchko’s re-
sult in Theorem 3.9 with a short proof that also allows us to give a simple
interpretation for the associated arrangement.
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2. Fan Valuations and Deletion–Restriction Invariants

For a set S ⊂ R
d, aff(S) ⊂ R

d is the affine hull of S, which is the inclusion-
minimal affine space containing S. The linear hull lin(S) is the inclusion-
minimal linear subspace containing S and the lineality space lineal(S) is the
inclusion-maximal linear subspace contained in S. We note that if S contains
the origin, then lin(S) = aff(S). The relative interior relint(S) ⊆ S is the
usual interior of S relative to aff(S).

A nonempty set C ⊂ R
d is a convex cone if αx + βy ∈ C for all x, y ∈ C

and α, β ≥ 0. The cone hull cone(S) of S is the intersection of all convex cones
C that contain S. A convex cone C is a polyhedral cone if C = cone(S) for
some finite S. All cones considered here are polyhedral and we will simply refer
to them as cones. A relatively open cone is the relative interior of a cone.
A face of a polyhedral cone C is a cone F ⊆ C, such that for any x, y ∈ C,
if x + y ∈ F , then x, y ∈ F . A plane fan in R

d is a finite collection N of
polyhedral cones, such that for all C,C ′ ∈ N

(i) C ∩ C ′ is a face of C and C ′, and
(ii) lin(C) = lin(C ′).

It follows that all cones in N are of the same dimension. We set dim N := dimC
and lin(N ) := lin(C) as well as lineal(N ) := lineal(C) for any C ∈ N . The rank
of N is r(N ) = dim(N ) − dim lineal(N ). Note that our definition differs from
the usual definition of fans (see, for example, [28, Section 7.1]) in that we only
retain the inclusion-maximal cones. Adding to N the faces of all C ∈ N , we
recover pure fans supported on a subspace. As we are exclusively dealing with
plane fans throughout, we will drop the adjective ‘plane’ henceforth.
Denote by Fansd the collection of fans in R

d. We define for any set S ⊆ R
d

N ∩ S := {C ∩ S : C ∈ N , relint(C) ∩ S 
= ∅} .

For a linear hyperplane H ⊂ R
d, that is, a linear subspace of dimension d − 1,

we denote the two induced closed halfspaces by H≤ and H≥.

Proposition 2.1. Let N be a fan in R
d and H a hyperplane. Then, N ∩ H,

N ∩ H≤, and N ∩ H≥ are fans.

Proof. If C ′ ∈ N ∩ H, then there is some C ∈ N such C ′ = C ∩ H. Since
H meets C ′ in its relative interior, C is unique and dimC ′ = dimC − 1.
This shows that N ∩ H is a collection of cones with the same linear hull. If
C ′

1, C
′
2 ∈ N ∩ H with C ′

i = Ci ∩ H for i = 1, 2, then C ′
1 ∩ C ′

2 = (C1 ∩ C2) ∩ H
and hence C ′

1 ∩ C ′
2 is a face of C ′

1 and C ′
2. The proof for the two halfspaces is

analogous. �

A map ϕ from Fansd into some abelian group G is a fan valuation if ϕ(∅) = 0
and for any N ∈ Fansd and hyperplane H

ϕ(N ) = ϕ(N ∩ H≤) + ϕ(N ∩ H≥) − ϕ(N ∩ H) .

Let Conesd be the intersectional family of polyhedral cones in R
d. A cone valu-

ation is a map ϕ′ : Conesd → G, such that for any two cones
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C,D ∈ Conesd with C ∪ D ∈ Conesd

ϕ′(C ∪ D) = ϕ′(C) + ϕ′(D) − ϕ′(C ∩ D) .

Sallee [24] called a map ϕ′ : Conesd → G a weak valuation if for every cone
C and hyperplane H

ϕ′(C) = ϕ′(C ∩ H≤) + ϕ′(C ∩ H≥) − ϕ′(C ∩ H) .

Clearly, every cone valuation is a weak valuation and it was shown in [24] that
the converse holds: every weak valuation on cones is a cone valuation.
If ϕ′ is a cone valuation, then

ϕ(N ) :=
∑

C∈N
ϕ′(C) (1)

is a fan valuation. Indeed, for any hyperplane H, the cones C ∈ N for which,
say, C ⊆ H≤ only yields a cone in N ∩ H≤. Consequently, ϕ′(C) only con-
tributes to ϕ(N ∩ H≤). The cones C ∈ N with relint(C) ∩ H 
= ∅ give rise to
cones in N ∩ H≤, N ∩ H≥, as well as N ∩ H and the weak valuation property
ensures that the total contribution is ϕ′(C).

The next result shows that every fan valuation is of that form. For that,
we note that if C is a cone, then {C} is a fan.

Proposition 2.2. Let ϕ be a fan valuation. Then

ϕ(N ) =
∑

C∈N
ϕ({C}) .

Thus, we will write ϕ(C) instead of ϕ({C}) from now on.

Proof. The claim follows trivially if N is empty or if it consists of a single
cone. If dimN = 1, then the only nontrivial case is N = {R≥0c,−R≥0c} for
some c ∈ R

d \ {0}. Now, H = {0} is the unique linear hyperplane in lin(N )
and N ∩ H = ∅. The assertion follows from the definition of fan valuations.

Assume now that the statement holds for all fans consisting of less than
k cones and whose dimension is smaller than e for some k ≥ 2 and e ≥ 2. Let
N be a fan with k cones and dim N = e. For C,C ′ ∈ N , let H be a separating
hyperplane, that is, C∪C ′ 
⊆ H and C ′, C ′′ are contained in distinct halfspaces.
Then, N ∩ H≥ and N ∩ H≤ have less than k cones and dim(N ∩ H) < e. Let
X = {C ∈ N : relintC ∩ H 
= ∅}. Then

ϕ(N ) = ϕ(N ∩ H≤) + ϕ(N ∩ H≥) − ϕ(N ∩ H)

=
∑

C∈N\X
ϕ({C}) +

∑

C∈X

(
ϕ({C ∩ H≤}) + ϕ({C ∩ H≥}) − ϕ({C ∩ H})

)

=
∑

C∈N\X
ϕ({C}) +

∑

C∈X

ϕ({C}) =
∑

C∈N
ϕ({C}) ,

where the second equality uses induction and the fact that every C ∈ N\X
is either contained in N ∩ H≤ or N ∩ H≥ but not in both. For C ∈ X, we
use the weak valuation property together with the fact C �→ ϕ({C}) is a weak
valuation. This yields the third equality. �
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2.1. Hyperplane Arrangements

Let A be a finite collection of linear hyperplanes in a subspace L of R
d. The

complement L\⋃ A is a collection of open sets in L whose closures are polyhe-
dral cones. These cones define a fan that we denote by N (A). For a hyperplane
H contained in L, such that H 
∈ A observe that N (A)∩H = N (A/H), where
A/H :={H ′ ∩H : H ′ ∈ A,H ′ 
= H} is the restriction of A to H. If H ∈ A, we
write A\H = {H ′ ∈ A : H ′ 
= H} for the deletion of H. A k-singleton, or sim-
ply, a singleton, is a hyperplane arrangement consisting of a single hyperplane
in some k-dimensional subspace of R

d, where 1 ≤ k ≤ d.

Proposition 2.3. Let ϕ be a fan valuation and A a hyperplane arrangement
which is not a singleton. For any H ∈ A

ϕ(N (A)) = ϕ(N (A\H)) + ϕ(N (A/H)) .

Proof. Let H ∈ A and set A′ = A\H. The valuation property yields

ϕ(N (A′)) = ϕ(N (A′) ∩ H≤) + ϕ(N (A′) ∩ H≥) − ϕ(N (A′) ∩ H).

We infer from Proposition 2.2 that ϕ(N (A)) = ϕ(N (A′) ∩ H≤) + ϕ(N (A′) ∩
H≥). By definition, ϕ(N (A′ ∩H)) = ϕ(N (A/H)), which now yields the claim.

�

The group SO(Rd) of rotations acts on Fansd by g · N :={g C : C ∈ N}.
We call a fan valuation ϕ invariant if ϕ(g · N ) = ϕ(N ) for all g ∈ SO(Rd)
and N ∈ Fansd. Clearly, if ϕ is invariant, it assigns the same value to all
k-singletons.

We define the unsigned characteristic polynomial χA(t) of an arrange-
ment A recursively as follows. If A is a k-singleton, then χA(t) :=tk + tk−1. If
A consists of more than one hyperplane, then for H ∈ A

χA(t) := χA\H(t) + χA/H(t) . (2)

The unsigned characteristic polynomial is related to the usual characteristic
polynomial (cf. [27, Sect. 3.11]) by χA(t) = (−1)dimLχA(−t). It is well known
that the characteristic polynomial of a hyperplane arrangement is indepen-
dent of the order in which the hyperplanes are deleted and contracted, and
thus, the unsigned characteristic polynomial is also independent of this choice.
The coefficients of χA(t) are the (unsigned) Whitney numbers of the first kind
denoted by wi(A).

Theorem 2.4. Let ϕ be an invariant fan valuation taking values in an abelian
group G. Then, there are a0, . . . , ad ∈ G, such that for every arrangement A

ϕ(N (A)) = a0w0(A) + · · · + ad−1wd−1(A) . (3)

Moreover, the ai’s are determined by the values ϕ(Ak), where Ak is a
k-singleton, 1 ≤ k ≤ d.

Proof. Let bk :=ϕ(N (Ak)) for any k-singleton Ak and set ak−1 :=
∑d

i=k(−1)k−ibi
for 1 ≤ k ≤ d. We proceed by induction on the number of hyperplanes in A.
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Since ak−1 + ak = bk, clearly (3) holds for k-singletons. Otherwise, let H ∈ A.
Then

ϕ(N (A)) = ϕ(N (A\H)) + ϕ(N (A/H))

=
d−1∑

i=0

aiwi(A\H) +
d−1∑

i=0

aiwi(A/H) =
d−1∑

i=0

aiwi(A) ,

where the second equality above follows by induction. �

2.2. Spherical Intrinsic Volumes

In this section, we introduce characteristic polynomials of fans via spherical
intrinsic volumes. This underlines the connection between invariant fan val-
uations and certain deletion–restriction-type invariants on arrangements as
indicated by Theorem 2.4

Given a polyhedral cone C ⊆ R
d and a point x ∈ R

d, there is a unique
point πC(x) ∈ C minimizing the Euclidean distance ‖x − πC(x)‖2. The map
πC : R

d → C is called the metric projection or nearest-point map of C; cf. [25,
Sect. 1.2]. Let us denote by Fx the unique face of C that contains πC(x) in
its relative interior and Πk(C) :={x ∈ R

d : dim Fx = k}. The k-th spherical
intrinsic volume is given by

vk(C) :=
vol(Πk(C) ∩ Bd)

vol(Bd)
,

where Bd is the unit ball. In the next section, we will consider the sets Πk(C)
more closely and, in particular, deduce the known fact that C �→ vk(C) is a
cone valuation (Corollary 3.3). It is apparent that vk is SO(Rd)-invariant. We
define the induced kth spherical intrinsic volume of a fan N as

vk(N ) :=
∑

C∈N
vk(C),

and we define the characteristic polynomial of N as

χN (t) := v0(N ) + v1(N )t + · · · + vd(N )td .

The characteristic polynomial shares a number of similarities with that of a
hyperplane arrangement. Since the Πk(C) cover R

d and Πk(C) ∩ Πl(C) has
measure zero, it follows that:

χN (1) = |N |,
and it follows from Theorem 3.13 in the next section that if N 
= {L} for some
linear subspace L, then

χN (−1) = 0 .

These two statements are counterparts to Zaslavsky’s famous results concern-
ing characteristic polynomials of hyperplane arrangements.

For the case N = N (A), the spherical intrinsic volumes vk(N ) =∑
C∈N vk(C) were studied by Klivans and Swartz and the following is the

main result of [18].
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Corollary 2.5. Let A be a linear hyperplane arrangement. Then

χN (A)(t) = χA(t) .

Proof. In light of Proposition 2.3 and (2), it suffices to compute χN (Ak)(t),
where Ak is a k-singleton in some linear subspace L. More specifically, if
H≤ ⊂ L is a halfspace, then vk(H≤) = vk−1(H≤) = 1

2 and vj(H≤) = 0
for all other j. This shows χN (Ak)(t) = tk + tk−1. Hence, χN (A)(t) and χA(t)
satisfy the same deletion–restriction recurrence with identical starting condi-
tions. �

3. Anti-prism Fans and Intrinsic Volumes

In this section, we take a closer look at the geometric combinatorics of spherical
intrinsic volumes by way of associated indicator functions.

3.1. Moreau Fans and Anti-prisms

Let C ⊆ R
d be a polyhedral cone. It is straightforward to verify that if

x, y ∈ R
d, such that πC(x), πC(y) ∈ F for some face F ⊆ C, then πC(x + y) ∈

F . Hence, ΠF (C) :=π−1
C (F ) is a closed, full-dimensional polyhedral cone.

Moreau [23] considered the decomposition of space into the collection of cones

M(C) := {ΠF (C) : F is a nonempty face of C},

and we call M(C) the Moreau fan of C.
The combinatorics of Moreau fans can be nicely described in terms of

Lindström’s interval posets [20]. Let (L,
) be a partially ordered set. The
interval poset I(L) is the collection of nonempty intervals [a, c] = {b : a 

b 
 c} ordered by reverse inclusion. The maximal elements are precisely [a, a],
and if L has a top and bottom element 1̂ and 0̂, respectively, then [0̂, 1̂] is the
unique minimum of I(L). Lindström [20] asked if I(F(P )) is the face lattice
of a polytope whenever F(P ) is the face lattice of a polytope P . Björner
affirmatively answered Lindström’s question for 3-dimensional polytopes. The
complete question was resolved in the negative by Dobbins [9].

Björner [7] also announced that I(F(P )) is the face poset of a complete
fan (or star-convex sphere), the anti-prism fan of P . We briefly reconfirm this
result by showing that the Moreau fan of C = cone(P ×{1}) realizes I(F(P )).
Let Lop be the dual (or opposite) poset of L. Then

I(L) ∼= {(a, b) : a 
 b} ⊆ L × Lop .

The face lattice F(C) of C is the collection of nonempty faces of C partially
ordered by inclusion. This is a graded poset ranked by dimension and we denote
by Fk(C) the set of k-dimensional faces of C. For F ∈ F(C), let

NFC := {c ∈ R
d : 〈c, x〉 ≤ 〈c, y〉 for all x ∈ C, y ∈ F}

be the normal cone of C at F . The polar to C is C∨ = Nlineal(C)C. Moreover,
F �→ NFC gives an isomorphism from F(C) to F(C∨) = F(C)op; cf. [28,
Section 2.3].
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Let x ∈ R
d. It follows from ‖x−πC(x)‖ ≤ ‖x−z‖ for all z ∈ C that x−πC(x) ∈

NFx
C. Hence, ΠF (C) = F + NFC for all nonempty faces F ⊆ C. Moreover

(F + NFC) ∩ (G + NGC) = (F ∩ G) + (NGC ∩ NFC) , (4)

which shows the following.

Proposition 3.1. Let C ⊆ R
d be a polyhedral cone. The face lattice of the

Moreau fan M(C) is isomorphic to the interval poset I(F(C)).

3.2. Conical Functions

For a subset S ⊆ R
d, we denote its indicator function by [S] : R

d → {0, 1},
which is defined by [S](x) = 1 if and only if x ∈ S. Let Cd ⊆ Fun(Rd, Z) be
the abelian subgroup spanned by [C] for C ∈ Conesd. Since [C] = [C ∩H≤]+
[C ∩H≥]− [C ∩H], the map C �→ [C] ∈ Cd is a cone valuation. Moreover, any
homomorphism ϕ̃ : Cd → G gives a valuation on cones by ϕ(C) :=ϕ̃([C]) and
Groemer [12] showed every cone valuation arises that way.
For a cone C ⊆ R

d, define

Vk(C) :=
∑

F∈Fk(C)

[ΠF (C)] ∈ Cd .

This is an indicator generalization of the spherical intrinsic volumes and we
recover the spherical intrinsic volumes as vk(C) = 1

vol(Bd)

∫
Bd

Vkdμ. Note that
Vk : Conesd → Cd is not a valuation: For the augmentation ε : Cd → Z with
ε([C]) = 1 for all nonempty cones C, we see that ε(Vk(C)) is the number of
k-dimensional faces of C, which is not a valuation. Nonetheless, we can view
Vk as a valuation taking values in the group of simple indicator functions

Sd := Cd/U ,

where U is the subgroup generated by all [C] with C ∈ Conesd and dim C < d.

Theorem 3.2. Let C ⊂ R
d be a cone and H a hyperplane. Then

Vk(C) = Vk(C ∩ H≤) + Vk(C ∩ H≥) − Vk(C ∩ H)

as simple indicator functions.

Proof. Observe that f = g for f, g ∈ Sd if f(x) = g(x) for almost all x ∈ R
d.

Thus, let x ∈ R
d a generic point. Let C≤, C≥, and C= denote C∩H≤, C∩H≥,

and C ∩ H, respectively. Let πC(x) = y and F ⊆ C the unique face with
y ∈ relint(F ). We may assume that y ∈ H≤, that is, y = πC≤(x) and F≤ =
F ∩ H≤. Define y=, y≥ with corresponding faces F=, F≥.

If y = y≥, then y ∈ H and F ∩ H 
= ∅. If F ⊆ H, then F = F≤ =
F= = F≥ and we are done. The case F 
⊆ H is not relevant, as x is generic:
perturbing x parallel to lin(F ) moves y away from H.

If y≥ 
= y, then y≥ = y=. Indeed, any point on the segment z ∈ [y, y≥)
satisfies ‖x − z‖ < ‖x − y≥‖ and [y, y≥] meets H. It follows that F≥ = F=

and dimF = dimF≤. This proves the claim. �

The spherical intrinsic volume σd−1(C) :=vold(C∩Bd)
vold(Bd)

is a simple valuation and
hence extends to a linear function σd−1 : Sd → R.
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Corollary 3.3. The spherical intrinsic volumes vk(C) = σd−1(Vk(C)) are cone
valuations.

Similar to the situation for polytopes, the valuations Vk separate Cd. The proof
of the next result needs the following observation.

Lemma 3.4. Let C ⊆ R
d be a cone and 0 ≤ k ≤ d. Then Vk(C) = Vd−k(C∨).

Proof. Let F ⊆ C be a face of dimension k. The normal cone NFC := F � is
a face of the polar C∨ = Nlineal(C)C of dimension d − dim F . Using standard
facts from cone polarity (cf. [4]), a direct calculation shows that the normal
cone of C∨ at F � is precisely F . Recall that ΠF (C) = F + NFC and thus
ΠF (C) = ΠF�(C∨). �

Theorem 3.5. Let C ⊆ R
d be a cone and dim lineal(C) ≤ k ≤ dim C. If 2k 
= d,

then C can be recovered from Vk(C).

By the previous lemma, we can directly see that for 2k = d we have Vk(C) =
Vk(C∨), making this assumption necessary.

Proof. First, note that Vk(C) = 0 whenever k > dim C or, by Lemma 3.4,
k < dim lineal(C).

Now, let S ⊂ R
d be the collection of points for which Vk(C) does not

vanish on a small neighborhood. This is the union of the interiors of ΠF (C) =
F +NFC, where F ranges over the k-dimensional faces of C. It follows from (4)
that dim ΠF (C) ∩ ΠG(C) < d for any two distinct F,G ∈ Fk(C), and hence,
we can recover the cones ΠF (C) from S.

We may use Lemma 3.4 to assume that k < d
2 . Every k-face E of ΠF (C) =

F + NFC is of the form E = E′ + NE′′C, where E′ ⊆ F ⊆ E′′ are faces with
d − k = dimE′′ − dim E′. We say that E is free, if there exists no k-face G of
C, such that E = ΠF (C) ∩ ΠG(C). Equivalently, E is not free, if and only if
there exist another k-faces G 
= F , such that E′ ⊆ G ⊆ E′′. Thus, E is free,
if and only if F = E′ or F = E′′, and since dimE′′ − dim E′ = d − k > k,
the case F = E′′ is impossible. Note that if F = E′, then E′′ = C, so E =
F + NCC = F . Therefore, the set of all free faces is precisely the set k-faces
of C, from which we can recover C. �

3.3. Characteristic Indicators

Corollary 2.5 can be generalized to the setting of indicator functions. Let
ρ : Cd → Sd be the canonical projection. Then, we define X : Fansd → Sd[t]
as

X N (t) :=
d∑

k=0

ρ(Vk(N ))tk ∈ Sd[t].

This is a natural generalization of χN (t).

Corollary 3.6. Let A be an arrangement and 0 ≤ k ≤ d. Then, as elements of
Sd[t]

X N (A)(t) = χA(t) · ρ([Rd]) . (5)
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Proof. The proof of Corollary 2.5 applies verbatim on noting that

X N (Ak)(t) = (tk + tk−1) · ρ([Rd]) = χAk(t) · ρ([Rd])

for all k-singletons Ak, 1 ≤ k ≤ d. �

Already in dimension 2, one can see that (5) holds only for generic points. It
was shown in [16] that the exceptional set of points x ∈ R

d where Vk(A)(x) 
=
wk(A) is a hyperplane arrangement. We will slightly generalize the results
of [16] with a simpler proof that prompts a simple interpretation for the ex-
ceptional set.

For the proof, as well as the precise statement of our results, we recall
two well-known ring structures on Cd; see, for example, [19] for an excellent
exposition. First, note that (Cd,+, ·) is a commutative ring with unit 1 = [Rd]
with respect to pointwise multiplication of functions. For C,C ′ ∈ Conesd, we
have

([C] · [C ′])(x) := [C](x) · [C ′](x) = [C ∩ C ′](x).

A second ring structure (Cd,+, ∗) is obtained with respect to taking conical
hulls C ∨ C ′ := cone(C ∪ C ′)

([C] ∗ [C ′])(x) := [C ∨ C ′](x).

These two ring structures are related via polarity: The map D : Sd → Sd

[C] �→ D([C]) = [C∨] is additive [4, Theorem 1.5], and since (C ∩ D)∨ =
C∨ +D∨ for all C,D ∈ Conesd for which C ∪D is convex [26, Theorem 1.6.9],
we see that polarity gives an isomorphism of rings (C,+, ·) ∼= (C,+, ∗).

Let A be a hyperplane arrangement in a subspace U of R
d. The lattice of

flats L(A) is the collection of subspaces formed by intersections of hyperplanes
in A ordered by reverse inclusion. The minimal element is 0̂ = U and 1̂ =
lineal(A) is the maximal element. The Möbius function μL of a finite partially
ordered set (L,
) is recursively defined for x 
 y ∈ L as follows: If x = y,
then μL(x, y) = 1 otherwise

μL(x, y) = −
∑

x	zy

μL(x, z).

We will suppress the subscript of μ if L is clear from the context. It is well
known that μ = μL(A) alternates in sign, or, more precisely, |μ(L,M)| =
(−1)dimL−dimMμ(L,M); see [27, Section 3.10]. Let δ(L,K) = 1 if L = K and
= 0 otherwise. Denote by F(N ) the set of all nonempty faces of all cones
of N . We will first show the following lemma, which will be essential to our
generalization of Corollary 3.6:

Lemma 3.7. Let A be a hyperplane arrangement with lattice of flats L(A).
Then

∑

C∈N (A)

[C] =
∑

L∈L(A)

|μ(0̂, L)| · [L]

as elements in Cd.
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Using the defining property of weak valuations, it is straightforward to verify
that the map C �→ (−1)dimC [relint(C)] ∈ Cd is a valuation. The Euler map is
the induced homomorphism E : Cd → Cd.

Lemma 3.8. The Euler map is an involution, that is, E ◦ E = id.

Proof. Using Möbius inversion on the face lattice of a cone C (cf. [6, Sec-
tion 3.5]), one infers that

E([C]) = (−1)dimC [relint(C)] =
∑

F

(−1)dimF [F ] ,

where F runs over all faces of C. Applying the Euler map to the right-hand
side, we get

∑

F

[relint(F )] = [C] . �

Proof of Lemma 3.7. Let A be an arrangement in R
d and let L ∈ L(A). Since

[L] =
∑

F∈F(A),F⊆L

[relint(F )],

it follows that:

[L] = (−1)dimLE([L]) =
∑

F∈F(A),F⊆L

(−1)dimL−dimF [F ] .

We calculate
∑

L∈L(A)

|μ(0̂, L)| · [L] =
∑

L∈L(A)

(−1)d−dimLμ(0̂, L)
∑

F∈F(A)
F⊆L

(−1)dimL−dimF [F ]

=
∑

F∈F(A)

(−1)d−dimF
∑

L∈L(A)
F⊆L

μ(0̂, L)[F ]

=
∑

F∈F(A)

(−1)d−dimF δ(0̂, lin(F ))[F ] =
∑

C∈N (A)

[C] .

�

Theorem 3.9. For all 0 ≤ k ≤ d, as elements in Cd

Vk(N (A)) =
∑

L∈Lk(A)

⎛

⎜
⎝

∑

K∈L(A)
K⊆L

|μ(L,K)| · [K]

⎞

⎟
⎠∗

⎛

⎜
⎝

∑

M∈L(A)
L⊆M

|μ(0̂,M)| · [M⊥]

⎞

⎟
⎠ .

(6)

The proof is inspired by the arguments leading to [18, Theorem 5]. The addi-
tional bookkeeping is delegated to the ring structure on Cd.

Proof. We can rewrite the left-hand side

Vk(N (A)) =
∑

P∈N (A)

∑

F∈Fk(P )

[F ] ∗ [NFP ] =
∑

F∈Fk(A)

[F ] ∗

⎛

⎜
⎝

∑

P∈N(A)
F≤P

[NFP ]

⎞

⎟
⎠ .
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Let L = lin(F ) and denote by AL :={H ∈ A : L ⊆ H} the localization of A at
L. Note that there is a one-to-one correspondence between the regions C of AL

and P ∈ N (A) with F ⊆ P and that under this correspondence C∨ = NFP .
Thus

∑

F∈Fk(A)

[F ] ∗

⎛

⎜
⎝

∑

P∈N(A)
F≤P

[NFP ]

⎞

⎟
⎠ =

∑

L∈Lk(A)

⎛

⎝
∑

F∈N (AL)

[F ]

⎞

⎠ ∗
⎛

⎝
∑

C∈N (AL)

[C∨]

⎞

⎠ .

Using Lemma 3.7 on the inner sums gives the result
∑

F∈N (AL)

[F ] =
∑

K∈AL

|μAL(L,K)| · [K] =
∑

K∈L(A)
K⊆L

|μA(L,K)| · [K] ,

and

∑

C∈N (AL)

[C∨] =

⎛

⎝
∑

C∈N (AL)

[C]

⎞

⎠

∨

=

(
∑

M∈AL

|μAL
(0̂,M)| · [M ]

)∨

=
∑

M∈L(A)
L⊆M

|μA(0̂,M)| · [M⊥] . (7)

�

For direct comparison with Theorem 1.4 of [16], note that for K ⊆ L ⊆ M ∈
L(A), we have dim(K + M⊥) = d if and only if K = L = M . Thus, for a
generic point x ∈ R

d, the evaluation ([K] ∗ [M⊥])(x) = 0 if K 
= L or L 
= M .
This proves Corollary 3.6 coefficientwise

Vk(A)(x) =
∑

L∈Lk(A)

|μ(L,L)| · |μ(Rd, L)| · ([L] ∗ [L⊥])(x) = wk(A) ,

where we used that the terms |μ(Rd, L)| sum up to wk(A) (cf. [27, Section
3.10]). Since all summands in (6) are positive, this also shows that
Vk(A)(x)≥wk for (non-generic) points x ∈ R

d. We have Vk(A)(x) > wk

precisely when x ∈ K + M⊥ for K ⊆ L ⊆ M , such that dimL = k and
dim(K + M⊥) = d − 1. The collection of these hyperplanes K + M⊥ de-
fines a hyperplane arrangement, which can be given a concrete interpretation.
If A′ is any hyperplane arrangement in some linear subspace U ⊂ R

d, then
A′ + U⊥ :={H + U⊥ : H ∈ A′} is an arrangement of hyperplanes in R

d with
lineality space U⊥.

Corollary 3.10. Let A be an arrangement of hyperplanes in R
d. Then,

Vk(A)(x) > wk for some 0 ≤ k ≤ d if and only if x is contained in the
arrangement

Π(A) :=
⋃

L∈L(A)

(A/L) + L⊥ .

A point x ∈ R
d is contained in (A/L) + L⊥ if and only if the orthogonal

projection of x onto L is contained in A/L. The exceptional set of Theorem 3.9
was also considered by Lofano–Paolini [21]. For a subspace U ⊂ R

d and x ∈ R
d,
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let dU (x) :=‖x−πU (x)‖ be the distance of x to U . Lofano–Paolini call a point
x ∈ R

d generic with respect to an arrangement A if dL(x) 
= dL′(x) for all
distinct L,L′ ∈ L(A). The set of non-generic points lies on a collection of
quadrics and is in general not a hyperplane arrangement. A characterization
of the points away from Π(A) is as follows; cf. Lemma 5.2 of [21].

Lemma 3.11. Let A be a hyperplane arrangement in R
d and x ∈ R

d. Then,
x 
∈ ⋃

Π(A) if and only if dL′(x) > dL(x) for all flats L,L′ ∈ L(A) with
L′

� L. Equivalently, this is the case if and only if dH(x) > dL(x) for all flats
L and H ∈ A/L.

Remark 3.12. The proof of Theorem 3.9 and Lemma 3.7 applies ad verba-
tim to affine hyperplane arrangements. For those, one has to work in the
ring (Xd,+, ∗) of indicator functions of polyhedra instead of polyhedral cones,
where ∗ is defined via the Minkowski-sum, [Q]∗ [Q′] = [Q+Q′]. The only prob-
lem is our use of polarity in (7). Here, we use that (7) holds in (Cd,+, ∗), which
canonically embeds into (Xd,+, ∗), since C ∨C ′ = C +C ′ for C,C ′ ∈ Conesd.

Finally, we also want to give a proof that χN (−1) = 0, which we also do on
the level of indicator functions. For this, we give a simple (algebraic) proof
of a result of Schneider [26] and its generalization to polyhedra by Hug–
Kabluchko [15]. Recall that F(Q) denotes the set of nonempty faces of a
polyhedron Q. The Euler-Characteristic of Q, is defined as

ε(Q) :=
∑

F∈F(Q)

(−1)dimF .

Recall from [6, Theorem 3.4.11] that for a polyhedron Q with L = lineal(Q), we
have ε(Q) = 0 if L = 0 and Q is unbounded and ε(Q) = (−1)dimLε(πL⊥(Q))
otherwise.

Theorem 3.13. Let Q ⊆ R
d be a polyhedron. Then, as elements in Xd:

ε(Q) · [Rd] =
∑

F∈F(Q)

(−1)dimF [F − NFQ].

Proof. Note that (−1)dimQ−dimF = μ(F,Q), where μ = μF(Q). Denote by
TFC :=(NFC)∨ the tangent cone of C at Q. By the Sommerville relation
(cf. [1, Lem. 4.1]), we have for any cone D ∈ Conesd

∑

G∈F(D)

(−1)dimG · [TGD] = (−1)dimD[− relint D].

Applying the Euler map E on both sides, using dimTGD = dimD, and the
fact that E is an involution (Lemma 3.8), we get

∑

G∈F(D)

(−1)dimG · [relint TGD] = (−1)dimD[−D].
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If we set D :=NFQ, we have TG′(NFQ) = NFG for G′ :=NGQ, so this reads:

(−1)dimQ−dimF [−NFQ] =
∑

G′∈F(NFQ)

(−1)dimG′ · [relint TG′(NFQ)]

=
∑

F⊆G∈F(Q)

(−1)dimQ−dimG · [relint NFG] .

Now, we can simply compute
∑

F∈F(Q)

(−1)dimF · [F ] ∗ [−NFQ] =
∑

F∈F(Q)

[F ] ∗
∑

F⊆G∈F(Q)

(−1)dimG · [relintNFG]

=
∑

G∈F(Q)

(−1)dimG
∑

F∈F(G)

[F ] ∗ [relintNFG]

=
∑

G∈F(Q)

(−1)dimG · [Rd] = ε(Q) · [Rd] .
�

That χN (−1) = 0 follows now immediately by noting that:

σd−1(F + NFC) = σd−1(F − NFC)

for all cones C ∈ N and faces F of C.

Acknowledgements

Work on this project started at the Mathematical Sciences Research Institute
in Berkeley, California, during the Fall 2017 semester on Geometric and Topo-
logical Combinatorics. The authors acknowledge support by National Science
Foundation under Grant No. DMS-1440140 during our stay at the MSRI as
well as from the DFG-Collaborative Research Center, TRR 109 “Discretiza-
tion in Geometry and Dynamics”. The first author was supported by a Simons
Collaboration Gift No. 854037 and NSF Grant (DMS-2246967). The authors
thank the referee for suggestions that helped improve the exposition.

Data Availability Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing agreement and
applicable law.



S. Backman et al.

References

[1] K. A. Adiprasito and R. Sanyal, An Alexander-type duality for valuations,
Proc. Amer. Math. Soc., 143 (2015), pp. 833–843.

[2] D. Amelunxen and M. Lotz, Intrinsic volumes of polyhedral cones: a combi-
natorial perspective, Discrete Comput. Geom., 58 (2017), pp. 371–409.

[3] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp, Living on the
edge: Phase transitions in convex programs with random data, Information and
Inference: A Journal of the IMA, 3 (2014), pp. 224–294.

[4] A. Barvinok, A course in convexity, vol. 54 of Graduate Studies in Mathemat-
ics, American Mathematical Society, Providence, RI, 2002.

[5] A. Barvinok, Integer points in polyhedra, Zurich Lectures in Advanced Math-
ematics, European Mathematical Society (EMS), Zürich, 2008.
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