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Abstract. Multidimensional permutations, or d-permutations, are repre-
sented by their diagrams on [n]d such that there exists exactly one point
per hyperplane xi that satisfies xi = j for i ∈ [d] and j ∈ [n]. Bonichon
and Morel previously enumerated 3-permutations avoiding small patterns,
and we extend their results by first proving four conjectures, which ex-
haustively enumerate 3-permutations avoiding any two fixed patterns of
size 3. We further provide a enumerative result relating 3-permutation
avoidance classes with their respective recurrence relations. In particular,
we show a recurrence relation for 3-permutations avoiding the patterns
132 and 213, which contributes a new sequence to the OEIS database. We
then extend our results to completely enumerate 3-permutations avoiding
three patterns of size 3.
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1. Introduction

Starting with Knuth’s [1] work on permutations in 1973, the field of pattern
avoidance has been well studied in enumerative combinatorics. Simion and
Schmidt first considered pattern avoidance in their work on enumerating per-
mutation avoidance classes in 1985 [2]. Pattern avoidance can be defined as
follows:

Definition 1.1. Let σ ∈ Sn and π ∈ Sk, where k ≤ n. We say that the per-
mutation σ contains the pattern π if there exists indices c1 < · · · < ck such
that σ(c1) · · · σ(ck) is order-isomorphic to π. We say a permutation avoids a
pattern if it does not contain it.

Permutations avoiding sets of small patterns have been exhaustively enu-
merated [1–3]. It is well known that permutations avoiding certain patterns
are in bijection with other combinatorial objects, such as Dyck paths [4,5] and

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-024-00695-1&domain=pdf
http://orcid.org/0000-0003-1910-9623


702 N. Sun

maximal chains of lattices [2]. Some of them are further enumerated by the
Catalan and Schröder numbers [6]. In their work, Simion and Schmidt [2] com-
pletely enumerated permutations avoiding any single pattern, two patterns, or
three patterns of size 3, paving the path for more work in the field of pattern
avoidance.

More recently, Bonichon and Morel [7] considered a multidimensional
generalization of a permutation, called a d-permutation, which resembles the
structure of a (d−1)-tuple of permutations. Tuples of permutations have been
studied before [8,9], but d-permutations have not been thoroughly studied yet,
mainly appearing in a few papers related to separable permutations [9,10]. In
particular, Asinowski and Mansour [10] presented a generalization of separa-
ble permutations that are similar to d-permutations and characterized these
generalized permutations with sets of forbidden patterns. The d-permutations
studied by Bonichon and Morel coincide with the one introduced by Asinowski
and Mansour [10] for the multidimensional case but also coincide with the clas-
sical permutation for d = 2.

Similar to the enumeration Simion and Schmidt [2] did in 1985 and
Mansour [3] in 2020, Bonichon and Morel [7] started the enumeration of d-
permutations avoiding small patterns and made many conjectures regarding
the enumeration of 3-permutations avoiding sets of two patterns. We present
two main classes of results regarding the enumeration of 3-permutation avoid-
ing small patterns. We first completely enumerate 3-permutations avoiding
classes of two patterns of size 3 and prove their respective recurrence rela-
tions, solving the conjectures presented by Bonichon and Morel [7]. Further,
we derive a recurrence relation for 3-permutations avoiding 132 and 213, whose
sequence we added to the OEIS database [11], and Bonichon and Morel did
not provide any conjecture. We then further initiate and completely enumerate
3-permutations avoiding classes of three patterns of size 3, similar to Simion
and Schmidt’s results in 1985 [2].

This paper is organized as follows. In Sect. 2, we introduce preliminary
definitions and notation. In Sect. 3, we completely enumerate sequences of
3-permutations avoiding two patterns of size 3 and prove four conjectures of
Bonichon and Morel [7]. In addition, we prove a recurrence relation for an
avoidance class whose sequence we added to the OEIS database [11], complet-
ing our enumeration. In Sect. 4, we extend our enumeration to 3-permutations
avoiding three patterns of size 3 and prove recurrence relations for their avoid-
ance classes. We conclude with open problems in Sect. 5.

2. Preliminaries

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. Note that we
can represent each permutation σ ∈ Sn as a sequence a1 · · · an. Further, let
Idn denote the identity permutation 12 · · · n of size n and given a permutation
σ = a1 · · · an ∈ Sn, let rev(σ) denote the reverse permutation an · · · a1. We
further say that a sequence a1 · · · an is consecutively increasing (respectively,
decreasing) if for every index i, ai+1 = ai + 1 (respectively, ai+1 = ai − 1).
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For a sequence a = a1 · · · an with distinct real values, the standardization
of a is the unique permutation of [n] with the same relative order. Note that
once standardized, a consecutively increasing sequence is the identity permu-
tation and a consecutively decreasing sequence is the reverse identity permu-
tation. Moreover, we say that in a permutation σ = a1 · · · an, the elements
ai and ai+1 are adjacent to each other. More specifically, ai is left-adjacent
to ai+1 and similarly, the element ai+1 is right-adjacent to ai. The following
definitions in this section were introduced in [7].

Definition 2.1. A d-permutation σ := (σ1, . . . , σd−1) of size n is a tuple of
permutations, each of size n. Let Sd−1

n denote the set of d-permutations of size
n. We say that d is the dimension of σ. Moreover, the diagram of σ is the set
of points (i, σ1(i), . . . , σd−1(i)) for all i ∈ [n].

Note that the identity permutation is implicitly included in the dia-
gram of a d-permutation, which justifies why a d-permutation is a (d − 1)-
tuple of permutations. For a d-permutation σ = (σ1, . . . , σd−1), let σ̄ =
(Idn, σ1, . . . , σd−1). Further, with this definition, it is natural to consider the
projections of the diagram of a d-permutation, which is useful in defining the
notion of pattern avoidance for d-permutations.

Definition 2.2. Given d′ ∈ N and i = i1, . . . , id′ ∈ [d]d
′
, the projection on i of

some d-permutation σ is the d′-permutation proji(σ) = (σ̄i2 ◦ σ̄−1
i1

, . . . , σ̄id′ ◦
σ̄−1

i1
).

We say that a projection is direct if i1 < · · · < id′ and indirect otherwise.

Remark 2.3. There are only three direct projections of dimension 2 of a 3-
permutation σ = (σ, σ′). Namely, they are σ, σ′, and σ′ ◦ σ−1.

In the remainder of the section, we use the projection of a 3-permutation
σ = (σ, σ′) to refer to the projection σ′ ◦ σ−1. As such, we will also refer to
σ′ ◦ σ−1 as proj(σ, σ′) for ease of notation.

In this paper, we will also consider the projection π′ ◦π−1 for subpermu-
tations π, π′. We write ρ = π′ ◦ π−1 to mean the composition of the standard-
ization of π and π′, rewritten to be the elements of π′ with the same relative
order. For example, if π = 5467 and π′ = 2365, then π′ ◦ π−1 is calculated
as following. We first standardize π and π′ to be 2134 and 1243, respectively.
Then the composition of these two permutations is 2143. Finally, we rewrite
the permutation to be the elements of π′ with the same order as 2143, giving
3265 to be the final projection.

Using direct projections, Bonichon and Morel [7] introduced the following
definition of pattern avoidance, which is consistent with the existing concept
of pattern avoidance for regular permutations.

Definition 2.4. Let σ = (σ1, . . . , σd−1) ∈ Sd−1
n and π = (π1, . . . , πd′−1) ∈

Sd′−1
k , where k ≤ n. We say that the d-permutation σ contains the pattern π

if there exists a direct projection σ′ of dimension d′ and indices c1 < · · · < ck
such that σ′

i(c1) · · · σ′
i(ck) is order-isomorphic to πi for all i. We say a d-

permutation avoids a pattern if it does not contain it.
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For example, the 3-permutation (4231, 2413) avoids the pattern 123 be-
cause neither the permutations 4231, 2413, nor the projection 2413◦4231−1 =
3412 contains an occurrence of 123. Furthermore, note that the 3-permutation
(1432, 3124) contains the pattern 231, because despite 1432 and 3124 avoiding
an occurrence of 231, the projection 3124 ◦ 1432−1 = 3421 has an occurrence
of 231.

Given m patterns π1, . . . ,πm , we write Sd−1
n (π1, . . . ,πm ) to mean the

set of d-permutations of size n that simultaneously avoid π1, . . . ,πm .
Bonichon and Morel [7] also noted symmetries on d-permutations that

correspond to symmetries on the d-dimensional cube. In particular, these sym-
metries are counted by signed permutation matrices of dimension d. Such a
signed permutation matrix is a square matrix with entries consisting of −1, 0,
or 1 such that each row and column contain exactly one nonzero element. We
call d-Sym the set of such signed permutation matrices of size d.

This allows us to extend the well-known definitions of Wilf-equivalence
and trivial Wilf-equivalence to higher dimensions.

Definition 2.5. We say that two sets of patterns π1, . . . ,πk and τ1, . . . , τ� are
d-Wilf-equivalent if |Sd−1

n (π1, . . . ,πk)| = |Sd−1
n (τ1, . . . , τ�)|. Moreover, these

patterns are trivially d-Wilf-equivalent if there exists a symmetry s ∈ d-Sym
that maps Sd−1

n (π1, . . . ,πk) to Sd−1
n (τ1, . . . , τ�) bijectively.

In the following sections, we will only work with 3-permutations avoiding
2-permutations.

3. Enumeration of Pattern Avoidance Classes of at Most Size 2

Bonichon and Morel [7] proposed the problem of enumerating sequences of
3-permutations avoiding at most two patterns of size 2 or 3. They provided
Table 1, conjecturing the recurrences in the last four rows and leaving the
remainder as open problems.

In all of the following theorems, we take constructive approaches to prove
recurrence relations. Given an element σ in S2

n(π1, π2), we attempt to construct
elements in S2

n+1(π1, π2) via inserting the maximal element n + 1 into the
permutations in σ. Note that if a permutation σ ∈ Sn contains a pattern
π, then adding the maximal element n + 1 anywhere into σ still contains π.
Similarly, if a permutation σ ∈ Sn avoids a pattern π, then removing the
maximal element n from σ will still avoid π.

However, it should be noted that it is possible to have a 3-permutation
(σ, σ′) that does not avoid a set of permutations {π1, . . . , πm} and inserting the
maximum element (n + 1) into both σ and σ′ results in a 3-permutation that
avoids these patterns. For example, the 3-permutation (312, 123) contains 231,
but (3124, 4123) avoids both 231 and 321. Although in the following proofs
we aim to construct elements in S2

n+1(π1, π2) from S2
n(π1, π2), we will prove

that for each set of patterns {π1, π2}, it is impossible to insert n + 1 into σ
and σ′ of a 3-permutation (σ, σ′) containing π1 or π2 such that the resulting 3-
permutation avoids π1 and π2. It is clear that if σ or σ′ contains these patterns,
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then inserting n + 1 anywhere into these permutations will still contain these
patterns. Hence, it is enough to show that for a 3-permutation (σ, σ′) where
σ and σ′ avoid π1 and π2 but σ′ ◦ σ−1 contains either pattern, inserting n + 1
anywhere will result in a 3-permutation which still contains either pattern. In
the following proofs, note that given a 3-permutation (σ, σ′), if the maximal
element n + 1 is inserted into the same position in both σ and σ′, then n + 1
is inserted at the end of the projection σ′ ◦ σ−1.

Theorem 3.1. Let an = |S2
n(132, 231)|. Then an satisfies the recurrence rela-

tion an+1 = 2an + 2n with initial term a1 = 1, which corresponds with OEIS
sequence A001787.

Proof. Given any σ = (σ, σ′) ∈ S2
n(132, 231), we construct an element of

S2
n+1(132, 231) by inserting the maximal element n + 1 in both σ and σ′. To

avoid both 132 and 231, the maximal element n+1 must be inserted into either
the beginning or end of σ and σ′; otherwise if there are elements on both sides
of n + 1, then there must be either an occurrence of 132 or 231.

Appending the maximal element n + 1 onto the left of both σ and σ′

or onto the right of both σ and σ′ also avoids 132 and 231. In other words,
(σ(n + 1), σ′(n + 1)) and ((n + 1)σ, (n + 1)σ′) both still avoid 132 and 231.
This contributes 2an different 3-permutations in S2

n+1(132, 231).

We further make the following claim:

Claim 3.2. The 3-permutation (σ(n + 1), (n + 1)σ′) avoids 132 and 231 if and
only if σ is Idn and σ′ ∈ S1

n(132, 231).

Proof. For the forwards direction, suppose that (σ(n+1), (n+1)σ′) avoids 132
and 231. Now writing the projection proj(σ(n+1), (n+1)σ′) = (σL(n+1)σR)
for some subpermutations σL and σR, note that σR is nonempty, and using the
reasoning mentioned above, σL is empty. Otherwise, (σL(n + 1)σR) contains
an occurrence of either 132 or 231. Thus, σ begins with the minimal element
1. But since σ is forced to avoid the 132 pattern, σ is forced to be consecutive
and becomes the identity permutation.

For the backwards direction, both Idn+1 and ((n + 1)σ′) still avoid 132
and 231. Further, the projection proj(Idn+1, (n + 1)σ′) evaluates to (n + 1)σ′,
which also still avoids 132 and 231. �

Similarly, we have by symmetry the following claim:

Claim 3.3. The 3-permutation ((n + 1)σ, σ′(n + 1)) avoids 132 and 231 if and
only if σ is rev(Idn) and σ′ ∈ S1

n(132, 231).

Now we show that for (σ, σ′) ∈ S2
n\S2

n(132, 231), we cannot obtain an
element in S2

n+1(132, 231) by inserting the maximal element n + 1 anywhere
in σ and σ′. We will assume that σ and σ′ avoid these patterns but σ′ ◦ σ−1

does not. Recall that we are forced to insert n + 1 onto the left or right of σ
and σ′. Inserting n + 1 onto the left of both σ and σ′ or onto the right of both
σ and σ′ gives a 3-permutation with a projection containing σ′ ◦ σ−1, which
contains either 132 or 231. Now for the 3-permutation ((n+1)σ, σ′(n+1)), our

http://oeis.org/A001787
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reasoning in Claim 3.3 gives that either the projection contains 132 or 231 or
that σ = rev(Idn). In the latter case, proj(σ, σ′) would become rev(σ′), which
avoids 132 and 231, a contradiction. Claim 3.2 provides a similar reasoning on
how (σ(n+1), (n+1)σ′) contains 132 or 231. Because inserting n+1 anywhere
else in σ and σ′ gives an occurrence of 231 or 132, we ensure that elements
of S2

n not belonging in S2
n(132, 231) cannot result in elements belonging in

S2
n+1(132, 231) when we insert the maximal element n + 1 anywhere into σ

and σ′.
Thus, we have shown that given any 3-permutation σ = (σ, σ′) ∈ S2

n

(132, 231), we can construct two elements in S2
n+1(132, 231); furthermore, we

can construct one additional element in S2
n+1(132, 231) if and only if σ′ ∈

S1
n(132, 231) and σ is Idn or rev(Idn). Simion and Schmidt [2] have shown

that |S1
n(132, 231)| = 2n−1. In the cases where σ is Idn or rev(Idn), it follows

that σ avoids 132 and 231 if and only if σ′ avoids these patterns, and hence,
it follows that

an+1 = 2an + 2n.

�

Theorem 3.4. Let an = |S2
n(132, 321)|. Then an satisfies the recurrence an+1 =

an + n(n + 2) with initial term a1 = 1, which corresponds with the OEIS
sequence A047732.

Proof. Let us write σ = (σ, σ′) ∈ S2
n(132, 321) of the form (σLnσR, σ′

Lnσ′
R).

We construct an element of S2
n+1(132, 321) by inserting the maximal element

n + 1 in both σ and σ′.
Inserting n+1 onto the end of σ and σ′ always constructs a 132-avoiding

and 321-avoiding 3-permutation, and this contributes an different 3-permutations
to S2

n+1(132, 321).
We also have the following three cases. Figure 1 gives an example on what

σ may look like.
(1) σR and σ′

R are both nonempty and σLn, σ′
Ln, σR, and σ′

R are all consec-
utively increasing.

(2) Exactly one of σR, σ′
R is empty and the other is of the form σLnσR,

where σLn and σR are consecutively increasing.
(3) Both σR, σ′

R are empty.
First we show that when σ does not belong to any of these cases, in-

serting the maximal element n + 1 into σ cannot avoid these patterns. Let
σ = (σLnσR, σ′

Lnσ′
R). If σLn is increasing but not consecutively increasing, σ

must contain an occurrence of 132. Further, note that σR must not contain
a 21 pattern, and in the case where σLn is consecutively increasing, σR is
consecutively increasing.

So the only case we need to consider is where there is an occurrence of
ab in σL for some b < a; the argument for where σ′

L contains the pattern 21
is similar. Note that every element of σL and σ′

L still must be greater than
every element of σR and σ′

R, respectively; otherwise, they would contain an
occurrence of 132. This implies that σR cannot contain elements in the interval

http://oeis.org/A047732
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Figure 1. An example of what σLnσR may look like when
avoiding 132 and 321

(b, n). Similarly, if σR contains elements in the interval [1, b), then σ would
contain an occurrence of 321. Thus, σR is empty. Inserting n + 1 to the left
of a gives an occurrence of 321. And inserting n + 1 to the right of a gives an
occurrence of 132. Hence, nothing outside these cases avoids 132 and 321.

Now we present each case:
(1) We claim that only (σLn(n + 1)σR, σ′

Ln(n + 1)σ′
R) avoids 132 and 321.

Let us write γ as the projection (σ′
Ln(n+1)σ′

R)◦(σLn(n+1)σR)−1. Since
σL and σR are consecutive and σR must start with 1, note that in γ, either
n+1 is right-adjacent to n, or γ begins with n+1. In the former case, γ is
of the form πLπR, where πL and πR are consecutively increasing and each
element of πL is greater than each element of πR. Note that πR may be
empty, in which case πL is the identity permutation. It is clear that πLπR

avoids 132 and 321. In the latter case, γ is of the form (n + 1)σ′
Rσ′

Ln.
But σ′

Rσ′
Ln is strictly increasing, and hence, γ also avoids 132 and 321.

Therefore, the 3-permutation (σLn(n+1)σR, σ′
Ln(n+1)σ′

R) avoids these
patterns too.
Now we show that inserting n + 1 into σ anywhere else cannot result in
an element in S2

n+1(132, 321). In particular, we show that we are forced
to insert n + 1 at the end of σ and σ′ or right-adjacent to n in these two
permutations. Otherwise, since σL, σ′

L, σR, and σ′
R are all consecutively

increasing, σ or σ′ would contain 132. If we insert n + 1 to the left of σ
or σ′, we would have an occurrence of 321.
Now it is sufficient to show (σLnσR(n + 1), σ′

Ln(n + 1)σ′
R) and (σLn(n +

1)σR, σ′
Lnσ′

R(n + 1)) do not avoid 132 and 321.
To see the former, we take the projection ρ, and depending on the lengths
of σL and σ′

L, we have the following three cases. The projections in each
case are illustrated in Fig. 2.



On d-Permutations and Pattern Avoidance Classes 709

(a) |σL| = |σ′
L|. Then the last two elements of ρ must be nr, where r

is an element in σ′
R. Note that the maximum element n + 1 must

appear before this occurrence, and hence, ρ contains an occurrence
of 321.

(b) |σL| < |σ′
L|. Then the last two elements of ρ must be �r, where � is

an element in σ′
L and r is an element in σ′

R. Note that the maximum
element n + 1 must appear somewhere in ρ before this occurrence,
and thus, ρ contains an occurrence of 321.

(c) |σL| > |σ′
L|. Then ρ begins with an element a in σ′

R and ends with a
larger element b in σ′

R. However, the maximum element n + 1 must
appear in between these elements, and we conclude that ρ contains
an occurrence of 132.

A similar reasoning shows that (σLn(n + 1)σR, σ′
Lnσ′

R(n + 1)) does not
avoid 132 and 321.
There are (n−1) ways to choose σLnσR and σ′

Lnσ′
R. This case contributes

(n − 1)2 distinct 3-permutations to S2
n+1(132, 321).

(2) Let σR be empty—the case where σ′
R is empty follows a similar reasoning.

Then we claim that only the 3-permutations ((n + 1)σLn, σ′
Ln(n + 1)σ′

R)
and (σLn(n + 1), σ′

Ln(n + 1)σ′
R) avoid 132 and 321.

Checking that both of these 3-permutations avoid 132 and 321 uses
a similar argument to the previous case. Now we show that inserting n+1
anywhere else in σ cannot avoid the patterns 132 and 321. In particular,
we must insert n + 1 into the beginning or end of σ and either right-
adjacent to n or at the end in σ′. Hence, it is sufficient to show that
((n + 1)σLn, σ′

Lnσ′
R(n + 1)) does not avoid 132 and 321.

Now taking proj((n + 1)σLn, σ′
Lnσ′

R(n + 1)) gives us a permutation
of the form π(n + 1)c, where c is the first element of σ′

Ln and π is some
subpermutation. Since σ′

R is nonempty, π contains elements in σ′
R, and

this composition contains an instance of 132.
Since there are n−1 ways to choose σ′

Lnσ′
R, this contributes 2(n−1) many

3-permutations to S2
n+1(132, 321). A similar argument holds for when σ′

R

is empty and σR is nonempty. Hence, this case contributes 4(n−1) many
3-permutations in total to S2

n+1(132, 321).
(3) Note that we must insert n + 1 into the beginning or end of σ and σ′.

However, the only 3-permutations that avoid 132 and 321 obtained by
inserting n+1 into both σ and σ′ are the following: (Idn(n+1), (n+1) Idn),
((n + 1) Idn, (n + 1) Idn), and ((n + 1) Idn, Idn(n + 1)). To see this, let
us consider ((n + 1)σ, σ′(n + 1)). Inserting n + 1 at the beginning of
σ forces σ to be the identity. Using a similar reasoning presented in
Case 2, unless σ′ = Idn, inserting n + 1 at the end of σ′ will cause
proj((n + 1)σ, σ′(n + 1)) to contain 132. A similar argument can be used
for the other 3-permutations, and checking that these avoid 132 and 321
is simple. Hence, this case contributes 3 new elements in S2

n+1(132, 321).

Now we show that for (σ, σ′) ∈ S2
n\S2

n(132, 321), we cannot obtain an
element in S2

n+1(132, 321) by inserting the maximal element n + 1 anywhere
in σ and σ′. Suppose σ and σ′ avoid 132 and 321 but σ′ ◦ σ−1 contains either
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Figure 2. Illustrations of the projection of (σLnσR(n +
1), σ′

Ln(n + 1)σ′
R) for the cases |σL| = |σ′

L|, |σL| < |σ′
L|, and

|σL| > |σ′
L|, respectively

pattern. We iterate the same cases as above, noting that if none of these cases
hold, inserting n+1 anywhere will give a 3-permutation containing 132 or 321.

(1) We show that it is impossible to have σ and σ′ avoid these patterns
but have σ′ ◦ σ−1 contain them. Let (σ, σ′) = (σLnσR, σ′

Lnσ′
R) and

ρ = proj(σ, σ′). Recall that σLn, σ′
Ln, σR, and σR’ are all consecutively

increasing. We have the same subcases as above:
(a) |σL| = |σ′

L|. Then ρ is σ′
Rσ′

Ln, which avoids 132 and 321.
(b) |σL| < |σ′

L|. Then ρ is in the form πLπR, where πL and πR are
consecutively increasing and every element of πL is greater than
every element of πR. Note that ρ avoids both 132 and 321.

(c) |σL| > |σ′
L|. Then ρ is in the same form as the previous case.
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Hence, it is impossible for σ and σ′ to avoid 132 and 321 while σ′ ◦ σ−1

contains them.
(2) Let σR be empty. The case where σ′

R is empty follows a similar rea-
soning. The proof of Case 2 above shows that the 3-permutation ((n +
1)σLn, σ′

Lnσ′
R(n + 1)) contains an instance of 132, and it is clear that

(σLn(n + 1), σ′
Lnσ′

R(n + 1)) contains an occurrence of σ′ ◦ σ−1. Now
we consider ((n + 1)σLn, σ′

Ln(n + 1)σ′
R). Let � be the first element of

σ′
L. Now we note that proj((n + 1)σLn, σ′

Ln(n + 1)σ′
R) is obtained from

proj(σLn, σ′
Lnσ′

R) as follows: each element belonging to the subpermu-
tation σ′

Ln is increased by 1, every element in σ′
R remains unchanged,

and � is appended onto the end of the permutation. It is clear that if
proj(σLn, σ′

Lnσ′
R) contains an instance of 132 or 321, then proj((n +

1)σLn, σ′
Ln(n+1)σ′

R) must also contain an occurrence of these patterns.
Now we consider (σLn(n + 1), σ′

Ln(n + 1)σ′
R). Let r be the last element

in σ′
R. Similarly, proj(σLn(n + 1), σ′

Ln(n + 1)σ′
R) is obtained from the

proj(σLn, σ′
Lnσ′

R) as follows: each element in σ′
R decreases by 1, the min-

imal element 1 is replaced with n+1, elements in σ′
Ln remain unchanged,

and r is appended onto the end of the permutation. If the minimal ele-
ment 1 is not a part of the occurrence of 132 or 321 in proj(σLn, σ′

Lnσ′
R),

then proj(σLn(n+1), σ′
Ln(n+1)σ′

R) still contains an occurrence of either
pattern. If the minimal element 1 is part of a 132 pattern, the transforma-
tion described above turns the pattern into a 321 pattern. Now suppose
the minimal element 1 is part of a 321 pattern. Call this sequence xy1.
If there is an element a after xy1, then if y > a, then the transforma-
tion turns xy1 into a 321 pattern. If y < a, then we instead have a 132
pattern. Now if xy1 are the last elements in the permutation, then the
transformation turns this into a permutation ending in 1, which contains
an occurrence of 321. Hence, (σLn(n + 1), σ′

Ln(n + 1)σ′
R) must contain

132 or 321.
(3) As mentioned in Case 3 above, for us to insert n + 1 anywhere else into

σ and σ′ to avoid 132 and 321 in the resulting 3-permutation, we must
have σ = σ′ = Idn. Then σ′ ◦ σ−1 = Idn, which does not contain 132 or
321, a contradiction.
We conclude that

an+1 = an + (n − 1)2 + 4(n − 1) + 3

= an + n(n + 2).

�

Theorem 3.5. Let an = |S2
n(231, 312)|. Then an satisfies the recurrence an+1 =

2an + 2an−1 with initial terms a1 = 1 and a2 = 4, which corresponds to the
OEIS sequence A026150.

Proof. Let σ = (σ, σ′) ∈ S2
n(231, 312) and write σ of the form (σLnσR, σ′

Lnσ′
R).

Note that each element of σL and σ′
L are less than each element of σR and σ′

R,
respectively. Further, σR and σ′

R have to be consecutively decreasing. If σR is
nonempty, n − 1 must be right-adjacent to n in σ to avoid instances of 231

http://oeis.org/A026150
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Figure 3. An example of what σLn(n − 1)σR may look like
when avoiding 231 and 312

and 312. We then have the following cases, where σR and σ′
R may be empty.

Figure 3 illustrates an example of what σ may look like.
(1) σ is of the form (σLn, σ′

Ln).
(2) σ is of the form (σL(n − 1)n, σ′

Ln(n − 1)σ′
R).

(3) σ is of the form (σLn(n − 1)σR, σ′
L(n − 1)n).

(4) σ is of the form (σLn(n − 1)σR, σ′
Ln(n − 1)σ′

R).
Now we present each case:

(1) (σ, σ′) = (σLn, σ′
Ln).

The maximal element n + 1 must be inserted adjacent to n in both σ
and σ′. If not, then there would be an occurrence of 312. By evaluat-
ing their projections, we can verify that the following 3-permutations
avoid 231 and 312: (σLn(n + 1), σ′

Ln(n + 1)), (σLn(n + 1), σ′
L(n + 1)n),

(σL(n + 1)n, σ′
Ln(n + 1)), and (σL(n + 1)n, σ′

L(n + 1)n). Thus, each in-
stance of σ in this case contributes 4 new 3-permutations that avoid 231
and 312.

(2) (σ, σ′) = (σL(n − 1)n, σ′
Ln(n − 1)σ′

R). Then n(n − 1)σ′
R must be con-

secutively decreasing. Note that appending the maximal element n + 1
onto the end of σ and σ′ also avoids 231 and 312. In other words, the 3-
permutation (σL(n−1)n(n+1), σ′

Ln(n−1)σ′
R(n+1)) avoids 231 and 312.

In addition, the 3-permutation (σL(n− 1)n(n+ 1), σ′
L(n+ 1)n(n− 1)σ′

R)
also avoids 231 and 312.
To see this, we first evaluate the projection of (σL(n−1)n, σ′

Ln(n−1)σ′
R).

Call this γ. As shown in Fig. 4, we can subdivide σL into πL and πR,
where |πL| = |σ′

L|. Recall that n(n − 1)σ′
R is consecutively decreasing,

and thus, the sequence πR(n − 1)n must be consecutively increasing to
prevent γ from containing an instance of 231 or 312. Note that this im-
plies that each element of πL is less than each element of πR. Thus, γ is
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of the form (σ′
L ◦π−1

L )n(n−1)σ′
R, which we note must avoid 231 and 312

since (σ, σ′) avoids these patterns. Further, note that (σL(n − 1)n(n +
1), σ′

L(n + 1)n(n − 1)σ′
R) avoids 231 and 312 because its projection is of

the form (σ′
L ◦ π−1

L )(n + 1)n(n − 1)σ′
R, which also avoids these patterns.

Now we show that inserting n + 1 anywhere else in σ cannot produce a
3-permutation that avoids 231 and 312. We must insert n+1 adjacent to
n in σ. If not, then inserting n + 1 anywhere to the left of n − 1 contains
an occurrence of 312. Similarly, we must insert n+1 left-adjacent to n or
at the end in σ′. Inserting n + 1 anywhere to the right of n − 1 contains
an occurrence of 231.
We now show that (σL(n−1)(n+1)n, σ′

L(n+1)n(n−1)σ′
R) cannot avoid

these patterns. Similar to Fig. 4 above, we can subdivide σL into πL and
πR, where πL is of the same size as σ′

L, and πR(n − 1) is consecutively
increasing.

σL
n − 1 n + 1 n

σL
n − 1nn + 1

σR

πL πR

Then the projection is of the form (σ′
L ◦π−1

L )π(r +2)r(r +1), where
r is the minimal element of (n − 1)σ′

R and π is a subpermutation. This
contains an occurrence of 312.
A similar calculation shows that proj(σL(n−1)(n+1)n, σ′

Ln(n−1)σ′
R(n+

1)) is of the form π(r+1)(n+1)r for a subpermutation π, which contains
an occurrence of 231. Hence, each instance of σ in this case contributes
two new elements in S2

n+1(231, 312).
(3) (σ, σ′) = (σLn(n − 1)σR, σ′

L(n − 1)n).
Using a similar argument to the previous case, n(n−1)σR must be consec-
utively decreasing. As in the previous cases, (σLn(n−1)σR(n+1), σ′

L(n−
1)n(n + 1)) avoids 231 and 312. Moreover, (σL(n + 1)n(n − 1)σR, σ′

L(n −
1)n(n + 1)) also avoids these patterns. To see this, we first evaluate the
projection of (σLn(n − 1)σR, σ′

L(n − 1)n), which we will call γ:
σL

n n − 1
σR

σL
n − 1 n

πL πR

Since γ is of the form (πL ◦ σ−1
L )n(n − 1)rev(πR), we conclude that

n(n − 1)rev(πR) must be consecutively decreasing to avoid occurrences
of 231 and 312. We now evaluate the projection of (σL(n + 1)n(n −
1)σR, σ′

L(n − 1)n(n + 1)):
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σL
n + 1 n n − 1

σR

σL
n − 1 n n + 1

πL πR

Now proj(σL(n+1)n(n−1)σR, σ′
L(n−1)n(n+1)) is (πL ◦σ−1

L )(n+
1)n(n − 1)rev(πR), which also avoids 231 and 312, as shown in Fig. 5.
We show that inserting n + 1 anywhere else in σ cannot produce a 3-
permutation that avoids 231 and 312. Using similar arguments to the pre-
vious case, it is sufficient to show that both (σL(n+1)n(n−1)σR, σ′

L(n−
1)(n + 1)n) and (σLn(n − 1)σR(n + 1), σ′

L(n − 1)(n + 1)n) contain an
occurrence of 231 or 312.
For the former 3-permutation, we take proj(σL(n+1)n(n−1)σR, σ′

L(n−
1)(n + 1)n):
The projection is of the form (πL ◦ σ−1

L )n(n + 1)(n − 1)rev(πR), which
contains an occurrence of 231.
For the latter 3-permutation, a similar argument shows that this projec-
tion contains an occurrence of 312. Hence, each instance of σ in this case
contributes 2 new elements in S2

n+1(231, 312).
(4) (σ, σ′) = (σLn(n − 1)σR, σ′

Ln(n − 1)σ′
R).

Then n(n − 1)σR and n(n − 1)σ′
R must be consecutively decreasing. We

claim |σR| = |σ′
R|. For the sake of contradiction, suppose that |σ′

R| > |σR|.
Then the 3-permutations are of the following form:

σL
n + 1 n n − 1

σR

σL
n − 1 n + 1 n

πL πR

The projection, which we will call ρ, is of the form π1nπ2rπ3(r + c),
where r is the minimal element of σ′

R, c is some positive integer, and π1,
π2, π3 are subpermutations. Figure 6 illustrates this projection. Hence, ρ
contains 312, a contradiction.
A similar argument holds for |σ′

R| < |σR|. Hence, the two permutations
must be of the same size. Moreover, since both n(n−1)σR and n(n−1)σ′

R

are consecutively decreasing, then we have σR = σ′
R.

We immediately see that (σLn(n − 1)σR(n + 1), σ′
Ln(n − 1)σ′

R(n + 1)) is
in S2

n+1(231, 312). Moreover, note that the projection of (σL(n+1)n(n−
1)σR, σ′

L(n+1)n(n−1)σ′
R) is of the form (σ′

L◦σ−1
L )(σ′

R◦σ−1
R )(n−1)n(n+

1), and hence, (σL(n + 1)n(n − 1)σR, σ′
L(n + 1)n(n − 1)σ′

R) also avoids
231 and 312.
Now we show that inserting the maximal element n + 1 anywhere else
cannot avoid 231 and 312. In fact, n + 1 can only be inserted either at
the end of σ and σ′ or left-adjacent to n. If n + 1 is inserted anywhere in
σL or σ′

L, then there would be an occurrence of 312. If n + 1 is inserted
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Figure 4. The two-line notation used to evaluate (σ′
Ln(n −

1)σ′
R) ◦ (σL(n − 1)n)−1. The second line represents σ and the

last line represents σ′

anywhere to the right of n and not at the end of the permutation, then
there would be an occurrence of 231.
We show that both the 3-permutations (σL(n + 1)n(n − 1)σR, σ′

Ln(n −
1)σ′

R(n+1)) and (σLn(n− 1)σR(n+1), σ′
L(n+1)n(n− 1)σ′

R) contain an
occurrence of either 231 or 312.
For the first 3-permutation, the projection looks as follows:

σL
n n − 1

σR

σL
n n − 1

σR

Evaluating the projection gives the form (σ′
L◦σ−1

L )(n+1)π(n−1)(n)
for a subpermutation π, which contains 312.
A similar argument shows that proj(σLn(n−1)σR(n+1), σ′

L(n+1)n(n−
1)σ′

R) contains an occurrence of 231. Therefore, each instance of σ in this
case contributes 2 new elements in S2

n+1(231, 312).
Now we show that 3-permutations avoiding 231 and 312 must be of one

of the forms above. We have only one form to consider, where exactly one
of σR, σ′

R is empty. Let σR be empty and σ′
R be nonempty. In particular,

(σ, σ′) = (σLn, σ′
Lnσ′

R).
σL

n
σR

σL
n

σR

πL πRπM

Now n − 1 must be adjacent to n in σ′. If σ′ = σ′
L(n − 1)nσ′

R, then
σ′
R must be empty to avoid an occurrence of 231. Then Case 1 covers this. If

σ′ = σ′
Ln(n−1)σ′

R, then we show that n−1 is adjacent to n in σ. Suppose, for
the sake of contradiction, that this is not the case. First, n(n − 1)σ′

R must be
consecutively decreasing. Taking the projection proj(σ, σ′), we conclude that it
is of the form πLnπRkr, where πL and πR are subpermutations, k �= r+1, and
r is the minimal element in σ′

R (note that if σ′
R is empty, then the projection

contains the sequence nk(n − 1), which is a 312 pattern). Now we consider
where the element r + 1 is in the permutation. If r + 1 is in πL, then there is
an occurrence of 231. If r +1 is in πR, then if k > r +1, there is an occurrence
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Figure 5. An illustration of the projection of (σL(n+1)n(n−
1)σR, σ′

L(n − 1)n(n + 1))

Figure 6. An illustration of the projection of (σLn(n −
1)σR, σ′

Ln(n − 1)σ′
R) when |σ′

R| > |σR|

of 231 and if k < r + 1, there is an occurrence of 312. Hence, n − 1 must be
adjacent to n in σ, and a similar argument from Case 2 covers this case. A
similar argument also holds for nonempty σR and empty σ′

R.
Now we show that for (σ, σ′) ∈ S2

n\S2
n(231, 312), we cannot obtain an

element in S2
n+1(231, 312) by inserting the maximal element n + 1 anywhere

in σ and σ′. We will assume that σ and σ′ avoid these patterns but σ′ ◦ σ−1

does not. We iterate through the same cases as above:
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(1) (σ, σ′) = (σLn, σ′
Ln).

It’s straightforward to check that the projections of the following 3-
permutations contain σ′ ◦ σ−1: (σLn(n + 1), σ′

Ln(n + 1)), (σLn(n + 1),
σ′
L(n + 1)n), (σL(n + 1)n, σ′

Ln(n + 1)), and (σL(n + 1)n, σ′
L(n + 1)n).

(2) (σ, σ′) = (σL(n − 1)n, σ′
Ln(n − 1)σ′

R).
It is clear that (σL(n − 1)n(n + 1), σ′

Ln(n − 1)σ′
R(n + 1)) contains σ′ ◦

σ−1. Now we consider (σL(n − 1)n(n + 1), σ′
L(n + 1)n(n − 1)σ′

R). Call its
projection ρ. Using the notation in Case 2 above, note that πR(n − 1)n
must be consecutively increasing. Else ρ contains an occurrence of 231 if
πR(n−1)n contains 21, and ρ contains an occurrence of 312 if πR(n−1)n
is increasing but not consecutive. As such, ρ must be of the form (σ′

L ◦
π−1
L )(n + 1)n(n − 1)σ′

R and σ′ ◦ σ−1 is of the form (σ′
L ◦ π−1

L )n(n − 1)σ′
R.

It is clear that ρ contains σ′ ◦ σ−1. Lastly, recall that inserting n + 1
anywhere else in σ and σ′ must result in a 3-permutation that contains
an occurrence of 231 or 312.

(3) (σ, σ′) = (σLn(n − 1)σR, σ′
L(n − 1)n).

Using a similar logic to the previous case, (σLn(n − 1)σR(n + 1), σ′
L(n −

1)n(n+1)) and (σL(n+1)n(n−1)σR, σ′
L(n−1)n(n+1)) contain σ′ ◦σ−1,

and inserting n + 1 anywhere else must result in a 3-permutation that
contains either 231 or 312.

(4) (σ, σ′) = (σLn(n − 1)σR, σ′
Ln(n − 1)σ′

R).
Our logic in Case 4 above shows that (σLn(n − 1)σR(n + 1), σ′

Ln(n −
1)σ′

R(n + 1)) and (σL(n + 1)n(n − 1)σR, σ′
L(n + 1)n(n − 1)σ′

R) contain
σ′ ◦σ−1, and inserting n+1 anywhere else must result in a 3-permutation
that contains these patterns.

However, we must also consider when exactly one of σR, σ′
R is empty,

but similar logic as presented in our proof shows either (σ, σ′) belongs to one
of the cases we iterated above or inserting n + 1 anywhere in σ and σ′ results
in a 3-permutation that contains either pattern.

Therefore, we see that for every 3-permutation σ = (σ, σ′) in S2
n(231, 312),

inserting the maximal element n+1 onto the end of both σ and σ′ always yields
a 3-permutation in S2

n+1(231, 312); moreover, inserting the maximal element
such that the relative positions of the two largest elements in both σ and σ′

are preserved also always yields another 3-permutation. This contributes 2an

different 3-permutations to S2
n+1(231, 312). In the case that σ is of the form

in Case 1 (where σ, σ′ each end with the maximal element n), each σ can con-
struct two elements in S2

n+1(231, 312) in addition to the elements generated
above, and this case contributes 2an−1 additional elements in S2

n+1(231, 312).
We have that

an+1 = 2an + 2an−1.

�

Theorem 3.6. Let an = |S2
n(231, 321)|. Then an follows the formula an+1 =

4 · 3n−1 (where a1 = 1), which corresponds to the OEIS sequence A003946.

http://oeis.org/A003946
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Proof. Since the pair of patterns {231, 321} is trivially Wilf-equivalent to the
pair of patterns {312, 321}, we will show the above recurrence relation for when
an = |S2

n(312, 321)|.
Let σ = (σ, σ′) ∈ S2

n(312, 321) and let σ be of the form (σLnσR, σ′
Lnσ′

R).
Note that σR and σ′

R either contain one element or are empty.
We insert the maximal element n + 1 to the permutation. The element

n + 1 must be inserted at the end or second-to-end in both σ and σ′. We have
the following cases:

(1) (σ, σ′) = (σLn, σ′
Ln).

We can see that (σLn(n + 1), σ′
Ln(n + 1)), (σLn(n + 1), σ′

L(n + 1)n),
(σL(n+1)n, σ′

Ln(n+1)), and (σL(n+1)n, σ′
L(n+1)n) all avoid 312 and

321.
A 3-permutation σ in this case constructs 4 distinct 3-permutations in
S2
n+1(312, 321).

(2) (σ, σ′) = (σLn, σ′
Lnr′) for some integer r′.

Similarly to the previous case, we see that the 3-permutations (σLn(n +
1), σ′

Lnr′(n+1)), (σLn(n+1), σ′
Ln(n+1)r′), (σL(n+1)n, σ′

Lnr′(n+1)),
and (σL(n + 1)n, σ′

Ln(n + 1)r′) all avoid 312 and 321.
A 3-permutation σ in this case also constructs 4 distinct 3-permutations
in S2

n+1(312, 321).
(3) (σ, σ′) = (σLnr, σ′

Ln) for some integer r.
Appending the maximal element n + 1 at the end of σ and σ′ still avoids
312 and 321. In particular, (σLnr(n+1), σ′

Ln(n+1)), as well as (σLn(n+
1)r, σ′

R(n + 1)n), avoids these patterns.
Now we show that inserting n + 1 anywhere else must contain these
patterns. In particular, note that (σLnr(n+1), σ′

L(n+1)n) and (σLn(n+
1)r, σ′

Ln(n + 1)) cannot avoid 312 and 321. For both 3-permutations, the
projection is of the form πL(n + 1)πRn for subpermutations πL and πR

(where πR is nonempty). This contains an instance of 312.
Hence, 3-permutations σ in this case produce two different elements in
S2
n+1(312, 321).

(4) (σ, σ′) = (σLnr, σ′
Lnr′) for integers r, r′.

As in the previous cases, note that the 3-permutation (σLnr(n + 1),
σ′
Lnr′(n + 1)), as well as (σLn(n + 1)r, σ′

Ln(n + 1)r′), avoids 312 and
321.
Now we show that inserting n + 1 anywhere else in σ cannot avoid 312
and 321. In particular, we show that (σLnr(n + 1), σ′

Ln(n + 1)r′) and
(σLn(n + 1)r, σ′

Lnr′(n + 1)) cannot avoid 312 and 321.
For both 3-permutations, the projection is πL(n + 1)πRnr for some sub-
permutations πL, πR. This contains an instance of 321. And hence, 3-
permutations σ in this case construct 2 distinct elements in S2

n+1(312, 321).

Now we show that for (σ, σ′) ∈ S2
n\S2

n(312, 321), we cannot obtain an
element in S2

n+1(312, 321) by inserting the maximal element n + 1 anywhere
in σ and σ′. So let σ′ ◦ σ−1 contain an instance of 312 or 321. Then (σ, σ′)
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must be one of the cases above, and it is clear that the projections of the 3-
permutations we obtained by inserting n+1 contain σ′ ◦σ−1, which must also
contain an instance of these patterns. Hence, for (σ, σ′) ∈ S2

n\S2
n(312, 321), we

cannot obtain an element in S2
n+1(312, 321) by inserting the maximal element

n + 1 anywhere in σ and σ′.
Now we claim that in S2

n(312, 321), exactly half of the elements σ =
(σ, σ′) satisfy σ(n) = n. The base case can be seen in S2

2(312, 321). Then for
our inductive step let us assume that this is the case for S2

n−1(312, 321). We
wish to show that this is true for S2

n(312, 321). In each case above, exactly
half of the 3-permutations constructed have the property σ(n) = n and the
other half satisfy σ(n) �= n, and via induction, exactly half of the elements in
S2
n(312, 321) satisfy σ(n) = n.

Note that if σ(n) = n, we are in Case 1 or Case 2, which contribute 4
elements in S2

n+1(312, 321). When σ(n) �= n, we are in Case 3 or Case 4, which
contribute 2 elements in S2

n+1(312, 321).
Thus, we conclude that

an+1 =
an

2
· 4 +

an

2
· 2 = 3an.

We can see that a2 = 4, and we conclude that

an+1 = 4 · 3n−1.

�

This allows us to prove all the conjectures Bonichon and Morel [7] have
made in regard to 3-permutations avoiding two patterns of size 3. However,
there is one class of 3-permutations that have yet to be classified, which we
now enumerate. We begin with an observation.

Observation 3.7. Let σ be a permutation and π be an involution. Then σ avoids
π if and only if σ−1 avoids π.

Since 132 and 213 are both involutions, σ avoids 132 if and only if σ−1

avoids 132. The same reasoning holds for the pattern 213. We then have a
corollary:

Corollary 3.8. Let π be an involution. Then the 3-permutation (σ, σ′) avoids
π if and only if the 3-permutation (σ′, σ) avoids π.

This is due to the fact that σ′ ◦ σ−1 avoids π if and only if σ ◦ (σ′)−1

avoids π.

Theorem 3.9. Let an = |S2
n(132, 213)|. Then an satisfies the recurrence

an+1 = an + 3 · 2n−1 + 2(n − 1)

with the initial term a1 = 1. This corresponds to the OEIS sequence A356728.

Proof. Let σ = (σ, σ′) ∈ S2
n(132, 213) and let σ be of the form (σLnσR, σ′

Lnσ′
R).

Note that σLn and σ′
Ln are increasing; otherwise the permutation would

contain an occurrence of 213. Moreover, they must be consecutively increasing;
otherwise we would have an occurrence of 132.

http://oeis.org/A356728
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Figure 7. An illustration of the projection of
(σLnσR, σ′

Lnσ′
R) when |σL| > |σ′

L|

Adding the maximal element n + 1 right-adjacent to n in both σ and σ′

always produces a 3-permutation in S2
n+1(132, 213). To see this, suppose that

|σL| > |σ′
L|. Then the projection would look as follows:

σL
nn + 1

σR

σL
n n + 1

σR

This has the form (πR ◦ σ−1
R )πLπM , where πL is consecutively increasing

and ends with n. Figure 7 illustrates this projection. This projection must
avoid 132 and 213.

Now consider (σ1, σ2) = (σLn(n + 1)σR, σ′
Ln(n + 1)σ′

R). The projection
would look as follows:

σL
n n + 1

σR

σL
n n + 1

σR

πL πRπM

This has the form (πR ◦σ−1
R )πL(n+1)πM , which still avoids 132 and 213.

The case where |σL| = |σ′
L| follows as well. For the case |σL| < |σ′

L|, we utilize
Corollary 3.8. Note that due to symmetry, our previous argument implies that
the 3-permutation (σ′, σ) avoids 132 and 213, and hence Corollary 3.8 states
that (σ, σ′) avoids these patterns.

Hence, appending the maximal element n+1 right-adjacent to n in both
σ and σ′ contributes an elements in S2

n+1(132, 213).
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In the following cases, note that n + 1 must be inserted either at the
beginning or right-adjacent to n in σ and σ′. If we insert n + 1 to the left of
n (but not at the beginning), then there is an instance of 132. Similarly, if we
insert n+1 to the right of n (but not adjacent to n), then there is an instance
of 213. We have the following:

(1) σ = σ′.
Then ((n + 1)σ, (n + 1)σ′) also avoids 132 and 213. Further, note that
in the special case when σ = σ′ = Idn, then ((n + 1) Idn, Idn(n + 1))
and (Idn(n + 1), (n + 1) Idn) both avoid 132 and 213. Now we show that
inserting n + 1 anywhere else in σ does not avoid 132 and 213. Specifi-
cally, for all other σ and σ′, we show that ((n + 1)σ, σ′

Ln(n + 1)σ′
R) and

(σLn(n + 1)σR, (n + 1)σ′) cannot avoid 132 or 213. To see that the first
3-permutation cannot avoid 132 or 213, note that proj((n+1)σ, σ′

Ln(n+
1)σ′

R) is of the form 1π(n+1)�, where � is the first element in σ′
Ln and π

is a subpermutation. This contains an occurrence of 132. A similar argu-
ment shows that the projection of the latter 3-permutation also contains
213.
Since Simion and Schmidt [2] showed there are 2n−1 possible permuta-
tions that avoid 132 and 213 with size n, this contributes an additional
2n−1 + 2 elements in S2

n+1(132, 213).
(2) σ = Idn and σ′ �= Idn.

We note that (σ(n+1), (n+1)σ′) avoids 132 and 213. In the special case
where σ′

R is consecutively increasing, then ((n + 1)σ, σ′
Ln(n + 1)σ′

R) is
also an element in S2

n+1(132, 213).
Now we show that inserting n + 1 anywhere else in σ cannot avoid 132
and 213. We first show that (σ(n+1), σ′(n+1)) and ((n+1)σ, (n+1)σ′)
cannot avoid 132 and 213. Taking the projection of these 3-permutations
evaluates to σ′(n + 1), which contains an occurrence of 213 because σ′ is
not the identity and therefore, must contain an occurrence of 21.
Note that ((n + 1)σ, σ′(n + 1)) cannot avoid these patterns because
σ′(n + 1) contains an occurrence of 213.
Now let σ′

R be decreasing. We wish to show that ((n+1)σ, σ′
Ln(n+1)σ′

R)
cannot avoid 132 and 213. Since σ′

R contains an instance of 21 and ev-
ery element in σ′

R is smaller than every element in σ′
L, taking proj((n +

1)σ, σ′
Ln(n + 1)σ′

R) gives an occurrence of 213.
Since there are 2n−1 different σ′ that avoid 132 and 213, note that (σ(n+
1), (n + 1)σ′) contributes 2n−1 − 1 different elements to S2

n+1(132, 213).
Moreover, the special 3-permutation case ((n + 1)σ, σ′

Ln(n + 1)σ′
R) con-

tributes n − 1 elements to S2
n+1(132, 213).

(3) σ �= Idn and σ′ = Idn.
This case also contributes 2n−1 + n − 2 elements in S2

n+1(132, 213). This
is a consequence of Corollary 3.8 and the reasoning discussed in Case 2.

Now we show that nothing else can contribute to S2
n+1(132, 213). Let

σ = (σLnσR, σ′
Lnσ′

R) and assume that σR and σ′
R are nonempty and σ �= σ′.

Note that σ and σ′ cannot be Idn .
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Figure 8. An illustration of proj((n + 1)σ, σ′
Ln(n + 1)σ′

R)
when |σL| ≥ |σ′

L|

Inserting n+1 at the beginning of σ and σ′ gives that proj(σ, σ′) is of the
form (σ′ ◦ σ−1)(n + 1). And since σ �= σ′, then σ′ ◦ σ−1 cannot be the identity
and contains an occurrence of 21. Hence proj(σ, σ′) contains an occurrence of
213.

We show that ((n + 1)σ, σ′
Ln(n + 1)σ′

R) cannot avoid 132 and 213 either.
To see this, let |σL| ≥ |σ′

L|. Then we evaluate the projection:
σL

n n + 1
σR

σL
nn + 1

This can be represented as rπL(n+1)πR�, where � is an element in σ′
L (or

n if σ′
L is empty), r is an element in σ′

R, and πL and πR are subpermutations.
Since elements in σ′

L are greater than elements in σ′
R, then the projection

contains an occurrence of 132. Figure 8 illustrates an example.
Now let |σL| < |σ′

L|. To show the 3-permutation (σ1, σ2) = ((n + 1)σ,
σ′
Ln(n+1)σ′

R) cannot avoid 132 and 213, we show that proj(σ1, σ2) contains ei-
ther pattern. By Observation 3.7, this is equivalent to showing that proj(σ2, σ1)
contains the pattern 132 or 213. We will show that the 3-permutation (σLn(n+
1)σR, (n+1)σ′) cannot avoid 132 and 213 when |σL| > |σ′

L|. Then we evaluate
its projection:

σL
n n + 1

σR

σL
nn + 1

σR
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This is of the form (σ′
R ◦σ−1

R )(n+1)πLnπR, where πL and πR are subper-
mutations. Since σ′

R ◦σ−1
R must contain the minimal element 1, the projection

contains an occurrence of 132. And hence, ((n + 1)σ, σ′
Ln(n + 1)σ′

R) cannot
avoid 132 and 213.

By Corollary 3.8, the 3-permutation ((n + 1)σ, σ′
Ln(n + 1)σ′

R) cannot
avoid 132 and 213 either.

Now we show that for (σ, σ′) ∈ S2
n\S2

n(132, 213), we cannot obtain an
element in S2

n+1(132, 213) by inserting the maximal element n + 1 anywhere
in σ and σ′. We will assume that σ and σ′ avoid these patterns but σ′ ◦ σ−1

does not. Recall that n + 1 must be inserted right-adjacent to n, except in the
cases above, where n+1 may be inserted at the beginning of the permutation.
So let σ �= σ′, where neither are the identity. We have shown above that
proj(σLn(n + 1)σR, σ′

Ln(n + 1)σ′
R) contains proj(σ, σ′). Now for when σ = σ′

or when one of them is the identity permutation, proj(σ, σ′) cannot contain 132
or 213, a contradiction. Inserting n+1 anywhere else will contain an occurrence
of 132 or 213, and hence, inserting the maximal element n + 1 anywhere in σ
and σ′ cannot produce an element in S2

n+1(132, 213).
Hence, we conclude that

an+1 = an + 3 · 2n−1 + 2(n − 1).

�

These theorems allow us to enumerate all 3-permutations avoiding two
patterns of size 3 that correspond to existing OEIS sequences. Moreover, we
have since added the sequence in Theorem 3.9 to the OEIS database [11],
allowing the complete classification and enumeration of all 3-permutations
avoiding two patterns of size 3.

4. Enumeration of Pattern Avoidance Classes of Size 3

Having enumerated all 3-permutations avoiding two patterns, we now turn our
attention to enumerating 3-permutations avoiding three patterns, as Simion
and Schmidt [2] have done with classic permutations. In Table 2, we extend
Bonichon and Morel’s [7] conjectures to 3-permutations avoiding three patterns
of size 3.

Theorem 4.1. Let an = |S2
n(132, 213, 312)|. Then an+1 follows the formula

an+1 = 2(n + 1) for n > 0 (with initial term a1 = 1).

Proof. Let σ=(σ, σ′)∈S2
n(132, 213, 312). Let σ be of the form (σLnσR, σ′

Lnσ′
R).

Note that σR and σ′
R have to be either empty or consecutively decreasing,

and similarly, σL and σ′
L have to be either empty or consecutively increasing.

Moreover, every element in σL and σ′
L must be larger than every element in

σR and σ′
R, respectively. If not, there would be an occurrence of 132.

We have the following cases:
(1) σL, σR are nonempty.

If σ′
L and σ′

R are nonempty, consider σ = (σLnσR, σ′
Lnσ′

R) in S2
n (132,213,
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312). Note that inserting n + 1 right-adjacent to n in both σ and σ′ will
avoid 132, 213, and 312. In particular, (σLn(n + 1)σR, σ′

Ln(n + 1)σ′
R)

avoids 132, 213, and 312.
Now we show that inserting n + 1 anywhere else in σ does not yield an
element of S2

n+1 (132,213,312). Consider σLnσR. We cannot insert n + 1
in the beginning of this permutation, or else there would be an instance
of 312. Further, we cannot insert n + 1 anywhere to the left of n, or else
there would be an instance of 132. There would also be an occurrence of
213 if n + 1 is inserted anywhere to the right of n that is not adjacent to
n.
Hence, n+1 is forced to be right-adjacent to n in σ. The same conclusion
follows for σ′.
If σ′

L is empty, then σ′ = rev(Idn). The projection σ′ ◦ σ−1 contains an
occurrence of 132, and therefore, this case is impossible. Similarly, if σ′

R

is empty, then σ′ = Idn. Note that the projection σ′ ◦ σ−1 contains an
occurrence of 312 since σ contains an occurrence of 231, and this case is
also impossible.
Therefore, every element in this case contributes 1 element in S2

n (132,
213,312).

(2) σL is empty.
If both σ′

L and σ′
R are nonempty, then σ = (rev(Idn), σ′

Lnσ′
R). Taking the

projection proj(rev(Idn), σ′
Lnσ′

R) gives an instance of 132 because every
element in σ′

L is larger than every element in σ′
R. Thus, σ is not a valid

element in S2
n(132, 213, 312), and we conclude this case is impossible.

If σ′
L is empty, then we conclude that (σ, σ′) = (rev(Idn), rev(Idn)). Fol-

lowing similar logic to the previous case, n + 1 must be inserted ad-
jacent to n in both σ and σ′ to avoid 312 and 213. Note that ((n +
1) rev(Idn), (n+1) rev(Idn)) avoids 132, 213, and 312. However, proj((n+
1) rev(Idn), (n(n + 1) rev(Idn−1)) and proj(n(n + 1) rev(Idn−1), (n + 1)
rev(Idn)) cannot avoid 132, 213, and 312. Therefore, (rev(Idn), rev(Idn))
contributes one more element to S2

n+1(132, 213, 312), in addition to the
one obtained by inserting n + 1 right-adjacent to n in both σ and σ′ as
discussed in the previous case.
If σ′

R is empty, then (σ, σ′) = (rev(Idn), Idn). The element n + 1 must
be inserted adjacent to n in σ, and n + 1 must be inserted at the end
of σ′. We can see that the 3-permutation ((n + 1) rev(Idn), Idn(n + 1))
is an element of S2

n+1(132, 213, 312) and furthermore, the 3-permutation
(n(n+1) rev(Idn−1), Idn(n+1)) is not an element, because its projection
σ′ ◦ σ−1 contains an instance of 312.
Hence, each element in this case contributes 1 element to S2

n+1(132, 213,
312), with the exception of (rev(Idn), rev(Idn)), which contributes 2 ele-
ments to S2

n+1(132, 213, 312).
(3) σR is empty.

If σ′
L is nonempty, then σ = (Idn, σ′

Lnσ′
R). Then n + 1 is forced to be

right-adjacent to n for both σ and σ′, which contributes 1 element to
S2
n+1(132, 213, 312).



726 N. Sun

If σ′
L is empty, then (σ, σ′) = (Idn, rev(Idn)). Note that (Idn(n + 1), (n +

1) rev(Idn)) avoids 132, 213, and 312. Hence, the 3-permutation (Idn,
rev(Idn)) contributes one more element to S2

n+1(132, 213, 312) in addition
to the one obtained by inserting n + 1 right-adjacent to n in σ and σ′.
Hence, each element in this case contributes 1 element to S2

n+1(132, 213,
312), with the exception of (Idn, rev(Idn)), which contributes 2 elements
to S2

n+1(132, 213, 312).

Inserting n + 1 anywhere else in σ cannot provide an element in S2
n+1

(132, 213, 312).
We show that for (σ, σ′) ∈ S2

n\S2
n(132, 213, 312), we cannot obtain an el-

ement in S2
n+1(132, 213, 312) by inserting the maximal element n+1 anywhere

in σ and σ′. Let σ and σ′ avoid these patterns but let σ′ ◦ σ−1 contain them.
It is enough to check the cases above:

(1) σL, σR are nonempty.
It is straightforward to check that proj(σLn(n + 1)σR, σ′

Ln(n + 1)σ′
R)

contains σ′ ◦ σ−1 and hence, contains an occurrence of 132, 213, or 312.
The proof in Case 1 above shows that the maximal element n + 1 must
be inserted right-adjacent to n to avoid an occurrence of these patterns
in σ and σ′.

(2) σL is empty.
Then (σ, σ′) = (rev(Idn), σ′

Lnσ′
R). It is also straightforward to check that

when the maximal element n + 1 is inserted adjacent to n in both σ
and σ′, the projection of the resulting 3-permutation contains an occur-
rence of 132 if σ′

R and σ′
L are nonempty. If either σ′

R or σ′
L are empty,

then it is impossible for σ′ ◦ σ−1 to contain instances of 132, 213, 312, a
contradiction.

(3) σR is empty.
Then (σ, σ′) = (Idn, σ′

Lnσ′
R). The projection of this 3-permutation is σ′,

and it is impossible for the projection to contain an occurrence of these
patterns while σ′ avoids them.

Therefore, we have shown an+1 = an + 2. We have the base case a2 = 4,
and we then have

an+1 = 2(n + 1).

�

Theorem 4.2. Let an = |S2
n(132, 213, 321)|. Then an+1 follows the formula

an+1 = (n + 1)2.

Proof. Let σ = (σ, σ′) ∈ S2
n(132, 213, 321). Write (σ, σ′) as (σLnσR, σ′

Lnσ′
R).

Using a similar reasoning discussed in Theorem 4.1, note that σL, σ′
L,

σR, and σ′
R are consecutively increasing. Further, every element in σL and σ′

L

is larger than every element in σR and σ′
R, respectively.

Using the reasoning in Theorem 4.1, (σLn(n + 1)σR, σ′
Ln(n + 1)σ′

R) is
in S2

n+1(132, 213, 321). This contributes an different 3-permutations to S2
n+1

(132, 213, 321). We also have the following cases:
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(1) σR is empty and σ′
R is nonempty.

Note that this implies that σ = Idn and σ′ �= Idn. Then ((n + 1) Idn, σ′
L

n(n + 1)σ′
R) avoids 132, 213, and 321.

Inserting n + 1 anywhere else in σ cannot avoid 132, 213, and 321. We
must insert n + 1 right-adjacent to n in σ′. If n + 1 is left of n, then σ′

contains an instance of 321. If n + 1 is right of n but not adjacent, then
σ′ contains an instance of 213.
In σ, we must either insert n + 1 at the beginning of the permutation
or the end of the permutation. However, inserting n + 1 at the end of
the permutation would correspond to a 3-permutation we have already
considered above.
And hence, ((n+1) Idn, σ′

Ln(n+1)σ′
R) is the only 3-permutation we can

construct in S2
n+1(132, 213, 321). This case contributes n − 1 elements to

S2
n+1(132, 213, 321).

(2) σR is nonempty and σ′
R is empty.

This implies that σ′ = Idn and σ �= Idn. Note that (σLn(n + 1)σR, (n +
1) Idn) belongs to S2

n+1(132, 213, 321). Using a similar argument as in
Case 1, inserting n + 1 in σ anywhere else does not avoid 132, 213,
and 312. Hence, this case contributes n − 1 different 3-permutations to
S2
n+1(132, 213, 321).

(3) Both σR, σ′
R are empty.

This implies that σ = σ′ = Idn. We see that ((n + 1) Idn, Idn(n + 1)),
((n + 1) Idn, (n + 1) Idn), and (Idn(n + 1), (n + 1) Idn) all avoid 132, 213,
and 321. And the same reasoning as in Case 1 shows that inserting n + 1
anywhere else in σ cannot avoid these patterns, and this case contributes
3 elements to S2

n+1(132, 213, 321).

Finally, when σ and σ′ are not the identity permutation, then σR and
σ′
R are both nonempty, and the same argument in Case 1 shows that inserting

n + 1 anywhere not right-adjacent to n in σ and σ′ cannot avoid 132, 213,
and 321. Hence, no other insertions of n + 1 in σ produce an element in
S2
n+1(132, 213, 321).

We show that for (σ, σ′) ∈ S2
n\S2

n(132, 213, 321), we cannot obtain an
element in S2

n+1(132, 213, 321) by inserting the maximal element n + 1 any-
where in σ and σ′. We assume that σ and σ′ avoid these patterns but σ′ ◦σ−1

does not. Write (σ, σ′) = (σLnσR, σ′
Lnσ′

R). It is straightforward to check that
proj(σLn(n+1)σR, σ′

Ln(n+1)σ′
R) contains σ′◦σ−1. Further, we have the same

special cases as above:

(1) σR is empty and σ′
R is nonempty.

Then the projection proj(Idn, σ′
Lnσ′

R) is σ′
Lnσ′

R, and hence it is impossi-
ble for the projection to contain these patterns while σ′ avoids them.

(2) σR is nonempty and σ′
R is empty.

The projection proj(σLnσR, Idn) is of the form πLπR, where πL and πR

are both consecutively increasing and each element of πL is greater than
each element of πR. A permutation of this form cannot contain 132, 213,
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or 321, and it is impossible for proj(σLnσR, Idn) to contain these patterns
while σ avoids them.

(3) Both σR, σ′
R are empty.

It is impossible for proj(Idn, Idn) to contain these patterns.
Hence, we have

an+1 = an + 2n + 1.

The base case is a1 = 1, and we conclude that

an+1 = (n + 1)2.
�

Theorem 4.3. Let an = |S2
n(132, 231, 312)|. Then an satisfies the recurrence

an+1 = an + 3 with initial term a1 = 1.

Proof. Let σ = (σ, σ′) ∈ S2
n(132, 231, 312). Write (σ, σ′) as (σLnσR, σ′

Lnσ′
R).

Note that nσR and nσ′
R must be consecutively decreasing to avoid 312 and

132.
We insert the maximal element n + 1 into σ and σ′ to count how many

elements in S2
n+1(132, 231, 312) there are. Note that (σ(n + 1), σ′(n + 1))

avoids 132, 231, and 312. This contributes an different 3-permutations to
S2
n+1(132, 231, 312). We have the following additional cases:
(1) σ = rev(Idn) and σ′ �= rev(Idn).

This forces σ′ to be the identity. Then ((n+1) rev(Idn), σ′(n+1)) avoids
132, 231, and 312. Now inserting n + 1 anywhere else in σ cannot avoid
these patterns. Namely, if n+1 is inserted anywhere not in the beginning
or end of σ, there is an occurrence of 231. Moreover, inserting n + 1
into the beginning of σ′ contains 312. If n + 1 is inserted anywhere
not in the beginning or end of σ′, there is an occurrence of 132 in σ′.
Hence, ((n + 1) rev(Idn), σ′(n + 1)) is the only element we can construct
in S2

n+1(132, 231, 312) in this case. And this case contributes one element
to S2

n+1(132, 231, 312).
(2) σ′ = rev(Idn) and σ �= rev(Idn).

Then similar to Case 1, (σ(n + 1), (n + 1) rev(Idn)) avoids 132, 231, and
312, and inserting n + 1 anywhere else into this 3-permutation cannot
result in a 3-permutation in S2

n+1(132, 231, 312). Hence, this case con-
tributes one element to S2

n+1(132, 231, 312).
(3) σ = σ′ = rev(Idn).

Note that ((n+1) rev(Idn), (n+1) rev(Idn)) avoids 132, 231, and 312. Now
we show that no other insertions of n+1 into this 3-permutation results in
a 3-permutation that avoids these patterns. Note that proj(rev(Idn)(n +
1), (n + 1) rev(Idn)) contains an occurrence of 231 and further, note that
proj((n + 1) rev(Idn), rev(Idn)(n + 1)) contains an occurrence of 312.
Therefore, this case contributes one element to S2

n+1(132, 231, 312).
Inserting n+1 into (σ, σ′) = (σLnσR, σ′

Lnσ′
R) anywhere else cannot avoid

132, 231, and 312, where σ, σ′ �= rev(Idn). More specifically, inserting n + 1
left-adjacent to n contains 132 and inserting n + 1 anywhere to the left of this
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contains 312. Further, inserting n + 1 anywhere to the right of n (but not at
the end of the permutation) contains 231. Hence, we must insert n + 1 at the
end of the permutation, and no other insertions of n + 1 in σ avoid 132, 231,
and 312.

Now for (σ, σ′) ∈ S2
n \ S2

n(132, 231, 312), we cannot obtain an element in
S2
n+1(132, 231, 312) by inserting the maximal element n+1 anywhere in σ and

σ′. This follows a similar argument to the one presented in Theorem 4.2.
Thus, we conclude that

an+1 = an + 3.

Since our base case is a1 = 1, this is equivalent to an+1 = 3n + 1. �

Theorem 4.4. Let an = |S2
n(213, 231, 321)|. Then an+1 follows the formula

an+1 = 2(n + 1) for n > 0 (with initial term a1 = 1).

Proof. Let σ = (σ, σ′) ∈ S2
n(213, 231, 321). Writing (σ, σ′) as (σLnσR, σ′

Lnσ′
R),

note that σL, σ′
L, σR, and σ′

R are all consecutively increasing or empty.
We insert the maximal element n + 1 to σ and σ′ in an attempt to

construct an element in S2
n+1(213, 231, 321). If σR and σ′

R are nonempty, we
cannot construct an element of S2

n+1(213, 231, 321) via insertion because in-
serting n + 1 to the left of n contains 321, inserting n + 1 right-adjacent to n
contains 231, and inserting n+1 anywhere else contains 213. Then it is enough
to consider (σ, σ′) = (Idn, Idn). We have two cases:
(1) We insert n + 1 to the end of σ.

Then we can insert n+1 anywhere in σ′ and the resulting 3-permutation
is an element of S2

n+1(213, 231, 321). This case contributes n+1 different
elements to S2

n+1(213, 231, 321).
(2) We do not insert n + 1 to the end of σ.

Note that inserting n + 1 into the same position in σ and σ′ avoids 213,
231, and 321. Further, (Idn−1(n + 1)n, Idn(n + 1)) also avoids these pat-
terns.
Inserting n+1 anywhere else contains one of these patterns because the re-
sulting projection contains either 321 or 231. Hence, this case contributes
n + 1 different 3-permutations to S2

n+1(213, 231, 321).

Now for (σ, σ′) ∈ S2
n \ S2

n(213, 231, 312), we cannot obtain an element in
S2
n+1(213, 231, 312) by inserting the maximal element n+1 anywhere in σ and

σ′. It is enough to consider (σ, σ′) = (Idn, Idn). Note that it is impossible for
proj(σ, σ′) to contain 213, 231, or 321 while σ and σ′ avoid these patterns, and
it follows that

an+1 = 2(n + 1).

�

Theorem 4.5. Let an = |S2
n(231, 312, 321)|. Then an satisfies the recurrence

an+1 = an + 3an−1

with initial terms a1 = 1 and a2 = 4.
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Proof. Let σ = (σ, σ′) ∈ S2
n(231, 312, 321). Write (σ, σ′) as (σLnσR, σ′

Lnσ′
R).

Note that (σ(n + 1), σ′(n + 1)) is an element of S2
n+1(231, 312, 321). This

contributes an different 3-permutations to S2
n+1(231, 312, 321). We consider

the following additional case: when σR and σ′
R are empty.

Then (σ, σ′) = (σLn, σ′
Ln), and thus, (σL(n + 1)n, σ′

Ln(n + 1)), (σL(n +
1)n, σ′

L(n+1)n), and (σLn(n+1), σ′
L(n+1)n) are all elements in S2

n+1(231, 312,
321). Inserting n + 1 anywhere else contains an occurrence of 312. Thus, this
case contributes 3an−1 distinct 3-permutations to S2

n+1(231, 312, 321).
Now when either σR and σ′

R are nonempty, we show that inserting n + 1
anywhere but the end of the 3-permutation cannot avoid 231, 312, and 321.
Let σR be nonempty. Then we must insert n + 1 at the end of σ; otherwise,
inserting n + 1 to the right of n contains 231, inserting left-adjacent to n
contains 321, and inserting to the left of n contains 312. And we evaluate the
projection of (σLnσR(n + 1), σ′

L(n + 1)n):
σL

n n + 1
σR

σL
nn + 1

σR

Since σR is nonempty, this contains an instance of 312. The case where
σ′
R is nonempty is similar. Inserting n + 1 anywhere else in σ cannot produce

an element in S2
n+1(231, 312, 321).

Now for (σ, σ′) ∈ S2
n \ S2

n(231, 312, 321), we cannot obtain an element in
S2
n+1(231, 312, 321) by inserting the maximal element n+1 anywhere in σ and

σ′. It is straightforward to check that the projections of (σ(n + 1), σ′(n + 1)),
(σL(n+1)n, σ′

Ln(n+1)), (σL(n+1)n, σ′
L(n+1)n), and (σLn(n+1), σ′

L(n+1)n)
contain instances of σ′ ◦ σ−1 and hence, contain instances of 231, 312, or 321.
The proof above shows that inserting n + 1 anywhere else in σ and σ′ cannot
avoid these patterns.

Thus, it follows that

an+1 = an + 3an−1.

�

5. Final Remarks and Open Problems

In this paper, we completely enumerated 3-permutations avoiding two patterns
of size 3 and three patterns of size 3. The theorems in this paper prove all
the conjectures by Bonichon and Morel [7] regarding 3-permutations avoiding
two patterns of size 3 and extend their conjectures to classify 3-permutations
avoiding all classes of three patterns of size 3. We conclude with the following
open problem.

Problem 5.1. Find combinatorial bijections to explain the relationships be-
tween the 3-permutation avoidance classes found in this paper and their re-
currence relations.
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For example, we notice that the sequence A001787 in Theorem 3.1 counts
the number of 132-avoiding permutations of length n + 2 with exactly one
occurrence of a 123-pattern and the number of Dyck (n+2)-paths with exactly
one valley at height 1 and no higher valley [11]. In general, the problem of
enumerating d-permutations avoiding sets of small patterns is widely open.
Since several of these enumeration sequences correspond to sequences on the
OEIS database [11], there are certainly interesting combinatorial properties of
these 3-permutation avoidance classes, and there are several bijections to find
that explain these sequences.
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