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Fully Complementary Higher Dimensional
Partitions

Florian Schreier-Aigner

Abstract. We introduce a symmetry class for higher dimensional
partitions—fully complementary higher dimensional partitions (FCPs)—
and prove a formula for their generating function. By studying symmetry
classes of FCPs in dimension 2, we define variations of the classical sym-
metry classes for plane partitions. As a by-product, we obtain conjectures
for three new symmetry classes of plane partitions and prove that another
new symmetry class, namely quasi-transpose-complementary plane parti-
tions, are equinumerous to symmetric plane partitions.
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1. Introduction

A plane partition π is an array (πi,j) of non-negative integers with all but
finitely many entries equal to 0, which is weakly decreasing along rows and
columns, i.e. πi,j ≥ πi+1,j and πi,j ≥ πi,j+1; see Fig. 1 (left) for an exam-
ple. MacMahon [12] introduced them at the end of the 19th century as two
dimensional generalisations of ordinary partitions and proved in [14] two enu-
meration results: He showed that the generating function of plane partitions
is given by

∑

π

q|π| =
∏

i≥1

1
(1 − qi)i

, (1.1)

where the sum is over all plane partitions and |π| is defined as the sum of
the entries of π. A plane partition π is said to be contained in an (a, b, c)-box
if the entries of π are at most c and πi,j �= 0 implies i ≤ a and j ≤ b. The
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Figure 1. A plane partition contained in a (3, 4, 4)-box on
the left, its graphical representation as stacks of unit cubes
(middle) and the associated lozenge tiling (right)

plane partition in Fig. 1 is contained in a (3, 4, 4)-box or any box of larger size.
MacMahon showed that the weighted enumeration of plane partitions inside
an (a, b, c)-box is given by

∑

π

q|π| =
a∏

i=1

b∏

j=1

c∏

k=1

1 − qi+j+k−1

1 − qi+j+k−2
, (1.2)

where the sum is over all plane partitions contained in an (a, b, c)-box.
While plane partitions were already introduced at the end of the 19th

century, they came into the focus of the combinatorics community mainly in
the second half of the last century. One major goal was to prove the enumer-
ation formulas for the ten symmetry classes of plane partitions. These classes
are defined via combinations of the three operations reflection, rotation and
complementation which are best defined by viewing plane partitions as lozenge
tilings: first, we represent a plane partition π as stacks of unit cubes by placing
πi,j unit cubes at the position (i, j), see Fig. 1 (middle). By further displaying
the shape of the (a, b, c)-box in which we regard the plane partition in and
forgetting the shading of the cubes, we obtain a lozenge tiling of a hexagon
with side lengths a, b, c, a, b, c, see Fig. 1 (right). Interestingly, this was first
observed by David and Tomei [7] in 1989. The operation reflection is defined
as vertical reflection of the lozenge tiling, rotation as rotation by 120 degrees
and complementation as rotation by 180 degree. While MacMahon [13] already
considered plane partitions invariant under reflection, the operation comple-
mentation was first described by Mills et al. [15] in 1986. A systematic study
of the 10 symmetry classes which are defined through these operations was
initiated by Stanley [18,19] and finished in 2011 by Koutschan et al. [9]. For a
more detailed overview, see [11].

Already in 1916, MacMahon [14] introduced a further generalisation of
partitions to arbitrary dimension, namely higher dimensional partitions. A d-
dimensional partition π is an array (πi1,...,id) of non-negative integers with
all but finitely many entries equal to 0, such that πi ≥ πi+ek

for all indices
i = (i1, . . . , id) and 1 ≤ k ≤ d, where ek denotes the k-th unit vector. We
say that π is contained in an (n1, . . . , nd+1)-box if all entries are at most nd+1

and πi > 0 implies that ij ≤ nj for all 1 ≤ j ≤ d. Contrary to dimension 1
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Figure 2. The labels of the corners of an (a, b, c)-box (mid-
dle), the corners where a copy of π is placed for self-
complementary plane partitions (left), and the corners where
copies of π are placed for quarter complementary plane par-
titions (right). The colour and lengths of the arrows indicate
the orientation of the copies

(partitions) and dimension 2 (plane partitions), there are hardly any results
known for higher dimensional partitions in dimension 3 or higher. MacMahon
conjectured a generating formula for each dimension d but it was disproved by
Atkin et al. [2] in 1967; see also [8]. Only recently the first enumeration result
for higher dimensional partitions was presented by Amanov and Yeliussizov
[1]. They were able to “correct” MacMahon’s formula and showed that

∑

π

tcor(π)q|π|ch =
∏

i≥1

(1 − tqi)−(i+d−2
d−1 ), (1.3)

where the sum is over all d-dimensional partitions, and cor and |·|ch are certain
statistics defined in [1, Sects. 4 and 5].

In this paper we introduce a new symmetry class for plane partitions,
namely quarter complementary plane partitions (QCPPs), which can be gen-
eralised immediately to higher dimensional partitions. Instead of presenting the
definition for QCPPs (it follows from the corresponding definition for higher
dimensional partitions in Sect. 2.2) we aim to convey the geometric intuition
of this symmetry class next.

Let π = (πi,j) be a plane partition inside an (a, b, c)-box and define by
π′ = (πa+1−i,b+1−j)i,j the “dual plane partition” of π inside the (a, b, c)-box.
Geometrically, we think of the dual plane partition as stacks of unit cubes
hanging from the ceiling of the (a, b, c)-box instead of standing at its floor,
where the first stack is positioned at the corner with coordinates (a, b, c) in-
stead of the corner with coordinates (1, 1, 1), see Fig. 2 (left) for a sketch. It
is not difficult to see, compare for example with [11, Sect. 6], that π is self-
complementary if π and π′ fill the (a, b, c)-box without overlap when regarded
as stacks of unit cubes. In the array perspective this means πi,j + π′

i,j = c
for all 1 ≤ i ≤ a and 1 ≤ j ≤ b. We can now generalise this idea. Let C
be a set of corners of the (a, b, c)-box. We define a plane partition π to be
C-complementary if we can fill the (a, b, c)-box without overlap by copies of π
placed at the corners of C similar to before, i.e. if a copy of π is placed at a
corner of the form (∗, ∗, c) then its stacks of unit cubes hang from the ceiling
of the box instead of standing on its floor. It is immediate that such a π can
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only exist if |C| ∈ {1, 2, 4, 8}. We can ignore the cases |C| = 1 and |C| = 8
since they are trivial.

For |C| = 2, there are up to rotation three possible configurations C1 =
{(1, 1, 1), (a, 1, 1)}, C2 = {(1, 1, 1), (a, b, 1)}, and C3 = {(1, 1, 1), (a, b, c)}. It
is immediate that there is only one C1-complementary plane partition if a is
even and none otherwise. Each C2-complementary plane partition is uniquely
determined by its boxes of the form (x, y, 1). Hence, we can map them bijec-
tively to the set of partitions λ = (λ1, . . . , λa) inside an (a, b)-box which satisfy
λi + λa+1−i = b. As described before, C3-complementary plane partitions are
exactly self-complementary plane partitions.

For |C| = 4, there are up to rotation six possible configurations:

C4 = {(1, 1, 1), (a, 1, 1), (1, b, 1), (a, b, 1)},

C5 = {(1, 1, 1), (a, 1, 1), (1, b, 1), (1, 1, c)},

C6 = {(1, 1, 1), (a, 1, 1), (1, b, 1), (a, 1, c)},

C7 = {(1, 1, 1), (a, 1, 1), (1, b, 1), (a, b, c)},

C8 = {(1, 1, 1), (a, b, 1), (1, 1, c), (a, b, c)},

C9 = {(1, 1, 1), (a, b, 1), (1, b, c), (a, 1, c)},

see Fig. 2 (right) for a sketch of C9. There is only one C4-complementary
plane partition if 2 divides both a and b and none otherwise, analogously
for C7. It is immediate that there are no C5- or C6-complementary plane
partitions and that C8-complementary plane partitions do not exist for odd c
and are in bijection to C2-complementary plane partitions otherwise. Finally,
C9-complementary plane partitions are the objects we want to call quarter
complementary plane partitions.

In Sect. 2, we generalise this geometric approach to higher dimensions
using higher dimensional Ferrers diagrams. Translating the obtained crite-
ria on Ferrers diagrams back to the array description for higher dimensional
partitions, we obtain in Lemma 2.2 the definition of d-dimensional fully com-
plementary partitions (FCPs). In Proposition 2.4, we describe the recursive
structure of FCPs which implies immediately our main result.

Theorem 1.1. Let x = (x1, . . . , xd+1), n = (n1, . . . , nd+1) ∈ N
d+1
>0 and denote

by FCP(n) the set of fully complementary partitions inside a (2n1, . . . , 2nd+1)-
box. Then,

∑

n∈N
d+1
>0

|FCP(n)|xn =
d+1∏

i=1

xi

1 − xi
·
∑d+1

i=1 (1 − xi)

1 − ∑d+1
i=1 xi

. (1.4)

The recursive structure of FCPs can be further used to construct a bi-
jection between d-dimensional FCPs and lattice paths in the positive d + 1-
dimensional orthant starting from any integer point in the interior of its d-
dimensional boundary.
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In Sect. 3, we consider the “typical” symmetry classes for plane partitions
restricted to two-dimensional FCPs, i.e. quarter complementary plane parti-
tions. It turns out that there exists at most one symmetric QCPP in an (a, b, c)-
box and that a QCPP can be neither cyclically symmetric nor transpose-
complementary. By introducing two variations, namely quasi-symmetric and
quasi-transpose-complementary, we are able to show enumerative results for
the corresponding symmetry classes and combinations thereof for QCPPs, see
Proposition 3.1 to Proposition 3.4. It is an immediate question if the enumera-
tion of plane partitions under these variations of symmetry classes have closed
expressions. In Sect. 4, we consider these new symmetry classes and similar
generalisations. We present three conjectures, the corresponding data gener-
ated in computer experiments are given in Appendix A, and the proof of the
next result.

Theorem 1.2. A plane partition π inside an (n, n, c)-box is called quasi-
transpose-complementary if πi,j + πn+1−j,n+1−i = c holds for all 1 ≤ i, j ≤ n
with i �= n + 1 − j. The number of quasi-transpose-complementary plane par-
titions inside an (n, n, c)-box is equal to the number of symmetric plane parti-
tions inside an (n, n, c)-box.

We present different proofs of the above theorem and discuss how it is
related to known results on plane partitions, lozenge tilings and perfect match-
ings, respectively. For odd c, we relate quasi-transpose-complementary plane
partitions to transpose-complementary plane partitions and obtain immedi-
ately the following numerical connection between symmetric and transpose-
complementary plane partitions which seems to be new

2n−1 TCPP(n, n, 2c) = SPP(n − 1, n − 1, 2c + 1), (1.5)

where TCPP(n, n, 2c) denotes the number of transpose-complementary plane
partitions inside an (n, n, 2c)-box and SPP(n, n, c) denotes the number of sym-
metric plane partitions inside an (n, n, c)-box. Since the proof of the above
theorem is computational, it is still an open question if one can find a bijec-
tion between symmetric plane partitions and quasi-transpose-complementary
plane partitions.

2. Fully Complementary Partitions

2.1. Fully Complementary Ferrers Diagrams

A d-dimensional Ferrers diagram λ is a finite subset of (N>0)d+1 such that
(x1, . . . , xd+1) ∈ λ implies (y1, . . . , yd+1) ∈ λ whenever 1 ≤ yi ≤ xi for all
1 ≤ i ≤ d + 1. Equivalently, λ is an order ideal in the poset (N>0)d+1 where
the order relation is component-wise the order relation of the integers. For
a positive integer n, we define [n] = {1, . . . , n}. We say that λ is contained
in an (n1, . . . , nd+1)-box for positive integers n1, . . . , nd+1, if λ is a subset of
[n1] × · · · × [nd+1]. It is immediate that the map

λ �→ π(λ) =
(|{(i1, . . . , id, k) ∈ λ}|)

i1,...,id
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is a bijection between d-dimensional Ferrers diagrams and d-dimensional parti-
tions which respects the property of being contained in an (n1, . . . , nd+1)-box.
Therefore, we identify for the remainder of this paper a d-dimensional Ferrers
diagram with the d-dimensional partition it is mapped to.

Let n = (n1, . . . , nd+1) be a sequence of positive integers and I ⊆ [d+1].
We define the bijection ρI,n from [2n1] × · · · × [2nd+1] onto itself as

ρI,n(x1, . . . , xd+1) :=

({
xi i /∈ I,

2ni + 1 − xi i ∈ I,

)

1≤i≤d+1

.

If n is clear from the context, we will omit it and write ρI instead of ρI,n.
We can use the map ρI to rephrase the definition of quarter complementary
plane partitions. Let λ be a two-dimensional Ferrers diagram contained in a
(2n1, 2n2, 2n3)-box. Then, ρ{1,2}(λ) corresponds to the copy of λ placed in the
corner (2n1, 2n2, 1) of the box, ρ{1,3}(λ) to the copy of λ placed in the cor-
ner (2n1, 1, 2n3) and ρ{2,3}(λ) to the copy placed in the corner (1, 2n2, 2n3).
Hence, λ corresponds to a QCPP if λ, ρ{1,2}(λ), ρ{1,3}(λ), ρ{2,3}(λ) have pair-
wise empty intersection and their union is equal to [2n1] × [2n2] × [2n3]. We
extend this definition to any dimension d.

Definition 2.1. Let n1, . . . , nd+1 be positive integers. A d-dimensional Ferrers
diagram λ is called fully complementary inside a (2n1, . . . , 2nd+1)-box if for
all pairs of subsets I, J ⊆ [d + 1] of even size ρI(λ) ∩ ρJ (λ) = ∅ holds and

⋃

I⊆[d+1]
|I| even

ρI(λ) = [2n1] × · · · × [2nd+1].

It is easy to see that ρI(λ) ∩ ρJ (λ) = ∅ holds for all subsets I, J ⊆ [d + 1]
of even size exactly if λ ∩ ρI(λ) = ∅ holds for all subsets I ⊆ [d + 1] of even
size.

The three-dimensional Ferrers diagram λ = {(1, 1, 1, 1), (2, 1, 1, 1)} is fully
complementary inside a (2, 2, 2, 2)-box. This can be seen easily by calculating
the according images under ρI for even sized I which are given by

ρ{1,2}(λ) = {(2, 2, 1, 1), (1, 2, 1, 1)}, ρ{2,3}(λ) = {(1, 2, 2, 1), (2, 2, 2, 1)},

ρ{1,3}(λ) = {(2, 1, 2, 1), (1, 1, 2, 1)}, ρ{2,4}(λ) = {(1, 2, 1, 2), (2, 2, 1, 2)},

ρ{1,4}(λ) = {(2, 1, 1, 2), (1, 1, 1, 2)}, ρ{3,4}(λ) = {(1, 1, 2, 2), (2, 1, 2, 2)},

ρ{1,2,3,4}(λ) = {(2, 2, 2, 2), (1, 2, 2, 2)}.

There are three further Ferrers diagrams which are fully complementary inside
(2, 2, 2, 2), namely {(1, 1, 1, 1), (1, 2, 1, 1)}, {(1, 1, 1, 1), (1, 1, 2, 1)} and {(1, 1, 1,
1), (1, 1, 1, 2)}. More generally, define the d-dimensional Ferrers diagrams

λd,i := {(1, . . . , 1), (1, . . . , 1, 2, 1, . . . , 1)}, (2.1)

where the 2 entry is at position i. Then, the d-dimensional Ferrers diagrams
which are fully complementary inside the box (2, . . . , 2) are exactly λd,1, . . . ,
λd,d+1.
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In the above definition of fully complementary, we restricted ourselves
to boxes with even side lengths. The definition can be extended to any side
lengths, however, as we see next, either there are no such Ferrers diagrams, or
we obtain a set of Ferrers diagram which is in bijection to one where the box
has only even side lengths. First, assume that there exist k < l such that the
k-th and l-th side lengths of the box are given by 2nk + 1 and 2nl + 1, respec-
tively, and that λ is a Ferrers diagram which is fully complementary inside
this box. Let us regard the point P = (1, . . . , 1, nk, 1, . . . , 1, nl, 1, . . . , 1) whose
components are 1 except for the k-th and l-th component. Then, there exists
an I ⊂ [d + 1] of even size such that P ∈ ρI,n̂(λ), where n̂ = (n̂1, . . . , n̂d+1)
and n̂i is half of the side length of the box in the direction of i-th standard
vector. Let I ′ be the set I ′ = (I\{k, l}) ∪ ({k, l}\I). It is immediate that |I ′|
is even and that P ∈ ρI′,n̂(λ) which is a contradiction. Hence, there exists no
fully complementary Ferrers diagram inside a box with at least two odd side
lengths.

Now, let all side lengths of the box be even with the exception of one
side length. Without loss of generality, we can assume that the box is a
(2n1, . . . , 2nd, 2nd+1 + 1)-box. For a fully complementary partition π in this
box, we see that a point of the form (i1, . . . , id, nd+1 + 1) is exactly in π if
ij ≤ nj for all 1 ≤ j ≤ d. The map

Ψ : λ �→ {(i1, . . . , id, id+1) ∈ λ : id+1 ≤ nd+1}
∪{(i1, . . . , id, id+1 − 1) ∈ λ : id+1 > nd+1 + 1},

is a surjection from Ferrers diagrams inside a (2n1, . . . , 2nd, 2nd+1 + 1)-box to
Ferrers diagrams inside a (2n1, . . . , 2nd, 2nd+1)-box. It is not difficult to see
that the map Ψ commutes with ρI for each I ⊆ [d + 1], i.e.

Ψ ◦ ρI,(n1,...,nd,nd+1+
1
2 )

= ρI,(n1,...,nd+1) ◦ Ψ.

Hence, Ψ maps fully complementary Ferrers diagrams inside a (2n1, . . . , 2nd,
2nd+1 + 1)-box bijectively to those inside a (2n1, . . . , 2nd+1)-box.

2.2. The Generating Function of FCPs

We call a d-dimensional partition π fully complementary inside a (2n1, . . . ,
2nd+1)-box if its corresponding Ferrers diagram is fully complementary in this
box. The fully complementary partitions inside the (2, 2, 2, 2)-box are shown
next where we write (πi,j,1) in the top row and (πi,j,2) in the row below:

1 1
0 0

1 0
1 0

1 0
0 0

2 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
0 0

For n = (n1, . . . , nd+1) and a subset I ⊆ [d], we define the map γI,n as

γI,n(π) =
(
πρI,n(i1,...,in)

)
i1,...,in

.
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Again we omit the subscript n and write γI whenever n is clear from context.
The next lemma rephrases the conditions of being fully complementary directly
for a d-dimensional partition.

Lemma 2.2. Let n1, . . . , nd+1 be positive integers. A d-dimensional partition π
is fully complementary inside a (2n1, . . . , 2nd+1)-box if and only if

πi1,...,id · γJ(π)i1,...,id = 0, (2.2)
∑

I⊆[d]

γI(π)i1,...,id = 2nd+1, (2.3)

for all non-empty subsets J ⊆ [d] of even size and for all (i1, . . . , id) ∈ [2n1] ×
· · · × [2nd].

Proof. Let λ be a fully complementary Ferrers diagram inside a (2n1, . . . ,
2nd+1)-box and (πi1,...,id)i1,...,id the corresponding d-dimensional partition. For
I ⊆ [d], we have

γI(π)i1,...,id =

{
|{(i1, . . . , id, k) ∈ ρI(λ) : k ∈ N>0}| |I| is even,

|{(i1, . . . , id, k) ∈ ρI∪{d+1}(λ) : k ∈ N>0}| |I| is odd.

By definition, the intersection λ ∩ ρI(λ) is empty for even sized I exactly if
πi1,...,id · γI(π)i1,...,id = 0 for all (i1, . . . , id) ∈ [2n1] × · · · × [2nd]. For odd sized
I ⊆ [d], the intersection λ ∩ ρI∪{d+1}(λ) is empty if and only if πi1,...,id +
γI(π)i1,...,id ≤ 2nd+1 for all (i1, . . . , id) ∈ [2n1] × · · · × [2nd]. Finally, the union
of all ρJ (λ) with J ⊆ [d + 1] of even size is exactly [2n1] × · · · × [2nd+1] if and
only if (2.3) is satisfied for all (i1, . . . , id) ∈ [2n1] × · · · × [2nd]. �

Remark 2.3. Let π ∈ FCP(n) and let i1, . . . , id such that 0 < πi1,...,id < 2nd+1.
The above Lemma implies that there exists exactly one I ⊆ [d] of odd size such
that πi1,...,id +γI(π)i1,...,id = 2nd+1. By (2.3), there exists at least one set I1 of
odd size such that γI1(π)i1,...,id > 0. By definition, this implies (i1, . . . , id, 1) ∈
ρI1∪{d+1}(λ) where λ is the corresponding Ferrers diagram of π. Hence, by
Definition 2.1, there cannot exist another I2 with the same properties.

Denote by FCP(n1, . . . , nd+1) the set of fully complementary partitions
inside a (2n1, . . . , 2nd+1)-box. For 1 ≤ k ≤ d, we define the map1 ϕk :
FCP(n1, . . . , nd+1) → FCP(n1, . . . , nk + 1, . . . , nd+1) as

ϕk(π)i1,...,id =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πi1,...,id ik ≤ nk,

nd+1 ik ∈ {nk + 1, nk + 2} and
ij ≤ nj for all 1 ≤ j �= k ≤ d,

πi1,...,ik−2,...,id ik > nk + 2,

0 otherwise,

1Formally, we have for each n = (n1, . . . , nd+1) a different map ϕk. However, since n will

always be clear from the context, we do not include n in the notation.
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and the map ϕd+1 : FCP(n1, . . . , nd+1) → FCP(n1, . . . , nd, nd+1 + 1) as

ϕd+1(π)i1,...,id =

{
πi1,...,id + 2 ij ≤ nj for all 1 ≤ j ≤ d,

πi1,...,id otherwise.

It is not difficult to see that these maps are well defined. Let π be the fully
complementary partition inside the (4, 4, 4)-box displayed next:

4 2 2 0
3 2 2 0
1 0 0 0
0 0 0 0

The images of π under the maps ϕ1, ϕ2 or ϕ3, respectively, are given as follows:

4 2 2 0
3 2 2 0
2 2 0 0
2 2 0 0
1 0 0 0
0 0 0 0

4 2 2 2 2 0
3 2 2 2 2 0
1 0 0 0 0 0
0 0 0 0 0 0

6 4 2 0
5 4 2 0
1 0 0 0
0 0 0 0

As we see in a moment, it is useful to extend the definition of fully comple-
mentary partitions to “empty boxes”. In particular, we define FCP(n1, . . . , nd+1)
to consist of the “empty array” in case that one nk0 is equal to 0 and all other
ni are positive. We extend the map ϕk to these sets, where ϕk is the identity
(mapping the empty array onto the empty array) if k �= k0 and mapping the
empty array to

({
nd+1 ij ≤ nj for all 1 ≤ j �= k0 ≤ d,

0 otherwise,

)

i1,...,id

,

if k = k0 �= d + 1 and to
({

2 ij ≤ nj for all 1 ≤ j ≤ d,

0 otherwise,

)

i1,...,id

,

if k = k0 = d + 1. The maps ϕk allow us to prove the following recursive
structure for FCPs.

Proposition 2.4. Let n = (n1, . . . , nd+1) be a sequence of positive integers.
Then, FCP(n) is equal to the disjoint union

FCP(n) =
⋃̇

1≤k≤d+1
ϕk

(
FCP(n − ek)

)
, (2.4)

where ek is the k-th unit vector and
⋃̇

denotes the disjoint union.

Proof. First, we prove that the images of the ϕk are disjoint. Let k < l be
integers with ϕk

(
FCP(n−ek)

)∩ϕl

(
FCP(n−el)

) �= ∅ and let π be an element of
this intersection. First, we assume that l = d+1. Since π ∈ ϕk(n−ek), we have
by definition πn1,...,nd

= nd+1. On the other hand, π ∈ ϕd+1

(
FCP(n − ed+1)

)
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implies πn1,...,nd
≥ nd+1 + 1 which is a contradiction. Now let l < d + 1. By

definition of ϕk, ϕl, we have

πn+ek
= πn+el

= nd+1.

This implies

πn+ek
· (

γ{k,l}(π)
)
n+ek

= πn+ek
· πn+el

= n2
d+1 �= 0,

which contradicts (2.2). Hence, the union in (2.4) is disjoint. �

Let π ∈ FCP(n). It is easy to see that πn ≥ nd+1. If πn ≥ nd+1 + 1,
then π ∈ ϕd+1

(
FCP(n − ed+1)

)
. Hence, let us assume that πn = nd+1. By

(2.2), γI(π)n = 0 for all I ⊂ [d] of even size. Remark 2.3 implies that there
exists exactly one I ⊆ [d] of odd size with πn + γI(π)n = 2nd+1 which implies
γI(π)n = πρI(n) = nd+1. Let k ∈ I and define n̂ = (1, . . . , nk, . . . , 1) as the
vector whose entries are 1 except on position k, where the entry is nk and
î = (i1, . . . , id) as the vector with ik = nk and ij ≤ nj for all 1 ≤ j �= k ≤ d.
Since π is a d-dimensional partition, we have the following inequalities:

πn̂ ≥ πî ≥ πn = nd+1

≤ ≤ ≤ =
πn̂+ek ≥ πî+ek ≥ πn+ek ≥ πρI(n)

Since πρ{k}(n) = πn+ek
> 0 and there exists only one non-empty I with

πρI(n) �= 0, this implies that I = {k} and hence πn+ek
= nd+1. Further-

more, we have πn̂ + πn̂+ek
≥ πn + πn+ek

= 2nd+1 by the above inequali-
ties and πn̂ + πn̂+ek

≤ 2nd+1 by (2.3) since γ{k}(π)n̂ = πn̂+ek
. This implies

πn̂ = πn̂+ek
= nd+1 and hence πî = πî+ek

= nd+1 for all î defined as be-
fore. Denote for l �= k by n̂l the vector with all components equal to 1 ex-
cept of the k-th and l-th component which are nk or nl, respectively. Since
ρ{k,l}(n̂l) = n̂l + ek + el and ρ{k,l}(n̂l + ek) = n̂l + el it follows from (2.2)
that πn̂+el

= πn̂+el+ek
= 0 and hence πi1,...,id = 0 for all (i1, . . . , id) such that

ik ∈ {nk, nk +1} and there exists an ij > nj . Denote by π′ the array obtained
by deleting all entries for which the k-th component of the index is either nk

or nk + 1. It is not difficult to verify that π′ ∈ FCP(n − ek) and π = ϕk(π′)
which proves the claim. �

Remark 2.5. Let π ∈ FCP(n). As a consequence of the above theorem, we can
find the k such that π ∈ ϕk(FCP(n − ek)) easily as follows. First, restrict π
to its central hypercube B of size (2, . . . , 2). It is easy to see that this again
fully complementary inside B. As stated in the paragraph below (2.1), the
restriction is equal to some λd,i. By comparing with the definition of ϕk, we
obtain that it has to be λd,k.

As we see next, Theorem 1.1 is now a direct consequence of the above
proposition.

Proof of Theorem 1.1. Let us denote by Z(x) the left hand side of (1.4), i.e.
Z(x) =

∑
n∈N

d+1
>0

|FCP(n)|xn. Denote further by Zj(x) =
∑

n |FCP(n)|xn,
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where the sum is over all n ∈ N
d+1 where the j-th component is 0 and all the

other components are positive. It is immediate that

Zj(x) =
∏

1≤i≤d+1
i�=j

xi

1 − xi
,

since each of the FCP(n) in the sum has exactly one element, namely the
“empty array”. Using Proposition 2.4, we rewrite Z(x) as

Z(x) =
∑

n∈N
d+1
>0

∣∣∣∣
⋃̇d+1

i=1
ϕi(FCP(n − ei))

∣∣∣∣x
n =

d+1∑

i=1

xi

∑

n∈N
d+1
>0

|FCP(n − ei)|xn−ei

=
d+1∑

i=1

xi (Z(x) + Zi(x)) = Z(x)
d+1∑

i=1

xi +
d+1∏

i=1

xi

1 − xi

(
d+1∑

i=1

(1 − xi)

)
.

By bringing all Z(x) terms on one side, we obtain the assertion. �

Remark 2.6. Let n = (n1, . . . , nd+1) ∈ N
d+1
>0 be given. By applying Proposi-

tion 2.4 iteratively, we see that each π ∈ FCP(n) can be uniquely written as
ϕik ◦ · · · ◦ ϕi1(σ) where σ is an “empty array” inside an appropriate “empty
box” with dimension n′ = (n′

1, . . . , n
′
d+1) such that ϕi1(σ) is a non-empty ar-

ray. We map π to the lattice path starting at n′ and ending at n whose jth
step is eij . This yields a bijection between FCPs inside a (2n1, . . . , 2nd+1)-box
and lattice paths inside the positive (d + 1)-dimensional orthant starting from
any integer point on its d-dimensional boundary and ending at n with step set
{e1, . . . , ed+1} such that all coordinates are positive after the first step. Below
we show the construction for an FCP inside a (6, 4, 4)-box which is mapped to
the lattice path from (1, 1, 0) to (3, 2, 2) with steps (e3, e1, e3, e2, e1):

4 2 2 0
3 2 2 0
2 2 0 0
2 2 0 0
1 0 0 0
0 0 0 0

ϕ1←−
4 2 2 0
3 2 2 0
1 0 0 0
0 0 0 0

ϕ2←−
4 0
3 0
1 0
0 0

ϕ3←−
2 0
1 0
1 0
0 0

ϕ1←− 2 0
0 0

ϕ3←− ∅

3. Symmetry Classes of QCPPs

3.1. (Quasi)-symmetric QCPPs

Remember that a plane partition π is quarter complementary inside a (2a, 2b,
2c)-box if for all 1 ≤ i ≤ 2a and 1 ≤ j ≤ 2b, we have

πi,j · π2a+1−i,2b+1−j = 0, (3.1)

and for πi,j > 0 exactly one of the following equations holds:

πi,j + π2a+1−i,j = 2c, or πi,j + πi,2b+1−j = 2c. (3.2)

Regarded as a regular plane partition, π is called symmetric if a = b and
πi,j = πj,i for all 1 ≤ i, j ≤ 2a. By (3.1), we see that π can only be symmetric
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if the entries on its anti-diagonal are 0, i.e. πi,2a+1−i = 0 for 1 ≤ i ≤ 2a.
Together with (3.2), this implies πa,a = 2c and hence that the only symmetric
quarter complementary plane partition is

π =

({
2c i, j ≤ a,

0 otherwise,

)

1≤i,j≤2a

.

In order to obtain more interesting objects, we omit the symmetry condi-
tion on the anti-diagonal and call a quarter complementary plane partition
π quasi-symmetric if πi,j = πj,i for all 1 ≤ i, j ≤ 2a and i �= 2a + 1 − j.
Denote by QS(a, c), the set of quarter complementary plane partitions inside
a (2a, 2a, 2c)-box which are quasi-symmetric.

Proposition 3.1. Let a, c be positive integers. Then, QS(a, c) is equal to

QS(a, c) = ϕ1 ◦ ϕ2

(
QS(a − 1, c)

)∪̇ϕ2 ◦ ϕ1

(
QS(a − 1, c)

)∪̇ϕ3

(
QS(a, c − 1)

)

(3.3)

Proof. Let π ∈ QS(a, c). By Proposition 2.4, π is either in ϕ3

(
FCP(a, a, c−1)

)
,

ϕ1

(
FCP(a − 1, a, c)

)
or ϕ2

(
FCP(a, a − 1, c)

)
. In the first case, ϕ−1

3 (π) is ob-
viously quasi-symmetric and for each σ ∈ QS(a, c − 1), the partition ϕ3(σ)
is also quasi-symmetric. Assume π ∈ ϕ1

(
FCP(a − 1, a, c)

)
. By the definition

of ϕ1, we have πa,j = πa+1,j = c if j ≤ a and πa,j = πa+1,j = 0 if j > a.
By the quasi-symmetry of π, this implies πj,a = πj,a+1 = c for j < a and
πj,a = πj,a+1 = 0 for j > a + 1. Therefore, we obtain π = ϕ1 (ϕ2(σ)) for
σ ∈ FCP(a − 1, a − 1, c). For 1 ≤ i, j ≤ 2(a − 1) and i + j �= 2a − 1, we have

σi,j = πi,j = πj,i = σj,i for i, j < a,

σi,j = πi,j+2 = πj+2,i = σj,i for i < a, j ≥ a

σi,j = πi+2,j = πj,i+2 = σj,i for i ≥ a, j < a,

σi,j = πi+2,j+2 = πj+2,i+2 = σj,i for i, j ≥ a,

where we used the definition of ϕ1 and ϕ2 for the first and last equality and
the quasi-symmetry of π for the second equality. This implies σ ∈ QS(a−1, c).
On the other hand if σ ∈ QS(a − 1, c), it follows by the same considerations
that ϕ1 (ϕ2(σ)) is quasi-symmetric and hence an element of QS(a, c). The last
case follows analogously. �

By defining QS(a, c) to consist of the “empty array” if either a or c is
equal to 0, we obtain immediately the following corollary.

Corollary 3.2. The generating function for quasi-symmetric quarter comple-
mentary plane partitions is given by

∑

a,c>0

|QS(a, c)|xayc =
(3 − 2x − y)xy

(1 − x)(1 − y)(1 − 2x − y)
.
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Proof. Using Proposition 3.1, we obtain
∑

a,c>0

|QS(a, c)|xayc =
∑

a,c>0

(
2x|QS(a − 1, c)|xa−1yc + y|QS(a, c − 1)|xayc−1

)

=
∑

a,c>0

|QS(a, c)|xayc(2x + y) +
∑

c>0

2x|QS(0, c)|yc

+
∑

a>0

y|QS(a, 0)|xa

=
∑

a,c>0

|QS(a, c)|xayc(2x + y) +
2xy

1 − y
+

xy

1 − x
.

We obtain the assertion by combining both sums over a, c > 0 and factorising
the expression. �

3.2. Cyclically Symmetric QCPPs

A plane partition π is called cyclically symmetric if a point (i, j, k) in its
Ferrers diagram implies that (j, k, i) is also in its Ferrers diagram. As we see
next, there is no cyclically symmetric quarter complementary plane partition.
Let π be a cyclically symmetric quarter complementary Ferrers diagram inside
a (2a, 2a, 2a)-box. It is not difficult to see, that being quarter complementary
implies that one of the points (1, 1, 2a), (1, 2a, 1) or (2a, 1, 1) has to be part
of π, and hence all of them since π is cyclically symmetric. The set ρ{1,2}(π),
therefore, contains the points (2a, 1, 1) and (1, 2a, 1) which is a contradiction
to π ∩ ρ{1,2}(π) = ∅.

Contrary to the previous subsection, we did not find an “interesting” gen-
eralisation of cyclically symmetric to “quasi-cyclically symmetric” for which
we can deduce either a result or a conjecture in the case of QCPPs.

3.3. Self- and Transpose-Complementary QCPPs

In order to study self- or transpose-complementary QCPPs, we need to spec-
ify the box we want to consider the complementation in. For a QCPP inside
a (2a, 2b, 2c)-box, the possible boxes for complementation are a (2a, 2b, c)-,
a (2a, b, 2c)- and an (a, 2b, 2c)-box. For symmetry reasons, it suffices to con-
sider QCPPs which are self- or transpose-complementary inside a (2a, 2b, c)-
box. We call a QCPP π inside a (2a, 2b, 2c)-box self-complementary if πi,j +
π2a+1−i,2b+1−j = c for all 1 ≤ i ≤ 2a and 1 ≤ j ≤ 2b, and quasi-transpose-
complementary2 if a = b and πi,j + π2a+1−j,2a+1−i = c for all 1 ≤ i, j ≤ 2a
with i �= 2a + 1 − j. We obtain the following enumeration results.

Proposition 3.3. The number of self-complementary QCPPs inside a (2a, 2b, 2c)-
box is

(
a+b

a

)
.

2It is immediate that there are no transpose-complementary QCPPs since the condition
πi,j+π2a+1−j,2a+1−i = c on the anti-diagonal contradicts (2.2). Similar to quasi-symmetric,

we, therefore, exclude the condition on the anti-diagonal to obtain interesting objects.
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Proof. The condition πi,j + π2a+1−i,2b+1−j = c implies that all entries are at
most c. Together with (3.2) this implies that all entries are either 0 or c. Hence,
by Proposition 2.4, π is either of the form ϕ1(σ) or ϕ2(σ) for an appropriate
QCPP σ. For π = ϕ1(σ) and 1 ≤ i ≤ (a − 1) and 1 ≤ j ≤ 2b, we have

σi,j + σ2a−1−i,2b+1−j = πi,j + π2a+1−i,2b+1−j = c,

i.e. σ is self-complementary inside a (2(a − 1), 2b, 2c)-box. On the other hand,
for each self-complementary σ inside a (2(a − 1), 2b, 2c)-box the QCPP ϕ1(σ)
is self-complementary inside a (2a, 2b, 2c)-box. The case π = ϕ2(σ) follows
analogously. The assertion is now immediate by induction on a + b. �

Proposition 3.4. A QCPP inside a (2a, 2a, 2c)-box is quasi-transpose-
complementary if and only if it is quasi-symmetric and self-complementary.
The number of quasi-transpose-complementary QCPPs inside a (2a, 2a, 2c)-
box is 2a.

Proof. The condition πi,j + π2a+1−j,2a+1−i = c together with (3.2) implies
that all entries of π are either 0 or c. Since π is quarter complementary inside
a (2a, 2a, 2c)-box, the sum over all entries must be 2a2c. Hence, exactly 2a2

entries are equal to c and 2a2 entries are equal to 0. For i ≤ a exactly one of the
equations πi,i + πi,2a+1−i = 2c or πi,i + π2a+1−i,i = 2c holds by (2.3). Hence,
exactly half of the entries on the anti-diagonal are equal to c. For i �= 2a+1−j
we, therefore, have π2a+1−j,2a+1−i = c exactly if πi,j = 0, which is by (3.1)
equivalent to π2a+1−i,2a+1−j = c. This implies that π is quasi-symmetric and,
therefore, also self-complementary. It is immediate that a quasi-symmetric,
self-complementary QCPP is also quasi-transpose-complementary.

By the proof of Proposition 3.1 and Proposition 3.3 each quasi-transpose-
complementary QCPP π is of the form ϕ1 ◦ ϕ2(σ) or ϕ2 ◦ ϕ1(σ), where σ is
a quasi-transpose-complementary QCPP inside a

(
2(a − 1), 2(a − 1), 2c

)
-box.

The assertion follows now by induction on a. �

4. Quasi-symmetry Classes of Plane Partitions

4.1. Three Conjectures

In the previous section we introduced variations of two symmetry classes for
quarter complementary plane partitions. The aim of this section is to consider
these and similar symmetry classes for plane partitions. The following three
conjectures were found by computer experiments. We have added the according
data as well as explicit guessed enumeration formulas for small values of one
of the parameters in the appendix.

Conjecture 4.1. Let us denote by qspp(a, c) the number of quasi-symmetric
plane partitions inside an (a, a, c)-box. Then,

qspp(a, c − a) =

{
c
(
c+a−1
2a−1

)
pa(c) a is even,

(
c+a−1
2a−1

)
pa(c) a is odd,

(4.1)
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where pa(c) is an irreducible polynomial in Q[c] that is even, i.e. pa(c) =
pa(−c). Further the common denominator of the coefficients of pa(c) is a prod-
uct of “small primes”.

Conjecture 4.2. We call a plane partition π inside an (a, a, 2c)-box quasi-
transpose complementary of second kind (QTC2), if π is transpose-
complementary except along the diagonal, i.e. πi,j + πa+1−j,a+1−i = c for all
1 ≤ i, j ≤ a with i �= j. Then, for a ≥ 2, the number qtcpp2(a, c) of QTC2
plane partitions inside an (a, a, 2c)-box is given by

qtcpp2

(
a, c − a

2

)
= c

(
c + a

2 − 1
a − 1

)
pa(c), (4.2)

where pa(c) is an irreducible polynomial in Q[c] that is even. Further the com-
mon denominator of the coefficients of pa(c) is a product of “small primes”.

Conjecture 4.3. Denote by qtcspp2(a, c) the number of symmetric QTC2 plane
partitions. Then, for a ≥ 2,

qtcspp2

(
a, c − a

2

)
=

{(
c+ a

2 −1
a−1

)
pa(c) a ≡ 3 modulo 4,

c
(
c+ a

2 −1
a−1

)
pa(c) otherwise,

(4.3)

where pa(c) is a polynomial in Q[c] that is even and for a even irreducible in
Q[x]. Further the common denominator of the coefficients of pa(c) is a product
of “small primes”.

4.2. Proof of Theorem 1.2

Let π be a quasi-transpose-complementary plane partition (QTCPP) inside
an (n, n, c)-box. By definition, we have πn−j,j ≥ πn−j+1,j ≥ πn−j+1,j+1 =
c − πn−j,j for each 1 ≤ j ≤ n − 1 and equivalently by multiplying the above
inequalities by −1 and adding c to it, πn−j+1,j+1 = c−πn−j,j ≤ c−πn−j+1,j ≤
πn−j,j . Hence, π stays a QTCPP if we replace its diagonal entries πn−j+1,j

by max (πn−j+1,j , c − πn−j+1,j) for all 1 ≤ j ≤ n. We denote the resulting
QTCPP by π̂. Denote by d(π̂) the number of anti-diagonal entries which are
equal to ĉ =

⌊
c
2

⌋
and define the weight ω(π̂) as

ω(π̂) =

{
2n c is odd,
2n−d(π̂) c is even.

Since |{πn−j+1,j , c − πn−j+1,j}| = 1 implies that c is even and πn−j+1,j = ĉ,
it is clear that there are ω(π̂) many QTCPPs mapping to π̂ by the above
map. Hence, the number of QTCPPs is equal to the weighted enumeration
of QTCPPs π̂ whose anti-diagonal entries are at least c

2 . In the following, we
present two (and a half) proofs for the weighted enumeration of these π̂.

For odd c, each π̂ corresponds to a plane partition with entries at most
ĉ for which the i-th row from top has at most n + 1 − i positive entries. The
number of these plane partitions can be found in [16, Corollary 4.1], compare
also with [4, Corollary 4.1]. For even c, each π̂ corresponds to a lozenge tiling
in the “top half” of an hexagon with side lengths n, n, c, n, n, c, where the
bottom of the region is a zig-zag shape directly below the centre line of the
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hexagon, and each lozenge at the bottom of the region is weighted by
1
2 , see Fig. 3 (right) for an example. The number of these tilings is given in [4,
Corollary 4.3]. The assertion follows in both cases using the explicit formulas
from [4,16].

For a second proof of Theorem 1.2, denote by qtcpp(n, n, c) the number
of QTCPPs inside an (n, n, c)-box and denote by M(R) the number of perfect
matchings of a region R. We can rephrase the above observations as

qtcpp(n, n, 2c) = 2nM(P ′
n,n,c), qtcpp(n, n, 2c + 1) = 2nM(Pn,n,c),

where the region Pn,n,c is defined in [4, Sect. 4, Fig. 5] and P ′
n,n,c is defined in

[4, Sect. 4, Fig. 10]. On the one side, we have by Ciucu’s factorization theorem
for graphs with reflective symmetry [3] the identity

PP(n, n, 2c) = 2nM(P ′
n,n,c)M(Pn−1,n−1,c),

where PP(n, n, 2c) denotes the number of plane partitions inside an (n, n, 2c)-
box (compare for example with [3] or [4, Eq. (4.16)]). This implies the assertion
for even c if we know it for odd c and vice versa using the explicit formulas
for the number of (symmetric) plane partitions. Further, it is well known,
that 2nM(P ′

n,n,c) = SPP (n, n, 2c), see [5, Eq. (5.1)] or [6, Eq. (2.6)] and
that M(Pn−1,n−1,c) = TCPP(n, n, 2c), where TCPP(n, n, 2c) is the number
of transpose-complementary plane partitions inside an (n, n, 2c)-box (see for
example [3, Sect. 6]). Combining the above and the assertion already proved
above, we obtain immediately the numerical connection between SPPs and
TCPPs stated in (1.5).

Finally, we present another proof using non-intersecting lattice paths. We
regard π̂ as a lozenge tiling as above and draw n lattice paths ending at the
top right boundary of the hexagon in the following way. The allowed steps

for the paths are and . Finally, the i-th path from left has length
n + 1 − i + ĉ; see Fig. 3 (left) for an example. By straightening the paths,
we obtain non-intersecting lattice paths starting at Ai = (2i,−i) and ending
at Ei = (n + 1 + i, ĉ − i) with north-steps (0, 1) and east-steps (1, 0), see
Fig. 3 (right). For odd c, each family of paths has the same weight, namely
2n. Hence, the weighted enumeration is, therefore, by the Lindström–Gessel–
Viennot Theorem equal to

2n det
1≤i,j≤n

((
n + ĉ + 1 − i

n + 1 + j − 2i

))
. (4.4)

For even c, we see that an anti-diagonal entry πn+1−j,j = ĉ corresponds to the
j-th path starting with an east-step. Define the points B0

i = (2i + 1,−i) and
B1

i = (2i,−i + 1) which are reached from Ai by an east-step or a north-step,
respectively. By deleting the first step of each path, we obtain a family of non-
intersecting lattice paths starting from either B0

i or B1
i , where the weight is

given by 2 to the power of the number of times we start at B1
i . Using again the
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A1

A2

A3

A4

A5

E1

E2

E3

E4

E5

Figure 3. A QTCPP π̂ inside a (5, 5, 6)-box whose anti-
diagonal entries are at least 3 (left) and its corresponding
lattice path configuration (right)

Lindström–Gessel–Viennot Theorem, we obtain for the weighted enumeration

∑

(b1,...,bn)∈{0,1}n

det
1≤i,j≤n

(
2bi

(
n + ĉ − i

n + j − 2i + bi

))

= det
1≤i,j≤n

((
n + ĉ − i

n + j − 2i

)
+ 2

(
n + ĉ − i

n + j − 2i + 1

))
, (4.5)

where we used the multilinearity of the determinant in the last step. Both
determinants could be evaluated by guessing the corresponding LU decompo-
sition and using the Pfaff–Saalschütz-summation formula, see for example [17,
Eq. (2,3,1,3); Appendix (III.2)]; we omit, however, the details since there is a
simpler and more elegant solution as follows. First, we rewrite the determinant
in (4.5) as

det
1≤i,j≤n

((
n + ĉ − i + 1
n + j − 2i + 1

)
2ĉ + n − j + 1
ĉ + n − i + 1

)

= det
1≤i,j≤n

((
n + ĉ − i + 1
n + j − 2i + 1

)) n∏

i=1

2ĉ + n − i + 1
ĉ + n − i + 1

. (4.6)

Then, both determinants are special cases of determinant evaluation [10, Eq.
(3.13)]

det
1≤i,j≤n

((
BLi + A

Li + j

))
=

∏
1≤i<j≤n(Li − Lj)∏n

i=1(Li + n)!

n∏

i=1

(BLi + A)!
((B − 1)Li + A − 1)!

n∏

i=1

(A − Bi + 1)i−1,

by setting Li = n + 1 − 2i, B = 1
2 and A = ĉ + n+1

2 .
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Appendix A. Data from the Computer Experiments

The data presented in the appendix was obtained by generating the according
objects using Mathematica; the code can be obtained on the authors webpage
https://homepage.univie.ac.at/florian.schreier-aigner/data/data generation.nb.

A.1 Quasi-symmetric Plane Partitions

The values for the number qspp(a, c) of quasi-symmetric plane partitions inside
an (a, a, c)-box with a ≤ 6 and c ≤ 10 are shown in the next table.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://homepage.univie.ac.at/florian.schreier-aigner/data/data_generation.nb
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c \ a 1 2 3 4 5 6

0 1 1 1 1 1 1
1 2 6 12 32 64 164
2 3 20 69 400 1442 7952
3 4 50 272 3052 18,544 200,956
4 5 105 846 16,932 164,686 3,284,589
5 6 196 2232 74,868 1,118,080 38,963,092
6 7 336 5214 278,928 6,178,097 360,346,984
7 8 540 11,088 908,336 28,977,472 2,727,638,524
8 9 825 21,879 2,653,001 118,868,458 17,499,041,992
9 10 1210 40,612 7,081,776 435,998,528 97,667,820,784
10 11 1716 71,643 17,524,416 1,454,331,440 483,901,238,656

Using the above values, we conjecture the following formulas for qspp(a, c)
for 1 ≤ a ≤ 6:

qspp(1, c − 1) =
(

c

1

)
,

qspp(2, c − 2) = c

(
c + 1

3

)
1
2
,

qspp(3, c − 3) =
(

c + 2
5

)
c2 − 2

7
,

qspp(4, c − 4) = c

(
c + 3

7

)
41c4 − 229c2 − 892

23760
,

qspp(5, c − 5) =
(

c + 4
9

)
202c8 − 3137c6 + 5563c4 − 123588c2 + 352800

30630600
,

qspp(6, c − 6) = c

(
c + 5
11

)
1

161911881331200
(
56381c12 − 1850347c10 + 11282865c8

−28759181c6−1859025278c4+20697349128c2+194655992832
)
.

A.2. Quasi-transpose-Complementary Plane Partitions of Second Kind

For the number qtcpp2(a, c) of QTC2 plane partitions inside an (a, a, c)-box
with a ≤ 6 and c ≤ 10, we have the following values:

We conjecture the following explicit formulas for qtcpp2(a, c) for 1 ≤ a ≤
6:

qtcpp2

(
1, c − 1

2

)
= 2c,

qtcpp2(2, c − 1) = c

(
c

1

)
,
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c \ a 1 2 3 4 5 6

0 1 1 1 1 1 1
1 3 4 9 24 70 216
2 5 9 42 224 1578 12,177
3 7 16 138 1280 19,157 314,624
4 9 25 363 5361 155,270 4,860,048
5 11 36 819 18,088 943,008 51,955,744
6 13 49 1652 52,032 4,606,320 420,545,536
7 15 64 3060 132,408 18,969,942 2,735,918,368
8 17 81 5301 305,745 68,084,583 14,918,043,569
9 19 100 8701 652,432 218,198,470 70,303,307,672
10 21 121 13,662 1,304,160 635,987,530 293,079,258,017

qtcpp2

(
3, c − 3

2

)
= c

(
c + 1

2

2

)
4c2 + 11

30
,

qtcpp2(4, c − 2) = c

(
c + 1

3

)
5c4 + 19c2 − 16

280
,

qtcpp2

(
5, c − 5

2

)
= c

(
c + 3

2

4

)

35584c8 + 586496c6 − 66144c4 − 2346256c2 + 4267795
461260800

,

qtcpp2(6, c − 3) = c

(
c + 2

5

)
1

256505356800
(
73325c12 + 1648357c10 − 12312285c8 + 29029591c6

+201378740c4 − 876526848c2 + 395435520
)
.

A.3. Quasi-transpose-Complementary Symmetric Plane Partitions of Second
Kind

Computer experiments yield the following values for the number qtcspp2(a, c)
of symmetric QTC2 plane partitions inside an (a, a, c)-box with a ≤ 6 and
c ≤ 10.

For the first few values of a, we conjecture the following formulas for
qtcspp2(a, c):

qtcspp2

(
1, c − 1

2

)
= 2c,

qtcspp2(2, c − 1) = c

(
c

1

)
,

qtcspp2

(
3, c − 3

2

)
=

(
c + 1

2

2

)
4c2 + 3

12
,
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c \ a 1 2 3 4 5 6

0 1 1 1 1 1 1
1 3 4 7 12 22 40
2 5 9 26 68 210 625
3 7 16 70 260 1265 5728
4 9 25 155 777 5642 36,876
5 11 36 301 1960 20,328 184,224
6 13 49 532 4368 62,424 759,708
7 15 64 876 8856 169,290 2,695,200
8 17 81 1365 16,665 415,635 8,468,889
9 19 100 2035 29,524 940,654 24,078,184
10 21 121 2926 49,764 1,989,130 62,949,289

qtcspp2(4, c − 2) = c

(
c + 1

3

)
c2 + 1

10
,

qtcspp2

(
5, c − 5

2

)
= c

(
c + 3

2

4

)(
c + 1

2

2

)
4c4 + 17

315
,

qtcspp2(6, c − 3) = c

(
c + 2

5

)
3c6 + 15c4 − 58c2 + 200

9240
,

qtcspp2

(
7, c − 7

2

)
=

(
c + 5

2

6

)(
c + 1

2

2

)
1

15498362880
(
66816c8 + 798464c6 − 4402464x4

+34239856x2 − 148134987
)
,

qtcspp2(9, c − 9
2
) = c

(
c + 7

2

8

)
1

1750824414062051328000
(
9387442176c16 + 242529468416c14

−6409671229440c12 + 148966135521280c10

−2812830240332288c8 + 29468432544824832c6

−130634547937730368c4 + 73031174580058272c2

+97863783090792345) .
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