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1. Introduction

Let (W,S) be an irreducible Coxeter group of finite rank, i.e., its Coxeter graph
is connected and |S| < ∞. If W is finite, then irreducible representations (over
C) of W are certainly finite dimensional. If W is an affine Weyl group, then it
is also well known that its irreducible representations are of finite dimension
(one may refer to [3], [4, proof of Prop. 5.13], [7, Prop. 1.2] for more details).
In general, we have the following fact.

Theorem 1.1. All irreducible complex representations of W are of finite di-
mension if and only if W is a finite group or an affine Weyl group.

The author owes a proof of this theorem to an anonymous referee of a
previous version of this paper (see the “Appendix”). Nevertheless, the proof
only tells us the existence of infinite-dimensional irreducible representations of
infinite non-affine Coxeter groups, but it fails to construct such representations.

The main aim of this paper is to construct some irreducible representa-
tions of infinite dimension of a Coxeter group (W,S) satisfying either of the
following:

1. there are at least two circuits in the Coxeter graph;
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2. there is at least one circuit in the Coxeter graph, and mst ≥ 4 for some
s, t ∈ S (for s, t ∈ S, we denote by mst the order of st).

The main idea is to glue together many copies of representations of different
dihedral subgroups of W , so that they form a “big” representation of W . The
way of gluing is encoded in some topological information of the Coxeter graph.
This method is inspired by the author’s previous work [1].

The paper is organized as follows. Section 2 records some basic facts about
representations of dihedral groups, as well as coverings and fundamental groups
of graphs. Section 3 deals with case 1, in which the fundamental group of the
Coxeter graph is a non-abelian free group. We utilize an infinite-dimensional
irreducible representation of this free group to do the “gluing”. In Sect. 4,
we use the universal covering of the Coxeter graph to achieve our goal for
case 2. In Sect. 5, we give another example of infinite-dimensional irreducible
representation of a specific Coxeter group whose Coxeter graph has no circuits.
Finally, in the appendix, we present the proof of Theorem 1.1 which is given
by an anonymous referee.

2. Preliminaries

In this section, we recollect some notations and terminology used in this pa-
per. We use e to denote the identity in a group. Coxeter groups considered
throughout this paper are all irreducible and of finite rank.

2.1. Representations of Dihedral Groups

For a finite dihedral group Dm := 〈r, t | r2 = t2 = (rt)m = e〉, we denote by
1 and ε, respectively, the trivial and the sign representation, i.e., 1 : r, t �→ 1,
ε : r, t �→ −1. If m is even, there are two more representations of dimension 1,
i.e.,

εr : r �→ −1, t �→ 1; εt : r �→ 1, t �→ −1.

Let Cβr⊕Cβt be a vector space with formal basis {βr, βt}. For any integer
k satisfying 1 ≤ k < m/2, let ρk denote the irreducible representation of Dm

on Cβr ⊕ Cβt defined by

r · βr = −βr, r · βt = βt + 2 cos
kπ

m
βr,

t · βt = −βt, t · βr = βr + 2 cos
kπ

m
βt.

Intuitively, r and t act on the (real) plane by two reflections with respect to
two lines with an angle of kπ

m ; see Fig. 1.

Remark 2.1. If m is even and k = m/2, we may define ρm/2 as well by the
same formulas, but then ρm/2 � εr ⊕ εt is reducible.

Remark 2.2. We have described the full set of irreducible representations of
Dm, namely,

{1, ε} ∪ {ρ1, . . . , ρm−1
2

}, if m is odd;
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Figure 1. The representation ρk : Dm → GL(Cβr ⊕ Cβt)

{1, ε, εr, εt} ∪ {ρ1, . . . , ρm
2 −1}, if m is even.

The following lemma will be frequently used in Sects. 3 and 4 to prove
our “gluing” is feasible.

Lemma 2.3. The +1-eigenspaces of r and t in ρk are both one dimensional.
However, there is no nonzero vector that can be fixed by r and t simultaneously.

2.2. Graphs and the Universal Covering

The way we glue these representations will be encoded in some topological
information of the Coxeter graph.

By definition, an (undirected) graph G = (S,E) consists of a set S of
vertices and a set E of edges, and elements in E are of the form {s, t} ⊆
S (unordered). For our purpose, we only consider graphs without loops and
multiple edges, i.e., there is no edge of the form {s, s}, and each edge {s, t}
occurs at most once in E. In a Coxeter graph, mst is regarded as a label on
the edge rather than a multiplicity. We say G is a finite graph if S is a finite
set.

A sequence (s1, s2, . . . , sn) of vertices is called a path in G if {si, si+1} ∈
E,∀i. If s1 = sn, then we say such a path is a closed path. If further s1, . . . , sn−1

are distinct in this closed path, then the path is called a circuit.
If every two vertices can be connected by a path, then we say G is a

connected graph. A connected graph without circuits is called a tree. For a
connected graph G = (S,E), if T = (S,E0) is a tree with the same vertices
set S and E0 ⊆ E, then T is called a spanning tree of G. This condition is
equivalent to say |E0| = |S| − 1 when G is a connected finite graph. Any
connected graph has a spanning tree, but not unique in general.

Let G = (S,E) and G′ = (S′, E′) be two graphs. If p : S → S′ is a map
of sets such that for any edge {s, t} in G, we have p(s) �= p(t) and {p(s), p(t)}
is also an edge in G′, then we say that p is a morphism of graphs. We simply
denote a morphism by p : G → G′.

For any s ∈ S, we denote

Es := {t ∈ S | {s, t} ∈ E}.
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Suppose G′ is connected and finite, and suppose p : G → G′ is a morphism.
If p(S) = S′, and if for any s ∈ S the restriction of p to Es gives rise to a
bijection Es

∼−→ E′
p(s), then p is called a covering. It is natural to regard G′ and

G as locally finite simplicial complexes. Then p is also a covering of topological
spaces.

Conversely, we view G as a topological space and suppose p : X → G
is a covering of the topological space G. Then X has a graph structure such
that p is a morphism of graphs (see [6, Theorem 83.4]). In particular, if p is
the universal covering, then X is a tree. Thus for any connected finite graph,
we can talk about its universal covering graph.

2.3. The Fundamental Group of a Graph

Let G = (S,E) be a connected graph, and T = (S,E0) be a spanning tree. For
any edge e ∈ E \E0, if we choose a vertex se of e to be its head and the other te
to be its tail, then e = {se, te} and there is a unique circuit c′

e in (S,E0 ∪ {e})
of the form c′

e = (se, te, . . . , se).
Fix a vertex s0 ∈ S. For any c′

e, there is a unique path in T without
repetitive vertices from s0 to se. We denote the path by pe. Define ce to be the
concatenation of pe, c

′
e, p

−1
e , where p−1

e is the inverse path in the obvious sense.
Then each ce is a closed path from s0 to itself. If we view G as a topological
space, then we have the following result on its fundamental group π1(G).

Lemma 2.4. [6, Theorem 84.7] π1(G) is a free group with a set of free gener-
ators {ce | e ∈ E \ E0}. In particular, if there is more than one circuit in G,
then π1(G) is non-abelian.

Remark 2.5. Note that pe is a path in T . Thus, all edges in ce except e lie in
E0, and e appears in ce only once. If e′ ∈ E \ E0 is another edge, then e′ does
not appear in ce.

3. Representations via Fundamental Groups of Coxeter Graphs

From now on, suppose (W,S) is an irreducible Coxeter group of finite rank
with Coxeter graph G = (S,E). Then, G is a connected finite graph.

In this section, we assume that

there are at least two circuits in G.

Thus, by Lemma 2.4, π1(G) is a non-abelian free group. In this section, we
use an infinite-dimensional irreducible representation of π1(G) to construct
another such representation for W .

For convenience, we may further assume

mst < ∞, ∀s, t ∈ S.

This is not essential. If some mst’s are infinity, then we replace them by any
integer larger than 2 (e.g., 3), so that we obtain another Coxeter group (W1, S)
and a surjective homomorphism W � W1, s �→ s. Ignoring labels on edges,
the two Coxeter groups have the same Coxeter graph in a topological sense.
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An irreducible representation of W1 becomes an irreducible representation of
W via pulling back by the homomorphism.

3.1. The Construction

We fix s0 ∈ S. Let T = (S,E0) be a spanning tree of G = (S,E). Then
we obtain a set of free generators of π1(G) by the method in Sect. 2.3, say
c1, . . . , cl (l < ∞ since G is a finite graph), with s0 on each of them.

We have |E \E0| ≥ 2 since we assume that there is more than one circuit
in G. We then fix two distinct edges:

{s1, t1}, {s2, t2} ∈ E \ E0.

We may assume that {s1, t1}, {s2, t2} lie in c1, c2, respectively, and c1 goes
through t1 first and then s1, and c2 goes through t2 first and then s2. In our
choice of ci, the edge {s1, t1} appears in c1 only once, while it does not appear
in other ci’s (see Remark 2.5). Similar for {s2, t2}. The two edges might share
a common vertex, like s1 = s2, but it does not matter.

We define a vector space V with formal basis {αs,n | n ∈ Z, s ∈ S},

V :=
⊕

n∈Z,s∈S

Cαs,n.

For any s, t ∈ S and n ∈ Z, we define s · αt,n as follows:
(1) if s = t, then s · αs,n := −αs,n;
(2) s1 · αt1,n:=αt1,n + 2 cos π

ms1t1
αs1,n+1,

t1 · αs1,n+1:=αs1,n+1 + 2 cos π
ms1t1

αt1,n;
s2 · αt2,n := αt2,n + 2n+1 cos π

ms2t2
αs2,n+1,

t2 · αs2,n+1 := αs2,n+1 + 2−n+1 cos π
ms2t2

αt2,n;
(3) if the unordered pair {s, t} �= {s1, t1} or {s2, t2}, and if s �= t, then

s · αt,n := αt,n + 2 cos π
mst

αs,n.

Looking at case (2), one can see that the vectors αt2,n and 2nαs2,n+1 span
an irreducible representation isomorphic to ρ1 (see Sect. 2.1) of the dihedral
subgroup 〈s2, t2〉. The vectors αt2,n and 2nαs2,n+1 play the same roles as the
β’s in Sect. 2.1. Similarly, {αt1,n, αs1,n+1} span an irreducible representation
isomorphic to ρ1 of 〈s1, t1〉.

In case (3), if mst = 2, then s · αt,n = αt,n; if mst ≥ 3, then {αt,n, αs,n}
span an irreducible representation isomorphic to ρ1 of 〈s, t〉.
Lemma 3.1. V is a representation of W with the action defined above.

Proof. Obviously, s2 acts as the identity for any s ∈ S.
For s, t ∈ S and mst = 2, we need to show st · αr,n = ts · αr,n, ∀r ∈ S.

Note that we have

s · αt,n = αt,n and t · αs,n = αs,n for any n ∈ Z,

since mst = 2. If r = s or r = t, then clearly it holds st · αr,n = ts · αr,n. If
r �= s and r �= t, then

s · αr,n = αr,n + c1αs,n1 and t · αr,n = αr,n + c2αt,n2
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for some c1, c2 ∈ C and n1, n2 ∈ {n, n ± 1}, and then

st · αr,n = s · (αr,n + c2αt,n2) = αr,n + c1αs,n1 + c2αt,n2 ,

ts · αr,n = t · (αr,n + c1αs,n1) = αr,n + c2αt,n2 + c1αs,n1 .

Therefore, we have st · αr,n = ts · αr,n as desired.
Now, assume mst ≥ 3. We need to verify that (st)mst · αr,n = αr,n. This

is also obvious if r = s or r = t, since we are in the dihedral world. If s, t, r are
distinct, then we have the following cases.
(1) If any two of s, t, r are not {s1, t1} or {s2, t2}, then the three-dimensional

subspace spanned by αr,n, αs,n, αt,n, denoted by U , stays invariant under
the actions of s and t. We write Us := {v ∈ U | s · v = v}, Ut :=
{v ∈ U | t · v = v}. Then dimUs = dim Ut = 2, and thus there exists
0 �= v0 ∈ U such that s · v0 = t · v0 = v0. Note that 3 ≤ mst < ∞ and
Cαs,n ⊕ Cαt,n forms a representation isomorphic to ρ1 of 〈s, t〉. Hence,
v0 /∈ Cαs,n ⊕ Cαt,n by Lemma 2.3, and then {v0, αs,n, αt,n} is a basis of
U . Now, we can see that (st)mst · αr,n = αr,n.

(2) If mrt = 2, then there exists k ∈ {n−1, n, n+1} and q ∈ {k −1, k, k +1}
such that αr,n, αs,k, αt,q span an s, t-invariant subspace. By the same
arguments in case (1), we have (st)mst · αr,n = αr,n. The case mrs = 2 is
similar.

In the following cases, we assume s, t, r do not commute with each
other.

(3) If s = s1, t = t1, while s2, t2 do not occur simultaneously in s, r, t, then
αs1,n+1, αt1,n, αr,n, αs1,n, αt1,n−1 span a five-dimensional s, t-invariant
subspace U . Define Us, Ut as in case (1), then dim Us = dim Ut = 3. The
same argument shows that (s1t1)ms1t1 · αr,n = αr,n.

(4) If s = s1, r = t1, while s2, t2 do not occur simultaneously in s, r, t, then
αs1,n, αt,n, αr,n, αs1,n+1, αt,n+1 span an s, t-invariant subspace. The same
argument works.

(5) If s = s1, t = t1 = t2, r = s2, then αr,n, αs,n, αt,n−1 span an s, t-invariant
subspace. The same argument works.

(6) If s = s1, t = t1 = s2, r = t2, then αt1,n−1, αs1,n, αr,n, αs2,n+1, αs1,n+2

span an s, t-invariant subspace. The same argument works.
(7) If s = s1, t = s2, r = t1 = t2, then αs1,n+1, αr,n, αs2,n+1 span an

s, t-invariant subspace. The same argument works.
(8) If s = s1, t = t2, r = t1 = s2, then αt2,n+1, αs1,n+1, αr,n, αt2,n−1, αs1,n−1

span an s, t-invariant subspace. The same argument works.
In the above cases, if we exchange the letters s, t or the indices

1, 2, then the arguments are totally the same. Thus, we always have
(st)mst · αr,n = αr,n.

�
3.2. The Infinite-Dimensional Irreducible Quotient

Theorem 3.2. Recall that (W,S) is irreducible, and that there are at least two
circuits in its Coxeter graph G. Let V be defined as in Sect. 3.1, and

V0 := {v ∈ V | s · v = v,∀s ∈ S}.
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Then the representation V/V0 of W is irreducible of infinite dimension.

Proof. We denote V s
− := {v ∈ V | s · v = −v}. Then V s

− =
⊕

n Cαs,n. For any
edge {s, t} in G, V s

− ⊕ V t
− is a subrepresentation of 〈s, t〉 in V , isomorphic to

an infinite direct sum of ρ1. For any v ∈ V s
−, let fst(v) := (t · v − v)/2 cos π

mst
.

Then fst(v) ∈ V t
−, and the linear map fst : V s

− → V t
− is a linear isomorphism

of vector spaces. For example, when {s, t} �= {s1, t1} or {s2, t2}, we have
fst(αs,n) = αt,n. Moreover, fst(v) lies in the subrepresentation generated by
v.

Let 0 �= v ∈ V , and let U be the subrepresentation generated by v. If
v /∈ V0, say, t · v �= v, then t · v − v ∈ V t

− ∩ U . Suppose (r0 = t, r1, . . . , rk = s0)
is a path connecting t and s0. Here, s0 is the vertex fixed in Sect. 3.1. Then,

v0 := frk−1rk · · · fr1r2fr0r1(t · v − v) ∈ V s0− ∩ U and v0 �= 0.

Apply the maps f∗∗ along the closed paths c1, . . . , cl chosen in Sect.
3.1. Then we obtain l linear isomorphisms of V s0− , denoted by X1, . . . , Xl,
respectively. This makes V s0− form a representation of the free group π1(G).
Except X1 and X2, other Xis are identity maps of V s0− , and we have

X1(αs0,n) = αs0,n+1, X2(αs0,n) = 2nαs0,n+1.

It is easy to verify that V s0− is an irreducible representation of π1(G). Notice
that 0 �= v0 ∈ V s0− ∩ U , X±1

i (v0) ∈ U . Thus, V s0− ⊆ U . Since G is connected,
V s0− generates the whole representation V . Hence, V = U . We have proved
that V/V0 is an irreducible representation of W .

Note that s0 acts on V s0− by −1. So V s0− ∩V0 = 0, and thus dimV/V0 = ∞.
�

4. Representations via Universal Coverings of Coxeter Graphs

In this section we assume that

the Coxeter graph G = (S,E) is not a tree,
and there exist s1, s2 ∈ S such that ms1s2 ≥ 4.

In this section, we use the universal covering of G to construct an infinite-
dimensional representation of W , then find an irreducible (sub)quotient in it.

For the same reason stated before Sect. 3.1, we may further assume

mst < ∞, ∀s, t ∈ S.

4.1. The Construction

We fix s1, s2 ∈ S such that ms1s2 ≥ 4. Let p : G′ → G be the universal covering
of G, where G′ = (S′, E′). Fix an edge {s′

1, s
′
2} in G′ such that p(s′

1) = s1,
p(s′

2) = s2, as shown in Fig. 2.
We define a vector space V with formal basis {αa | a ∈ S′},

V :=
⊕

a∈S′
Cαa.

For any s ∈ S and a ∈ S′, we define s · αa as follows:
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Figure 2. The edge {s′
1, s

′
2}

Figure 3. The vertex b in p−1(s) adjacent to a

(1) if s = p(a), then s · αa := −αa;
(2) if s = s1, a = s′

2, then s1 · αs′
2

:= αs′
2
+ 2 cos 2π

ms1s2
αs′

1
;

(3) if s = s2, a = s′
1, then s2 · αs′

1
:= αs′

1
+ 2 cos 2π

ms1s2
αs′

2
;

(4) if it is not in the cases above, and if s is not adjacent to p(a) in G, then
s · αa := αa;

(5) if it is not in the cases above, and if s is adjacent to p(a) in G, then we
denote by b the vertex adjacent to a in p−1(s) (see Fig. 3), and s · αa :=
αa + 2 cos π

mαb, where m := ms,p(a) ≥ 3.

In particular, Cαs′
1
⊕Cαs′

2
forms a representation of the dihedral subgroup

〈s1, s2〉, isomorphic to ρ2 (note that if ms1s2 = 4, then this representation
splits, see Remark 2.1). While for other pairs of adjacent vertices {a, b} in G′,
Cαa⊕Cαb forms an irreducible representation of 〈p(a), p(b)〉 isomorphic to ρ1.

Lemma 4.1. V is a representation of W with the action defined above.

Proof. From the construction, it is clear that s2 acts by identity for any s ∈ S.
Suppose s, t ∈ S and s �= t. We need to verify that (st)mst · αa = αa for any
a ∈ S′. If p(a) = s or t, then αa lies in a subrepresentation of 〈s, t〉. Thus, we
have (st)mst · αa = αa. If p(a) �= s and p(a) �= t, then the relationship of the
three vertices p(a), s, t in G is in one of the following cases (ignoring labels like
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Figure 4. The vertices s′ and t′

Figure 5. The vertices s′, t′, s′′ and t′′

mst on edges),

s t

p(a)

(i)

s t

p(a)

(ii)

s t

p(a)

(iii)

s t

p(a)

(iv)

s t

p(a)

(v)

s t

p(a)

(vi)

(In cases (iii) and (v), exchanging letters s and t does not cause an essential
difference. So we omit them.) In cases (i) (iii) (iv), we may verify directly by
definition that st ·αa = ts ·αa. In case (ii), it is also clear that (st)mst ·αa = αa.

Suppose we are in case (v). We denote by s′ the vertex adjacent to a in
p−1(s), and by t′ the vertex adjacent to s′ in p−1(t). Then a is not adjacent to
t′, as shown in Fig. 4. The three-dimensional subspace spanned by αa, αs′ , αt′

stays invariant under the action of s and t. By the same arguments as in the
proof of Lemma 3.1, it holds that (st)mst · αa = αa.

Suppose we are in case (vi). We denote by s′ the vertex adjacent to a
in p−1(s), by t′ the vertex adjacent to s′ in p−1(t), by t′′ the vertex adjacent
to a in p−1(t), and by s′′ the vertex adjacent to t′′ in p−1(s) (see Fig. 5).
Then a, t′, s′′ are not adjacent to each other. Then αa, αs′ , αs′′ , αt′ , αt′′ span
an s, t-invariant subspace of dimension 5. The same arguments as in the proof
of Lemma 3.1 yield (st)mst · αa = αa. �
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4.2. The Infinite-Dimensional Irreducible (Sub)quotient

Let a and b be two arbitrary vertices in G′. Since G′ is a tree, there is a unique
path (a = t0, t1, . . . , tn = b) connecting a, b such that all tis are distinct. We
define d(a, b) := n to be the distance between a and b. We define also

S′
1 := {a ∈ S′ | d(a, s′

1) < d(a, s′
2)}, S′

2 := {a ∈ S′ | d(a, s′
2) < d(a, s′

1)}.

Then one of them is an infinite set. Without loss of generality, we assume
|S′

1| = ∞. Let

V1 :=
⊕

a∈S′
1

Cαa, V0 := {v ∈ V | s · v = v,∀s ∈ S}.

Then dimV1 = ∞. If ms1s2 = 4, then V1 is a subrepresentation of W in V .

Lemma 4.2.

(1) If ms1s2 > 4 and v ∈ V \V0, then V is generated by v as a representation
of W .

(2) If ms1s2 = 4 and v1 ∈ V1 \ V0, then V1 is generated by v1 as a represen-
tation of W .

Proof. (1). Suppose s ·v �= v, s ∈ S. Then by definition we know that v−s ·v is
a finite sum of the form

∑
a∈p−1(s) xaαa, where each xa is a complex number.

Let u0 := v − s · v, and U be the subrepresentation generated by v. Then
u0 ∈ U . We take a0 ∈ p−1(s) such that xa0 �= 0. Suppose the shortest path in
G′ connecting a0 and s′

1 is

(a0, a1, . . . , an = s′
1).

Let ti := p(ai) ∈ S, ui := ui−1 − ti · ui−1. Inductively, we can see that ui

is of the form
∑

b∈p−1(ti)
xi,bαb, where xi,b ∈ C. Since p is a covering map,

there is only one vertex (namely, ai−1) in p−1(ti−1) adjacent to ai. Thus in
the expression of ui, the coefficient xi,ai

of αai
is nonzero. In particular, taking

i = n, we know that un ∈ U and the coefficient of αs′
1

is nonzero.
We view V as a representation of the finite dihedral group D := 〈s1, s2〉.

Since the group algebra C[D] is semisimple, V decomposes into a direct sum
of some copies of irreducible representations of D. From the construction of
V , the only irreducible representations of D which are possible to occur in V
are 1, ρ1, ρ2. Moreover, ρ2 appears only once, namely, Cαs′

1
⊕Cαs′

2
. Therefore,

there is an element d ∈ C[D] such that d · un = αs′
1
, and hence αs′

1
∈ U .

Note that G′ is a connected graph. From the definition of V , we know that
αs′

1
generates the whole V . Thus, U = V .
(2). The proof is similar. As above, we take a vertex a0 ∈ p−1(s) ∩ S′

1

such that αa0 has nonzero coefficient in the linear expression of v1 − s · v1
(�= 0), and do the same discussion along the shortest path connecting a0 and
s′
1 (note that all of the vertices in this path belong to S′

1). Then we know that
in the subrepresentation generated by v1, there is a vector un with nonzero
coefficient of αs′

1
.

Decompose V1 into a direct sum of irreducible representations of D =
〈s1, s2〉. Then only 1, ρ1, εs1 occur. Moreover, the subrepresentation εs1 , spanned
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by αs′
1
, is of multiplicity one. Thus, αs′

1
lies in the subrepresentation generated

by v1, while αs′
1

generates the whole representation V1. �
Let

V := V/V0, V1 := V1/(V1 ∩ V0).

(V is defined in Sect. 4.1, while V1 and V0 are defined in Sect. 4.2.)

Theorem 4.3. Recall that ms1s2 ≥ 4 and there is a circuit in the Coxeter graph.
If ms1s2 > 4, then V is an irreducible representation of W . If ms1s2 = 4, then
V1 is an irreducible representation of W . Moreover, V and V1 are both infinite
dimensional.

Proof. From Lemma 4.2, we already know that the representations mentioned
in this theorem are irreducible. Thus, it suffices to show they are both infinite
dimensional. Obviously, dimV ≥ dim V1. Thus, we only need to show dim V1 =
∞. Let s ∈ S be arbitrary. Then, p−1(s) ∩ S′

1 is an infinite set. Let

U :=
⊕

a∈p−1(s)∩S′
1

Cαa.

Then U ⊆ V1, and dimU = ∞. For any 0 �= v ∈ U , we have s · v = −v. Thus,
U ∩ V0 = 0, and V1 = V1/(V1 ∩ V0) is infinite dimensional. �
Remark 4.4. In the theorem, it is necessary to take the quotient by V0 (V0

might be nonzero). For example, consider the universal covering in Fig. 6,
where p(s′

i) = p(s′′
i ) = si, p(t′i) = ti, p(r′

i) = ri, ∀i, and all edges in the
Coxeter graph are labelled by 3 (hence omitted) except the triangle s0s1s2. In
this situation, the vector

αt′
1
+ αt′

2
+ αt′

3
+ αt′

4
+ 2αt′

0
− 2αr′

0
− αr′

1
− αr′

2
− αr′

3
− αr′

4

is fixed by every si, ri and ti. Besides, under the setting of Sect. 3 it is also
necessary to take the quotient by V0 in Theorem 3.2 (an example can be given
in a similar way).

5. Another Example

In this section, we construct an infinite-dimensional irreducible representation
of a specific Coxeter group whose Coxeter graph is a tree. Suppose the Coxeter
graph G of (W,S) is

s1 s2 s3

3 ∞

This Coxeter group is isomorphic to PGL(2,Z) (see [2, §5.1]).
Recall that the dihedral subgroup 〈s1, s2〉 has an irreducible representa-

tion ρ1 on Cβs1 ⊕ Cβs2 (see Sect. 2.1). There is a basis {u, v} of this space
such that u, v are eigenvectors of s1 with eigenvalues +1,−1, respectively. The
vectors u, v can be chosen so that s2 · u = (3v − u)/2, s2 · v = (u + v)/2, as
illustrated in Fig. 7.
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Figure 6. A universal covering

Figure 7. The basis vectors u, v of the representation ρ1

Let

V := Cu0 ⊕
⊕

i∈N>0

(Cui ⊕ Cvi)

be the vector space with basis {ui, vj | i ∈ N, j ∈ N>0}, and let s1, s2 act on
V by

s1 · u0 = s2 · u0 = u0,

s1 · ui =ui, s1 · vi = −vi, ∀i ∈ N>0,

s2 · ui =
3vi − ui

2
, s2 · vi =

ui + vi
2

, ∀i ∈ N>0.
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Then as a representation of 〈s1, s2〉, V is a direct sum of a trivial representation
1 and infinite many copies of ρ1.

To make V be a representation of W , we only need to find an involution
on V commuting with s1, and let s3 act by this involution. Let

s3 · u2k = u2k+1, s3 · u2k+1 = u2k, ∀k ∈ N,

s3 · v2k = v2k−1, s3 · v2k−1 = v2k, ∀k ∈ N>0.

Intuitively, s3 permutes these basis vectors:

u0
�� ��

u1

�
�
� u2

�
�
�
�� ��

u3

�
�
� u4

�
�
�
�� �� · · ·

v1
�� ��

v2 v3
�� ��

v4 · · ·

.

Obviously, the action of s3 is an involution and commutes with the action of
s1. Thus, V forms a representation of W .

Similar to the proof of Lemma 4.2, u0 lies in any nonzero subrepresenta-
tion of V . Note that u0 generates the whole V . So V is an irreducible repre-
sentation of W .

Remark 5.1. Similar constructions also give irreducible representations of in-
finite dimension when ms1s2 = 3 is replaced by larger integers.
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6. Appendix: A Sketched Proof of Theorem 1.1

This proof is given by an anonymous referee of a previous version of this paper.
The proof uses the following fact.

Lemma 6.1. [5, Corollary 2] Suppose (W,S) is an infinite non-affine irre-
ducible Coxeter group of finite rank. Then there exists a subgroup Y ′ ⊆ W
of finite index and a surjective homomorphism ϕ′ : Y ′ � F ′, where F ′ is a
non-abelian free group.

Now we can prove Theorem 1.1, and we only need to prove the “only if”
part.

Suppose (W,S) is infinite and non-affine. Let Y ′, ϕ′, F ′ be as in Lemma
6.1. Let Y be the intersection of all conjugates of Y ′ in W . Then Y is a normal
subgroup of W of finite index. Since Y is of finite index in Y ′, the image ϕ′(Y )
is a subgroup of F ′ of finite index. Therefore, ϕ′(Y ) is also a non-abelian free
group (see, for example, [6, Theorem 85.1]). Let X1,X2 be two free generators
of ϕ′(Y ), and let F = 〈X1,X2〉. Then F is a free group of rank two, and we
have a surjection ϕ′(Y ) � F . By composing this surjection with the map ϕ′|Y ,
we obtain a surjective homomorphism ϕ : Y � F .

Let V be an infinite-dimensional irreducible representation of F (for ex-
ample, V :=

⊕
n∈Z

Cαn, and let X1 · αn = αn+1, X2 · αn = 2nαn+1, as in
the proof of Theorem 3.2). By pulling back this F -representation along ϕ, V
becomes an irreducible representation of Y .

We consider the induced representation V W
Y := C[W ] ⊗C[Y ] V of W ,

and we choose w1, . . . , wn as coset representatives for Y in W . Then V W
Y =⊕

1≤i≤n wi⊗V as a vector space. Since Y is a normal subgroup of W , each sum-
mand wi ⊗ V is an irreducible representation of Y . Thus, V W

Y is a semisimple
Noetherian and Artinian C[Y ]-module, and hence a Noetherian and Artinian
C[W ]-module. Consequently, there exists an irreducible W -representation M ⊆
V W
Y as a subrepresentation.

If we view M as a C[Y ]-module, then, by semi-simplicity of the C[Y ]-
module V W

Y and Schur’s lemma, M is isomorphic to a direct sum of some
C[Y ]-modules wi ⊗V . In particular, M is infinite dimensional. Theorem 1.1 is
proved.
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