
Ann. Comb.
c© 2024 The Author(s), under exclusive licence to
Springer Nature Switzerland AG

https://doi.org/10.1007/s00026-024-00689-z Annals of Combinatorics

Runs and RSK Tableaux of Boolean
Permutations

Emily Gunawan∗ , Jianping Pan , Heather M. Russell
and Bridget Eileen Tenner†

Abstract. We define and construct the “canonical reduced word” of a
boolean permutation, and show that the RSK tableaux for that permu-
tation can be read off directly from this reduced word. We also describe
those tableaux that can correspond to boolean permutations, and enumer-
ate them. In addition, we generalize a result of Mazorchuk and Tenner,
showing that the “run” statistic influences the shape of the RSK tableau
of arbitrary permutations, not just of those that are boolean.

Mathematics Subject Classification. Primary 05A05; Secondary 20F55,
06A07, 05A19.

Keywords. Boolean permutation, Robinson–Schensted–Knuth correspon-
dence, Permutation pattern, Reduced word, Run.

1. Introduction

In 1961, Schensted showed that the first part of an RSK partition (λ1(w), λ2

(w), . . .) is equal to the length of a longest increasing subsequence in a permu-
tation [15]. In 1974, Greene generalized Schensted’s result, showing that the
RSK partition of a permutation records the numbers of disjoint unions of in-
creasing sequences of the permutation [8]. As he pointed out in his paper, this
result was “somewhat surprising,” since there was no concrete interpretation
of each individual part of the RSK partition below the first part.

The boolean elements in a Coxeter group are those elements whose princi-
pal order ideals in the Bruhat order are isomorphic to boolean algebras. This is

∗Research partially completed at the Isaac Newton Institute for Mathematical Sciences
during the program Cluster algebras and representation theory (supported by EPSRC Grant
Number EP/R014604/1). †Research partially supported by NSF Grant DMS-2054436 and
Simons Foundation Collaboration Grant for Mathematicians 277603.

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-024-00689-z&domain=pdf
http://orcid.org/0000-0001-5056-0792
http://orcid.org/0000-0001-6722-8091
http://orcid.org/0000-0003-1256-2150
http://orcid.org/0000-0003-0150-9653

E. Gunawan et al.

an important class of elements, established in [20], which has beautiful topo-
logical ([7,9,12,13]) and representation theoretic ([10]) properties. Previous
work established that the RSK shape of a boolean permutation has at most
two rows. Recently, Mazorchuk and Tenner [10, Theorem 6.4] showed that the
size of the RSK partition of a boolean permutation excluding the first row
equals its run statistic, a statistic on the reduced words of a permutation. In
Theorem 3.9 of the present paper, we generalize this result to all permutations,
as follows.
Theorem

For any permutation w ∈ Sn, we have

λ1(w) + run(w) = n.

Our result gives a concrete interpretation to the sum of all individual
parts below the first row; in the case of fully commutative permutations, this
gives meaning to the length of the second row and, by doing so, takes a step
to address the missing meaning mentioned in [8].

Theorem 3.9 demonstrates a connection between the Coxeter-perspective
and the pattern-perspective of permutations, via the RSK correspondence.
From there, we focus exclusively on boolean permutations, defining a “canon-
ical reduced word,” which we can construct in two (equivalent) ways. Not
only does this word demonstrate the necessary run statistic, but we show,
in fact, that it directly determines the entire RSK tableaux of the boolean
permutation—without using the insertion algorithm.

The relationship between this canonical reduced word and the tableaux
can be exploited further, allowing us to characterize precisely which tableaux
are the RSK insertion and recording tableaux of boolean permutations. In
particular, only those tableaux that we call “uncrowded” can correspond to
these permutations under RSK. The uncrowded tableaux, themselves, have
interesting combinatorics, as we demonstrate via their enumeration.

The paper is organized as follows. In Sect. 2, we introduce notation and
terminology that we will use throughout the paper. We also review heap posets
of boolean permutations, RSK insertion, and runs. In Sect. 3, we give a concrete
interpretation of the run statistic in terms of the shape of arbitrary permu-
tations in Theorem 3.9. Section 4 introduces the canonical reduced word of
a boolean permutation, which can be defined (and constructed) from either
an arbitrary reduced word or from its heap. The canonical word is used to
construct the corresponding insertion and recording tableaux in Theorem 4.5,
and it demonstrates the run statistic (Corollary 4.7). In Sect. 5, we character-
ize tableaux that are RSK tableaux of boolean permutations, which we call
“uncrowded” tableaux. This is done in Corollaries 5.4 and 5.6. We conclude
with Sect. 6, enumerating the uncrowded tableaux via a bijection with binary
words in which each maximal block of 1s has odd length.

Runs and RSK Tableaux of Boolean Permutations

2. Background and Notation

Let Sn be the symmetric group on n elements. We represent permutations of
Sn in one-line notation as w = w(1)w(2) · · · w(n). For each i ∈ {1, . . . , n − 1},
let si ∈ Sn denote the simple reflection (also called an adjacent transposition)
swapping i and i+1, and fixing all other letters. The simple reflections generate
Sn, meaning that every w ∈ Sn can be decomposed as a product w = si1 · · · si�

.
The minimum � among all such decompositions for w is the (Coxeter) length
of w, denoted �(w). In our proofs, we will make use of the fact that �(w) is also
the number of inversions in the one-line notation for w where an inversion is a
pair of positions i < j, such that w(i) > w(j). An expression w = si1 · · · si�(w)

is called a reduced decomposition of w. We ease this notation by writing such
a decomposition as the reduced word

[
i1 · · · i�(w)

]
. Let R(w) denote the set of

reduced words for w.
The support supp(w) of a permutation w is the set of letters appearing in

reduced words of w. Although simple reflections are subject to the Coxeter re-
lations, this does not change the set of reflections appearing in any reduced de-
composition, so supp(w) is well defined. A permutation w ∈ Sn has full support
if supp(w) = {1, . . . , n − 1}. For example, let w = 51342 = s4s2s3s2s4s1 ∈ S5.
The permutation w has six inversions, so �(w) = 6 and [423241] ∈ R(w). Since
supp(w) = {1, 2, 3, 4}, we conclude that w has full support.

2.1. Fully Commutative Permutations and Boolean Permutations

Let w ∈ Sn and σ ∈ Sm with m ≤ n. The permutation w is said to contain the
pattern σ if w has a (not necessarily contiguous) subsequence whose elements
are in the same relative order as σ. If w does not contain σ, we say that w
avoids σ. For example, w = 314592687 contains the pattern 1423, because the
subsequence 4968 (among others) is ordered in the same way as 1423. On the
other hand, w avoids 3241, since it has no subsequence ordered in the same
way as 3241. Note also that each inversion of a permutation is an instance of
a 21-pattern.

Simple reflections satisfy commutation relations of the form sisj = sjsi

when |i− j| > 1. An application of a commutation relation is called a commu-
tation move. When referring to reduced words, we will say adjacent letters i
and j in a reduced word commute when |i − j| > 1. Given a reduced word [s]
of a permutation, the equivalence class consisting of all words that can be ob-
tained from [s] by a sequence of commutation moves is the commutation class
of [s]. A permutation whose set of reduced words forms a single commutation
class is called fully commutative. The following proposition characterizes fully
commutative permutations in terms of pattern avoidance.

Proposition 2.1 ([4]). Let w be a permutation. The following are equivalent:

• w is fully commutative,
• w avoids the pattern 321,
• no reduced word of w contains i(i + 1)i as a factor, for any i, and
• no reduced word of w contains (i + 1)i(i + 1) as a factor, for any i.

E. Gunawan et al.

This paper focuses on the subset of fully commutative permutations
known as boolean permutations. While boolean permutations can be charac-
terized using the language of the Bruhat order (see, for example, [3, Chapter
2]), the following result provides a description analogous to that of Proposi-
tion 2.1.

Proposition 2.2 ([20]). Let w be a permutation. The following are equivalent:

• w is boolean;
• w avoids the pattern 321 and 3412;
• there is a reduced word of w that consists of all distinct letters;
• every reduced word of w consists of all distinct letters.

2.2. Heaps of a Boolean Permutation

Heaps are posets used in [19] to study fully commutative elements of Coxeter
groups. In this paper, heaps for boolean permutations provide a useful visual-
ization of a key construction in Sect. 4.1. For a detailed list of attributions on
the theory of heaps, see [18, solutions to Exercise 3.123(ab)].

By Proposition 2.2, a boolean permutation w has the property that each
letter in supp(w) appears exactly once in every reduced word of w. Thus, the
relative positions of every pair of consecutive letters i and i + 1 in reduced
words of w are fixed. This allows one to give the following simple description
of the heap of a boolean permutation.

Definition 2.3. Given a boolean permutation w ∈ Sn, the heap Hw of w is
the partial order on supp(w) obtained via the transitive closure of the cover
relations

i ≺ i + 1ifiappears to the left ofi + 1in every reduced word ofw

and

i � i + 1otherwise.

We will refer to the Hasse diagram of a heap as a heap diagram.

The following proposition explains the connection between the heap of a
boolean permutation and its complete set of reduced words.

Proposition 2.4 ([19, proof of Proposition 2.2] and [18, solutions to Exercise
3.123(ab)]). If w is a boolean permutation, then the set of linear extensions
of the heap Hw is the set of reduced words of w.

We conclude this subsection with an example illustrating the heap of a
boolean permutation.

Example 2.5. The permutation w = 314569278 ∈ S9 has [21873456] as a re-
duced word, and the permutation is, therefore, boolean. The heap diagram for
w is depicted in Fig. 1. By Proposition 2.4, the elements of R(w) are exactly
the linear extensions of this heap. For instance, [87213456] ∈ R(w).

Runs and RSK Tableaux of Boolean Permutations

Figure 1. The heap diagram for the boolean permutation
314569278

2.3. Robinson–Schensted–Knuth Tableaux

Given a partition λ = (λ1, λ2, . . .) � n, the Young diagram of shape λ is a top-
and left-justified collection of n boxes, such that the ith row has λi boxes. A
standard Young tableau of shape λ is a filling of the Young diagram of shape
λ by the values 1, . . . , n, such that each value appears exactly once and values
increase from left to right in rows and from top to bottom in columns.

The Robinson–Schensted–Knuth (RSK) correspondence as described in
[15] is a bijection

w �→ (P(w),Q(w))

from Sn onto pairs of standard Young tableaux of size n having identical
shape. The tableau P(w) is called the insertion tableau of w, and the tableau
Q(w) is the recording tableau of w. The shape of these tableaux is called
the RSK partition of w, denoted sh(w) = (λ1(w), λ2(w), . . .). We will also
write Pi(w) to denote the partial insertion tableau constructed by the first i
letters, w(1) · · · w(i), in the one-line notation for w. For more details, including
a precise description of the RSK insertion algorithm, see, for example [17,
Section 7.11].

The following symmetry result is a feature of the RSK insertion algo-
rithm, and one that will simplify our own work.

Proposition 2.6 ([16]). For any permutation w

P(w−1) = Q(w).

Schensted’s theorem [15, Theorem 1], stated below, articulates an impor-
tant relationship between the RSK partition shape and the one-line notation
for w.

E. Gunawan et al.

Theorem 2.7. Let w be a permutation with RSK partition shape sh(w) =
(λ1(w), λ2(w), . . .), and let (μ1(w), μ2(w), . . .) denote the conjugate of sh(w).
The length of a longest increasing (resp., decreasing) subsequence in the one-
line notation of w is λ1(w) (resp., μ1(w)).

By Proposition 2.1, fully commutative permutations are 321-avoiding and
therefore have decreasing subsequences of length at most two. It follows from
Theorem 2.7, then, that the RSK partitions for fully commutative—and, in
particular, for boolean—permutations have at most two rows. That observa-
tion is key to the arguments in this paper.

Theorem 2.7 is sufficient for the purposes of this paper, but we point out
that Greene’s theorem [8, Theorem 3.1] is an important generalization of that
result, and could perhaps be useful in extensions of our work. For more details
about Greene’s theorem, see, for example, [14, Chapter 3].

2.4. Runs and Longest Increasing Subsequences

In this paper, we define a run as an increasing or decreasing sequence of
consecutive integers; for example, 234 and 432 are runs, but 245 and 542 are
not. Given a permutation w, let run(w) denote the fewest number of runs
needed to form a reduced word for w. A reduced word [s] ∈ R(w) that can be
written as the concatenation of run(w) runs is called an optimal run word for
w.

Example 2.8. Consider the permutation w = 345619278 ∈ S9. Examining all
reduced words for w shows that run(w) = 3, and thus the reduced words
[21873456] and [87213456] given in Example 2.5 are both optimal run words
for w. We can highlight their runs by writing them as [21 · 87 · 3456] and
[87 · 21 · 3456], respectively. In contrast, [82713456] ∈ R(w) is not optimal,
because the string 82713456 cannot be written as the concatenation of three
runs.

Recently, Mazorchuk and Tenner [10, Theorem 6.4] showed that, if w is
a boolean permutation, then λ2(w) = run(w). Because the RSK partitions
of boolean permutations have at most two rows, we can apply Theorem 2.7
to conclude that the length of a longest increasing subsequence of a boolean
permutation w ∈ Sn is equal to n−run(w). In the present work, we will see that
this result is not only true for boolean permutations, but for all permutations.

3. Runs and RSK Partitions

The goal of this section is to prove Theorem 3.9, which relates the first row of
the RSK partition to the run statistic, for all permutations. This will general-
ize [10, Theorem 6.4], which was a result for boolean permutations, and the
argument from that paper will guide this more general setting.

Proposition 3.1 ([10, Lemma 6.2 and Corollary 6.3]). For any permutation
w ∈ Sn, we have n − λ1(w) ≤ run(w).

Runs and RSK Tableaux of Boolean Permutations

Proof. Although [10] states these results in terms of boolean permutations,
the same proofs work for all permutations. �

It remains to show the other direction of the inequality, which we will
do in Proposition 3.8. To that end, we will define a function ρ, which maps a
permutation w to a shorter permutation (“shorter” in terms of Coxeter length).
It multiplies w by a single run on the left or right, in such a way that a longest
increasing subsequence in ρ(w) is longer than that of w.

Definition 3.2. We define a map

ρ : (Sn \ {12 · · · n}) → Sn

as follows. Fix a permutation w ∈ Sn that is not the identity permutation,
and consider the lexicographically least longest increasing subsequence in the
one-line notation for w. (In fact, any longest increasing subsequence would
satisfy our needs.) Let q ∈ [1, n] be the smallest value not appearing in this
subsequence.

• If q = 1, then set t:=w−1(1). Note that, by definition of q, we must
have t > 1. Define r to be the run (t − 1) · · · 321 and set ρ(w):=w [r]. In
other words, ρ(w) uses the run to slide 1 into the leftmost position of the
permutation.

• Suppose that q > 1. If q appears to the right of q − 1 in the one-line
notation for w, then set t:=w−1(q) and t′:=w−1(q − 1), so t > t′. In
addition, t > t′ + 1, because otherwise adding q to our lexicographically
least longest increasing subsequence (which includes q − 1, by definition
of q) would have made a longer increasing subsequence. Define r to be
the (decreasing) run (t − 1) · · · (t′ + 1) and set ρ(w):=w [r]. That is, ρ(w)
uses the run to slide q into position t′ + 1, the position immediately to
the right of q − 1.

• If q > 1 and q appears to the left of q − 1 in the one-line notation for
w, then let j ∈ [1, q − 1] be the smallest value appearing to the right
of q in the one-line notation of w. Define r to be the (increasing) run
j(j+1) · · · (q−1) and set ρ(w):= [r] w. In other words, there is a (possibly
nonconsecutive) subsequence

q j (j + 1) (j + 2) · · · (q − 2) (q − 1)

in w, and ρ(w) transforms that subsequence into

j (j + 1) (j + 2) · · · (q − 2) (q − 1) q

To make the process of Definition 3.2 more concrete, we consider a few
examples. We will continue example (c) after a trio of lemmas, demonstrating
those results as well.

Example 3.3. (a) Let u = 342516. The lexicographically least longest in-
creasing subsequence in u is 3456. The smallest value not appearing in
3456 is q = 1, so we use the first scenario of Definition 3.2 to com-
pute ρ(u). Set t:=u−1(q) = 5, producing the decreasing run r = 4321.
We set ρ(u) = u [r]. Multiplying u by [r] on the right is equivalent to

E. Gunawan et al.

sliding u(5) = 1 into the leftmost position of the one-line notation, so
ρ(u) = 134256.

(b) Let v = 142563. The lexicographically least longest increasing subse-
quence in v is 1256. The smallest value not appearing in 1256 is q = 3.
Since 3 appears to the right of 3 − 1, we use the second scenario of
Definition 3.2 to compute ρ(v). We set t:=v−1(q) = v−1(3) = 6 and
t′:=v−1(q − 1) = v−1(2) = 3, producing the decreasing run r = 54. We
set ρ(v) = v [r]. Multiplying v = 142563 by [r] on the right will slide
v(t) = v(6) = q = 3 into position t′ + 1 = 4, the position immediately to
the right of q − 1 = 2, so ρ(v) = 142356.

(c) Consider the permutation w = 51642738. The lexicographically least
longest increasing subsequence in w is 1238. The smallest value not ap-
pearing in this longest subsequence is q = 4. Since 4 appears to the left
of 4 − 1 in w, we use the third scenario of Definition 3.2 to compute
ρ(w), producing j = 2 and the increasing run r = 23. Then multiply-
ing w by [r] on the left transforms the subsequence 423 of w into 234:
ρ(w) = [r] w = 51623748.

There are important features of the image of a permutation under the
map ρ, and we will want to take advantage of these later. To prepare for that,
we now identify three of the map’s key qualities.

Lemma 3.4. For any nonidentity permutation w

�(ρ(w)) + �([r]) = �(w),

where r is the run described in Definition 3.2. In particular, �(ρ(w)) < �(w).

Proof. The minimality of q and the definition(s) of the run r in Definition 3.2
ensure that each simple reflection described by the letters in r undoes an
inversion of the permutation. �

While an application of the map ρ decreases the length statistic, it in-
creases a different permutation statistic.

Lemma 3.5. For any nonidentity permutation w, the length of a longest in-
creasing subsequence in ρ(w) is greater than the length of a longest increasing
subsequence in w.

Proof. The run r in Definition 3.2 was constructed so that the effect of multi-
plying w by [r] is to insert q into the lexicographically least longest increasing
subsequence in the permutation, without changing the relative order of any
other letters in that subsequence. �

After establishing Theorem 3.9, we shall see ρ increases the length of a
longest increasing subsequence by 1.

Recall that Schensted’s theorem relates those longest increasing sub-
sequences to the size of the top row in the permutation’s shape under the
Robinson–Schensted–Knuth correspondence. This means that Lemma 3.5 can
be written as

λ1(ρ(w)) > λ1(w).

Runs and RSK Tableaux of Boolean Permutations

Finally, because ρ(w) and w differ by product with a run, we can say
something about the relationship between run(w) and run(ρ(w)).

Lemma 3.6. For any nonidentity permutation w

run(w) ≤ run(ρ(w)) + 1.

Proof. Since ρ(w) is equal to w [r] or [r] w by Definition 3.2, we can write w
as the product of an optimal run word for ρ(w) and the inverse permutation
([r])−1. If we write the run r as r = r1 · · · rh, then rh · · · r1 is also a run and it
is a (in fact, the) reduced word for this ([r])−1. Thus, it is possible to write w
as a product of run(ρ(w)) + 1 runs. This guarantees that an optimal run word
for w has at most run(ρ(w)) + 1 runs, and so, run(w) ≤ run(ρ(w)) + 1. �

We demonstrate the preceding three lemmas using the third permutation
from Example 3.3.

Example 3.7. Consider the permutation w = 51642738. As computed above,
ρ(w) = 51623748.
(a) The 21-patterns 42 and 43 appear in w but not in ρ(w). All other in-

versions of w are also inversions of ρ(w), so �(ρ(w)) = �(w) − �([r]) =
10 − 2 = 8, illustrating Lemma 3.4.

(b) In the construction of ρ(w), the value q = 4 was inserted into the increas-
ing subsequence 1238 to form 12348. This is an increasing subsequence
of ρ(w) that is longer than any increasing subsequence found in w, illus-
trating Lemma 3.5.

(c) We can compute run(w) = 4. For example, three of the optimal run words
for w are

[32 · 456 · 321 · 43] , [32 · 4321 · 56 · 43] , and [32 · 4321 · 543 · 6].
We highlight these particular optimal run words, because their leftmost
letters are “32,” which will be canceled after multiplication by [r]. That
is, we find three corresponding reduced words of ρ(w)

[456 · 321 · 43] , [4321 · 56 · 43] , and [4321 · 543 · 6].
Therefore, run(ρ(w)) ≤ 3 = run(w) − 1, illustrating Lemma 3.6.

Lemmas 3.4, 3.5, and 3.6 give us tools for making inductive arguments
involving the permutation statistics length, length of a longest increasing sub-
sequence, and runs. In other words, these lemmas allow us to make inductive
arguments toward achieving an upper bound for the function run(w). Such a
bound, in turn, could be combined with the lower bound proved in Proposi-
tion 3.1.

Proposition 3.8. For any permutation w ∈ Sn, we have run(w) ≤ n − λ1(w).

Proof. If w is the identity, then λ1 = n and run(w) = 0, and the result is
trivially true. Suppose that w is not the identity permutation. Assume, induc-
tively, that the result holds for all permutations shorter than w. In particular,
since Lemma 3.4 tells us that ρ(w) is shorter than w, we have

run(ρ(w)) ≤ n − λ1(ρ(w)).

E. Gunawan et al.

Next, note that, because λ1 takes only integer values, we can rewrite Lemma 3.5
as

λ1(w) ≤ λ1(ρ(w)) − 1.

Combining this with Lemma 3.6 gives

run(w) ≤ run(ρ(w)) + 1

≤ n − λ1(ρ(w)) + 1

= n − (λ1(ρ(w)) − 1)

≤ n − λ1(w).

�

We can now prove the precise relationship between λ1 and run, for any
permutation.

Theorem 3.9. For any permutation w ∈ Sn

λ1(w) + run(w) = n.

Proof. This follows from Propositions 3.1 and 3.8. �

Intuitively speaking, multiplying a permutation on the right by a run
is the same as deleting an entry from the permutation and then inserting it
somewhere else. For example, let w = 253146 ∈ S6. If we multiply w on the
right by the run [321], we get w [321] = 125346. We can see that 1 is deleted
from w and then inserted to the beginning. In fact, run(w) is the minimum
number of runs whose concatenation is a decomposition for w, where we drop
the reduced condition.

Lemma 3.10. The minimum number of runs whose concatenation is a decom-
position for w is run(w).

Proof. Clearly, the minimum number of runs whose concatenation is a decom-
position for w is at most run(w). We prove the other inequality. Let w ∈ Sn

and let w = ρ1ρ2 . . . ρ� where ρi is a run for 1 � i � �. Since a run deletes
one entry and inserts it somewhere else, it can change the length of a longest
increasing subsequence by at most one. That is, the length of a longest in-
creasing subsequence of the permutation ρ1ρ2 . . . ρ� is at least n−�. Therefore,
λ1(w) is at least n − �. It follows that � � n − λ1(w) = run(w). �

With the equivalent definition of run(w) as being the minimum number
of runs whose concatenation is a decomposition for w, our statistic run(w)
recovers the “Ulam distance” on permutations. Ulam’s metric was originally
defined to study mutation of DNA sequences from the perspective of permu-
tations [21] as well as to find the fastest way to sort a bridge hand of 13 cards
[1]. An Ulam move deletes a value from the current permutation and places
it at some other position. Correspondingly, the Ulam distance U(σ, τ) is the
minimum number of Ulam moves needed to obtain τ from σ. See also [2].
In fact, our Theorem 3.9 is equivalent to a statement about Ulam’s distance

Runs and RSK Tableaux of Boolean Permutations

given in [6, Chapter 6B, Lemma 2]. Note that our proof is constructive (via
Definition 3.2 of the map ρ), in contrast to the proof of the latter.

Note that, in general, applying the function ρ is not the same as applying
an Ulam move, as in the last case of ρ. We give an algorithm for sorting a
permutation w to the identity permutation by applying a shortest sequence
of Ulam moves, as follows. First, we apply ρ repeatedly until we arrive at
the identity permutation, giving us an optimal run word. Next, we read the
runs of this optimal run word from right to left, one run at a time; each
run corresponds to applying an Ulam move. In the following example, we
demonstrate our algorithm for sorting a permutation.

Example 3.11. Continuing with Example 3.7, let w = 51642738. We apply
ρ repeatedly: ρ(w) = [23]w = 51623748, ρ2(w) = [1234] ρ(w) = 12634758,
ρ3(w) = [345] ρ2(w) = 12345768, and ρ4(w) = [6] ρ3(w) = 12345678. This
gives an optimal run word [32 · 4321 · 543 · 6] of w which tells us how to sort
w using minimally many Ulam moves. Reading the four runs of this optimal
run word from right to left, we apply the following Ulam moves to 51642738:
(1) delete the sixth number, 7, from w and insert it after the number 3,

producing 51642378;
(2) delete the third number, 6, and insert it after the number 3, producing

51423678;
(3) delete the first number, 5, and insert it after the number 3, producing

14235678;
(4) delete the second number, 4, and insert it after the number 3, producing

the identity permutation 12345678.

4. Canonical Reduced Words and the Second Row of RSK
Tableaux

In this section, we construct and study a particular optimal run word for a
boolean permutation w. We call it the RSK canonical reduced word (canonical
word for short) of w and denote it by canon(w). In Sect. 4.1, we will present
two different algorithms to produce canon(w): in Definition 4.1, we start from
an arbitrary reduced word of w and apply commutation relations; in Defini-
tion 4.2, we construct canon(w) from the heap Hw, which gives a convenient
visualization of canon(w). In Sect. 4.2, we establish an application of canon(w).
We show that canon(w) directly produces P(w) and Q(w) without using the
RSK insertion procedure.

4.1. Constructing Canonical Words

The first algorithm was inspired by a technique used in the proof of [10, The-
orem 6.4]. Essentially, it uses commutation moves to push decreasing runs to
the left within the word and increasing runs to the right, starting with runs
on the smallest numbers.

Definition 4.1. Let w be a boolean permutation, and [s] ∈ R(w) an arbitrary
reduced word.

E. Gunawan et al.

Step (1): Let a be the smallest value appearing in [s]. Apply commutation
moves to push a run to the left or right of w according to the following
instructions.

(a) (Push a singleton run to the left.) If a + 1 does not appear in [s],
then define w′ so that w = [a]w′.

(b) (Push a decreasing run to the left.) If a + 1 appears to the left of a
in [s], then let b ≥ a+1 be the largest such that the run b(b−1) · · · a
is a subsequence of s. Define w′ so that w = [b(b − 1) · · · a]w′.

(c) (Push an increasing run to the right.) If a+1 appears to the right of
a in [s], then let b ≥ a+1 be the largest such that the run a · · · (b−1)b
is a subsequence of s. Define w′ so that w = w′[a · · · (b − 1)b].

Step (2): If w′ is not the identity permutation, repeat Step (4.1) on an arbitrary
reduced word for w′. If w′ is the identity, we are done.

The reduced word of w created by this algorithm is canon(w).

Alternatively, we can construct the same canonical reduced word given in
Definition 4.1 using the heap (defined in Sect. 2.2) of a boolean permutation.

Definition 4.2. Let H be the heap diagram of a boolean permutation w, drawn
in increasing order from left to right. Start with two empty lists Dec := Dec (H)
and Inc := Inc (H). We will scan the elements of H from left to right and fill
these two lists with decreasing and increasing runs, respectively.
Step (1) Let a be the leftmost element (that is, smallest number) of H.

(a) If a + 1 is not an element in H, then append the singleton run a to
the list of Dec.

(b) If a � a + 1 in H, then let b be the first extremal element of H
(necessarily minimal) to the right of a. Append the decreasing run
b(b − 1) · · · a to the list Dec.

(c) If a ≺ a + 1 in H, then let b be the first extremal element of H
(necessarily maximal) to the right of a. Prepend the increasing run
a(a + 1) · · · b to the list Inc.

Step (2) Let H ′ be the diagram obtained by removing the singleton a from H
(Case (a)) or the elements a, a + 1, . . . , b (Case (b) or (c)). If H ′ is
not empty, redefine H:=H ′, and repeat Step (4.2). If H ′ is empty, we
are done.

If Dec is nonempty, let canon(Dec) be the concatenation of the decreasing runs
in Dec, with smaller indices appearing first; otherwise, let it be the empty word.
If Inc is nonempty, let canon(Inc) be the concatenation of the increasing runs
in Inc, with larger indices appearing first; otherwise, let it be the empty word.
The reduced word canon(w) is the concatenation of canon(Dec) and canon(Inc),
in that order.

We can verify that Definitions 4.1 and 4.2 are equivalent, as follows. By
Proposition 2.4, we know that a reduced word [s] for a boolean permutation
w corresponds to a linear extension of the heap Hw. In addition, we observe:
(1) x ∈ Hw if and only if x ∈ [s];
(2) x � x + 1 in Hw if and only if x + 1 is to the left of x in [s];

Runs and RSK Tableaux of Boolean Permutations

(3) x ≺ x + 1 in Hw if and only if x + 1 is to the right of x in [s].

Therefore, we obtain the same decreasing run (including singleton) or increas-
ing run at each iteration. Furthermore, appending a decreasing run is equiv-
alent to pushing a decreasing run to the left, while prepending an increasing
run is the same as pushing an increasing run to the right.

Next, we demonstrate this canonical word construction using two boolean
permutations: one having full support and one not.

Example 4.3. Consider the boolean permutation 314627(10)589 ∈ S10. First,
we construct canon(w) following Definition 4.1.

• We start with an arbitrarily chosen reduced word: [259136847] ∈ R(w).
• First, a = 1. Since a + 1 = 2 is to the left of a, and b = 2, we push the

decreasing run [21] to the left and write w = [21 · 5936847].
• Now, we look at w′ = [5936847]. In this case, a = 3. Since a + 1 = 4 is

to the right of a, and b = 4, we push the increasing run [34] to the right:
w′ = [59687 · 34].

• Now, we look at w′′ = [59687]. Here, a = 5, we have a + 1 = 6 to the
right of a, and b = 7, so we push the increasing run [567] to the right:
w′′ = [98 · 567].

• We are left with [98], which is a run, so we are done.

Our steps produce the following:

[259136847] � [21 · 5936847] � [21 · 59687 · 34] � [21 · 98 · 567 · 34] = canon(w).

We could also have constructed canon(w) using heaps, according to Defini-
tion 4.2. The heap H of w is shown in Fig. 2. As we go from left to right
along the elements of H, we create Dec = {[21], [98]} and Inc = {[567], [34]}.
Then, canon(Dec) = [21 · 98] and canon(Inc) = [567 · 34]. Their concatenation,
in that order, produces the reduced word canon(w) given above.

The boolean permutation in the next example does not have full support,
so its heap diagram is disconnected.

Example 4.4. Consider the boolean permutation w = 231548697(11)(10) ∈
S11. We can again construct canon(w) following Definition 4.1.

• We start with an arbitrarily chosen reduced word: [471(10)268] ∈ R(w).
• First, a = 1. Since a + 1 = 2 is to the right of a, and b = 2, we push the

increasing run [12] to the right and write w = [47(10)68 · 12].
• Now, we look at w′ = [47(10)68]. In this case, a = 4. Since a+1 = 5 does

not appear in [47(10)68], we write [47(10)68] = [4 · 7(10)68].
• Now, we look at w′′ = [7(10)68]. Here a = 6. Since a + 1 = 7 is to the

left of a, and b = 7, we push the decreasing run [76] to the left and write
[7(10)68] = [76 · (10)8].

• Now, we look at w′′′ = [(10)8]. Here, a = 8 and we push this singleton to
the left and write [(10)8] = [8 · (10)].

• What remains is the singleton run [(10)], so we are done.

E. Gunawan et al.

Figure 2. Heap diagram for the boolean permutation having
canonical reduced word [21 · 98 · 567 · 34]

Figure 3. Heap diagram for the boolean permutation having
canonical reduced word [4 · 76 · 8 · (10) · 12]

Our steps produce the following:

[471(10)268] � [47(10)68 · 12] � [4 · 7(10)68 · 12] � [4 · 76 · (10)8 · 12]

� [4 · 76 · 8 · (10) · 12] = canon(w).

The heap construction would have produced the same result: the heap of w is
shown in Fig. 3, creating Dec = {[4], [76], [8], [(10)]} and Inc = {[12]}. Then,
canon(Dec) = [4 · 76 · 8 · (10)] and canon(Inc) = [12], and their concatenation,
in that order, produces canon(w).

4.2. From Canonical Reduced Words to RSK Tableaux

We now use canon(w) to simply and directly construct P(w) and Q(w). Note
that because a boolean permutation has at most two rows in its RSK partition,
the RSK tableaux are completely determined by the values appearing in their
second rows.

Let Row1(T) (resp., Row2(T)) denote the contents of the first (resp., sec-
ond) row of a tableau T . Therefore, in particular, Row2(P(w)) and Row2(Q(w))
denote the second rows of P(w) and Q(w), respectively.

Theorem 4.5. If w is boolean, then

Row2(P(w)) = {i + 1 | i is the leftmost entry in a run of canon(w)}
and

Runs and RSK Tableaux of Boolean Permutations

Row2(Q(w)) = {i + 1 | i is the rightmost entry in a run of canon(w)}.

Proof. We first note that the two statements are equivalent, thanks to Propo-
sition 2.6 and the fact that reduced words for the inverse permutation w−1

are exactly the reverse of the reduced words for w, from which it follows that
canon(w−1) is the reverse word of canon(w) up to reordering the singleton
runs. Therefore, it suffices to prove the first statement, about Row2(P(w)).

It is straightforward to verify this result when w is the identity permu-
tation and when the canonical reduced word for w consists of a single run.
Assume now that the statement is true for all boolean permutations with
canonical words having k runs for some k ≥ 1. Consider a boolean permuta-
tion w ∈ Sn having k + 1 runs in its canonical word.

Let a be the smallest value in the support of w. There are three cases:
1. a + 1 does not appear in any reduced word for w,
2. a + 1 appears to the left of a in all reduced words for w, or
3. a + 1 appears to the right of a in all reduced words for w.

Case 1: If a + 1 does not appear in any reduced word for w, then a is its own
maximal run in all reduced words of w. Thus, w = [a] w′ = w′ [a] where w′ is a
boolean permutation, canon(w) = [a]canon(w′), supp(w′) ⊆ {a + 2, . . . , n − 1},
and run(w′) = run(w) − 1. Therefore, Row2(P(w′)) ⊆ {a + 3, . . . , n}. Further-
more, we have that w′(i) = i for i � a + 1, that is, the one-line notation of w′

is as follows:

w′ = 1 2 · · · a (a + 1) w′(a + 2) · · · w′(n).

Since a + 1 /∈ Row2(P(w′)) and the one-line notation for w is

w = 1 2 · · · (a + 1) a w′(a + 2) · · · w′(n),

we have that Row2(P(w)) = Row2(P(w′)) ∪ {a + 1}, and thus, the inductive
hypothesis on w′ completes the argument.
Case 2: Suppose a + 1 is to the left of a in all reduced words for w. As in
Definition 4.1, let b ≥ a+1 be the maximum value such that the decreasing run
[b(b − 1) · · · a] is a subsequence of canon(w). Then w = [b · · · (a + 1)a] w′, where
w′ is a boolean permutation, canon(w) = [b · · · (a + 1)a] canon(w′), supp(w′) ⊆
{b + 1, . . . , n − 1}, and run(w′) = run(w) − 1.

Because 1, . . . , b are not in the support of w′, these values are fixed by
w′. The permutation w is the result of multiplying w′ on the left by the run
[b(b − 1) · · · a]. Therefore

w = 12 · · · (a − 1) (b + 1)a(a + 1) · · · (b − 2)(b − 1) w(b + 1) · · · w(n),

where, for b + 1 ≤ i ≤ n

w(i) =

{
b if w′(i) = b + 1, and
w′(i) otherwise.

Since the first b values in the one-line notation of w′ are fixed, the partial
insertion tableau Pb(w′) is the 1-row insertion tableau of the identity permu-
tation: P(12 · · · b). All entries to the right of b in the one-line notation of w′

are larger than b, so none of the numbers 1, 2, . . . , b will get bumped to the

E. Gunawan et al.

second row as we continue the insertion algorithm to produce P(w′). Thus all
numbers in Row2(P(w′)) are larger than b.

Meanwhile, the partial insertion tableau Pb(w) has 1, . . . , (b − 1) in the
first row and b + 1 in the second row

Pb(w) = 1 2 · · · b−1

b+1

.

All entries to the right of b − 1 in the one-line notation of w are larger than
b− 1, so none of the numbers 1, 2, . . . , b− 1 will get bumped to the second row
in the formation of P(w).

If b + 1 bumps some larger value w′(j) [necessarily w′(j) �= b + 1] in the
construction of P(w′), then the same value w(j) = w′(j) would be bumped by
b in the construction of P(w). It follows that Row2(P(w)) = Row2(P(w′)) ∪
{b + 1}, and the inductive hypothesis on w′ completes the proof.
Case 3: Suppose a + 1 is to the right of a in all reduced words for w. As in
Definition 4.1, let b ≥ a + 1 be the maximum value in canon(w) such that
[a · · · (b − 1)b] is a subsequence of canon(w). Then w = w′[a(a + 1) · · · b] where
w′ is a boolean permutation, canon(w) = canon(w′)[a(a + 1) · · · b], supp(w′) ⊆
{b + 1, . . . , n − 1}, and run(w′) = run(w) − 1.

The numbers 1, 2, . . . , b are again fixed points of w′, so the one-line no-
tation of w′ is of the form

w′ = 12 · · · (b − 1)b w′(b + 1) · · · w′(n).

The fact that w = w′ [a(a + 1) · · · b] means that

w = 1 · · · (a − 1)(a + 1)(a + 2) · · · b w′(b + 1) a w′(b + 2) · · · w′(n).

Because w′(b+1) > b, the first b+1 values in the one-line notation of w′ form
an increasing sequence. Therefore the partial insertion tableau Pb+1(w′) is the
1-row tableau

Pb+1(w′) = 1 2 · · · b w′(b+1)

.

Meanwhile, the partial insertion tableau Pb+1(w) has 1, . . . , ̂a + 1, . . . , b, w′(b+
1) in its first row and a + 1 in the second row

Pb+1(w) =
1 2 · · · a a+2 · · · b w′(b+1)

a+1

.

The remaining steps of the RSK algorithm will bump exactly the same
values for w and for w′. Hence, Row2(P(w)) = Row2(P(w′))∪{a+1}, and the
result follows from the inductive hypothesis on w′. �

We demonstrate Theorem 4.5 by recalling a previous example.

Runs and RSK Tableaux of Boolean Permutations

Example 4.6. Let w = 314627(10)589, and recall that canon(w) =
[
21 · 98 ·

567 · 34
]
, as computed in Example 4.3. The RSK tableaux for w are

P(w) = 1 2 5 7 8 9

3 4 6 10
and Q(w) = 1 3 4 6 7 10

2 5 8 9
,

confirming Theorem 4.5. That is, Row2(P(w)) = {2+1, 9+1, 5+1, 3+1} and
Row2(Q(w)) = {1 + 1, 8 + 1, 7 + 1, 4 + 1}.

Corollary 4.7. If w is a boolean permutation, then canon(w) is an optimal run
word for w.

Proof. This follows immediately from Theorem 3.9 and Theorem 4.5. �

Another interesting consequence of this result is that certain values can-
not appear together in the second row of P(w) when w is boolean. We present
an example of this here, and the result will be generalized in Sect. 5.

Corollary 4.8. If w is a boolean permutation, then {i, i+1, i+2} �⊆ Row2(P(w))
for all i.

Proof. Let w be a boolean permutation with i, i + 1 ∈ Row2(P(w)). Thus, the
canonical reduced word for w has one run, call it ri−1, with leftmost element
i − 1 and another run, call it ri, with leftmost element i. In particular, ri is
either a singleton or an increasing run.

Recall the algorithm used to construct canon(w), given in Definition 4.1.
If ri is an increasing run, then i + 1 must be part of ri. On the other hand,
if ri is a singleton, then i + 1 does not appear in any reduced word for w. In
either case, it follows from Theorem 4.5 that i + 2 /∈ Row2(P(w)). �

5. Characterizing Boolean Insertion Tableaux

As we have observed, the insertion tableau of a boolean permutation has at
most two rows. On the contrary, not every 2-row standard tableau is the inser-
tion tableau of some boolean permutation. For example, as a consequence of
Corollary 4.8, the following tableau is not the insertion tableau of any boolean
permutation:

1 2 3 5
4 6 7 8

In this section, we will characterize the 2-row standard tableaux that are inser-
tion tableaux for boolean permutations. We will rely heavily on the definition
of the canonical reduced word from Sect. 4.1.

Definition 5.1. Let L be a set of integers. If, for all integers x and y, with
x > 0, we have

|[y, y + 2x] ∩ L| ≤ x + 1,

then we will say that L is uncrowded. Otherwise, we say that L is crowded.

E. Gunawan et al.

In other words, a set of integers L is crowded if L contains more than
x + 1 of the integers in some interval of 2x + 1 integers. We are interested
in crowded and uncrowded sets as they pertain to standard tableaux. The
following technical lemma is important for Theorem 5.3 and Definition 5.5.

Lemma 5.2. Let T be a standard tableau with at most two rows, and let R ⊆
Row2(T). Then, R ∪ {1} is uncrowded if and only if R is uncrowded. In par-
ticular, Row2(T) ∪ {1} is uncrowded if and only if Row2(T) is uncrowded.

Proof. One direction of this statement is clear, since every subset of an un-
crowded set is uncrowded. To prove the other direction, assume for the sake of
contradiction that R is uncrowded, but R ∪ {1} is crowded. This means there
is some minimal x > 0, such that |[1, 2x + 1] ∩ (R ∪ {1})| > x + 1.

Therefore, there are at least x + 2 elements in R from the set

{1, 2, . . . , 2x − 1, 2x, 2x + 1}.

Furthermore, since x is minimal, there are at most x elements in R from the
set

{1, 2, . . . , 2x − 1}.

Hence, {2x, 2x + 1} ⊆ R and there are exactly x elements in R from the set
{1, 2, . . . , 2x−1}. Since R is uncrowded, {1, 2, . . . , 2x−1}∩R = {2, 4, . . . , 2x−
2}. It follows that {2, 4, . . . , 2x, 2x + 1} ⊆ R.

This is a set of size x + 1, and there are only x positive integers smaller
than 2x + 1. However, Row1(T) requires at least x + 1 such numbers, so this
is a contradiction. �

With this lemma in hand, we can prove the main result in this section
which will relate uncrowded sets to boolean permutations.

Theorem 5.3. Let L be a subset of {1, . . . , n − 1}. Then, L ∪ {0} is uncrowded
if and only if L is the set of leftmost letters in the runs of the canonical reduced
word of a boolean permutation.

Proof. First note that the result is easily checked when |L| is small.
Let us now prove the direction that if L ∪ {0} is a crowded set then

L cannot be the set of leftmost run letters in the canonical reduced word
of a boolean permutation. Suppose that L ∪ {0} is crowded, and let us find a
minimally wide set demonstrating this crowding: fix a pair of values y ∈ L∪{0}
and x > 0, such that (1) |[y, y + 2x] ∩ (L ∪ {0})| > x + 1 and (2) x is minimal
for this and all other possible values of y.

The second condition means no proper subset of [y, y + 2x] ∩ (L ∪ {0}) is
crowded. This implies that one of the following cases holds:

(i) {1, 3, 5, . . . , 2x − 1, 2x} ⊆ L,
(ii) {y, y + 1, y + 2} ⊆ L, or
(iii) {y, y + 1, y + 3, y + 5, . . . , y + 2x − 1, y + 2x} ⊆ L.
We will now prove in all cases that these cannot be leftmost run letters in the
canonical word for a boolean permutation.

Runs and RSK Tableaux of Boolean Permutations

First, assume that Case (i) holds. Suppose by contradiction that 1, 3,
5, . . . , 2x − 1, 2x are leftmost elements in the runs of the canonical reduced
word canon(b) of some boolean permutation b. Then, Theorem 4.5 tells us
that Row2(P(b)) ⊇ {2, 4, 6, . . . , 2x, 2x + 1}. However, {2, 4, 6, . . . , 2x, 2x + 1}
is uncrowded and {1, 2, 4, 6, . . . , 2x, 2x + 1} is crowded. By Lemma 5.2, we
conclude that this case is impossible.

Case (ii) is Corollary 4.8.
Next, assume that Case (iii) holds. Suppose the elements of the set {y, y+

1, y + 3, . . . , y + 2x − 1} are leftmost letters in the canonical reduced word
canon(b) of a boolean permutation b. Then, canon(b) must include the run

y(y − 1) · · · ,

which forces those remaining leftmost letters to come from the runs

(y + 1)(y + 2)

(y + 3)(y + 4)
...

(y + 2x − 1)(y + 2x),

where the rightmost values are either in those runs or are not in the support of
b. In either case, it would be impossible for y + 2x to be a leftmost run letter
in canon(b).

Thus, if L ∪ {0} is crowded, then L cannot be the set of leftmost run
letters of the canonical reduced word of a boolean permutation.

We now show that, whenever L ∪ {0} is uncrowded, there is a canonical
word for some boolean permutation whose leftmost run letters are exactly the
elements of L. For L = ∅, the empty word for the identity permutation satisfies
these conditions. Now, say L∪{0} is uncrowded, and assume, inductively, that
our result holds for all L′ with |L′| < |L|. Write L = {m0 < · · · < mk}, and
note that, for all i, we have mi ≥ 2i + 1. Indeed, if there is an i > 0, such that
mi ≤ 2i, then L ∪ {0} is crowded, since

|[0, 2i] ∩ (L ∪ {0})| = |{0,m0, . . . , mi}| = i + 2 > i + 1.

First, consider the case that mi = 2i+1 for all i. Then, L = {1, 3, . . . , 2k+
1}, and the following word—comprised of two-element increasing runs—is the
canonical word for a boolean permutation with leftmost run letters exactly the
elements of L: [(2k + 1)(2k + 2) · · · · · 34 · 12].

Otherwise, choose the smallest j such that mj > 2j + 1, and define

L′:={z − mj : z ∈ L and z > mj}.

Note that L′ ∪{0} ⊆ {z −mj : z ∈ L∪{0}}. The latter set is uncrowded, since
it is a shift of the uncrowded set L∪{0}. This means L′ ∪{0} is a subset of an
uncrowded set and is therefore also uncrowded. By the inductive hypothesis,
there exists a canonical word [s] for a boolean permutation with leftmost run
letters exactly the elements of L′.

Define [t] to be the word obtained by adding mj to each letter in [s]. Since
[t] is simply a shift of [s], we see that [t] is a canonical word for a boolean

E. Gunawan et al.

permutation with leftmost run letters L\{m0, . . . , mj} = L\{1, 3, . . . , 2j −
1,mj}. By construction, all letters of [t] are larger than mj . Since mj > 2j +1,
we also have mj − 1 > 2j. Thus, we conclude that the following word is a
canonical word for a boolean permutation with leftmost run letters given by
L:

[mj(mj − 1) · t · (2j − 1)(2j) · · · · · 34 · 12].

�

Combining Theorem 5.3 and Theorem 4.5, we can characterize the sets
Row2(P(w)) when w is boolean.

Corollary 5.4. Let X be a subset of {2, . . . , n}, and set L:={x − 1 : x ∈ X}.
The set X is equal to Row2(P(w)) for some boolean permutation w ∈ Sn if and
only if L ∪ {0} is uncrowded.

This result together with Lemma 5.2 motivates us to define a special class
of tableaux.

Definition 5.5. Let T be a standard tableau having at most two rows. We say
that T is uncrowded if the set Row2(T) is uncrowded.

Note that a 1-row tableau, for which Row2(T) = ∅, is always uncrowded.
We can rephrase Definition 5.5 to say a tableau is uncrowded if and only if
it is the insertion tableau of a boolean permutation. Note that this does not
mean that an uncrowded tableau can only occur as an insertion tableau of
a boolean permutation. Because the RSK insertion algorithm is a bijection
between permutations and pairs of standard tableaux, multiple permutations
can have the same insertion tableau. For example, both 3142 (boolean) and
3412 (not Boolean) have the following insertion tableau which is uncrowded,
because {3, 4} is uncrowded:

1 2

3 4.

The inverse of a boolean permutation is also boolean, because reversing
a reduced word will not introduce any repetition among its letters. Therefore,
due to Proposition 2.6, there is a statement about recording tableaux that is
analogous to the insertion tableau result given in Corollary 5.4.

Corollary 5.6. Let Q be a standard tableau with at most two rows. Then, Q is
the RSK recording tableau of some boolean permutation if and only if Row2(Q)
is uncrowded.

In other words, both the insertion and recording tableaux of boolean per-
mutations follow the same characterization: their second rows are uncrowded.
However the converse is not true. For example, 3412 is not a boolean permu-
tation, but has uncrowded insertion and recording tableaux.

Runs and RSK Tableaux of Boolean Permutations

6. Enumerating Uncrowded Tableaux

In this section, we enumerate uncrowded tableaux via a bijection to a certain
set of binary words. A maximal run in a word is a factor of maximally many
identical symbols, and it is common to use run-length to describe the length
of a maximal run. For example, the binary word 0111001 has run-lengths 1, 3,
2, and 1, when read from left to right.

Let Un be the set of standard uncrowded tableaux of size n (including
the 1-row tableau), and let Xn be the set of 01-words of length n − 1 in which
all run-lengths of 1s are odd. We define a map f : Xn → Un as follows. (See
Example 6.3.) If x is the word whose letters are all 0s, then let

f(x) = 1 2 · · · n .

Otherwise, given x = x1x2 · · · xn−1 ∈ Xn, we will construct a 2-row tableau
f(x). Define α(x) ⊂ [1, n] and β(x) ⊂ [2, n] as follows:

• 1 ∈ α(x).
• If xi = 0, then n + 1 − i ∈ α(x).
• If we have a maximal run of 1s starting at index i and ending at index

i + 2k, then
	 n + 1 − i ∈ β(x),
	 if 2k > 0, then n+1−j ∈ β(x) for all j ∈ {i+1, i+3, i+5, . . . , i+
2k − 1}, and
	 if 2k > 0, then n+1−j ∈ α(x) for all j ∈ {i+2, i+4, i+6, . . . , i+
2k}.

Let f(x) be the tableau whose first (resp., second) row is the increasing se-
quence of entries in α(x) (resp., β(x)).

We first verify f is a well-defined map from Xn to Un.

Lemma 6.1. For each x ∈ Xn, we have f(x) ∈ Un.

Proof. We must establish two facts: β(x) is uncrowded, and f(x) is a standard
tableau.

The requirement that each run-length of 1s is odd means that, for each
even length interval of integers [i, i + 2z], we can have at most

n + 1 − i and {n + 1 − j | j ∈ {i + 1, i + 3, . . . , i + 2z − 1}}, or
{n + 1 − j | j ∈ {i, i + 2, . . . , i + 2z}}

in β(x). Therefore, we can have at most z + 1 integers in β(x) from [i, i + 2z].
Therefore, β(x) is uncrowded.

To see that α(x) and β(x) form the first and second rows, respectively, of
a standard tableau, we observe that the following is an injective map sending
an entry in the second row to a smaller entry in the first row: For a maximally
long factor xi · · · xi+2k of 1s in x, consider the entries of the interval [n + 1 −
(i + 2k − 1), n + 1 − i] in β(x).

• If 2k = 0, then the corresponding singleton set in β is {n + 1 − i}. Either
i = n−1 or xi+1 = 0. If i = n−1, then n+1−i = n+1−(n−1) = 2 and we

E. Gunawan et al.

map 2 ∈ β(x) to 1 ∈ α(x). If xi+1 = 0, then n+1−(i+1) = n− i ∈ α(x),
and we map n + 1 − i ∈ β(x) to n − i ∈ α(x).

• If 2k ≥ 2, then we have

{n + 1 − i} ∪ {n + 1 − j | j = i + 1, i + 3, . . . , i + 2k − 1} ⊆ β(x)

and

{n + 1 − j | j = i + 2, i + 4, . . . , i + 2k} ⊆ α(x).

Either i + 2k = n − 1 or xi+2k+1 = 0. If i + 2k = n − 1, then we
map n + 1 − (2k − 1) ∈ β(x) to 1 ∈ α(x). Otherwise, the fact that
xi+2k+1 = 0 gives us an entry in α(x) that is smaller than everything in
{n + 1 − i} ∪ {n + 1 − j | j = i + 1, i + 3, . . . , i + 2k − 1} ⊆ β(x). This
allows us to send each element in β(x) to a unique smaller entry in α(x).

Therefore, each f(x) is indeed in Un. �

In fact, not only does f send elements from Xn to the set Un, but we can
invert this process. That is, the map f is a bijection.

Proposition 6.2. The map f : Xn → Un is a bijection.

Proof. We describe the inverse map g : Un → Xn of f .
If T ∈ Un is the 1-row tableau, then let g(T) be the word whose letters

are all 0s.
Otherwise, let g(T) be the 01-word x1x2 · · · xn−1 constructed using the

following algorithm. Set xi:=0 for 1 ≤ i ≤ n − 1. Let β denote the second row
of T . Since T is standard, we have β ⊂ [2, n].

• Let z be the largest number in β. Note that z > 1, and set xn+1−z:=1.
	 If z − 1 /∈ β, then let β′:=β \ {z}.
	 Otherwise the uncrowded condition guarantees the existence of a
maximal integer k � 1, such that

[z − 2k, z] ∩ β = {z, z − 1, z − 3, . . . , z − (2k − 1)}.

Set

xj :=1forn + 2 − z ≤ j ≤ n + (2k + 1) − z,

and let β′:=β \ {z, z − 1, z − 3, . . . , z − (2k − 1)}.
• If β′ is empty, then we are done. Otherwise, redefine β:=β′ and iterate

the process.
We first check that the algorithm is well defined. More precisely, we need

to prove that n+(2k +1)− z is less than or equal to n−1, which is equivalent
to proving that z is greater than or equal to 2k + 2. Suppose, for the sake of
contradiction, that z ≤ 2k+1. Because z−(2k−1) ∈ β, we have z−(2k−1) ≥ 2,
and thus, z = 2k+1. The k+1 elements of S:={z, z−1, z−3, . . . , z−(2k−1)}
are in Row2(T). When z = 2k + 1, we have S = {2, 4, . . . , 2k − 1, 2k}. This
means that S ⊆ Row2(T) is uncrowded and S ∪ {1} is crowded. Lemma 5.2
shows this is impossible, and we have reached a contradiction

Next we show that xn+(2k+2)−z, if it exists, will stay equal to 0 at the
conclusion of each iteration. To see this, note that z − (2k + 1) is not in the

Runs and RSK Tableaux of Boolean Permutations

second row of T , so the next largest element in the iteration will be less than
z − (2k + 1).

Now, it is apparent that the above algorithm indeed gives a 01-word.
Moreover, all run-lengths of 1s are odd; therefore, g(T) ∈ Xn. It is straight-
forward to check that f ◦ g = 1Un

and g ◦ f = 1Xn
. Therefore, we obtain a

bijection between Un and Xn. �

We demonstrate this bijection with an example, beginning with the map
f .

Example 6.3. Suppose we have the 01-word

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

x = 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 ∈ X18.

Then, α(x) = {1, 2, 3, 6, 7, 9, 12, 14, 16, 17}, β(x) = {4, 5, 8, 10, 11, 13, 15, 18}
and

T = f(x) =
1 2 3 6 7 9 12 14 16 17

4 5 8 10 11 13 15 18
∈ U18. (6.1)

For example, the letter x13 = 0 tells us that n + 1 − 13 = 6 ∈ α(x), while
the maximal block x8 · · · x12 of 1s tells us that

	 n + 1 − j ∈ β(x) for all j ∈ {8, 8 + 1, 8 + 3}, so {11, 10, 8} ⊆ β(x) and
	 n + 1 − j ∈ α(x) for all j ∈ {8 + 2, 8 + 4}, so {9, 7} ⊆ α(x).

Next, we illustrate the inverse map g.

Example 6.4. Suppose we have T ∈ U18 as given in (6.1), and let β = {18, 15,
13, 11, 10, 8, 5, 4} denote the second row of T .

	 z = 18 ∈ β and z − 1 /∈ β. Thus, x1 = 1.
	 z = 15 ∈ β and z − 1 /∈ β. Thus, x4 = 1.
	 z = 13 ∈ β and z − 1 /∈ β. Thus, x6 = 1.
	 z = 11 ∈ β and z − 1, z − 3 ∈ β, and thus, k = 2. Therefore, x8 = x9 =

x10 = x11 = x12 = 1.
	 z = 5 ∈ β and z−1 ∈ β, and thus, k = 1. Therefore, x14 = x15 = x16 = 1.

Therefore, we get g(T) = 10010101111101110, and this is exactly the word x
from Example 6.3.

The bijection developed above, between uncrowded tableaux Un and the
set Xn of 01-words having odd run-lengths of 1s, allows us to enumerate the
set Un, and related subsets. We present those results in the following corollary.
Note that we must adjust for indexing in parts (b) and (c) of the result, because
both of the sequences referenced there are for binary words of length n, not
n − 1.

Corollary 6.5. (a) The number of uncrowded tableaux in Un are counted by
the sequence [11, A028495], which is known to count the 01-words in Xn.

E. Gunawan et al.

Below is a table for the first few entries of |Un|

n 1 2 3 4 5 6 7 8 9 10

|Un| 1 2 3 6 10 19 33 61 108 197

(b) The number of 2-row uncrowded tableaux in Un, which is Un − 1, are
counted by the sequence [11, A077865], which is known to count the 01-
words in Xn, not including the all-0s word.

(c) The uncrowded tableaux in Un having n in the second row are is counted
by the sequence [11, A006053], which is known to count the 01-words in
Xn that start with the letter 1. Below is a table for the first few entries
for the sequence

n 1 2 3 4 5 6 7 8 9 10

a(n) 0 1 1 3 4 9 14 28 47 89

Acknowledgements

The authors would like to thank the 2021–2022 Research Community in Al-
gebraic Combinatorics program at ICERM, through which this research took
place. The authors thank the organizers and staff for putting together this
invigorating and inspiring workshop series. The authors are also grateful to
Carolina Benedetti for helpful discussions. This work also benefited from com-
putation using SageMath [5]. Finally, we thank the anonymous reviewers
whose suggestions helped improve and clarify this paper.

Data Availability Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Declarations
Conflict of Interest The authors declare that they have no conflicts of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing agreement and
applicable law.

References

[1] D. J. Aldous and P. Diaconis. Longest increasing subsequences: from
patience sorting to the Baik-Deift-Johansson theorem. Bulletin of the

Runs and RSK Tableaux of Boolean Permutations

American Mathematical Society, 36:413–432, 1999. https://doi.org/10.1090/
s0273-0979-99-00796-x

[2] M. Bóna and M. Bruner. Log-concavity, the Ulam distance and involutions.
Preprint arXiv:1502.05438.

[3] A. Björner and F. Brenti. Combinatorics of Coxeter groups, volume 231 of Grad-
uate Texts in Mathematics. Springer, New York, 2005.

[4] S. C. Billey, W. Jockusch, and R. P. Stanley. Some combinatorial properties of
Schubert polynomials. J. Algebraic Combin., 2:345–374, 1993. https://doi.org/
10.1023/A:1022419800503

[5] The Sage Developers. Sage Mathematics Software (Version 9.3). The Sage De-
velopment Team, 2021.

[6] P. Diaconis. Group representations in probability and statistics. Institute of
Mathematical Statistics Lecture Notes-Monograph Series, 11. Institute of Math-
ematical Statistics, Hayward, CA, 1988. vi+198 pp.

[7] M. Donten-Bury and L. Escobar and I. Portakal. (2023) Complexity of the usual
torus action on Kazhdan-Lusztig varieties. Algebr. Comb.6 3: 835-861. https://
doi.org/10.5802/alco.279

[8] C. Greene. An extension of Schensted’s theorem. Advances in Math., 14:254–265,
1974. https://doi.org/10.1016/0001-8708(74)90031-0

[9] P. Karuppuchamy. On Schubert Varieties. Communications in Algebra, 41:1365–
1368, 2013. https://doi.org/10.1080/00927872.2011.635620

[10] V. Mazorchuk and B. E. Tenner. Intersecting principal Bruhat ideals and grades
of simple modules. Comb. Theory, 2(1):14-31, 2022. https://doi.org/10.5070/
C62156886

[11] OEIS Foundation Inc. (2022). The On-Line Encyclopedia of Integer Sequences.
http://oeis.org.

[12] K. Ragnarsson and B. E. Tenner. Homotopy type of the boolean complex of
a Coxeter group. Adv. Math., 22:409–430, 2009. https://doi.org/10.1016/j.aim.
2009.05.007

[13] K. Ragnarsson and B. E. Tenner. Homology of the boolean complex. J. Algebraic
Combin., 34:617–639, 2011. https://doi.org/10.1007/s10801-011-0285-5

[14] B. E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, second edition, 2001. Representations, combi-
natorial algorithms, and symmetric functions.

[15] C. Schensted. Longest increasing and decreasing subsequences. Canadian J.
Math., 13:179–191, 1961. https://doi.org/10.4153/CJM-1961-015-3

[16] M. P. Schützenberger. Quelques remarques sur une construction de Schensted.
Math. Scand., 12:117–128, 1963. https://doi.org/10.7146/math.scand.a-10676

https://doi.org/10.1090/s0273-0979-99-00796-x
https://doi.org/10.1090/s0273-0979-99-00796-x
http://arxiv.org/abs/1502.05438
https://doi.org/10.1023/A:1022419800503
https://doi.org/10.1023/A:1022419800503
https://doi.org/10.5802/alco.279
https://doi.org/10.5802/alco.279
https://doi.org/10.1016/0001-8708(74)90031-0
https://doi.org/10.1080/00927872.2011.635620
https://doi.org/10.5070/C62156886
https://doi.org/10.5070/C62156886
http://oeis.org
https://doi.org/10.1016/j.aim.2009.05.007
https://doi.org/10.1016/j.aim.2009.05.007
https://doi.org/10.1007/s10801-011-0285-5
https://doi.org/10.4153/CJM-1961-015-3
https://doi.org/10.7146/math.scand.a-10676

E. Gunawan et al.

[17] R. Stanley. Enumerative Combinatorics, Volume 2, volume 62 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, first
edition, 1999.

[18] R. P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, sec-
ond edition, 2012.

[19] J. R. Stembridge. On the fully commutative elements of Coxeter groups. J. Al-
gebraic Combin., 5(4):353–385, 1996. https://doi.org/10.1023/A:1022452717148

[20] B. E. Tenner. Pattern avoidance and the Bruhat order. J. Comb. Theory Ser. A,
114:888–905, 2007. https://doi.org/10.1016/j.jcta.2006.10.003

[21] S. E. Ulam. Some ideas and prospects in biomathematics. Annual review of bio-
physics and bioengineering, 1:277–292, 1972. https://doi.org/10.1146/annurev.
bb.01.060172.001425

Emily Gunawan∗

Department of Mathematics and Statistics
University of Massachusetts Lowell
Lowell MA
USA
e-mail: emily gunawan@uml.edu

Jianping Pan
Department of Mathematics
North Carolina State University
Raleigh NC
USA
e-mail: jpan9@ncsu.edu

Heather M. Russell
Department of Mathematics and Statistics
University of Richmond
Richmond VA
USA
e-mail: hrussell@richmond.edu

Bridget Eileen Tenner†

Department of Mathematical Sciences
DePaul University
Chicago IL
USA
e-mail: bridget@math.depaul.edu

Communicated by Vasu Tewari

Received: 9 July 2023.

Accepted: 4 February 2024.

https://doi.org/10.1023/A:1022452717148
https://doi.org/10.1016/j.jcta.2006.10.003
https://doi.org/10.1146/annurev.bb.01.060172.001425
https://doi.org/10.1146/annurev.bb.01.060172.001425

	Runs and RSK Tableaux of Boolean Permutations
	Abstract
	1. Introduction
	2. Background and Notation
	2.1. Fully Commutative Permutations and Boolean Permutations
	2.2. Heaps of a Boolean Permutation
	2.3. Robinson–Schensted–Knuth Tableaux
	2.4. Runs and Longest Increasing Subsequences

	3. Runs and RSK Partitions
	4. Canonical Reduced Words and the Second Row of RSK Tableaux
	4.1. Constructing Canonical Words
	4.2. From Canonical Reduced Words to RSK Tableaux

	5. Characterizing Boolean Insertion Tableaux
	6. Enumerating Uncrowded Tableaux
	Acknowledgements
	References

