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Abstract. Inspired by a recent work of Kim, Kim and Lovejoy on two
overpartition difference functions, we study some bipartition difference
functions, four of which are related to Ramanujan’s identities recorded in
his lost notebook. We show that they are always positive by elementary
q-series transformations.
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1. Introduction

Throughout the paper, we adopt the standard q-Pochhammer symbol

(a; q)∞ :=
∞∏

i=0

(1 − aqi)

for |q| < 1, and

(a; q)n :=
(a; q)∞

(aqn; q)∞
for any integer n.

We will use the following fundamental tools in the subject of q-series
∑

n≥0

(a; qm)n(b; q)mn

(qm; qm)n(c; q)mn
tn =

(b; q)∞(at; qm)∞
(c; q)∞(t; qm)∞

∑

n≥0

(c/b; q)n(t; qm)n

(q; q)n(at; qm)n
bn, (1.1)

∑

n≥0

(a; q)n(b; q)n

(c; q)n(q; q)n
tn =

(c/b; q)∞(bt; q)∞
(c; q)∞(t; q)∞

∑

n≥0

(abt/c; q)n(b; q)n

(bt; q)n(q; q)n
(c/b)n,

(1.2)
∑

n≥0

(a; q)n(b; q)n

(c; q)n(q; q)n
tn =

(abt/c; q)∞
(t; q)∞

∑

n≥0

(c/a; q)n(c/b; q)n

(c; q)n(q; q)n
(abt/c)n. (1.3)
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whose proof can be found in [4, Theorem 1.2.1, Corollaries 1.2.4 and 1.2.5].
A partition λ of a positive integer n is a weakly decreasing sequence of

positive integers λ = (λ1, λ2, . . . , λr) such that |λ| =
∑r

i=1 λi = n. The terms
λi are called the parts of λ. A bipartition of n is a pair of partitions (λr, λb)
with |λr| + |λb| = n, where the parts of λr are colored red and the parts of
λb are colored blue. An overpartition of n is a partition of n in which the first
occurrence of a number may be overlined [9].

Recently, Kim, Kim and Lovejoy [10] focused on the following identity
due to Ramanujan [4, Entry 1.4.9]

∑

n≥0

qn(n+1)/2

(q; q)2n
=

(−q; q)∞
(q; q)∞

∑

n≥0

(−1)n qn(n+1)/2

(q2; q2)n
. (1.4)

It is not hard to see that the series on the left-hand side of (1.4) is the gener-
ating function for overpartitions where there are no nonoverlined parts larger
than the number of overlined parts. It is natural to consider p(m,n), the num-
ber of overpartitions of n in which there are exactly m nonoverlined parts
larger than the number of overlined parts. Then

∑

n≥0

p(m,n)zmqn =
∑

n≥0

qn(n+1)/2

(q; q)2n(zqn+1; q)∞
.

Apply (1.2) with a = zq, b = q/τ, c = q, t = −τ , and then let τ → 0. After
dividing both sides of the resulting identity by (zq; q)∞, we can conclude that
∑

n≥0

qn(n+1)/2

(q; q)2n(zqn+1; q)∞
=

(−q; q)∞
(q; q)∞(zq; q)∞

∑

n≥0

(−1)n (−zq; q)nqn(n+1)/2

(q2; q2)n
. (1.5)

If we set z = 0, then (1.5) reduces to (1.4). If we set z = −1 in (1.5), the
left-hand side can be interpreted as

∑

n≥0

(pe(n) − po(n))qn =
∑

n≥0

qn(n+1)/2

(q; q)2n(−qn+1; q)∞
, (1.6)

where pe(n) and po(n) counts the number of overpartitions of n which have
an even and odd number of nonoverlined parts larger than the number of
overlined parts, respectively. Despite the sign in the generating function, Kim,
Kim and Lovejoy [10] showed that the coefficient of qn for n > 1 in (1.6) is
always positive.

Theorem 1.1. (Kim et al.) For n > 1, we have

pe(n) > po(n).

Kim, Kim and Lovejoy [10] also discussed similar inequalities for other
types of partitions. For example, let qe(n) and qo(n) denote the number of
bipartitions of n which have an even and odd number of blue parts larger than
the number of red parts, respectively. Clearly,

∑

n≥0

(qe(n) − qo(n))qn =
∑

n≥0

qn

(q; q)2n(−qn+1; q)∞
. (1.7)
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They proved that (1.7) has nonnegative coefficients.

Theorem 1.2. (Kim et al.) For n > 1, we have

qe(n) > qo(n).

In fact, (1.7) is closely related to
∑

n≥0

qn

(q; q)2n
=

1
(q; q)2∞

∑

n≥0

(−1)nqn(n+1)/2, (1.8)

which is recorded in Ramanujan’s lost notebook [4, Entry 1.4.10]. It is readily
seen that the series on the left-hand side of (1.8) is the generating function for
bipartitions where there are no blue parts larger than the number of red parts.

In this work, we aim to explore several partition inequalities of this na-
ture, four of which have close connections with Ramanujan’s identities [4,
Entries 1.4.3, 1.4.4, 1.4.5 and 1.4.11]

∑

n≥0

anqn

(q; q)n(bq; q2)n
=

1
(aq; q)∞(bq; q2)∞

∑

n≥0

(aq; q)2n(−b)nqn2

(q2; q2)n
, (1.9)

∑

n≥0

anq2n

(q2; q2)n(bq; q)2n
=

1
(aq2; q2)∞(bq; q)∞

∑

n≥0

(aq2; q2)n(−b)nqn(n+1)/2

(q; q)n
,

(1.10)
∑

n≥0

(−aq; q)n(−q; q)nqn = (−q; q)∞(−aq; q)∞
∑

n≥0

(q; q2)nq2n

(−aq; q)2n+1
, (1.11)

∑

n≥0

q2n

(q; q)2n
=

1
(q; q)2∞

⎛

⎝1 + 2
∑

n≥0

(−1)nqn(n+1)/2

⎞

⎠ . (1.12)

2. Bipartitions Related to Ramanujan’s Identities

Setting a = 1 and b = q in (1.9), we have
∑

n≥0

qn

(q; q)n(q2; q2)n
=

1
(q; q)∞(q2; q2)∞

∑

n≥0

(−1)n (q; q)2nqn2+n

(q2; q2)n
. (2.1)

It is easy to see that the series on the left-hand side of (2.1) is the generating
function for bipartitions where each blue part is even and no blue part is larger
than twice the number of red parts. Let ae(n) and ao(n) denote the number of
bipartitions of n with each blue part being even and having an even and odd
number of blue parts larger than twice the number of red parts, respectively.
Then

∑

n≥0

(ae(n) − ao(n))qn =
∑

n≥0

qn

(q; q)n(q2; q2)n(−q2n+2; q2)∞
.

Theorem 2.1. For n ≥ 1, we have

ae(n) > ao(n).



B. L. S. Lin, X. Lin

Proof. It is clear that

∑

k≥0

qk

(q; q)k(q2; q2)k(−q2k+2; q2)∞
=

1
(−q2; q2)∞

∑

k≥0

(−q2; q2)kqk

(q; q)k(q2; q2)k
.

Setting a = −1, b = q, c = 0,m = 2, t = −q2 in (1.1) and then dividing both
sides by (q; q)∞(q2; q2)∞, we find that

1
(−q2; q2)∞

∑

k≥0

qk(−q2; q2)k

(q; q)k(q2; q2)k

=
1

(q; q)∞(q2; q2)∞

∑

k≥0

(−1)kq2k(−1; q2)k(q; q)2k

(q2; q2)k

=
1

(q2; q2)∞

∑

k≥0

(−1)kq2k(−1; q2)k

(q2; q2)k(q2k+1; q)∞

=
1

(q2; q2)∞

∑

k≥0

(
q4k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞
− q4k+2(−1; q2)2k+1

(q2; q2)2k+1(q4k+3; q)∞

)

=
1

(q2; q2)∞

∑

k≥0

(
q4k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞
− q4k+2(−1; q2)2k(1 + q4k)

(q2; q2)2k(q4k+2; q)∞

)

=
1

(q2; q2)∞

∑

k≥0

q4k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞

(
1 − q2(1 + q4k)(1 − q4k+1)

)

=
1

(q2; q2)∞

∑

k≥0

q4k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞
(1 − q2 − q4k+2 + q4k+3 + q8k+3)

=
1

(q2; q2)∞

∑

k≥0

q4k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞
(1 − q2 − q4k+2 + q4k+3)

+
1

(q2; q2)∞

∑

k≥0

q12k+3(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞
. (2.2)

We claim that for k ≥ 0,

Fk(q) :=
1 − q2 − q4k+2 + q4k+3

(q2; q2)2k(q4k+1; q)∞

is a series with nonnegative coefficients.
First, we have

F0(q) =
1 − q2 − q2 + q3

(q; q)∞

=
1 − 2q2 + q4 + q3 − q4

(q; q)∞

=
(1 − q2)2

(q; q)∞
+

q3(1 − q)
(q; q)∞
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=
1 + q

(q3; q)∞
+

q3

(q2; q)∞
,

in which the coefficient of qn is positive for n �= 2. Hence, F0(q)/(q2; q2)∞ is a
series with positive coefficients.

For k ≥ 1, we have

Fk(q) =
(1 − q2)(1 − q4k+2) + q4k+3 − q4k+4

(q2; q2)2k(q4k+1; q)∞

=
1

(q4; q2)2k−1(1 − q4k+1)(q4k+3; q)∞
+

q4k+3(1 − q)
(q2; q2)2k(q4k+1; q)∞

.

Suppose that
∑

n≥0

f(n)qn =
1

(q4k+1; q)∞
,

where f(n) is the number of partitions of n into parts at least 4k + 1. Given
such a partition of n − 1, adding 1 to the largest part, we obtain a partition
of n. This map is injective, which implies that f(n) ≥ f(n − 1). Thus,

1 − q

(q4k+1; q)∞
=

∑

n≥0

(f(n) − f(n − 1))qn

has nonnegative coefficients, so does for

q4k+3(1 − q)
(q2; q2)2k(q4k+1; q)∞

.

Therefore, each Fk(q) has nonnegative coefficients.
The desired statement follows from the conclusion that the first sum on

the right-hand side of (2.2) is a series with positive coefficients, and the second
sum is a series with nonnegative coefficients. �

Setting a = b = 1 in (1.10), we obtain
∑

n≥0

q2n

(q; q)2n(q2; q2)n
=

1
(q2; q2)∞(q; q)∞

∑

n≥0

(q2; q2)n(−1)nqn(n+1)/2

(q; q)n
. (2.3)

The series on the left-hand side of (2.3) is the generating function for biparti-
tions where there are an even number of red parts, and each blue part is even
and no blue part is larger than the number of red parts. Let be(n) and bo(n)
be the number of bipartitions of n where the number of red parts is even, each
blue part is even and there are an even and odd number of blue parts larger
than the number of red parts, respectively. Then

∑

n≥0

(be(n) − bo(n))qn =
∑

n≥0

q2n

(q; q)2n(q2; q2)n(−q2n+2; q2)∞
.

Theorem 2.2. For n > 2, we have

be(n) > bo(n).
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In fact, we have the following more general result, which includes Theo-
rems 1.2 and 2.2 as special cases.

Theorem 2.3. For m ≥ 1, the coefficient of qn in the series

Gm(q) :=
∑

n≥0

qmn

(q; q)mn(qm; qm)n(−qmn+m; qm)∞

is always positive for n > m.

Proof. Note that

Gm(q) =
1

(q2m; q2m)∞

∑

n≥0

qmn(−qm; qm)n

(q; q)mn
(qmn+m; qm)∞

=
1

(q2m; q2m)∞

(
(qm; qm)∞ +

qm(1 + qm)
(q; q)m

(q2m; qm)∞ + · · ·
)

.

It is easy to see that the coefficient of qn in Gm(q) is positive for m < n < 2m. It
is immediate that 1/(q2m; q2m)∞ has nonnegative coefficients. Thus, it suffices
to show that

∑

n≥0

qmn(−qm; qm)n

(q; q)mn
(qmn+m; qm)∞.

has nonnegative coefficients, where the coefficient of qn is positive if n ≥ 2m.
To prove this, we construct an injection

Φ :
⋃

n≥0

Om,n × Do
m,n →

⋃

n≥0

Om,n × De
m,n,

where Om,n is the set of overpartitions into parts ≤ mn such that there is a
nonoverlined part mn and the parts may be overlined when they are multiplies
of m, and Do

m,n (respectively, De
m,n) is the set of partitions into distinct parts

≡ 0 (mod m) with an odd (respectively, even) number of parts and each part
at least mn+m. For (μ, ν) ∈ Om,n ×Do

m,n, we move the smallest part of ν, say
ν1, to μ. Then it is clear that the resulting partition is in Om,ν1/m × De

m,ν1/m

as ν1 > mn. Since the resulting partition (μ′, ν′) has an even number of parts
in ν′, we see that their contribution toward the summation cancel out each
other. Moreover, ν1 is the unique largest part of μ′, and is nonoverlined. We
choose (α, β) ∈ Om,n × De

m,n such that α has at least two nonoverlined parts
of size mn. Then (α, β) has no preimage under Φ. Hence, the coefficient of qn

in
∑

n≥0

qmn(−qm; qm)n

(q; q)mn
(qmn+m; qm)∞.

is larger than or equal to the coefficient of qn in Hm(q), which is defined by

Hm(q) :=
∑

n≥0

q2mn(−qm; qm)n

(q; q)mn

(qmn+m; qm)∞ + (−qmn+m; qm)∞
2

.

It is routine to see that the coefficient of qn in Hm(q) is positive for n ≥ 2m.
�
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Remark 2.4. In the original version of this paper, Theorems 2.2 and 2.3 were
two conjectured results. The present proof of Theorem 2.3 was provided by
one of anonymous referees.

Setting a = 1 in (1.11) and then multiplying both sides by q, we have
∑

n≥0

qn+1(−q; q)n(−q; q)n = (−q; q)2∞
∑

n≥0

(q; q2)nq2n+1

(−q; q)2n+1
. (2.4)

It is easy to see that the series on the left-hand side of (2.4) generates the
bipartitions where red parts must appear and are distinct, blue parts are dis-
tinguishable and every blue part is smaller than the largest red part. Let ce(n)
and co(n) denote the number of bipartitions where red parts must appear and
are distinct, blue parts are distinguishable and there are an even and odd
number of blue parts larger than or equal to the largest red part, respectively.
Then

∑

n≥0

(ce(n) − co(n))qn =
∑

n≥0

qn+1(−q; q)n(−q; q)n(qn+1; q)∞. (2.5)

Theorem 2.5. For n > 2,

ce(n) > co(n).

Proof. It is clear that
∑

n≥0

qn+1(−q; q)n(−q; q)n(qn+1; q)∞ = (q; q)∞
∑

n≥0

(−q; q)2n
(q; q)n

qn+1.

Setting a = b = −q, t = q and letting c → 0 in (1.2), and then multiplying
both sides by q(q; q)∞ gives

(q; q)∞
∑

n≥0

(−q; q)2n
(q; q)n

qn+1 =(−q2; q)∞
∑

n≥0

(−q; q)n

(q; q)n(−q2; q)n
q(n+1)(n+2)/2

=
∑

n≥0

(−q; q)n(−qn+2; q)∞
(q; q)n

q(n+1)(n+2)/2.

Obviously, each summand on the right-hand side of the above equation has
nonnegative coefficients. Moreover, the first summand is q(−q2; q)∞, which
implies that ce(n) − co(n) > 0 for n > 2.

Corollary 2.6. The difference ce(n) − co(n) is almost always even, and is odd
if and only if n = j(3j ± 1) or n = j(3j ± 1)/2 for some j.

Proof. With the fact that (−q; q)n ≡ (q; q)n (mod 2), we can rewrite (2.5) as
∑

n≥0

(ce(n) − co(n))qn ≡ (q; q)∞
∑

n≥0

(−q; q)nqn+1 (mod 2).

It is routine to see that
∑

n≥0

(−q; q)nqn+1 = (−q; q)∞ − 1,



B. L. S. Lin, X. Lin

from which we get
∑

n≥0

(ce(n) − co(n))qn ≡ (q; q)∞((−q; q)∞ − 1)

≡ (q2; q2)∞ + (q; q)∞ (mod 2).

It follows from Euler’s pentagonal number theorem [1, Corollary 1.7]

(q; q)∞ =
∞∑

n=−∞
(−1)nqn(3n+1)/2

that

(q; q)∞ ≡
∞∑

n=−∞
qn(3n+1)/2 (mod 2).

We now arrive at
∑

n≥0

(ce(n) − co(n))qn ≡
∞∑

n=−∞
qn(3n+1) +

∞∑

n=−∞
qn(3n+1)/2 (mod 2),

which yields the desired result. �

We now turn to (1.12), the series on the left-hand side of which denotes
the generating function for bipartitions where each red part is at least two and
no blue part is larger than the number of red parts. We now allow blue parts
to be larger than the number of red part. Let de(n) and do(n) be the number
of such bipartitions which have an even and odd number of blue parts larger
than the number of red parts, respectively. Then

∑

n≥0

(de(n) − do(n))qn =
∑

n≥0

q2n

(q; q)2n(−qn+1; q)∞
.

Theorem 2.7. For n > 1,

de(n) > do(n).

Proof. Clearly, we have
∑

n≥0

q2n

(q; q)2n(−qn+1; q)∞
=

1
(−q; q)∞

∑

n≥0

(−q; q)n

(q; q)2n
q2n.

Setting b = −q, c = q, t = q2 and letting a → 0 in (1.3), we obtain
∑

n≥0

(−q; q)n

(q; q)2n
q2n =

1
(q2; q)∞

∑

n≥0

(−1; q)n

(q; q)2n
qn(n+5)/2.

Dividing both sides of the above equation by (−q; q)∞, we find that

1
(−q; q)∞

∑

n≥0

q2n(−q; q)n

(q; q)2n

=
1

(−q; q)∞(q2; q)∞

(
1 +

2q3

(1 − q)2
+

∑

n≥2

qn(n+5)/2(−1; q)n

(q; q)2n

)
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=
1

(1 + q)(q4; q2)∞

(
1 +

2q3

(1 − q)2
+

∑

n≥2

qn(n+5)/2(−1; q)n

(q; q)2n

)

=
1

(q4; q2)∞

(
1

1 + q
+

2q3

(1 − q)(1 − q2)

)

+
1

(q4; q2)∞

∑

n≥2

2qn(n+5)/2(−q2; q)n−2

(q; q)2n
. (2.6)

It is not hard to see that

1
1 + q

+
2q3

(1 − q)(1 − q2)

is a series with the coefficient of q being −1 and the coefficient of qn being
positive for n ≥ 2.

Therefore, the right-hand side of (2.6) is a series with positive coefficients
except for the term q. �

It appears that Lebesgue [11] obtained
∑

n≥0

(−zq; q)n

(q; q)n
qn(n+1)/2 =

(−zq2; q2)∞
(q; q2)∞

, (2.7)

which is a bivariate form of Ramanujan’s theta function
∑

n≥0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

.

Setting z = 1 in (2.7), we get

∑

n≥0

qn(n+1)/2

(q; q)n
(−q; q)n =

(−q2; q2)∞
(q; q2)∞

.

The series on the left-hand side generates bipartitions where red parts are
distinct, blue parts are also distinct and no blue part is larger than the number
of red parts. Let fe(n) and fo(n) denote the number of bipartitions of n where
both red and blue parts are distinct and there are an even and odd number of
blue parts larger than the number of red parts, respectively. Then we have

∑

n≥0

(fe(n) − fo(n))qn =
∑

n≥0

qn(n+1)/2

(q; q)n
(−q; q)n(qn+1; q)∞.

In fact, the difference fe(n)−fo(n) is the number of certain partitions. We
first give the necessary notions and notation. Recently, Andrews and Newman
[5] introduced the minimal excludant to study partitions, which is defined to be
the smallest positive integer not appearing in a partition. Define mexdo(n) to
be the number of partitions of n into distinct parts with the minimal excludant
being odd. Obviously, mexdo(n) > 0 for each n ≥ 2 since the partition formed
by a unique part of size n is a partition of n into distinct parts with 1 being
its minimal excludant.
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Theorem 2.8. For n > 0,

fe(n) − fo(n) = mexdo(n),

which implies fe(n) > fo(n) except that n = 1. Moreover,
∑

n≥0

(fe(n) − fo(n))qn = (−q; q)∞
∑

n≥0

qn(3n+1)/2(1 − q2n+1).

Proof. Clearly, we have
∑

n≥0

qn(n+1)/2(−q; q)n(qn+1; q)∞
(q; q)n

= (q; q)∞
∑

n≥0

qn(n+1)/2(−q; q)n

(q; q)2n
.

Setting a = −q, c = q, t = −q/b and letting b → ∞ in (1.2), we find that
∑

n≥0

qn(n+1)/2(−q; q)n

(q; q)2n
=

(−q; q)∞
(q; q)∞

∑

n≥0

(−1)nqn(n+1)/2

(−q; q)n
.

Therefore, we have

(q; q)∞
∑

n≥0

qn(n+1)/2(−q; q)n

(q; q)2n
= (−q; q)∞

∑

n≥0

(−1)nqn(n+1)/2

(−q; q)n

=
∑

n≥0

(−1)nqn(n+1)/2(−qn+1; q)∞

=
∑

n≥0

qn(2n+1)(−q2n+1; q)∞

−
∑

n≥0

q(2n+1)(n+1)(−q2n+2; q)∞

=
∑

n≥0

qn(2n+1)(−q2n+2; q)∞(1 + q2n+1 − q2n+1)

=
∑

n≥0

q1+2+···+2n(−q2n+2; q)∞

=
∑

n≥0

mexdo(n)qn.

Thus,
∑

n≥0

(fe(n) − fo(n))qn =
∑

n≥0

mexdo(n)qn.

Equating the coefficient of qn, we find that fe(n)−fo(n) = mexdo(n). Invoking
the false theta identity [3, Entry 9.4.2]

∑

n≥0

(−1)nqn(n+1)/2

(−q; q)n
=

∑

n≥0

qn(3n+1)/2(1 − q2n+1),

we conclude the second statement in the theorem immediately. �

Corollary 2.9. The difference fe(n) − fo(n) is almost always even, and is odd
exactly when n = j(3j ± 1) for some j.
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Proof. By Euler’s pentagonal number theorem [1, Corollary 1.7], we see that

(q; q)∞ ≡
∞∑

n=−∞
qn(3n+1)/2

≡
∑

n≥0

qn(3n+1)/2(1 + q2n+1) (mod 2).

From Theorem 2.8, we get
∑

n≥0

(fe(n) − fo(n))qn ≡ (−q; q)∞
∑

n≥0

qn(3n+1)/2(1 + q2n+1)

≡ (−q; q)∞(q; q)∞

≡ (q2; q2)∞

≡
∞∑

n=−∞
qn(3n+1) (mod 2),

which finishes the proof. �

3. Another Two Bipartition Difference Functions

In this section, we discuss another two types of bipartitions and establish the
positivity of the relevant difference functions.

Define bo(n) to be the number of bipartitions into odd parts, where each
blue part (if exists) is larger than twice the number of red parts. Let boe(n)
and boo(n) be the number of bipartitions counted by bo(n) with an even and
odd number of blue parts, respectively.

Theorem 3.1. We have
∑

n≥0

(boe(n) − boo(n))qn =
(−q2; q2)∞
(q2; q4)∞

. (3.1)

Proof. Using standard combinatorial arguments, we have
∑

n≥0

(boe(n) − boo(n))qn =
∑

n≥0

qn

(q2; q2)n(−q2n+1; q2)∞

=
1

(−q; q2)∞

∑

n≥0

(−q; q2)n

(q2; q2)n
qn

=
(−q2; q2)∞

(−q; q2)∞(q; q2)∞

=
(−q2; q2)∞
(q2; q4)∞

.

where we used the famous q-binomial theorem [1, Theorem 2.1] in the penul-
timate step. �

As an immediate consequence of Theorem 3.1, we have the following
result.
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Corollary 3.2. For n > 0, we have boe(n) = boo(n) if n is odd, and boe(n) >
boo(n) if n is even.

It is unexpected to obtain the following Ramanujan-type congruence for
boe(n).

Theorem 3.3. For n ≥ 0,

boe(10n + 9) ≡ 0 (mod 5).

Proof. It is straightforward to see that
∑

n≥0

(boe(n) + boo(n))qn =
∑

n≥0

bo(n)qn

=
∑

n≥0

qn

(q2; q2)n(q2n+1; q2)∞

=
1

(q; q2)∞

∑

n≥0

(q; q2)n

(q2; q2)n
qn

=
1

(q; q2)∞
(q2; q2)∞
(q; q2)∞

=
(q2; q2)3∞
(q; q)2∞

, (3.2)

where we used the q-binomial theorem [1, Theorem 2.1] in the penultimate
step.

It follows from [2, Theorem 3.3] that the coefficients of q5n+4 in
(q2; q2)3∞/(q; q)2∞ are divisible by 5. Thus,

boe(5n + 4) + boo(5n + 4) ≡ 0 (mod 5).

Furthermore, combining with Corollary 3.2, we see that boe(10n + 9) ≡ 0
(mod 5). �

Remark 3.4. In [7], Chern obtained an infinite family of congruences modulo
powers of 5 for the coefficients of qn in (q2; q2)3∞/(q; q)2∞. Thus, there exists
an infinite family of congruences modulo powers of 5 for boe(n). In addition,
some congruences modulo 4 for the coefficients of qn in (q4; q4)3∞/(q2; q2)2∞
are presented in [6]. Hence, there will exist similar congruences modulo 2 for
boe(n).

Remark 3.5. In [2], Andrews studied a kind of restricted partitions where each
even part is smaller than each odd part and only the largest even part appears
an odd number of times. The set of such partitions of n is denoted EO(n).
Chern [8] undertook an extensive analysis of EO(n). Let eo0(n) and eo2(n) be
the number of partitions in EO(n) with the largest even part congruent to 0
and 2 modulo 4, respectively. Chern [8] proved that

∑

n≥0

(eo0(n) − eo2(n))qn =
(−q4; q4)∞
(q4; q8)∞

.
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Combining (3.2) and the above identity, we get

boe(n) − boo(n) = eo0(2n) − eo2(2n).

In addition, combining [2, Corollary 3.2] and (3.2) yields that

boe(n) + boo(n) = eo0(2n) + eo2(2n).

Therefore, we have boe(n) = eo0(2n) and boo(n) = eo2(2n).

Define PDO(n) to be the set of bipartitions of n where all blue parts are
distinct and odd. Let pdoe(n) and pdoo(n) be the number of bipartitions in
PDO(n) which have an even and odd number of blue parts larger than twice
the number of red parts, respectively.

Theorem 3.6. For n ≥ 2,

pdoe(n) > pdoo(n).

Proof. The standard combinatorial arguments reveal directly that
∑

n≥0

(pdoe(n) − pdoo(n))qn =
∑

n≥0

qn

(q; q)n
(−q; q2)n(q2n+1; q2)∞

= (q; q2)∞
∑

n≥0

qn(−q; q2)n

(q; q)n(q; q2)n
.

Setting a = −1, b = q, c = 0,m = 2, t = −q in (1.1) first and then multiplying
both sides by (−q; q2)∞/(q; q)∞, we derive that

(q; q2)∞
∑

k≥0

qk(−q; q2)k

(q; q)k(q; q2)k

=
(−q; q2)∞
(q; q)∞

∑

k≥0

(−1)kqk(−1; q2)k(q; q)2k

(q2; q2)k

= (−q; q2)∞
∑

k≥0

(−1)kqk(−1; q2)k

(q2; q2)k(q2k+1; q)∞

= (−q; q2)∞
∑

k≥0

(
q2k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞
− q2k+1(−1; q2)2k+1

(q2; q2)2k+1(q4k+3; q)∞

)

= (−q; q2)∞
∑

k≥0

q2k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞

(
1 − q(1 + q4k)(1 − q4k+1)

)

= (−q; q2)∞
∑

k≥0

q2k(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞

(
(1 − q)(1 − q4k+1) + q8k+2

)

= (−q; q2)∞
∑

k≥0

(
q2k(−1; q2)2k(1 − q)
(q2; q2)2k(q4k+2; q)∞

+
q10k+2(−1; q2)2k

(q2; q2)2k(q4k+1; q)∞

)

= (−q3; q2)∞
∑

k≥0

(
q2k(−1; q2)2k(1 − q2)
(q2; q2)2k(q4k+2; q)∞

+
q10k+2(−1; q2)2k(1 + q)
(q2; q2)2k(q4k+1; q)∞

)
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= (−q3; q2)∞

(
1 − q2

(q2; q)∞
+

∑

k≥1

q2k(−1; q2)2k

(q4; q2)2k−1(q4k+2; q)∞

+
∑

k≥0

q10k+2(−1; q2)2k(1 + q)
(q2; q2)2k(q4k+1; q)∞

)

= (−q3; q2)∞

(
1

(q3; q)∞
+

∑

k≥1

q2k(−1; q2)2k

(q4; q2)2k−1(q4k+2; q)∞

+
∑

k≥0

q10k+2(−1; q2)2k(1 + q)
(q2; q2)2k(q4k+1; q)∞

)
. (3.3)

It is easy to see that each summand on the right-hand side of (3.3) has nonneg-
ative coefficients, which implies that pdoe(n) ≥ pdoo(n) for all n. Clearly, the
coefficient of q2 is 3. Note that the series 1/(q3; q)∞ ensures that the coefficient
of qn for n ≥ 3 is positive. �
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