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Chainlink Polytopes and Ehrhart
Equivalence

Ezgi Kantarcı Oǧuz, Cem Yalım Özel and Mohan Ravichandran

Abstract. We introduce a class of polytopes that we call chainlink poly-
topes and show that they allow us to construct infinite families of pairs of
non-isomorphic rational polytopes with the same Ehrhart quasipolyno-
mial. Our construction is based on circular fence posets, a recently intro-
duced class of posets, which admit a non-obvious and nontrivial symmetry
in their rank sequences. We show that this symmetry can be lifted to the
level of polyhedral models (which we call chainlink polytopes) for these
posets. Along the way, we introduce the related class of chainlink posets
and show that they exhibit analogous nontrivial symmetry properties.
We further prove an outstanding conjecture on the unimodality of rank
polynomials of circular fence posets.
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1. Introduction

This paper is about a class of polytopes that naturally arise from poset the-
ory, specifically, in the study of fence posets and related objects. They are
easy to describe, amenable to analysis, and possess certain unexpected and
interesting properties. These polytopes will be indexed by compositions; let
ā = (a1, . . . , as) be a composition of n and let l be a non-negative integer.
The chainlink polytope CL(ā, l) with chain composition ā and link number l is
defined to be the polytope

CL(ā, l) = {x ∈ R
s | 0 ≤ xi ≤ ai, xi − xi (mod s)+1 ≤ ai − l, i ∈ [s]}.

This is a polytope that naturally lies in R
s and has a maximum of 3s facets.

When the link number l is equal to zero, the second set of constraints becomes
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Figure 1. The polytope CL(ā = (6, 4, 5), l = 2)

redundant and the polytope becomes a cuboid

CL(ā, 0) = [0, a1] × [0, a2] × · · · × [0, as].

When the link number is larger, new facets emerge. For example, see Fig. 1.
We will also work with certain special sections of these chainlink poly-

topes. For a positive real number t, we set

CLt(ā, l) := CL(ā, l) ∩ {x1 + · · · + xs = t}.

The polytopes CLt(ā, l) are empty for t �∈ [0, n], where n = a1 + · · · + as.
One of the main results in this paper is the following (unexpected) symmetry
property of these sections.

Theorem 1. Let ā = (a1, . . . , as) be a composition of n, and let l be a positive
integer, such that 2 l ≤ min{ai}i∈[s]. Then, the complementary sections of
the chainlink polytope CL(ā, l) have the same volume. In other words, for any
integer t, we have that

| CLt(ā, l) |=| CLn−t(ā, l) |,
where | · | denotes the relative volume of the polytope.1

This theorem is a special case of the following more general theorem. The
terms used will be formally defined in the next section.

Theorem 2. Let ā = (a1, . . . , as) be a composition of n, and let l be a non-
negative integer, such that 2 l ≤ min{ai}i∈[s]. Then, complementary sections

1There will be no ambiguity in the definition of the relative volume for us. All our polytopes
will lie on hyperplanes of the form {x1 + · · · + xs = t} and we will work with the volume
form that assigns volume 1 to the polytope P = conv{0, e1 − e2, e1 − e3, . . . , e1 − es}.
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Figure 2. The sections CL4(ā, l) and CL11(ā, l) where ā =
(6, 4, 5) and l = 2

of the chainlink polytope have the same Ehrhart quasipolynomial, meaning, for
any integer t, we have

Ehr CLt(ā, l) = Ehr CLn−t(ā, l).

To exemplify why this is unexpected, consider the chainlink polytope
CL((6, 4, 5), 2) depicted in Fig. 2. The sections at t = 4 and t = 11 have the
same volume, but are non-isomorphic.

Remark 1.1. Theorems 1 and 2 may fail when 2 l > min{ai}i∈[s]. For instance,
take our running example ā = (6, 4, 5), but with l = 3 rather than 2. Let t = 7
with complementary section corresponding to n − t = 15 − 7 = 8. In this case,
we have that even the number of lattice points (the Ehrhart quasipolynomials
evaluated at 1) are different

#CLt(ā, l) = 9, #CLn−t(ā, l) = 10,

as are the volumes. We have that

| CLt(ā, l) |= 71
12

√
3, | CLn−t(ā, l) |= 6

√
3.

We do not have a conceptual explanation for why we may lose symmetry
when 2l > min{ai}i∈[s]. However, in Sect. 3, we will relate these polytopes
with a natural class of posets, the so-called circular fence posets, and this
perspective will provide some insight into this phenomenon.

2. Background

Where do these chainlink polytopes come from? At first sight, they (might
perhaps) seem unmotivated, if (again perhaps) natural. We were led to these
following the paper by the first and third authors [1] on fence posets, and in
particular, a tricky problem that they had been unable to solve. We first recall
the definition of fence posets.



E. Kantarcı Oǧuz et al.

Definition 2.1. Given a composition c̄ = (c1, . . . , ck), the fence poset is the
poset on n+1 nodes, where n = c1+ · · ·+ck +1 defined by the cover relations

x1 ≺ x2 ≺ · · · ≺ xc1+1 � xc1+2 � · · · � xc1+c2+1 ≺ xc1+c2+2 ≺ · · · .

These posets arise in a number of contexts including cluster algebras,
quiver representation theory, and combinatorics. They also appear in recent
work of Morier-Genoud and Ovisenko [2], where the authors introduce and
study a q-deformation of the rational numbers. In this same paper, the authors
conjectured the following (see also the paper by McConville et al. [3]), which
was proved by the first and third authors; see [1].

Theorem 2.2. The rank polynomials of fence posets are unimodal.

The main step in the proof of this theorem involved the introduction of an
ancillary class of posets, the so-called circular fence posets, and an unexpected
property of these posets.

Definition 2.3. Given a composition with an even number of parts c̄ = (c1, . . . ,
c2 s), the circular fence poset F̄ (c̄) is the poset on n nodes where n = c1+ · · ·+
c2s, defined by the cover relations

x1 ≺ · · · ≺ xc1+1 � xc1+2 � · · · � xc1+c2+1 ≺ · · · ≺ x1+
∑2s−1

1 ci
� · · · � xn � x1.

In other words, this is what we get by identifying the two end points of a
regular fence poset.

In [1, Theorem 1.2], the authors showed that circular fence posets satisfy
an apriori unexpected property.

Theorem 2.4. (Kantarcı Oǧuz, Ravichandran) Rank polynomials of circular
fence posets are symmetric.

We make here a comment on why this result is unexpected. Given a
composition c̄ = (c1, . . . , c2s), let shft c̄ be the composition that is the cyclical
shift of c̄, that is shft c̄ = (c2 s, c1, c2, . . . , c2 s−1). A calculation shows that the
symmetry of the rank polynomials of F̄ (c̄) is equivalent to the statement that
the posets F̄ (c̄) and F̄ (shft c̄) have the same rank polynomial. It is also possible
to see that this same rank symmetry may also be expressed as saying that
the poset of lower ideals (our F̄ (ā)) and the poset of upper ideals of the same
fence poset have the same rank polynomial. However, except under very special
cases, the two posets are not isomorphic. For instance, take c̄ = (2, 1, 1, 2) as
in Fig. 3, where we also plot the relevant Hasse diagrams (Table 1).

A second, this time bijective proof of Theorem 2.4 was given by Elizalde
and Sagan in [4]. Interestingly, both proofs of this result are intricate and we
felt it natural to seek a transparent proof of this basic result. We present such
a proof in this paper; see Corollary 4.7.

As mentioned above, in [1], the symmetry of the rank polynomials of
circular fence posets was used to prove Theorem 2.2, i.e., that rank polyno-
mials of (regular) fence posets are unimodal. Generically, rank polynomials of
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Figure 3. The fence poset F (2, 1, 1, 2) (left) and two depic-
tions of the circular fence poset F̄ (2, 1, 1, 2)(center and right).
In the middle one, the two nodes marked x1 are identified

Table 1. Example showing that lattices of upper and lower
ideals can be non-isomorphic (the inclusion in the Hasse dia-
grams given is in the direction left to right)

Composition Fence poset Hasse diagram of lattice of
lower ideals

c̄ (2, 1, 1, 2) 1

2

3

4

5

6

1

c̄shift (2, 2, 1, 1) 3

2

1

6

5

4

3

circular fence posets seemed to be unimodal as well, though there are certain
exceptions; a calculation shows that

R((1, 1, 1, 1); q) = 1 + 2q + q2 + 2q3 + q4.

Extensive computer calculations, however, suggested the following conjecture.

Conjecture 2.5. [1] The rank polynomial R(ā; q) of a circular fence poset F (ā)
is unimodal except when ā = (a, 1, a, 1) or (1, a, 1, a) for some positive integer
a.

In this same paper, the authors were able to use the close connection
between circular fences posets and regular fence posets to show that if R̄(ā) is
not unimodal, then the composition ā must be of the form

ā =

(

a1,

b1
︷︸︸︷
1 , a2,

b2
︷︸︸︷
1 , . . . , as,

bs
︷︸︸︷
1

)

, (1)

where any two entries larger than 1 are separated by at least one 1. In other
words, the bi are at least 1.

While the authors were able to prove certain additional necessary con-
ditions for nonunimodality, they were unable to settle the conjecture. In this
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paper, we will focus on the case where each bi = 1, so that we get a composition
of the form

ā = (a1, 1, a2, 1, . . . , as, 1). (2)

It is interesting that such compositions also play an important role in the
bijective proof of symmetry of Elizalde and Sagan in [4], where the authors
refer to such circular fence posets as gate posets (or gates for short).

It turns out that ideals of gate posets corresponding to compositions ā =
(a1, 1, a2, 1, . . . , as, 1) are precisely the lattice points in the chainlink polytope
CL(ā, 1), where ā = (a1, a2, . . . , as). Further, the number of rank k ideals is
precisely the number of lattice points in CLk(ā, 1). The symmetry of the rank
polynomials of gates may then be written as

#CLk(ā, 1) = #CLn−k(ā, 1),

where n = a1+a2+· · ·+as+s and #P is the number of lattice points contained
in a polytope P . We will see in Proposition 3.2 that the polytopes CLk(ā, 1)
while not necessarily integral, are always rational, in particular, half-integral.

A classical theorem of Ehrhart, see [5, Theorem 3.23], says that for any
rational polytope P , there is a quasipolynomial which we denote Ehr P , such
that for every positive integer n,

[Ehr P ](n) = #nP.

In other words, the number of lattice points in positive integral dilates of P
agrees with the evaluation of the quasipolynomial Ehr P at these points.

We were naturally led to investigate whether the syntactic generalization

Ehr CLk(ā, 1) = Ehr CLn−k(ā, 1) (3)

is true as well. Well, it is! And this is the content of the main theorem in
this paper. The equality of Ehrhart quasipolynomials yields as a corollary the
equality of volumes of these polytopes; see Theorem 2.

Proving Theorem 2 needed several new ideas. Denote the Ehrhart poly-
nomial Ehr CLk(ā, 1) by fk. This polynomial evaluated at 1 counts the number
of ideals of size k in a certain circular fence poset. When evaluated at other
integers, say fk(m), we will show that the value can again be interpreted as the
number of lower ideals of size mk in a certain poset, which we call a chainlink
poset. These posets share a familial resemblance to circular fence posets. They
are introduced in Sect. 4, where we also discuss the connections to circular
fence posets. An example of a chainlink poset is given below (Fig. 4).

In this figure, cover relations are represented as usual by upward sloping
lines: We have for instance that 5 ≺ 3 and 6 ≺ 7. When two vertices have the
same label, this means that they are identified. The rank polynomial of the
above chainlink poset C((5, 4), 2) is

R̄(C((5, 4), 2)) = 1 + 2q + 3q2 + 3q3 + 3q4 + 3q5 + 3q6 + 3q7 + 2q8 + q9.

Note that this polynomial is symmetric.
We will show that all chainlink posets have symmetric rank polynomials.

The strategies for showing symmetry for circular fence posets in [1,4] do not
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Figure 4. A chainlink poset: C((4, 5), 2)

carry over and we needed to approach the problem differently. The new ingre-
dient is a linear algebraic approach coming from the theory of oriented posets
(see [6]) that arguably yields a transparent proof. We note that this yields a
new (third) proof of rank symmetry for circular fences as well.

This approach has as its starting point the following basic feature of fence
posets: They can be built up by gluing chains in an iterative manner. We review
in Sect. 4.1 how the rank polynomials of fence (and chainlink) posets can be
computed by multiplying certain 2 × 2 matrices: The entries of these matrices
are certain polynomials that encode refined order relations.

Using this approach has led to another felicitous consequence: We dis-
covered new recurrences, that we could then use to prove Conjecture 2.5. We
include a proof of this in Sect. 5.

3. Chainlink Polytopes

We repeat here the description of the chainlink polytopes.

Definition 3.1. Let ā = (a1, . . . , as) be a composition of n and let l ≥ 0. The
chainlink polytope CL(ā, l) is defined as

CL(ā, l) = {x ∈ R
s | 0 ≤ xi ≤ ai, i ∈ [s], xi − xi (mod s)+1 ≤ ai − l, i ∈ [s]}.

Given t ∈ R≥0, the t-section of the chainlink polytope is the polytope defined
as

CLt(ā, l) = CL(ā, l) ∩ {x1 + · · · + xs = t}.

We note here a basic integrality property of these polytopes.

Proposition 3.2. Let ā = (a1, . . . , as) be a composition of n, let l, t ∈ Z≥0.
Then

• The vertices of CL(ā, l) are integral.
• Assume that 2l ≤ min ā. Then, for every integer t, the vertices of CLt(ā, l)

are either integral or half-integral.

We prove this following Lemma 6.3. Some remarks are in order.
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1. Half-integral vertices can indeed occur. For instance, the polytope
CL2((2, 2), 1) is given by

0 ≤ x1, x2 ≤ 2, x1 − x2 ≤ 1, x2 − x1 ≤ 1, x1 + x2 = 2,

has dimension 1, and has as its two vertices (3/2, 1/2) and (1/2, 3/2).
2. The condition on l is necessary. Take, for instance, the polytope

CL5((3, 3, 3), 2). One may check that the point (8/3, 5/3, 2/3) is a vertex
of the polytope.

3. It is possible to show that if the vertices of CLt(ā, l) are all integral or
half-integral for every integer t, then we must have that 2l ≤ min{ai}i∈[s].

These polytopes are closely related to a class of posets we call chainlink
posets which we describe in Sect. 4.

As noted in the introduction, one of our motivations for introducing these
polytopes was to better understand circular fence posets; there are many ex-
amples of polyhedral models for combinatorial objects leading to interesting
structural insights; see for instance [7–10]. Now, well-studied polyhedral models
for posets already exist. Indeed, there are two common polytopes associated
with posets—the order and chain polytopes; wouldn’t they have served our
purpose as well? We now address this question.

Given a poset P on [n], the order polytope is defined as

O(P) := {x ∈ [0, 1]n | for all i ≺P j, xi ≤ xj}.

A chain in a poset is a totally ordered subset; let us denote the set of all chains
in the poset P by Ch(P). The chain polytope is defined as

C(P) := {x ∈ [0, 1]n | for all C ∈ Ch(P),
∑

i∈C

xj ≤ 1}.

These polytopes (both of which are lattice polytopes) became popular follow-
ing Stanley’s proof that these polytopes (unexpectedly) have the same volume
(and more generally, the same Ehrhart polynomial); see [7]. Stanley’s proof
exhibits a unimodular triangulation of the chain polytope as well, indexed by
the linear extensions of P.

The first attempt at getting a polyhedral perspective on fence posets
would be to consider the order polytope of the fence poset (call the fence
poset F and the order polytope O(F )), and note that the number of rank k
ideals is the number of lattice points in

Ok(F ) = O(F ) ∩ {x1 + · · · + xn = k}.

However, though we have that Ok(F ) and On−k(F ) have the same number of
lattice points, it is not true that they have the same Ehrhart polynomial.

Remark 3.3. Consider the gate poset for the composition c̄ = (3, 1, 2, 1, 1, 1),
let P = O(F̄ (c̄)) be the order polytope and let P k = P ∩ {x1 + · · · + xn = k}.
Then, the lattice points in the second dilates of P 4 and the complementary
section P 5 number, respectively, 84 and 83, i.e., we do not have equality of
Ehrhart polynomials. This indicates the subtlety involved in this problem.



Chainlink Polytopes and Ehrhart Equivalence

So far, we have proposed a polytopal model for gates, which are circular
fences coming from compositions of the form (c1, 1, . . . , cs, 1), i.e., where all the
down steps have size 1. As mentioned above in Remark 3.3, the order polytope
for the gate poset does not obey symmetry, which is why we have worked with
chainlink polytopes instead.

What about general circular fences, i.e., those coming from compositions
of the form (c1, d1, . . . , cs, ds) with differing lengths of down steps d1, . . . , ds?
A natural proposal is as follows. The polytope will consist of all real tuples
(x1, y1, . . . , xs, ys), such that

0 ≤ xi ≤ ci + l, 0 ≤ yi ≤ di − 1, (di − 1)(xi − l) ≤ yi, yi ≤ (di − 1)xi+1,

where the indices are taken cyclically.
When all the down steps are 1, all save the first set of inequalities become

trivial. However, if we agree to combine the last two set of inequalities, we get
xi − l ≤ xi+1, which are the defining equations in the chainlink polytope with
link number l.

Unfortunately, these polytopes do not generally have the symmetry that
chainlink polytopes have. We do not know if there is a way of defining poly-
hedral models for general circular fence posets, so that this symmetry does
hold.

4. Chainlink Posets and Rank Symmetry

Let CL(ā, l) be a chainlink polytope with 2 l ≤ mini(ai). Consider the integer
points that lie inside the polytope. When l = 1, these points correspond to
ideals of the circular fence poset F (a1 − 1, 1, a2 − 1, 1, . . . , as − 1, 1), where the
rank of the ideal corresponds to the sum of the coordinates of the point. For
general l, the integer points can be interpreted as ideals of a poset Fl(ā) formed
by adding extra edges to the Hasse diagram of F (a1−1, 1, a2−1, 1, . . . , as−1, 1),
as shown in Fig. 5. More precisely, we can define chainlink posets as follows:

Definition 4.1. Let ā = (a1, . . . , as) be a composition, and l be a positive
integer satisfying 2l ≤ mini ai as in the case for chainlink polytopes. The
chainlink poset PCL(ā, l) is given by points xi,j for 1 ≤ i ≤ s and 0 ≤ j ≤ ai

with the generating relations xi,0 
 xi,1 
 · · · 
 xi,ai
and xi,ai−l ≥ xi+1,l for

each i where i + 1 is calculated cyclically.

We will use CLt(ā, l) to denote the slice of the polytope with respect to
the hyperplane x1 + · · · + xs = t. Note that this slice can be non-empty only
when t ∈ [0, n]. Furthermore, the number of integer points in CLt(ā, l) is given
by the coefficient of qt in the rank polynomial of PCL(ā, l).

The fact that

#CLt(ā, 1) = #CLn−t(ā, 1),

where #P denotes the number of lattice points in a polytope P , is as a result
equivalent to the symmetry of the rank polynomial of PCL(ā, 1) (Since l = 1,
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Figure 5. The chainlink poset with ā = (6, 4, 5) and l = 2;
the two top right nodes are connected to the two bottom left
nodes

this poset is also a circular fence poset). The symmetry of this rank polyno-
mial was recently proved using an inductive argument by Kantarcı Oǧuz and
Ravichandran in [1] and then bijectively by Elizalde and Sagan in [4].

The connection between integer points of the polytope and rank polyno-
mial of the corresponding poset still holds if we multiply all by a positive integer
k. This allows us to describe the coefficients of the Ehrhart quasipolynomial of
slices of the chainlink polytope in terms of coefficients of rank polynomials of
some chainlink posets. That means a general statement about the symmetry
of rank polynomials of all chainlink posets can be used to prove the main the-
orem in this paper (Theorem 2) and this is precisely what we do in the next
few sections.

4.1. Matrix Formulation

An oriented poset P ↗ = (P, xL, xR) consists of a poset P with two specialized
vertices xL and xR which can be thought as the target (left) vertex ©• and the
source (right) vertex →. One can think of an oriented poset as a poset with an
upwards arrow coming out of the source vertex xR. One can combine oriented
posets by linking the arrow of one poset with target of another via xR � yL
(xR ↗ yL) to get (P ↗ Q)↗.2

The effect of this operation on the rank polynomial can be calculated
easily by 2 × 2 matrices. A rank matrix of an oriented poset P ↗ is defined as
follows:

Mq(P ↗) :=

[
R(P ;w) |xR∈I R(P ;w) |xR /∈I

R(P ;w) |xR∈I
xL /∈I

R(P ;w) |xR /∈I
xL /∈I

]

.

The entries are partial rank polynomials, where we are restricting to the
ideals of the poset P satisfying the given constraints. We also use the notation
� (P ↘) (resp. � (P ↗) to denote the structure obtained by adding the
relation xR 
 xL (resp. xR � xL). On the rank matrix level, this corresponds
to taking the trace. See Table 2 for precise formulas and examples of these
operations.

2Linking via xR � yL is also an option; see [6].
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Figure 6. The box poset B3×4↗

In particular, consider the case where P is formed of a single node equal
to both xR and xL. We call this oriented poset an up step and denote the
corresponding matrix by U

U := Mq(•↗) :=
[
q 1
0 1

]

.

Note that combining k+1 such posets gives us a chain of length k with xL

corresponding to the minimal element, and xL to the maximal. In the matrix
level, we have

Mq(Ck ↗) = Uk−1.

Let Ba×b↗ denote the ab-element oriented box poset given by the direct
product of two chains Ca−1 and Cb−1 with the left vertex given by (a − 1, 0)
and the right vertex is given by (0, b − 1) (B3×4↗ is shown in Fig. 6).

The rank matrix of a box poset is given as follows:

Mq(Ba×b↗) =

[
qb

[
a+b−1

b

]
q

[
a+b−1
b−1

]

q

qb
[
a+b−2

b

]
q

[
a+b−2
b−1

]

q

]

=

[[
a+b
b

]
q
− [

a+b−1
b−1

]

q

[
a+b
b

]
q
− qb

[
a+b−1

b

]
q

qb
[
a+b−2

b

]
q

[
a+b−2
b−1

]

q

]

.

Next, we will see that any given chainlink poset can be realized by com-
bining copies of the up step, and the box poset B2×l↗.

Proposition 4.2. Consider the chainlink poset PCL(ā, l) with 2 l ≤ mini(ai).
Let d̄ be the weak composition formed by taking di = ai − 2l. The rank polyno-
mial of PCL(ā, l) is given by

R(PCL(ā, l); q) = tr(Ud1 · B · Ud2 · B · · · · · Ud1 · B), (4)

where B denotes the rank matrix Mq(B2×l↗).

Proof. The description of PCL(ā, l); q is given by taking chains and connecting
the l maxima of a chain of the l minima of the next. The condition on l assures
that these are always different vertices. Each pair of 2l vertices has the shape
of the poset (B2×l ↗ where the right endpoint of ith one is connected to the
left endpoint of the i + 1st one from below, with di points in between. This
is the poset given by � (B2×l ↗ Cd1−1 ↗ B2×l ↗ UC1 − d2 − 1↗ · · · B2×l ↗
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UCds−1↗). As the rank polynomial can be calculating by taking the trace of
the corresponding matrices, and Mq(Ca−1↗) = Ua the result follows. �

Example 4.3. The chainlink poset given in Fig. 5 with ā = (6, 4, 5) and l = 2
can be formed by combining 2 × 2 boxes with up steps and then taking the
closure: �(B2×2↗ ·•↗ ·•↗ ·B2×2↗ ·B2×l↗ ·•↗). The corresponding rank
polynomial is given by

tr
([

q2[3]q [3]q
q2 [2]q

]

·
[
q 1
0 1

]

·
[
q 1
0 1

]

·
[
q2[3]q [3]q

q2 [2]q

]

·
[
q2[3]q [3]q

q2 [2]q

]

·
[
q 1
0 1

])

= 1 + 3q + 6q2 + 9q3 + 12q4 + 14q5 + 16q6 + 17q7

+ 17q8 + 16q9 + 14q10 + 12q11 + 9q12 + 6q13 + 3q14 + q15.

Note that the rank polynomial given in this instance is symmetric. Next,
we will show that this is always the case.

4.2. Recurrence Relations and Rank Symmetry

One advantage of building posets via matrices is that the characteristic equa-
tions of matrices give us recurrence relations in the rank polynomial level. For
example, consider the characteristic polynomial of U . Plugging U in the place
of x gives us the following identity:

U2 = (q + 1)U + q,

Note that the coefficient of U is symmetric around q1/2 and q is trivially
symmetric around q.

Lemma 4.4. Let B = Mq(Ba×b ↗) for some fixed a, b. The characteristic
polynomials of B as well as well as BU have coefficients that are symmet-
ric polynomials in q. In particular, the trace and determinant of B and BU
are symmetric about ab/2, ab, (ab + 1)/2, and ab + 1, respectively.

Proof. As the matrix B satisfies

Mq(Ba×b↗) =

[
qb

[
a+b−1

b

]
q

[
a+b−1
b−1

]

q

qb
[
a+b−2

b

]
q

[
a+b−2
b−1

]

q

]

=

[ [
a+b
b

]
q
− [

a+b−1
b−1

]

q

[
a+b−1
b−1

]

q[
a+b−1

b

]
q
− [

a+b−2
b−1

]

q

[
a+b−2
b−1

]

q

]

,

we will define another matrix B′ to simplify some of our calculations

B′ := B

[
1 −1
1 0

]

=

[ [
a+b
b

]
q

−qb
[
a+b−1

b

]
q[

a+b−1
b

]
q

−qb
[
a+b−2

b

]
q

]

.

Consider the trace of B

tr(B) = qb
[
a + b − 1

b

]

q

+
[
a + b − 2

b − 1

]

q

=
[
a + b

b

]

q

−
[
a + b − 1

b − 1

]

q

+
[
a + b − 1

b − 1

]

q

− qa
[
a + b − 2

a

]

q

=
[
a + b

b

]

− qa
[
a + b − 2

a

]

q

.
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As both polynomials on the right are symmetric about ab/2 the result follows.
Similarly, we can show that the determinant gives us a symmetric polynomial
around ab

det(B) = −det(B′) = qb
[
a + b

b

]

q

[
a + b − 2

b

]

q

− qb

([
a + b − 1

b

]

q

)2

.

Now, let us do the same verification for the trace and determinant of the
matrix BU

BU =

[
qb+1

[
a+b−1

b

]
q

qb
[
a+b−1

b

]
q
+

[
a+b−1
b−1

]

q

qb+1
[
a+b−2

b

]
q

qb
[
a+b−2

b

]
q
+

[
a+b−2
b−1

]

q

]

=

[
qb+1

[
a+b−1

b

]
q

[
a+b
b

]
q

qb+1
[
a+b−2

b

]
q

[
a+b−1

b

]
q

]

.

One can verify that the trace of this matrix is symmetric around (ba +
1)/2, whereas the determinant is symmetric around (ba + 1)

tr(BU) = (qb+1 + 1)
[
a + b − 1

b

]

q

,

det(BU) = qb+1

([
a + b − 1

b

]

q

)2

− qb+1

[
a + b − 2

b

]

q

[
a + b

b

]

q

.

�

Lemma 4.5. Let X be a matrix whose trace is given by a symmetric polynomial
on q with center C. Then, we have the following:

1. If tr(BX) is symmetric around C + (ab)/2, then for all k, tr(BkX) is
symmetric with center C + k(ab)/2.

2. If tr(UX) is symmetric around C + 1/2, then for all k, tr(UkX) is
symmetric with center C + k/2.

3. If tr(BUX) is symmetric around C+(ab+1)/2, then for all k, tr((BU)kX)
is symmetric with center C + k(ab + 1)/2.

Proof. For the first claim, consider the characteristic polynomial of B.

B2 = tr(B)B − det(B).

Substitution into the trace equation gives the following identity for any k ≥ 2:

tr(BkX) = tr(B)tr(Bk−1X) − det(B)tr(Bk−2X).

We have shown in Lemma 4.4 tr(B) is a symmetric polynomial with center
ab/2 and det(B) is symmetric with center ab, the result follows by induction.
The other claims follow similarly as tr(U), det(U) and tr(BU) and det(BU) are
symmetric polynomials with centers of symmetry given by 1/2, 1, (ab + 1)/2,
and ab + 1, respectively. �

Theorem 4.6. Let (d1, d2, . . . , ds) be a weak composition and Ba×b ↗ be an
oriented box poset where B denotes the rank matrix Mq(Ba×b ↗). Then, the
following polynomial is symmetric:

tr(Ud1 · B · Ud2 · B · · · Ud1 · B).

Proof. We can use Lemma 4.5 to simplify the statement of our theorem:



Chainlink Polytopes and Ehrhart Equivalence

• By Lemma 4.5 (2), it is enough to consider the cases where each di = 0
or 1.

• If, however, some di=0, we get consecutive copies of B. By Lemma 4.5
(1), these cases can be simplified, so that we can assume all di are equal
to 1, leaving us with tr((U · B)k) for some k.

• By Lemma 4.5 (3), this can be further reduced to the symmetry of tr(U ·
B) and tr(I).

As we have already shown that the trace of B · U is symmetric in Lemma 4.4
and the trace of the identity matrix is just a constant, we are done. �

Note that when l = 1, we recover the rank symmetry of gate posets.

Corollary 4.7. The rank polynomial of any chainlink poset is symmetric.

We can now use this machinery to prove our main theorem.

Theorem 2. Let ā be a composition of n, let l be a positive integer such that
2l ≤ min{ai}i∈[s] and let t be a positive real number. Then, complementary
sections of the chainlink polytope have the same Ehrhart quasipolynomial

Ehr CLt(ā, l) = Ehr CLn−t(ā, l).

As an illustration, we revisit the example we described in Fig. 2. The two
complementary sections in this example are different. Nevertheless, they have
the same Ehrhart quasipolynomial, given by

[
Ehr CLt((6, 4, 5), 2)

]
(t) =

{
27
4 t2 + 9

2 t + 1, n ∈ {0, 2, 4, . . .},
27
4 t2 + 9

2 t + 3
4 , n ∈ {1, 3, 5, . . .}.

Proof. Consider the polytope kCL(ā, l) = CL(kā, kl). The number of inte-
ger points in CLt(kā, kl) is given by the coefficient of qt in the rank polyno-
mial of the corresponding chainlink poset PCL(kā, kl). As by Corollary 4.7,
the rank polynomial of any chainlink poset is symmetric, and the number
of integer points in CLt(kā, kl) is the same as the number of integer points
in CLn−t(kā, kl) for any k. As a consequence, they have the same Ehrhart
quasipolynomial. �

The equality of volumes follows as a corollary.

Theorem 1. Let ā = (a1, . . . , as) be a composition of n, and let l be a positive
integer, such that 2 l ≤ min{ai}i∈[s]. Then, the complementary sections of
the chainlink polytope CL(ā, l) have the same volume. In other words, for any
integer t, we have

| CLt(ā, l) |=| CLn−t(ā, l) |,
where | · | denotes the relative volume of the polytope.

Proof. It is a well-known fact (or see [5, Lemma 3.19] for a proof) that for a
d-dimensional rational polytope P , we have that

| P |= lim
k→∞

# kP

kd
.

Theorem 2 now yields the result.24 �
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5. Unimodality and Multimodality

5.1. Unimodality

The recurrence relations from characteristic matrices have other applications,
as well. In this subsection, we prove the following result.

Theorem 5.1. Rank polynomials of circular fence posets F̄ (ā) are unimodal
except when ā = (a, 1, a, 1) or (1, a, 1, a) for some positive integer a.

We define the matrix for a down step denoted by D as follows:

D :=
[
1 + q −q

1 0

]

.

The following lemma is an easy consequence of the work in [6]. The
interested reader is referred there to learn about how down steps fit into the
framework of oriented posets.

Lemma 5.2. Let DCn denote a decreasing chain, i.e., an n-element chain poset
oriented by taking the maximal vertex as the target and the minimal vertex as
the source. Then, we have

Mq(DCn↗) = Dn−1 · U.

That means the above theorem may be restated as follows:

Theorem 5.1. For any composition ā with an even number of parts, the follow-
ing polynomial is unimodal except when ā = (a, 1, a, 1) or (1, a, 1, a) for some
positive integer a:

R(ā, q) = tr(Da1Ua2Da3Ua4 · · · Das−1Uas) = tr(Ua1Da2Ua3Da4 · · · Uas−1Das).

In [1] where the above statement was first stated as a conjecture, several
cases were settled. It was shown that if R̄(ā, q) is not unimodal, then it must
be of the following form.

• ā should have even length.
• No two consecutive parts of ā may both be greater than 1.
• If ā = (X, a, 1, b, Y ) for sequences X and Y , then |a − b| ≤ 1.

It was further shown that if ā has length 2n, then unimodality may only fail
at the middle. In other words, if we let R̄(ā, q) =

∑2n
i=0 aiq

i, then

a0 = a2n ≤ a1 = a2n−1 ≤ · · · ≤ an−1 = an+1.

Despite much effort, the last step in proving Theorem 5.1 resisted resolu-
tion. In this section, we will settle the outstanding cases using a new recurrence
identity. The linear algebraic perspective introduced in this paper was critical
in discovering this—the identity is non-linear and difficult to discover apriori.
However, the linear algebraic perspective made discovering this identity easy.

We first note that one can easily show unimodality by direct calculation
for the cases of ā = (a, b) and ā = (a, 1, a+b, 1) with a, b ≥ 1. Our first identity
will be the following:

DUD = DU + UD − U + D3 − D2. (Id 1)
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In terms of rank polynomials, (Id 1) translates to the following:

R((a, 1, b,X); q) = R((a − 1, 1, b,X); q) + R((a, 1, b − 1,X); q) (Id 1′)

− R((a − 1, 1, b − 1,X); q)

+ R((a + b + 1,X); q) − R((a + b,X); q).

Here, X can be any odd-length composition. Note that we allow a = 1
or b = 1, in which case, with the assumption that a zero part means the parts
to the left and right combine.

Proposition 5.3. For an odd-length sequence X = (x1, x2, . . . , xk) of positive
integers, suppose that a, b ≥ 1 and R̄(a − 1, 1, b − 1,X) is unimodal. If a > 1
or �(X) > 1 with x1 > 1 or b ≥ x2, then R̄(a, 1, b,X) is also unimodal.

Proof. As unimodality holds for compositions of odd size, we can focus on the
case where 2n =| (a, 1, b,X) | for some n. We can further assume that | a − b |
is at most 1, as otherwise again, we know we have unimodality. We will show
that under these hypotheses

[qn]R((a, 1, b,X); q) ≥ [qn−1]R((a, 1, b,X); q). (Id 2)

Let R(a − 1, 1, b − 1,X) be unimodal. Since (a − 1, 1, b − 1,X) is a com-
position of 2n − 2, it has a peak at n − 1. Thus,

[qn]
(−R(a − 1, 1, b − 1,X)

) ≥ [qn−1]
(−R(a − 1, 1, b − 1,X)

)
.

We also have the following by the symmetry of rank polynomials:

[qn]
(
R(a − 1, 1, b,X) + R(a, 1, b − 1,X)

)

= [qn−1]
(
R(a − 1, 1, b,X) + R(a, 1, b − 1,X)

)
.

By (Id 1′), to prove (Id 2), all that is left to show is that

[qn]
(
R(a + b + 1,X) − R(a + b,X)

) ≥ [qn−1]
(
R(a + b + 1,X) − R(a + b,X)

)
.

By the symmetry, negative terms are equal and this is equivalent to showing
that R(a + b + 1,X) is unimodal. We consider the following cases:

• If X has one part only, a > 1 and b = 1, then we end up with a 2 part
composition that is unimodal.

• Now, suppose X has at least three parts, X = (x1, x2, . . .). We inspect
the composition (a+ b+1, x1, x2, . . .) for unimodality. If x1 > 1, then we
have two consecutive parts greater than 1 as a + b + 1 ≥ 1. This gives us
unimodality.

• If x1 = 1, we may assume that |b − x2| ≤ 1, since, otherwise, we have
unimodality. If b ≥ x2, we get a trio a+b+1, 1, x2 with difference between
a + b + 1 and x2 at least 2, which gives us unimodality.

• Finally, if a > 1 even if b = x2 − 1, the difference between a + b + 1 and
x2 is at least 2, so we have unimodality.

�
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Proof of Theorem 5.1. As the other cases are already resolved, we will focus
our attention to the case of ā having at least 6 parts. By Proposition 5.3 and
the preceding work, it is sufficient to show unimodality when all parts of ā are
2 or 1. We can further suppose we have no consecutive 2, 2 or 2, 1, 2 as the
former is unimodal, and the latter can be simplified. Then, ā either contains
consecutive parts 2, 1, 1, 2 or 1, 1, 1, 2, or it consists entirely of 1s.

If ā contains consecutive parts 2, 1, 1, 2, then ā = (2, 1, 1, 2, 1, 1,X) for
some X by our assumptions. As R((1, 3, 1, 1,X); q) is unimodal, so is R(ā; q).

If ā contains consecutive parts 1, 1, 1, 2, then either ā = (1, 1, 1, 2, 1, 1) or
ā = (X, b, 1, 1, 1, 2, 1, 1) for some X and for some b ∈ {1, 2} by our assumptions.
The former case can be directly calculated. For the latter case, we can use
Proposition 5.3 with the three 1s in the middle. As R((X, b + 3, 1, 1); q) is
unimodal, so is R(ā; q).

That only leaves the case where ā contains 1’s only. Again, it is easy to
show R((1, 1, 1, 1, 1, 1); q) is unimodal by direct calculation. Otherwise, ā =
(1, 1, 1, 1, 1, 1, 1, Y ) for some Y . We may now apply Proposition 5.3 (under the
condition l(X) > 1 and b ≥ x2, where X = (1, 1, 1, 1, Y )) to conclude that
ā will be unimodal provided that the rank polynomial of the circular fence
poset corresponding to (1, 0, 1, 0, 1, 1, 1, Y ) is unimodal. This is the same as
R((3, 1, 1,X); q), which we have shown is unimodal. We conclude that R(ā; q)
is unimodal as well.

5.2. Multimodality

The counterexample (k, 1, k, 1) to unimodality for rank polynomials of circu-
lar fence posets can be extended in the case of chainlink posets to obtain any
number of peaks. We will use the generic term multimodality to describe situ-
ations where unimodality of sequences fails to hold. Consider PCL((2k, 2k), k)
for example. We get the following rank sequences:

• k = 1: [1, 2, 1, 2, 1].
• k = 2: [1, 2, 3, 2, 3, 2, 3, 2, 1].
• k = 3: [1, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 2, 1].
• k = 4: [1, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 2, 1].

Proposition 5.4. The chainlink poset PCL((2k, 2k), k) has the following rank
sequence with k + 2 peaks:

[

1, 2, 3, . . . , k + 2,

k+1
︷ ︸︸ ︷
k + 1, k + 2, k + 1, k, . . . , 2, 1

]

.

Proof. Consider the corresponding chainlink polytope:

PCL((k + 1, k + 1), k) = {(x1, x2) | 0 ≤ x1, x2 ≤ 2k, x1 − x2 ∈ [−k, k]}.

This is a hexagon with vertices (0, 0), (k, 0),(0, k), (2k, k), (k, 2k), and (2k, 2k).
The hexagon for k = 3 can be seen in Fig. 7. The rank sequence of the poset is
in bijection with the numbers of integer points in the sections of the polytope.
The rectangular region (k, 0),(0, k), (2k, k), (k, 2k) has alternating sections
with k and k − 1 integer points which gives the multimodular behavior to the
rank lattice. �
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(0, 0)

(3, 0) (6, 3)

(3, 6)(0, 3)

(6, 6)

Figure 7. The chainlink polytope PCL((6, 6), 3) with integer
points marked

6. Properties of Chainlink Polytopes

In this section, we examine some properties of chainlink polytopes.

Lemma 6.1. Let ā ∈ N
s be a composition of n and let l ∈ R. The chainlink

polytope CL(ā, l) is full dimensional when l < min(ā).

Proof. Let {εi}i∈[s] be small positive real numbers all less than min(ā) − l.
Consider the point

x = (a1 − ε1, . . . , as − εs).

We have that

(ai − ε) − (ai(mod(s))+1 − ε) = ai − ai(mod(s))+1 + εi − εi(mod(s))+1

< ai − min ā + εi

< ai − l,

by the condition we have imposed on the εi. Consequently, all points of the
form x above are in the polytope and constitute a full-dimensional subset. �

Determining exactly when these polytopes are non-empty is a tricky prob-
lem and does not seem to have a nice solution. We note though that a routine
application of LP duality shows that the condition l ≤ (a1 + · · · + as)/s is
necessary.

Lemma 6.2. Let ā ∈ R
s
>0 and l ∈ R≥0. Suppose that 0 < l < mini∈[s] ai. Then,

the polytope CL(ā, l) has exactly 3s facets, defined by the equalities xi = 0,
xi = ai and xi − xi+1 = ai − l.

Proof. Let i ∈ [s]. Let ε = (ε1, . . . , εs) ∈ R
s
≥0 be any point, such that εi = 0

and so that εj ≤ mini∈[s] ai − l for j �= i. Then, it is readily verified that both
ε and (a1, . . . , as) − ε are in CL(ā, l). Thus, the faces of CL(ā, l) defined by
xi = 0 and xi = ai are (s − 1)-dimensional.

Take now a small positive δ, so that min{l, ai+1 − l} > δ. Consider the
point

p = (ε1, . . . , εi−1, ai − l + δ, δ, εi+1, . . . , εs).

Then, p ∈ CL(ā, l), as well. This is because we have that p ∈ R
s
≥0 and

εj ≤ aj , j ∈ {1, . . . , i − 1, i + 2, . . .}, ai − l + δ ≤ ai, δ ≤ ai+1,
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showing that the point p satisfies the first two defining inequalities of CL(ā, l).
Next, we see that

εj − εj+1 ≤ εj ≤ aj − l, j ∈ {1, . . . , i − 2, i + 2, . . .},

as well as

εi−1 − (ai − l + δ) ≤ εi−1 ≤ ai−1 − l, δ − εi+1 ≤ δ ≤ ai − l,

showing that the third set of inequalities are also satisfied. Thus the face
defined by xi − xi+1 = ai − l is also s − 1-dimensional. �

Lemma 6.3. Let ā ∈ R
s
>0 and l ∈ R≥0. Suppose that 2 l ≤ mini∈[s] ai. The

vertices v of CL(ā, l) have the form vi ∈ {0, l, ai − l, ai}. Moreover, each edge
must be parallel either to the standard base vectors ei or to ei + ei+1 for some
i ∈ [s].

Proof. Take i ∈ [s]. Consider the facet Fi defined by xi −xi+1 = ai − l and let
p ∈ Fi be an arbitrary point. If ai > pi > ai − l, take

p+ := p + (ai − pi)(ei − ei+1), p− := p + (ai − l − pi)(ei − ei+1).

One sees easily that both p+ and p− are in CL(ā, l), and since p is a convex
sum of p+ and p−, p cannot be a vertex. Thus, a vertex v ∈ Fi must satisfy
vi ∈ {ai − l, ai}, and so, vi+1 ∈ {0, l}. Since all the other facets are given by
xi = 0 or xi = ai, we get that the coordinates of a vertex v must be of the
form vi ∈ {0, l, ai − l, ai}.

We will show that the edges must be parallel to the ei or ei + ei+1 as-
suming that 2 l < mini∈[s] ai. However, since any ā with 2l ≤ mini∈[s] ai can
be approximated by ā′ satisfying the strict inequality, the statement holds in
this case as well.

The kernels of the functionals that define the chainlink polytope have the
following form:

Ai = ker xi = span{ej : j ∈ [s] − {i}}.
Bi = ker xi − xi+1 = span{ei + ei+1, ej : j ∈ [s] − {i, i + 1}}.

Call Ai = {ej : j ∈ [s] − {i}} and Bi = {ei + ei+1, ej : j ∈ [s] − {i, i + 1}}. Let
I ⊂ [s], we have

⋂

i∈I

Ai = span

(
⋂

i∈I

Ai

)

.

Let J ⊂ [s] be a subset which contains no (cyclically) adjacent elements, then

⋂

j∈J

Bj = span

(
⋂

j∈J

Bj

)

.

Let v be a vertex and e be an incident edge. Since 2 l < mini∈[s] ai, the
functionals xi−1 −xi and xi−xi+1 cannot both be maximized at v. Hence, the
set K = {j ∈ [s] : vj −vj+1 = aj − l} does not contain any (cyclically) adjacent
elements. The edge e must be parallel to a one-dimensional subspace that is
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the intersection of the kernels of some of the functionals that are maximized
at v. Thus, e is parallel to a one-dimensional space of the form

L = span

(
⋂

i∈I

Ai

)

∩ span

(
⋂

j∈J

Bj

)

.

From this, it is easy to see that L = Rei or R(ei + ei+1) for some i ∈ [s]. �

Proof of Proposition 3.2. By Lemma 6.3, the vertices are integral as any vertex
v must be of the form vi ∈ {0, l, ai − l, ai}.

For the second part, notice that the edges are transverse to the hyper-
planes Ht = {x1 + · · · + xs = t}. Hence, the vertices of CLt(ā, l} are the
intersection of the edges with Ht. These intersections must be of the form
v + aei or v + b(ei + ei+1) for some vertex v and some a, b ∈ R. Since the
vertices are integral, we must have a ∈ Z or b ∈ 1

2Z.

Proposition 6.4. If we have the strict inequality 2l < mini∈[s] ai, then the poly-
tope CL(ā, l) is simple and the combinatorial structure does not depend on ā
or l.

Proof. Let v be a vertex. Denote the set of defining functionals which are max-
imized in CL(ā, l) on v by F (v). We will show that v is simple by constructing
a bijection

f : [s] −→ F (v).

If vi = 0, map f : i �→ −xi and if vi = ai map f : i �→ xi. If we have vi �∈ {0, ai},
then either vi = ai − l or vi = l. In the former case, we must have vi+1 = 0
and in the latter vi−1 = ai−1. In the former case map f : i �→ xi − xi+1 and in
the latter f : i �→ xi−1 − xi. Suppose that a linear functional φ ∈ F (v) is not
in the image of the function f . Clearly, it cannot be either of the functionals
xi or −xi for any i. Therefore, φ = xi − xi+1 for some i. Hence, either vi = ai

and vi+1 = l or vi = ai − l and vi+1 = 0. But then, in the former case,
f(i + 1) = xi − xi+1, and in the latter case, f(i) = xi−1 − xi. Therefore, v is
simple.

Let F be a subset of the defining linear functionals of size s. Suppose
that F satisfies the following for each i ∈ [s]:

• at most one of xi and −xi is in F ,
• at most one of xi − xi+1 and xi−1 − xi is in F ,
• if xi − xi+1 ∈ F , then either xi ∈ F or −xi+1 ∈ F ,
• if xi ∈ F , then −xi+1 �∈ F .

Then, there is a unique vertex v whose set of maximized functionals is F ,
that is, F = F (v). Since the possible sets do not depend on ā or l, we get a
combinatorial equivalence between any two s-dimensional chainlink polytopes
satisfying 2 l < mini∈[s] ai. �

Proposition 6.5. Let ā ∈ R
s
>0 and l ∈ R≥0. Suppose that 2 l ≤ mini∈[s] ai. The

number of vertices of the chainlink polytope CL(ā, l) is given by

Vert(CL(ā, l)) = tr(A1 · · · As),
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where Ai = A if ai > 2 l and Ai = B if ai = 2l, with

A =

⎡

⎣
1 1 1
1 0 0
1 1 1

⎤

⎦ , B =

⎡

⎣
1 1 1
1 0 0
1 0 1

⎤

⎦ .

Proof. Let v be a vertex of CL(ā, l). From Proposition 6.3, we know that
vi ∈ {0, l, ai − l, ai}. Moreover, if vi �∈ {0, ai}, then there are two possibilities.

1. The vertex v is contained in the facet defined by xi − xi+1 = ai − l. In
this case, we see that vi = ai − l and vi+1 = 0.

2. The vertex v is contained in the facet defined by xi−1 − xi = ai−1 − l.
And in this case, vi−1 = ai−1 and vi = l.

In light of this, we encode the vertices as follows:
• If vi = 0 or if vi = l, the ith index is called small. Note that in the latter

case, we will have that vi−1 = ai−1 by (2) above.
• If 2 l < ai and vi = ai − l, then the ith index is called medium. Notice

that a medium index must be followed by a small index by (1) above.
• If vi = ai, then the ith index is called big.

From a vertex v, we construct a word wv : [s] → {t,m, b}, where

wv(i) =

⎧
⎪⎨

⎪⎩

t if the index i is small.
m if the index i is medium.
b if the index i is big.

.

The correspondence v �→ wv is 1–1, given ā and wv, we can reconstruct v. The
words wv obey two simple rules:

1. An m is followed by a t.
2. If ai = 2l and if wv(i − 1) = b, then the ith index cannot be medium,

that is, wv(i) �= m.
Consider words of length s+1 that satisfy the above two rules. Construct

matrices M(ā) = (Mij(ā))i,j∈{t,m,b}, so that Mij(ā) are the number of length
(s + 1)-words that begin with i and end with j.

Let ā′ denote the first s − 1 terms of ā. If the last entry as = 2l, we have

M(ā) = M(ā′)

⎡

⎣
1 1 1
1 0 0
1 0 1

⎤

⎦ .

And if ai > 2l, we have

M(ā) = M(ā′)

⎡

⎣
1 1 1
1 0 0
1 1 1

⎤

⎦ .

Since the vertices of CL(ā, l) correspond to the words that begin and end with
the same letter, we get the trace formula in the proposition. �

Corollary 6.6. In particular if 2l < mini∈[s] ai, then

Vert(CL(ā, l)) = tr(As),
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which satisfies the linear recurrence

tr(As) = 2 tr(As−1) + tr(As−2),

for s ≥ 3. It can be seen easily that tr(A) = 2 and tr(A2) = 6. These are
dubbed the “Companion Pell Numbers” in A002203 [11].

Corollary 6.7. If ai = 2 l for each i ∈ [s], then

Vert(CL(ā, l)) = tr(Bs),

which satisfies the linear recurrence

tr(Bs) = 2 tr(Bs−1) + tr(Bs−2) − tr(Bs−3)

for s ≥ 3. It is easy to see that tr(B0) = 3, tr(B) = 2 and tr(B2) = 6. This is
the sequence A033304 in OEIS [12]. Note that the matrix B shows up, but it
is conjugated by a symmetric matrix.

The calculation of the volume of a chainlink polytope has quite a straight-
forward formula in the case 2l ≤ mini∈[s] ai.

Proposition 6.8. Let ā ∈ R
s
>0 and l ∈ R≥0. Suppose that 2 l ≤ mini∈[s] ai.

The volume of the chainlink polytope CL(ā, l) is given by the following trace
formula:

Vol(CL(ā, l)) = tr
([

a1
−l2

2
1 0

]

·
[
a2

−l2

2
1 0

]

·
[
a3

−l2

2
1 0

]

· · ·
[
as

−l2

2
1 0

])

.

Proof. We shall give a description of the volume of the polytope in terms of
the matchings of the cyclic graph on [s]. We define a matching to be any
subset of edges that are pairwise disjoint, and denote by Mk([s]) matchings
of the cyclic graph on [s] with exactly k edges. We will additionally use the
shorthand i ∈ M to denote when i ∈ [s] is covered by an edge of a matching
M . The chainlink polytope is the rectangular prism P =

∏s
i=1[0, ai] with the

sets S(i,i+1) : i ∈ [s] removed, where

S(i,i+1) = {x ∈ P : xi − xi+1 > ai − l}.

We will think of the indexing of the sets as edges of the cyclic graph on 1, . . . , s.
By inclusion–exclusion, one gets

Vol(CL(ā, l)) = a1 · · · as +
s∑

k=1

∑

1≤i1<i2<···<ik≤s

Vol

(
k⋂

j=1

S(ij ,ij+1)

)

(−1)k.

If two edges e and f of the cyclic graph Cs intersect, then the intersection
Se ∩ Sf = ∅. Thus, we only need to be concerned with the terms that come
from matchings m ∈ Mk(s) in the above formula. For a matching M ∈ Mk(s),
we have after permuting the coordinates

⋂

e∈M

Se =
∏

i�∈M

[0, ai] ×
∏

(i,i+1)
∈M

{(x, y) ∈ R
2 : ai ≥ x > ai − l,

l > y ≥ 0, x − y > ai − l}.
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Here, we consider (i, i + 1) modulo s as usual. The volume of the above is
clearly

∏
i�∈m ai

l2k

2k
, which matches the trace formula. �

7. Remarks and Further Work

There are several questions about these chainlink polytopes that naturally
arise.

• Ehrhart equivalence: Two rational polytopes P,Q ∈ R
d are said to be

Ehrhart equivalent if they have the same Ehrhart quasipolynomial. They
are said to be GL equidecomposable if we may partition P = U1∪· · ·∪Un

and Q = V1 ∪ · · · ∪Vn into relatively open simplices, such that for each i,
Ui and Vi are GLd(Z) equivalent. In [13], it was conjectured that Ehrhart
equivalent polytopes are GL equidecomposable. This is known to be true
for dimensions 2 [14] and 3 [15]. Sections of chainlink polytopes provide
us with a large class of examples to test this conjecture.

• Multimodality: Theorem 5.1 can be expressed in the following way: Let
ā be a composition of n. Then, the function from {0, . . . , n} to N given
by

k → #CLk(ā, 1),

is unimodal save when ā = (a, 1, a, 1) or (1, a, 1, a) and is bimodal in these
cases. If we instead fix a positive integer l, such that 2l ≤ min{ai} and
look at

k → #CLk(ā, l),

the function may be multimodal. Indeed, we have that when ā = (2k, 2k)
and l = k, we have k + 1 peaks. Can one describe the maximal number
of modes that may arise for fixed l and when these are attained?

• The General Chainlink Polytope: In the case 2l > mini∈[s] ai, several
interesting properties of the polytope CL(ā, l) no longer hold. Namely,
the vertices of the sections are no longer half-integral, we lose the equality
of volumes of complementary sections and our formulae for the number
of the vertices and the volume of CL(ā, l) no longer hold. Given that the
chainlink polytope CL(ā, l) is full-dimensional when l < mini∈[s] ai, this
leaves a lot to be investigated, both combinatorially and geometrically.
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