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Abstract. We study labeled chip-firing on binary trees starting with 2n−1
chips initially placed at the root. We prove a sorting property of terminal
configurations of the process. We also analyze the end game moves poset
and prove that this poset is a modular lattice.
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1. Introduction

Unlabeled chip-firing is the process in which a collection of indistinguishable
chips is placed at the nodes of a graph. If a node has at least as many chips as
it has neighbors, it can “fire” by sending one chip to each of its neighbors. The
process terminates if no site has enough chips to fire, and the configuration
when the process terminates is called the terminal configuration or the stable
configuration. We refer the readers to [6] for a comprehensive study of unla-
beled chip-firing; however, we would like to stress the following fundamental
result.

Theorem 1.1. [6, Theorem 2.2.2]. Let c be a configuration.
1. Local confluence Suppose c1 and c2 are two configurations which are

both reachable from c after one firing. Then there exists a common con-
figuration d reachable from both c1 and c2 after a single firing.

2. Global confluence If a stable configuration cs is reachable from c af-
ter a finite number of legal firing moves, then cs is the unique stable
configuration reachable from c.

Labeled chip-firing is a variation of unlabeled chip-firing, in which every
chip is given an integer label, and additional rules are set to govern which
chip moves in each direction during a firing move. Because the chips are now
labeled, local confluence may no longer hold, and hence global confluence may
not hold either. For example, consider the labeled chip-firing process on an
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Figure 1. Possible stable configurations with three chips

Figure 2. Two possible terminal configurations with 7 chips

infinite one-dimensional line with N chips labeled 1, . . . , N initially placed at
the origin. When a node has at least two chips, it can fire any two chips, sending
the smaller chip to the left and the larger chip to the right. However, if one
starts with three chips, we instead see that any of the stable configurations in
Fig. 1 can happen.

Nonetheless, in some special cases, one still has global confluence despite
the lack of local confluence. It was proved in [4,5] that the labeled chip-firing
process on an infinite one-dimensional line with an even number of chips ini-
tially placed at the origin terminates in a unique configuration regardless of
the order in which nodes fire and regardless of the choice of chips made at each
node. Moreover, in the unique terminal configuration, the chips are in sorted
order.

In this paper, we study labeled chip-firing on an infinite binary tree.
Specifically, we consider an infinite binary tree with a self-loop at the root
and N = 2n − 1 chips initially placed at the root. The chips are labeled from
1, . . . , N . We apply the rule such that when a node fires three chips, it sends
the smallest chip to its left child, the largest chip to its right child, and the
middle chip to its parent. If the root fires, it sends the middle chip to itself
(via the self-loop). In this setup, however, global confluence does not hold. For
instance, when starting with 7 chips, both terminal configurations in Fig. 2
can happen.

Nevertheless, we do have the following theorem on the sorting property
of the terminal configuration:

Theorem 1.2. In labeled chip-firing on an infinite binary tree with 2n −1 chips
(labeled from 1 to 2n − 1) initially placed at the origin, the terminal config-
uration always has one chip at each node of the first n levels. Moreover, the
bottom straight left and right descendants (see Sect. 2) of a node contain the
smallest and largest chips among its subtree.

Examples of reachable terminal configurations for small cases of n can be
seen in Fig. 3. Consider the node containing chip 11 in the case of n = 4, for
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instance, its bottom straight left and right descendants contain chip 9 and 15,
which are the smallest and largest chips among its subtree.

After proving Theorem 1.2 in Sects. 3 and 4, and observing appearances
of binary expansions (see Corollary 3.4) and Eulerian numbers (see Proposition
3.6) along the way, we will prove the sorting property for some related versions
of binary trees in Sect. 5. Then we will give some counterexamples for some
conjectures generalizing our property in Sect. 5. In Sect. 6, we will study the
poset of “end game” moves, which will be defined in Sect. 4. We will show that
the poset is actually a modular lattice. Lastly, in Sect. 7, we conclude with
questions for further research.

2. Definitions

An infinite binary tree is a rooted tree in which every node has two children,
which are referred to as the left child and right child. A node is also referred to
as the parent of its two children. We label the nodes in the binary tree starting
from one at the root, going from parent to children and from left to right (see
Fig. 4). Notice that for every node i, its two children are labeled 2i and 2i+1,

and its parent is labeled
[

i

2

]
. We also add a self-loop to the root of the tree;

thus, during the chip-firing process, every node can fire if and only if it has at
least three chips.

In the context of an infinite binary tree, we define the rule for labeled
chip-firing as follows. We start with 2n−1 chips labeled 1 to 2n−1 at the root.
When a node has at least three chips, it can choose any three chips and fire as
follows: it sends the smallest chip to its left child, the largest chip to its right
child, and the middle chip to its parent. If the root fires, it sends the middle
chip to itself (via the self-loop). The process terminates (or stabilizes) when
no node can fire, and we call the configuration when the process terminates
the terminal configuration or the stable configuration.

Now, we introduce some more definitions that will be used in our paper.
First, we define the level of each node i, denoted level(i), to be dist(i, 1) + 1
where dist(i, 1) is the number of edges between node i and node 1. We also
define the height of a binary tree to be the maximum level among all of its
nodes. For each node i, we define the subtree of i, denoted (i), to be the binary
tree whose root is i. We refer to the nodes in (i) as its descendants, and we also
refer to i as an ancestor of its descendants. We call the nodes 2ki, for k > 0,
the straight left descendants of i, and similarly, we call the nodes 2k(i + 1) − 1
its straight right descendants. Specifically, we call a node j the bottom straight
left descendant of node i if, in the terminal configuration, j is the straight left
descendant with the bottom-most level that contains some chips. Similarly, we
call a node j the bottom straight right descendant of node i if, in the terminal
configuration, j is the straight right descendant in the bottom-most level that
contains some chips. It is worth noting here that the definition of bottom
straight descendants depends on the terminal configuration of the process;
thus, a node may be a bottom straight descendant if the process starts with
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Figure 3. Examples of reachable terminal configurations

some certain number of chips, but not in other cases. We will see this more
clearly in the next section. Conversely, we call node i a straight ancestor of
node j if node j is a straight left or right descendant of node i. Lastly, we call
node i the top straight ancestor of node j if node i is a left (right) child of its
parent and node j is a straight right (left) descendant of node i. Specifically,
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Figure 4. Binary tree and the labeling of the nodes

the root can be considered as both the top straight ancestor of both its straight
left and right descendants.

For example, in Fig. 4, nodes 2, 4, 8 are straight left descendants of
node 1 and nodes 3, 7, 15 are straight right descendants. If in the terminal
configuration, only the nodes on the first four levels contain some chips, then
node 8 and 15 are the bottom straight left and right descendants of node 1.
Conversely, node 2 is the top straight ancestor of nodes 5 and 11, but not
nodes 4 and 8.

3. Unlabeled Chip-Firing

Let us first present a brief review of classical unlabeled chip-firing. Let G =
(V,E) be a undirected graph and assign a nonnegative integer C(v) to each
vertex v in G. We say that vertex v has C(v) chips and call C a chip con-
figuration. If a vertex v has at least as many chips on it as its degree, i.e.,
C(v) ≥ deg v, we say that v is ready to fire. When a vertex v fires, it sends
chips to its neighbors by sending one chip along each of its incident edges. A
chip configuration is stable if no vertex is ready to fire, i.e., C(v) < deg v for
all v ∈ V (G). We have the following fundamental result about the chip-firing
game.

Theorem 3.1. [2]. Let N be the total number of chips, i.e., N =
∑

v∈V (G) C(v).

(a) If N > 2|E| − |V |, then the game is infinite.
(b) If N < |E|, then the configuration reduces to a unique stable configura-

tion.
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(c) If |E| ≤ N ≤ 2|E|− |V |, then there exists some initial chip configuration
which leads to an infinite process, and some other initial configuration
which terminates in finite time.

Consequently, since our setting is an infinite binary tree with a finite
number of chips, we always have N < |E|, so our game always terminates.
It is worth reminding the reader that in unlabeled chip-firing, Theorem 1.1 is
very valuable.

Theorem 1.1.. [6, Theorem 2.2.2] Let c be a configuration.
1. Local confluence Suppose c1 and c2 are two configurations which are

both reachable from c after one firing. Then there exists a common
configuration d reachable from both c1 and c2 after a single firing.

2. Global confluence If a stable configuration cs is reachable from c af-
ter a finite number of legal firing moves, then cs is the unique stable
configuration reachable from c.

Notably, local confluence implies not only global confluence, but also the
following corollary.

Corollary 3.2. [6]. Given a configuration c such that cs is a stable configuration
reachable from c after a finite number of legal firing moves, then although the
order of legal firing moves is changeable via local confluence, the stabilizing
sequence is unique as a multi-set in the following sense:

• the length of any stabilizing sequence is the same and
• the number of times each site fires in any stabilizing sequence is the same.

Hence, to find the length of any stabilizing sequence and the number of
times each site fires, it suffices to study one specific sequence. There are other
variants of the chip-firing game, including chip-firing on directed graph and
chip-firing with a sink vertex. However, these variants are not quite relevant
to this paper, so we refer the readers to [1,3,6].

Now, we are ready to investigate some properties of the terminal config-
urations and stabilizing sequences for our setting.

Proposition 3.3. If we start with N chips at the root, where 2n − 1 ≤ N ≤
2n+1 − 2, in the terminal configuration, the nodes that contain some chips
form a perfect binary tree with height n. Furthermore, every node on the same
level has the same number of chips.

Proof. We will prove the proposition by induction on n. In case n = 1, it is
clear that if we start with 1 or 2 chips at the root, the configuration is already
stable, so the only node that contains some chips is the root, which forms a
perfect binary tree with height 1.

Suppose the proposition is true for n = k, then we will prove that the
proposition is true for n = k + 1. If we start with 2k+1 − 1 to 2k+2 − 2 chips
at the root, we will fire as follows:

1. Fire the root repeatedly until it is not ready to fire anymore.
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2. Alternately, fire the left and right branches of the root until they stabi-
lize: after firing a node in the left branch, fire the corresponding node in
the right branch.

3. Whenever the two children of the root fire, fire the root.
After step 1, each child of the root will contain the same number of

chips. Since every time the root fires, it sends one chip to itself, the root
always contains at least one chip. Therefore, after step 1, each child of the
root contains between 2k − 1 and 2k+1 − 2 chips. Note that step 3 means that
whenever the two children of the root fire, they each send one chip to the root.
Thus, by firing the root immediately after that, the root returns one chip back
to each child. Hence, when the children of the root fire, they basically send two
chips to their children and one chip to themselves. Therefore, the firing process
of each branch is similar to firing with 2k −1 to 2k+1 −2 initially placed at the
root. By the induction hypothesis, we know that after the process stabilizes, in
each branch, the nodes that contain some chips form a perfect binary tree with
height n − 1 = k, and every node on the same level has the same number of
chips. Since step 2 states that the firing process in both branches is exactly the
same, the terminal configuration of the two branches is exactly the same. Thus,
after the process stabilizes, the nodes that contain some chips in the whole tree
form a perfect binary tree with height n, and every node on the same level has
the same number of chips. Since we are considering unlabeled chip-firing, the
global confluence property applies, so the terminal configuration is always as
above. This completes the proof. �

As mentioned in Sect. 2, the definition of bottom straight descendants
depends on the terminal configuration of the process. With Proposition 3.3,
we now know that if the process starts with 2n − 1 to 2n+1 − 2 chips at the
root, the only bottom descendants are the nodes on level n, i.e., while some
nodes on level n will have a chip, no nodes on level N for N ≥ n + 1 will have
chips.

Furthermore, the pattern of which levels have nodes with one chip versus
two chips in the terminal configuration is easily determined.

Corollary 3.4. If we start with N chips at the root, where 2n − 1 ≤ N ≤
2n+1 −2, then for 0 ≤ i ≤ n−1, the resulting terminal configuration has ai +1
chips on each node on level (i + 1) where anan−1 · · · a2a1a0 (with an = 1) is
the binary expansion of the number N + 1.

We will now focus on the case in which we start with 2n − 1 chips at the
root, as this is the case we consider in our main theorem. First of all, we have
the following special case of Corollary 3.4.

Corollary 3.5. If we start with 2n − 1 chips at the root, after the process sta-
bilizes, every node in the first n levels contains exactly 1 chip, and no other
node contains any chip.

Proof. Since we start with 2n − 1 chips, we know that the nodes that contain
some chips form a perfect binary tree with height n. Thus, there are 2n − 1
nodes that contain some chips, so each must contain exactly one chip. �
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Another question that arises naturally in the discussion of chip-firing is
how many times each node fires during the firing process. It turns out that in
case, we start with 2n − 1 chips at the root, the numbers of times each node
fires are Eulerian numbers. Recall that Eulerian number

〈
n
k

〉
is the number

of permutations in Sn with k descents. A comprehensive study of Eulerian
numbers can be found in Petersen’s book [7], but we will point out that the
formula for Eulerian numbers is〈

n

k

〉
=

k∑
i=0

(−1)i(k + 1 − i)n
(

n + 1
i

)
.

Specifically, if k = 1, we have the following formula for the number of Grass-
mannian permutations, which are permutations with exactly one descent,〈

n

1

〉
= 2n − (n + 1).

Thus, we have the following recursive formula〈
n + 1

1

〉
= 2n − 1 +

〈
n

1

〉
.

Now, we will prove that in case we start with 2n − 1 chips at the root, the
numbers of times each node fires are the Eulerian numbers

〈
k
1

〉
.

Proposition 3.6. If we start with 2n − 1 chips at the root, during the firing
process, for every 0 ≤ i < n, every node on level n − i fires

〈
i+1
1

〉
times.

Proof. We will also prove the proposition by induction on n. In the case n = 1,
the root does not fire, and since

〈
1
1

〉
= 0, the proposition is true for n = 1.

Suppose the proposition is true for n = k, we will prove that the propo-
sition is true for n = k + 1. We will consider the same firing process as in
the proof of Proposition 3.3. Note that a property of chip-firing is the number
of times each node fires is the same regardless of the order we fire. The firing
process of the left and right subtrees are exactly the same as in the case n = k.
Thus, by the induction hypothesis, we know that for every 0 < i < k, every
node on level k+1− i fires

〈
i+1
1

〉
times. Additionally, the root fires 2k −1 times

in step 1, and
〈
k
1

〉
more times in step 3 (since its children fire

〈
k
1

〉
times each).

Thus, the root fires 2k − 1+
〈
k
1

〉
=

〈
k+1
1

〉
times. This completes the proof. �

This leads to the following corollary on the total number of firing moves
during the firing process.

Corollary 3.7. If we start with 2n−1 chips at the root, during the firing process,
the total number of firing moves is 2n(n − 3) + n + 3.

The proof of this corollary is straightforward, but we will still verify the
calculation here anyway.

Proof. Since on level n − i there are 2n−i−1 nodes, each fires
〈
i+1
1

〉
= 2i+1 −

(i + 2) times during the process, the total number of firing moves is
n−1∑
i=0

2n−i−1(2i+1 − (i + 2)) =
n−1∑
i=0

(2n − i2n−i−1 − 2n−i)
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= n2n −
n−1∑
i=0

i2n−i−1 −
n−1∑
i=0

2n−i

= n2n −
n−2∑
k=0

k∑
i=0

2i − (2n+1 − 2)

= n2n −
n−2∑
k=0

(2k+1 − 1) − (2n+1 − 2)

= n2n − [2n − 2 − (n − 1)] − (2n+1 − 2)

= 2n(n − 3) + n + 3.

�

4. Proof of Our Main Theorem

In this section, we will consider the labeled chip-firing process with 2n−1 chips
(labeled from 1 to 2n −1) initially placed at the root of an infinite binary tree.
Recall our definitions from Sect. 2. Let (i, j) be the jth-to-last fire of node
i, we will adopt the relation used by Klivans and Liscio in [5] and define the
relation (i1, j1) > (i2, j2) if (i1, j1) must occur before (i2, j2), thereby giving a
partial order. Note that j is indexed from 0, which means (i, 0) is the last firing
move of node i. The relation may seem counter-intuitive at first, but later in
this section and in Sect. 6, we will prove some interesting results concerning
this poset. Particularly, most firing moves at the beginning of the game may
occur in any order. Thus, we want to restrict our attention to the bottom of
the poset which consists of the “end game” moves defined as follows.

Definition 4.1. We call the moves (i, j) where level(i) + j < n the end game
moves. We call the poset formed by these end game moves with the partial
order (i1, j1) > (i2, j2) if (i1, j1) must occur before (i2, j2) the end game moves
poset.

We will later prove that these moves have to occur in some specific order,
and the end game moves posets are symmetric modular lattices. Figure 10
shows examples of the end game moves posets for small cases of n. First, we
will prove that these end game moves have to occur in some specific order.

Proposition 4.2. Consider a node i with level(i) = k > 1. Then for all j such
that k + j < n:

•
([

i

2

]
, j

)
< (i, j) <

([
i

2

]
, j + 1

)
,

• (i, j) occurs when node i has three chips.

Before proving this proposition, here we present the outline of the proof:
1. (1, 0) < (2, 0) and (3, 0).

2. (i, 0) < (2i, 0) with the assumption that
([

i

2

]
, 0

)
< (i, 0); similarly, we

have (i, 0) < (2i + 1, 0).
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3. (2i, 0) < (i, 1) and (2i + 1, 0) < (i, 1).
4. (1, j) < (2, j) with the assumptions (2, j − 1) < (1, j) and (3, j − 1) <

(1, j); similarly, (1, j) < (3, j).

5. (i, j) < (2i, j) with the assumptions
([

i

2

]
, j

)
< (i, j), (2i, j−1) < (i, j)

and (2i + 1, j − 1) < (i, j); similarly, (i, j) < (2i + 1, j).

6. (i, j) <

([
i

2

]
, j + 1

)
assuming both (2i, j − 1) < (i, j) and (2i + 1, j −

1) < (i, j).
The idea of the proof is to do induction on both level(i) and j. After

steps 1 and 2, we have (i, 0) < (2i, 0) for all nodes i. Then step 3 links j = 0
to j = 1 by giving (2i, 0) < (i, 1) for all nodes i. This completes the “base”
step, and the “inductive” step continues. First, step 4, analogous to step 1,
gives (1, 1) < (2, 1) and (1, 1) < (3, 1) using (2, 0) < (1, 1) and (3, 0) < (1, 1)
proved in step 3. Then step 5, analogous to step 2, completes the case j = 1
by induction on i. Step 6, analogous to step 3, then links j = 1 to j = 2.
Continuing by using step 4, 5 and 6 repeatedly, we can prove the proposition.

Proof. 1. Suppose (1, 0) can occur before (2, 0); then, after (1, 0), node 1
contains at least one chip. Also, it will receive at least one more chip from
(2, 0), so it will have at least two chips at the end. This is a contradiction,
since we know at the end every node contains exactly one chip. Thus,
(1, 0) < (2, 0), and similarly, (1, 0) < (3, 0). Also, (1, 0) must occur when
node 1 has three chips, since otherwise node 1 will have more than one
chip at the end.

2. Recall from Sect. 2 that nodes 2i and 2i+1 are the two children of node
i. The proof for this case then follows identically to Case 1 above. In
particular, suppose (i, 0) can occur before (2i, 0); then, after (i, 0), node
i will receive at least one chip from (2i, 0). It will also receive at least one

chip from
([

i

2

]
, 0

)
by the assumption that

([
i

2

]
, 0

)
< (i, 0). Hence,

node i will have at least two chips at the end, which is a contradiction.
Thus, (i, 0) < (2i, 0), and similarly, (i, 0) < (2i + 1, 0). Also, since after

(i, 0), node i will receive at least one chip from
([

i

2

]
, 0

)
, after (i, 0),

node i must have no chips left. Therefore, (i, 0) must occur when node
i has three chips.

3. Suppose (2i, 0) can occur before (i, 1), i.e., there is a node i whose left
child fires for the last time before i fires for the second-to-last time.
Then, after (2i, 0), node 2i will receive two more chips from node i, i.e.,
from both (i, 1) and (i, 0). Hence, node 2i will have at least two chips
at the end, which is a contradiction. Thus, (2i, 0) < (i, 1), and similarly,
(2i + 1, 0) < (i, 1).

4. Suppose (1, j) can occur before (2, j); then, after (1, j), node 1 will keep
at least one chip and lose 2(j −1) more chips. However, since (3, j −1) <
(1, j), node 1 will receive at least j − 1 more chips from node 3 and
j more chips from node 2. Hence, node 1 will receive at least 2j − 1
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chips. Thus, node 1 will have at least two chips at the end, which is a
contradiction. Thus, (1, j) < (2, j), and similarly, (1, j) < (3, j). Also,
since (2, j − 1), (3, j − 1) < (1, j), after (1, j), node 1 will lose 2(j − 1)
chips and receive 2(j − 1) chips. Therefore, (1, j) must occur when node
1 has three chips.

5. Suppose (i, j) can occur before (2i, j); then after (i, j), node i will lose

3(j−1) more chips. However, since
([

i

2

]
, j

)
< (i, j), node i will receive

at least j more chips from node
[

i

2

]
. Since (2i + 1, j − 1) < (i, j),

node i will also receive at least j − 1 more chips from node 2i + 1.
Finally, since (i, j) occur before (2i, j), node i will receive at least j
more chips from node 2i. Hence, node i will receive at least 3j − 1
chips, so node i will have at least two chips at the end, which is a
contradiction. Thus, (i, j) < (2i, j), and similarly, (i, j) < (2i + 1, j).

Also, since (2i, j − 1), (2i + 1, j − 1),
([

i

2

]
, j

)
< (i, j), after (i, j), node

i will lose 3(j − 1) chips and receive 3j − 2 chips, so (i, j) must occur
when node i has three chips.

6. Suppose (i, j) can occur before
([

i

2

]
, j + 1

)
; then after (i, j), node i will

lose 3(j −1) more chips. However, since (2i, j −1), (2i+1, j −1) < (i, j),
node i will receive at least j − 1 more chips from node 2i and 2i + 1,

and at least j + 1 more chips from node
[

i

2

]
. Thus, node i will receive

at least 3j − 1 chips, so node i will have at least two chips at the end,

which is a contradiction. Therefore, (i, j) <

([
i

2

]
, j + 1

)
.

�
In general, in the end game of the process, a node fires its jth to last

time before its parent’s jth to last fire, but after its parent’s j + 1 to last fire.
This is analogous to Lemma 2.6 in [5]. They showed that for labeled chip-
firing on a line, the end game moves satisfy the relation (x, y) < (x+1, y) and
(x, y) < (x, y + 1). This gives a nice grid structure on the end game moves
posets. For our case, however, since each node has three neighbors, we do
not have such nice grid structure. We will show in Sect. 6 that our end game
moves posets are modular lattices, but are not distributive. Furthermore, they
showed that for labeled chip-firing on a line, the end game moves occur when
the nodes have exactly two chips. In our case, the end game moves occur when
the nodes have exactly three chips.

An important corollary of this firing relation is the following local con-
fluence property in the end game.

Corollary 4.3. (Local confluence at the end). Suppose 2n − 1 labeled chips are
initially placed at the root, node 1. Then, the root fires

〈
n
1

〉
= 2n−(n+1) times

before the terminal configuration. From the moment (1, n − 2) can occur, the
order in which the nodes fire does not affect the terminal configuration.
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Proof. In the end game of the process, a node fires its jth to last time before
its parent’s jth to last fire, but after its parent’s j + 1 to last fire. Thus, if
a node can fire, none of its neighbors can fire (i.e., neither its parent or its
two children). Also, each fire occurs when the node has exactly three chips.
Thus, when a node can fire, it will fire exactly the three chips that it contains,
and since none of its neighbors can fire, none of its neighbors can affect its
firing move. Therefore, the order in which we fire does not affect the terminal
configuration. �

Since the order in which we fire does not matter, we can assume that in
the end game, we fire as follows:

1. Before (1, n − 2), all firing moves (i, j) with level(i) + j ≥ n must have
occurred. After this step, (1, n−2) is the only possible move, node 1 has
three chips, and every node on level 2 to n − 1 has two chips.

2. Fire every node from 1 to 2n−1 − 1 exactly once each. After this step,
every node on level n has one chip, and this chip is the chip it will have
when the process stabilizes. Every node on level n−1 has no chip, every
node on level 2 to n − 2 has two chips and node 1 has three chips.

3. Fire every node from 1 to 2n−2 − 1 exactly once each. After this step,
every node on level n and n− 1 has one chip, and this chip is the chip it
will have when the process stabilizes. Every node on level n − 2 has no
chip, every node on level 2 to n − 3 has two chips and node 1 has three
chips.

4. Repeat the above step until the process stabilizes.

The idea behind the above process is that, in the end game, we will fire
in waves, and each wave includes firing every node that can fire once. In each
wave, the root will fire and send two chips to its children. Every other node
that has two chips will receive one chip from its parent, fire the three chips it
has and finally receive two chips back from its children. The only exceptions
are the nodes on the bottom-most level that fire as these nodes will not receive
any chip from its children, so they will have no chip after the wave and will
only receive one more chip from their parents in the next wave.

An example of a wave of fires can be seen in Fig. 5. First, the root fires
and sends chips 4 and 8 to its children and sends chip 6 to itself. Its two
children then fire and each sends one chip back to the root and two chips to
the nodes on level 3. The nodes on level 3 then fire, sending chips back to their
parents and children. The nodes on level 4 do not fire, so their parents on level
3 do not receive any chip back, and this is the end of the wave.

It can also be seen that as we fire in waves, in each wave, when a chip is
sent down from a node to its child, it will be fired again when the child fires.
Thus, it will be fired repeatedly until it is fired back from a node to its parent
or it reaches the children of the bottom-most level that fires where it will stay
for the rest of the process. With these results, we are now ready to prove our
main result.
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Figure 5. Example of a wave of fires
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Theorem 1.2. In labeled chip-firing on an infinite binary tree with 2n−1 chips
(labeled from 1 to 2n − 1) initially placed at the origin, the terminal config-
uration always has one chip at each node of the first n levels. Moreover, the
bottom straight left and right descendants of a node contain the smallest and
largest chips among its subtree.

Proof. The first part of the theorem has already been proved in the previous
section. We will now prove the second part. We will prove that the bottom
straight left descendant of a node contains the smallest chip among its subtree,
and the result for the bottom straight right descendant is analogous. Also,
notice that if we want to prove the statement for a node i that is not a right
child of its parent, we only have to prove that the statement is true for its top
straight ancestor j since they have the same bottom straight left descendant
and (i) ⊂ (j) (here recall that (i) denotes the subtree (i)). Thus, we only have
to prove the statement for the nodes that are the right child of their parents.

Consider an arbitrary such node i, let c be the smallest chip that i con-
tains throughout the firing process. Clearly, c is also the smallest chip the
whole subtree (i) contains throughout the firing process; thus, whenever c is
fired inside (i), it is fired to the left child. Therefore, from the moment c reaches
i, it always stays among i and its straight left descendant.

Now note that during the end game, from the move (i, n − 1−level(i)),
i.e., the first move of node i in the end game, i alternatively sends back and
receives one chip from its parent. Since i is the right child of its parent, the
chip it receives is larger than or equal to the chip it sends back, so c cannot
reach i for the first time after (i, n − 1−level(i)). This means that c is already
in (i) during the first wave, and since c is only fired to the left child when it is
fired, c will reach the end of the first wave, which is the bottom straight left
descendant of i. This completes the proof. �

With the sorting property proved for the bottom descendants, a natural
question to ask is whether this property can be generalized to nodes on other
levels. There are indeed two other types of nodes where this property is true.
The first type is the nodes whose top straight ancestor is their parent. Recall
the definition of straight ancestors from Sect. 2.

Proposition 4.4. For any node whose top straight ancestor is its parent, if the
node is a left child, then the chip it contains is smaller than both the chips of
the parent and the parent’s right child and vice versa.

Proof. The reason is that when the parent fires the last time, clearly the chip
the left child receives is smaller than the chip the right child receives. Also, the
parent sends one chip back and then receives one chip from its parent. Since
the parent is a right child, the chip it receives is no smaller than the chip it
sends back, and thus is no smaller than the chip the left child contains. �

The other type is the nodes that are parents of the bottom nodes.

Proposition 4.5. The nodes that are parents of the bottom nodes contain the
smallest and largest chips among the subtree of their straight ancestors exclud-
ing the nodes on the bottom level.
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Proof. The proof for this case is just slightly more complicated than that for
Theorem 1.2. Again, we will consider an arbitrary node i that is the right child
of its parent, and let c be the second smallest chip c that is sent to its left
branch (2i) through out the process. Clearly, inside (2i), when c is fired, it is
fired to the left child, except when it is fired together with the smallest chip
in which case it is sent back to the parent. Either way, c will remains among i
and its straight left descendants, and with the same argument as in Theorem
1.2, c is already in (2i) in the second wave, which means c will go to the parent
of the bottom straight left descendant. We know that among the chips that
are sent to the right branch (2i + 1) of node (i), the smallest chip will go to
the bottom level, and it is clear that the second smallest chip has to be larger
than c, so c is the smallest chip among the chips in (i) excluding the nodes on
the bottom level. This completes the proof. �

Examples of the two types can be seen in Fig. 3. For instance, in the case
n = 5, the chip in node 6 (7) is indeed smaller than that in node 3 (27), and
the chip in node 9 (14) is larger than that in node 4 (13). Also in the case
n = 5, we can check that the property is true for the parents of the bottom
nodes, which are those on level 4.

5. Counterexamples

With Theorem 1.2 and Proposition 4.5 proved, it is natural to attempt to
generalize the property to nodes on other levels. Unfortunately, the statement
for any other node is generally not true.

Counterexample 5.1. The kth straight left descendant of node i, i.e., node 2ki,
may not contain the smallest chip among i and its first k levels of descendants.

For example, in Fig. 3, the case of n = 5, node 6 (7) has a chip with
smaller label than that of node 4 (13) even though node 4 is the straight left
descendant of the root in the binary tree truncated to the top 3 levels, its label
is not the smallest in its corresponding subtree.

From the counterexample, we also know that not only the straight left
descendants may not contain the smallest chip among the whole subtree, it
even may not contain the smallest chip among the nodes on the same level.
Now that we know we cannot extend our main theorem to other nodes, we
may want to try to study a more local conjecture. Our local conjecture is: in
the terminal configuration, for every node i not on the bottom-most level, its
chip is larger than the chip of its left child’s and is smaller than that of its
right child’s. Unfortunately, the conjecture is also not true, and we will show
a counterexample here.

Counterexample 5.2. For some node i, its chip may be smaller than the chip
of its left child’s or larger than the chip of its right child’s.

To make the description of the counterexample simpler, we will consider
a colored chip-firing process with red and blue chips similar to that discussed



G. Musiker and S. Nguyen

in Klivans’ book [6, Sect. 5.4]. Colored chip-firing is a variation of labeled chip-
firing where each chip is colored red or blue. When three chips of the same color
fire, we send one to the left child, one to the right child, and one to the parent.
When three chips of different colors fire, we send a red chip to the left child, a
blue chip to the right child, and the other chip to the parent. Suppose we have
a sorting property for labeled chip-firing, we say the property is true for colored
chip-firing if for every node i, j such that node i must contain a smaller chip
than node j in labeled chip-firing, node j cannot contain a red chip while node
i contain a blue chip in colored chip-firing. We have the following proposition
about the equivalence between colored chip-firing and labeled chip-firing from
Klivans’ book [6, Sect. 5.4].

Proposition 5.3. A sorting property is true for labeled chip-firing if and only
if it is true for all possible colorings of colored chip-firing.

Now, we will show a counterexample in colored chip-firing for counterex-
ample 5.2. First, let us quickly introduce a notation that will be useful. Denote
[i,XY Z], where X,Y,Z ∈ {R,B}, to be “fire three chips colored X,Y,Z at
node i” with R for red and B for blue. Thus, [1, RRB] means “fire two red
chips and one blue chips at node 1”. Furthermore, we will use [i,XY Z]n to
say “apply [i,XY Z] n times”.

Now, consider colored chip-firing with 63 chips, in which 23 chips are
colored red and 40 chips are colored blue, initially placed at the root. We will
first fire the red chips as follows:

[1, RRR]11 −→ [2, RRR]3 −→ [3, RRR]3 −→ [4, RRR] −→ [5, RRR] −→
[6, RRR] −→ [7, RRR] −→ [1, RRR]3 −→ [2, RRR]2 −→ [3, RRR]2 −→ [1, RRR]2

−→ [2, RRR] −→ [3, RRR] −→ [4, RRR] −→ [5, RRR] −→ [6, RRR] −→
[7, RRR] −→ [1, RRR] −→ [2, RRR] −→ [3, RRR] −→ [1, RRR]

At this moment, the red chips are arranged like in Fig. 6. Then we will
fire wisely so that in the subtree (2), we fire as many red chips as possible
out of the straight left descendants. In the subtree (3), on the other hand, we
fire the blue chips without touching the red chips. Specifically, we will fire as
follows:

[1, RBB] −→ [1, BBB]19 −→ [2, RBB]2 −→ [1, BBB] −→ [4, RRR] −→
[8, RRR] −→ [2, RBB] −→ [2, BBB]4 −→ [1, BBB] −→ [2, BBB] −→ [1, BBB]2

−→ [4, RBB]2 −→ [2, BBB] −→ [5, RBB] −→ [5, BBB]2 −→ [2, BBB] −→
[4, BBB] −→ [9, RBB] −→ [10, RBB] −→ [5, BBB] −→ [2, BBB] −→ [11, RBB]
−→ [10, RRB] −→ [11, RBB] −→ [5, RBB] −→ [1, BBB] −→ [3, BBB]8

−→ [1, BBB] −→ [2, BBB] −→ [4, BBB] −→ [8, RBB] −→ [9, RBB] −→
[1, BBB]4 −→ [2, BBB] −→ [4, BBB] −→ [5, BBB] −→ [2, BBB] −→ [1, BBB]
−→ [3, BBB]2 −→ [1, BBB] −→ [2, BBB] −→ [6, BBB]3 −→ [7, BBB]3

−→ [3, BBB]2 −→ [1, BBB] −→ [3, BBB] −→ [1, BBB] −→ [6, BBB] −→
[7, BBB] −→ [3, BBB] −→ [12, BBB] −→ [13, BBB] −→ [14, BBB] −→
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Figure 6. Counterexample 5.2—red chips arrangement (the
40 blue chips are still at the root)

[15, BBB] −→ [6, BBB] −→ [7, BBB] −→ [3, RBB] −→ [6, RRB] −→ [7, RBB]
−→ [12, RBB] −→ [13, BBB] −→ [14, RBB] −→ [15, BBB]

Thus, before the end game, the subtree (2) will look like Fig. 7, while
subtree (3) looks like Fig. 8. Now, we will fire in waves. In the first wave,
the red chip in node 8 will be sent to node 16, and thus when node 16 fires,
there will be only two red chips remaining among node 2 and its straight left
descendants. Hence, after three waves, nodes 32 and 16 will contain a red chip,
but node 8 will contain a blue chip. On the other hand, in the subtree (3) after
the first wave, nodes 12, 13, 14, and15 will each send one red chip back to their
parents. Then after the second wave, nodes 6, 7 will each send one red chip
back to node 3, so after the third wave, node 3 will send one red chip back to
node 1. Hence, after the fourth wave, node 4 will contain a red chip, which is
a counterexample since node 8 contains a blue chip (see Fig. 9).

We can label the 23 red chips from 1 to 23 and the blue chips from 24 to
63 to verify that this is indeed a counterexample for labeled chip-firing.

6. Firing Move Poset

In this section, we will study the poset of “end game” moves. Recall that in
Sect. 5, we defined “end game” moves in a firing process with 2n − 1 chips
to be the moves (i, j) where level(i) + j < n. In other words, the last j in-
stances of firing at node i, as long as this inequality hold. We also recall the
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Figure 7. Counterexample 5.2—subtree (2) before the end
game

Figure 8. Counterexample 5.2—subtree (3) before the end
game

relation (i1, j1) > (i2, j2) if (i1, j1) must occur before (i2, j2) and proved that([
i

2

]
, j

)
< (i, j) <

([
i

2

]
, j + 1

)
.

Now, let us give a rigorous definition for our poset.
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Figure 9. Counterexample 5.2—subtree (2) of the terminal
configuration

Definition 6.1. Define the partial ordered set Pn to be a set whose elements
are the moves (i, j) where level(i) + j < n, together with the binary relation
≤ where (i2, j2) ≤ (i1, j1) if (i1, j1) must not occur after (i2, j2).

The Hasse diagrams of P4 and P5 can be seen in Fig. 10. From the
definition of Pn, it is clear that P1 ⊂ P2 ⊂ P3 ⊂ · · · . Let us recall some
terminology common in enumerative combinatorics, e.g., see [9, Chapter 3].
We say that a poset P is a lattice if every pair of elements s, t has a unique
least upper bound (called a join, denoted s ∨ t) and a unique greatest lower
bound (called a meet, denoted s ∧ t). P is graded if there is a rank function
ρ : P → N such that ρ(s) = 0 for every minimal element s, and ρ(t) = ρ(s)+1
if element t covers s, meaning s ≤ t with no elements in between. This is often
denoted as s � t. Note that when P is graded, its rank function is also unique.
A lattice is modular if it is graded and its rank function ρ satisfies

ρ(s) + ρ(t) = ρ(s ∨ t) + ρ(s ∧ t)

for all s, t.
We will first show that the posets Pn are lattices.

Proposition 6.2. Pn is a lattice.

Proof. Consider any pair of elements (u, p) and (v, q), we will prove that their
join exists, and the argument for their meet follows analogously.

Since u and v are nodes of a binary tree, there exists a unique path from
u to v. Suppose the path is u = a0−a1−a2−· · ·−ai = w = bj−bj−1−· · ·−b1−
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Figure 10. Hasse diagrams of the posets P2, P3, P4, P5
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b0 = v with i, j ≥ 0 and ak, bk are children of ak+1, bk+1 for all k. For now, let
us temporarily remove the restriction level(i) + j < n for elements (i, j) ∈ Pn

and suppose that every element (i, j) is in Pn and Proposition 4.2 is true for
all elements. This temporary inclusion is only for our sake of convenience and
we will show that it will not affect our argument. With this inclusion, however,
we can now form the chains C1 : (u, p)� (a1, p+1)� · · ·� (w, p+ i)� (bj−1, p+
i) � · · · � (v, p + i) and C2 : (v, q) � (b1, q + 1) � · · · � (w, q + j) � (ai−1, q +
j) � · · · � (u, q + j) without any concern that some elements may not be in
Pn. It is worth noticing that in the C1, every element (a, b) is the element of
type (a, k) with the lowest value of k such that (a, k) ≥ (u, p). In other words,
every move (a, b) in the chain is the latest move of node a that must not occur
after (u, p). The same applies for C2.

If p + i ≤ q then (u, p) < (v, q), so their join is simply (v, q). Similarly, if
q+j ≤ p, then (v, q) < (u, p), so their join is simply (u, p). Suppose none of the
above inequalities is true, then since p+ i > q, we have (v, p+ i) > (v, q). Also,
since none of the above inequalities is true, (u, p) and (v, q) are incomparable,
there is an element in C1 such that it is larger than (v, q), but every element
before it is not comparable with (v, q). Suppose this element is (ak, p + k)
for some 0 < k ≤ i, we will see shortly that if this element is (bk, p + i) for
some 0 < k ≤ j then we can consider the chain C2 and the argument follows
analogously.

First, we will show that p+ k = q + j. It is easy to see that p+ k ≥ q + j,
since (ak, q + j) is the latest move of node ak that must not occur after (v, q).
On the other hand, if p+k > q+j, then p+k−1 ≥ q+j, so (ak−1, p+k−1) ≥
(ak−1, q+j) > (v, q), which is a contradiction since we assume (ak−1, p+k−1)
is incomparable with (v, q). Thus, p + k = q + j, so (ak, p + k) is also in C2.

Second, we will show that (ak, p + k) = (ak, q + j) plays the same role
in C2, that is, (ak, q + j) is the first element that is larger than (u, p) in C2.
Clearly, (ak, q + j) > (u, p), since it is an element of C1. Also, if k < i, then
(ak+1, q + j) < (ak+1, p + k + 1), which is the latest move of node ak+1 that
must not occur after (u, p), so (ak+1, q+j) is incomparable with (u, p). If k = i,
then similarly, (bj−1, p+ i−1) < (bj−1, p+ i), which is the latest move of node
bj−1 that must not occur after (u, p), so (bj−1, p + i − 1) is incomparable with
(u, p). Thus, (ak, p + k) = (ak, q + j) is the first element that is larger than
(u, p) in C2.

Next, we will show that (ak, p+k) is the join of (u, p) and (v, q). Clearly,
(ak, p + k) is an upper bound of (u, p) and (v, q). Consider an arbitrary upper
bound (s, t) 	= (ak, p + k), we will prove that (s, t) > (ak, p + k). Clearly, if
s = ak then t > p + k, so (s, t) > (ak, p + k). If s is one of the a0, a1, . . . , ak−1,
then if t < q + j, (s, t) is either smaller than or incomparable to (v, q), which
is a contradiction. If t ≥ q + j, then (s, t) > (ak, t) ≥ (ak, q + j). The analogous
argument applies in case s is one of the ak+1, . . . , w, . . . , b0. Lastly, if s is not
any of the nodes a0, . . . , w, . . . , b0, then there exists two chains (s, t)�(c1, d1)�
· · ·� (u, dl) ≥ (u, p) and (s, t)� (e1, f1)� · · ·� (v, fm) ≥ (v, q). Since our graph
is a tree, the paths s − c1 − · · · − u and s − e1 − · · · − v must merge at some
point, i.e., there exist r such that c1 = e1, c2 = e2, . . . , cr = er and cr = er is
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one of the nodes a0, . . . , w, . . . , b0. Thus, (s, t) > (cr, dr) ≥ (ak, p + k). Hence,
(ak, p + k) is the join of (u, p) and (v, q).

Finally, we will show that the above temporary inclusion of Pn does not
affect our result. This is because (1, n − 2) is the 1̂ element of Pn, so (1, n − 2)
is an upper bound of (u, p) and (v, q). Thus, (1, n − 2) > (ak, p + k), which
means (ak, p + k) is also an end game moves and thus is in the original Pn.
This completes the proof. �

Next, we define the following rank function ρ((i, j)) =level(i) + 2j. We
will prove that ρ makes Pn a graded poset.

Proposition 6.3. Pn equipped with the rank function ρ((i, j)) =level(i) + 2j is
graded.

Proof. This is trivial from the fact that for every element (i, j) ∈ Pn, there are

only three possible elements covering (i, j): (2i, j), (2i+1, j) and
([

i

2

]
, j + 1

)
.

It is easy to check that the rank of these elements are all ρ((i, j)) + 1. �
Now, we are ready to state our second theorem.

Theorem 6.4. Pn is a symmetric modular lattice.

Proof. The fact that Pn is a lattice and is graded has already been established,
so we now show that Pn is modular. Consider two arbitrary elements (u, p) and
(v, q), we will show that ρ((u, p))+ρ((v, q)) = ρ((u, p)∨(v, q))+ρ((u, p)∧(v, q)).
Reusing the notations in Proposition 6.2, suppose that the join of (u, p) and
(v, q) is (ak, p + k) with p + k = q + j, so ρ((u, p)) + k = ρ((u, p) ∨ (v, q)).
Similar to Proposition 6.2, we can find the meet of (u, p) and (v, q). If j ≥ k
then (u, p) ∧ (v, q) = (bk, q), and if j ≤ k then (u, p) ∧ (v, q) = (ai+j−k, p). In
both cases, we have ρ((u, p) ∧ (v, q)) + k = ρ((v, q)). This proves the equality
and hence modularity.

Symmetry is more straightforward. We will show that the involution
(i, j) → (i′, j) where i′ = 2level(i) + 2level(i)−1 − 1 − i is an automorphism that
gives vertical symmetry. This is an involution because level(i) = level(i′) = k
and i + i′ = 2k + 2k−1 − 1. This is an automorphism because there are only

three possible elements covering (i, j): (2i, j), (2i+1, j) and
([

i

2

]
, j + 1

)
. The

element (2i, j) is mapped to (2level(i)+1+2level(i)−1−2i, j) = (2i′+1, j), which
covers (i′, j). One can check that this also holds for the other two elements
analogously.

Furthermore, we also have the involution (i, j) → (i, j′) where j′ = (n −
1)− level(i)− j is an anti-automorphism that gives horizontal symmetry. This
can be proved similarly to the automorphism above. �

One may also ask if the lattice is a distributive lattice. Unfortunately, the
answer is no because already for the case of n ≥ 4, we see that the lattice Pn

contains the diamond M3, consisting of five elements on three ranks such that
there is a bottom element and a top element connected to each of the three
elements in the middle. This is a well-known obstruction to distributivity.
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Lastly, it can be seen that every poset Pn can be seen as a sublattice
of P∞. Consider the poset P∞ and let f(i) be the number of elements whose
rank is i, we have the following proposition on f(i).

Proposition 6.5. For all i > 0, we have

f(i) =

⎧⎪⎨
⎪⎩

2i+1 − 1
3

if i is odd
2i+1 − 2

3
if i is even

.

Proof. The easiest way to see this is that f(i) is the number of nodes whose
level has the same parity as i. The number of such nodes can actually be
written in binary form as a sequence of i digits, starting with 1, and the 1 and
0 digits alternate. This number is the sequence A000975 on OEIS and can be
easily calculated using the formula above. �

Corollary 6.6. For all n > 0, the number of firing moves in the end game, i.e.,
the number of vertices in lattice Pn, is 2n − (n + 1).

Proof. The easiest way to see this is to look at the waves in the end game. In
the ith wave, we fire every node from level 1 to n − i, so there are 2n−i − 1
moves in the ith wave. Thus, there are

∑n−1
i=1 2n−i − 1 = 2n − (n + 1) moves

in the end game.
Another way to prove this corollary is to note that the map φ that sends

every move (i, j) to (i, n−1−level(i)−j) is an order-reversing Pn-isomorphism.
Then the result follows from Proposition 6.5. �

7. Further Questions

Two natural questions that arise in our study are
1. What are the reachable terminal configurations?
2. How many reachable terminal configurations are there?

The answer for the cases n = 1 and 2 is straightforward. We also know
the answer when n = 3. By Theorem 1.2 and Proposition 4.5, we know that
nodes 4, 2, 3, 7 have to contain the chips 1, 2, 6, 7, respectively. However, the
other nodes do not have to contain a fixed chip, so in Fig. 11, (a, b, c) can be an
arbitrary permutation of (3, 4, 5). Indeed, we can check that every permutation
gives a reachable terminal configuration. Thus, there are 6 reachable terminal
configurations in total.

The situation quickly becomes more complicated when n = 4. Again,
by Theorem 1.2 and Proposition 4.5, we know that nodes 8, 4, 7, 15 have to
contain the chips 1, 2, 14, 15 respectively, but the other 11 nodes do not have
to contain a fixed chip. Even though there are additional relations among the
nodes, those relations do not decrease the number of reachable configurations
down to some small numbers. In fact, as we were finishing this paper, Patrick
Liscio coded up the n = 4 case in python and shared his code with us. He found
a total of 36220 possible terminal configurations, which can be found here. In
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Figure 11. Terminal configurations when n = 3

Figure 12. Terminal configurations when n = 4

addition, by Proposition 4.4, with xis being the chips in Fig. 12, we know that
x1 < x5;x2, x3 < x4 < x5;x2 < x6 < x10;x7 < x8 < x10, x9;x7 < x11. Indeed,
these relations are all we can have, that is, for every other pair (xi, xj), there
is a reachable configuration in which xi < xj and one in which xi > xj .

Another question is which terminal configuration are we most likely to
get if we fire randomly. In the case n = 3, we know that we will fire 6 moves,
in which 4 are end game moves. We already know that end game moves do
not affect the terminal configuration, so the terminal configuration is actually
determined by the first 2 moves at the root. There are

(
7
3

)(
5
3

)
= 350 possible

ways we can fire the first two moves. We found that, with {a, b, c} being the
chips in Fig. 11, the permutation (a, b, c) = (3, 4, 5) occurs 216 times, (3, 5, 4)
and (4, 3, 5) both occur 54 times, (5, 3, 4) and (4, 5, 3) both occur 12 times,
and (5, 4, 3) only occur twice. Specifically, to get the (5, 4, 3) configuration, in
the first 2 moves, we have to fire the chips in triplets as {1, 2, 3} and {5, 6, 7}.
To get the (5, 3, 4) configuration, we can either fire the triplet {5, 6, 7} then
any triplet except {1, 2, 3}, or we can first fire any triplet among the chips
1, 2, 3, 4 except {1, 2, 3} then fire {5, 6, 7}, which gives 12 ways in total. The
analogous argument applies for the the (4, 5, 3) configuration, which also gives
12 ways in total. To get the (3, 5, 4) configuration, we have to fire {x, y, 4} where
x, y,< 4 and not fire {1, 2, 3} or {5, 6, 7}, it can be checked that there are 54
ways in total. Similarly, there are 54 ways to get the (4, 3, 5) configuration.
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Figure 13. Most likely terminal configuration when n = 3

Figure 14. Most likely terminal configuration when n = 4

Finally, every other way will give the (3, 4, 5) configuration; thus, the most
likely terminal configuration is the one in Fig. 13.

In the n = 4 case, it takes 23 firing moves (see Corollary 3.7) to get from
the initial configuration to a terminal configuration. In light of Corollary 6.6,
11 of these moves take place in the end game and do not affect the resulting
terminal configuration. Using the aforementioned python code from Patrick
Liscio for the n = 4 case, the most likely terminal configuration is the one
in Fig. 14 with a frequency of approximately 3.846%. When n ≥ 5, however,
the number of possible terminal configurations grows so fast that we could not
get reliable data to estimate relative frequencies of different terminal config-
urations. Liscio’s code also gave the min and max bounds for chip labels at
different nodes, as shown in the data in the Appendix. In particular, even in
the n = 4 case, there are restrictions on the possible terminal configurations
(i.e., on the values of x1, x2, . . . , x11) beyond the fifteen inequalities mentioned
above due to Propositions 4.4 and 4.5. This continues to be an interesting area
for future work.

It is noticeable that in both cases, the most likely terminal configuration
is a binary search tree. Recall from section 5 that a binary search tree is a
binary tree in which for every node, its chip is larger than all chips in its left
subtree, and is smaller than all chips in its right subtree. For a full binary
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tree on n levels using the labels 1, 2, . . . , 2n − 1, there is a unique such binary
search tree. We thus make the following conjecture.

Conjecture 7.1. For all n, the most likely terminal configuration is the unique
binary search tree on the complete binary search tree on 2n − 1 nodes.

Remark. One way to view the terminal configuration is to list the chips from
left to right. This will turn any terminal configuration to a permutation in
S2n−1. For example, the binary tree in Fig. 14 corresponds to the identity
permutation in S15 (see the Appendix for another example). Thus, another way
to phrase Conjecture 7.1 is “For all n, the most likely terminal configuration
corresponds to the identity permutation in S2n−1.”

While it might be tempting to suggest that configurations with fewer
inversions occur with higher probability, this is not necessarily true. For ex-
ample, configurations with two inversions in the middle occur more frequently
than those with one inversion toward either side of the tree.

Another natural question is what happens if we start with any number
of chips, not necessarily 2n − 1. However, by Corollary 3.4, if we do not start
with 2n − 1 chips, in the terminal configurations, some node has two chips.
Thus, some end game moves will occur when the node has more than three
chips. This means that we will not have confluence in the end game. Hence,
many results here will not hold. For example, if we start with 2n chips, we can
keep the chip labeled 1 at the root and never fire it. Hence not only would
the first part of our main theorem (Theorem 1.2) no longer hold, but the
second part of our main theorem regarding the labels of bottom straight left
and right descendants would also fail. It is an interesting open question for
future research to determine what restrictions, if any, there are on labelings of
terminal configurations when we do not start with 2n − 1 chips at the root.

Postscript: As we were completing this paper, we learned about the work by
Hugunin and Roman at an REU at University of Washington [8] that also
considered labeled chip-firing on trees, although under different definitions
than our setup. It would be interesting for future work to compare our two
approaches and the different questions that the two projects focused on.
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A. Liscio’s Code Results

How to read:
- First section:
Max/min at [Node]: [Chip]
[Tree in which max/min occurs]
Here, [Node] is labeled using the convention of Fig. 4, i.e., the root is

node 1 and every node i has a left child labeled 2i and a right child labeled
2i + 1.

[Chip] is the label of the unique chip at [Node] in the terminal configu-
ration. Max/min refers to the label of the chip at [Node].

- Second section:
[Tree], [# Inversions]
- Tree: read from left to right
Ex: [1, 2, 3, 4, 5, 6, 7, 12, 8, 9, 10, 13, 11, 14, 15] means

12

4 13

2 6 9 14

1 3 5 7 8 10 11 15
RESULT:
Number of configurations: 36220
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Max at 1: 12
[1, 2, 3, 4, 5, 6, 7, 12, 8, 9, 10, 13, 11, 14, 15]
Min at 1: 4
[1, 2, 5, 3, 6, 7, 8, 4, 9, 10, 11, 12, 13, 14, 15]

Max at 2: 8
[1, 2, 3, 8, 4, 9, 10, 11, 5, 6, 7, 12, 13, 14, 15]
Min at 2: 3
[1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Max at 3: 13
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 12, 14, 15]
Min at 3: 8
[1, 2, 3, 4, 9, 10, 11, 5, 6, 7, 12, 8, 13, 14, 15]

Max at 4: 2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Min at 4: 2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Max at 5: 11
[1, 2, 3, 4, 5, 11, 12, 6, 7, 8, 9, 10, 13, 14, 15]
Min at 5: 5
[1, 2, 6, 3, 4, 5, 8, 7, 9, 10, 11, 12, 13, 14, 15]

Max at 6: 11
[1, 2, 3, 4, 5, 6, 7, 9, 8, 11, 12, 13, 10, 14, 15]
Min at 6: 5
[1, 2, 3, 6, 7, 8, 9, 10, 4, 5, 11, 12, 13, 14, 15]

Max at 7: 14
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Min at 7: 14
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Max at 8: 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Min at 8: 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Max at 9: 10
[1, 2, 10, 3, 4, 5, 12, 6, 7, 8, 9, 11, 13, 14, 15]
Min at 9: 3
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
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Max at 10: 10
[1, 2, 3, 4, 10, 11, 12, 5, 6, 7, 8, 9, 13, 14, 15]
Min at 10: 3
[1, 2, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Max at 11: 13
[1, 2, 3, 4, 5, 6, 13, 7, 8, 9, 10, 11, 12, 14, 15]
Min at 11: 7
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Max at 12: 9
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Min at 12: 3
[1, 2, 4, 5, 6, 7, 8, 9, 3, 10, 11, 12, 13, 14, 15]

Max at 13: 13
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 11, 12, 14, 15]
Min at 13: 6
[1, 2, 3, 7, 8, 9, 10, 11, 4, 5, 6, 12, 13, 14, 15]

Max at 14: 13
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Min at 14: 6
[1, 2, 3, 5, 7, 8, 9, 10, 4, 11, 12, 13, 6, 14, 15]

Max at 15: 15
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Min at 15: 15
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

SAMPLE OF THE FULL RESULT:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 0
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15], 1
[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 1
[1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 1
[1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 11, 12, 13, 14, 15], 1
[1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15], 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 12, 14, 15], 1
[1, 2, 3, 4, 5, 6, 7, 10, 8, 9, 11, 12, 13, 14, 15], 2
[1, 2, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 11, 12, 14, 15], 2
[1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 12, 11, 13, 14, 15], 2
[1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11, 13, 12, 14, 15], 2
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 11, 14, 15], 2
[1, 2, 3, 4, 5, 6, 8, 9, 7, 10, 11, 12, 13, 14, 15], 2
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[1, 2, 5, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 4, 5, 6, 9, 7, 8, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 11, 13, 12, 14, 15], 2
[1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15], 2
[1, 2, 4, 3, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15], 2
[1, 2, 4, 3, 5, 6, 7, 9, 8, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 5, 4, 6, 7, 9, 8, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 4, 5, 7, 8, 6, 9, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 4, 5, 6, 7, 9, 8, 10, 11, 13, 12, 14, 15], 2
[1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 11, 13, 14, 15], 2
[1, 2, 3, 5, 4, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15], 2
[1, 2, 3, 5, 4, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15], 2
[1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 13, 12, 14, 15], 2

...
[1, 2, 9, 5, 4, 10, 13, 8, 3, 6, 12, 11, 7, 14, 15], 25
[1, 2, 4, 5, 10, 11, 13, 9, 3, 7, 8, 12, 6, 14, 15], 25
[1, 2, 9, 4, 5, 10, 13, 8, 3, 7, 12, 11, 6, 14, 15], 25
[1, 2, 10, 5, 4, 8, 13, 11, 3, 6, 9, 12, 7, 14, 15], 25
[1, 2, 10, 4, 8, 9, 13, 7, 3, 5, 6, 11, 12, 14, 15], 25
[1, 2, 9, 4, 7, 10, 13, 5, 3, 8, 12, 11, 6, 14, 15], 25
[1, 2, 8, 6, 4, 11, 13, 7, 3, 5, 12, 10, 9, 14, 15], 25
[1, 2, 8, 4, 7, 11, 13, 5, 3, 9, 12, 10, 6, 14, 15], 25
[1, 2, 9, 6, 4, 10, 13, 7, 3, 5, 12, 11, 8, 14, 15], 25
[1, 2, 8, 4, 5, 11, 13, 9, 3, 7, 12, 10, 6, 14, 15], 25
[1, 2, 7, 6, 4, 11, 13, 9, 3, 5, 12, 10, 8, 14, 15], 25
[1, 2, 8, 5, 4, 11, 13, 9, 3, 6, 12, 10, 7, 14, 15], 25
[1, 2, 10, 6, 4, 7, 13, 11, 3, 5, 9, 12, 8, 14, 15], 25
[1, 2, 10, 5, 4, 9, 13, 8, 3, 6, 11, 12, 7, 14, 15], 25
[1, 2, 10, 6, 4, 9, 13, 7, 3, 5, 11, 12, 8, 14, 15], 25
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