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Two Enriched Poset Polytopes
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Abstract. Stanley introduced and studied two lattice polytopes, the or-
der polytope and chain polytope, associated with a finite poset. Recently,
Ohsugi and Tsuchiya introduce an enriched version of them, called the en-
riched order polytope and enriched chain polytope. In this paper, we give
a piecewise-linear bijection between these enriched poset polytopes, which
is an enriched analogue of Stanley’s transfer map and bijectively proves
that they have the same Ehrhart polynomials. Also, we construct explic-
itly unimodular triangulations of two enriched poset polytopes, which are
the order complexes of graded posets.
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1. Introduction

We assume that readers are familiar with the definition of a poset presented
in [9, Chapter 3]. Let P be a finite poset with d elements. We denote by
R

P the vector space of all real-valued functions on P , and identify R
P with

the Euclidean space R
d. The order polytope O(P ) of P is the subset of R

P

consisting of all functions f : P → R satisfying the following two conditions:
(i) 0 ≤ f(v) ≤ 1 for all v ∈ P ;
(ii) If x < y in P , then we have f(x) ≤ f(y).

And the chain polytope C(P ) of P is the subset of R
P consisting of all functions

g : P → R satisfying the following two conditions:
(i) g(v) ≥ 0 for all v ∈ P ;
(ii) If v1 > · · · > vr is a chain in P , then we have g(v1) + · · · + g(vr) ≤ 1.

Then it is known (see [10, Corollary 1.3 and Theorem 2.2]) that O(P ) and
C(P ) are convex polytopes whose vertex sets are given by

F(P ) = {χF : F is an order filter ofP},
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A(P ) = {χA : A is an antichain ofP},

respectively, where χS is the characteristic function of a subset S ⊂ P defined
by χS(v) = 1 if v ∈ S and 0 otherwise. Here, an order filter of P is a subset
F ⊂ P , such that if v ∈ F and v < w, then w ∈ F . In particular, we have

O(P ) = conv F(P ), C(P ) = conv A(P ),

where conv S denotes the convex hull of S. These poset polytopes are related
via the transfer map.

Theorem 1.1. (Stanley [10, Theorem 3.2]) We define a piecewise-linear map
Φ : R

P → R
P , called the transfer map, by

(Φf) (v) =

{
f(v) if v is minimal inP,

f(v) − max{f(w) : v coversw inP} if v is not minimal inP

(1)
for f ∈ R

P and v ∈ P . Then Φ induces a continuous bijection from O(P ) to
C(P ). In particular, Φ provides a bijection between mO(P )∩Z

P and mC(P )∩
Z

P for any nonnegative integer m, where mP = {mf : f ∈ P} is the mth
dilation of a polytope P and Z

P is the set of all integer-valued functions on P .

The transfer map enables us to compare certain properties of O(P ) and
C(P ). For example, the two polytopes O(P ) and C(P ) have the same Ehrhart
polynomials, that is

#
(
mO(P ) ∩ Z

P
)

= #
(
mC(P ) ∩ Z

P
)
. (2)

We note that the polynomial #
(
mO(P ) ∩ Z

P
)

in m is the order polynomial
(with a shifted argument) of the poset P , which counts the number of P -
partitions. A map h : P → Z≥0, where Z≥0 is the set of nonnegative integers,
is called a P -partition if v ≤ w implies h(v) ≤ h(w). Then mO(P ) ∩ Z

P is
the set of all P -partitions h : P → Z≥0, such that h(v) ≤ m for all v ∈ P .
Hence, the transfer map Φ gives a bijection between such P -partitions and
lattice points in the mth dilation of the chain polytope C(P ). In a very recent
work, Higashitani [4] proves that O(P ) and C(P ) are combinatorially mutation-
equivalent using the transfer map Φ. The notion of combinatorial mutation was
introduced from viewpoints of mirror symmetry for Fano manifolds. Also, we
can transfer a canonical triangulation of O(P ), which is the order complex of
a graded poset as simplicial complexes, to C(P ) via the transfer map Φ.

Theorem 1.2. (Stanley [10, Section 5]) For a chain C = {F1 � F2 � · · · � Fk}
of order filters of P , we put

SC = conv{χF1 , . . . , χFk
}, TC = conv{Φ(χF1), . . . ,Φ(χFk

)}. (3)

Then we have
(a) The collection SP = {SC : C is a chain of order filters} is a unimodular

triangulation of the order polytope O(P ).
(b) The collection TP = {TC : C is a chain of order filters} is a unimodular

triangulation of the chain polytope C(P ).
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In the last decade, many authors have generalized order polytopes and
chain polytopes together with their connecting transfer maps. These general-
izations include marked poset polytopes [1] and double poset polytopes [2,3].

Recently from a viewpoint of (left) enriched P -partitions, Ohsugi–Tsuchiya
[7,8] introduced an enriched version of order polytopes and chain polytopes as
follows. We define F (e)(P ) and A(e)(P ) by putting

F (e)(P ) =

⎧⎨
⎩f ∈ Z

P :
(i) f(v) ∈ {1, 0,−1} for any v ∈ P,
(ii) supp(f) is an order filter ofP, and
(iii) if f(v) = −1, then v is minimal in supp(f)

⎫⎬
⎭ ,

(4)

A(e)(P ) =
{

f ∈ Z
P :

(i) f(v) ∈ {1, 0,−1} for any v ∈ P, and
(ii) supp(f) is an antichain ofP

}
, (5)

where supp(f) = {v ∈ P : f(v) �= 0}. Then the enriched order polytope
O(e)(P ) and the enriched chain polytope C(e)(P ) are defined as the convex
hulls of F (e)(P ) and A(e)(P ), respectively:

O(e)(P ) = conv F (e)(P ), C(e)(P ) = conv A(e)(P ).

(Note that enriched chain polytopes were independently introduced by Kohl,
Olsen, and Sanyal [5, Section 7] under the name of unconditional chain poly-
topes.) Since F(P ) = F (e)(P ) ∩ {0, 1}P and A(P ) = A(e)(P ) ∩ {0, 1}P , we
have O(P ) ⊂ O(e)(P ) and C(P ) ⊂ C(e)(P ). Then, as an enriched version of
(2), Ohsugi–Tsuchiya [8] used a commutative algebra technique to prove

#
(
mO(e)(P ) ∩ Z

P
)

= #
(
mC(e)(P ) ∩ Z

P
)

(6)

for any nonnegative integer m. It is a natural problem to find a bijective proof
of this equality (6).

For a nonnegative integer m, we denote by Em(P ) the set of all left
enriched P -partitions h : P → Z, such that |h(v)| ≤ m for any v ∈ P
(see Sect. 2.4 for the definition of left enriched P -partitions). Then we have
F (e)(P ) = O(e)(P )∩Z

P = E1(P ), and if m ≥ 2, then a map h ∈ mO(e)(P )∩Z
P

is not always a left enriched P -partition (see [8, Example 4.2]). However it is
known ([7, Theorem 0.2 and its proof]) that there is an explicit bijection be-
tween mC(e)(P ) ∩ Z

P and Em(P ). This and (6) are the reasons why we call
O(e)(P ) and C(e)(P ) “enriched” poset polytopes.

One of the main results of this paper is the following theorem, which
gives a bijective proof of (6).

Theorem 1.3. We define a piecewise-linear map Φ(e) : R
P → R

P , which we
call the enriched transfer map, inductively on the ordering of P , such that the
value of Φ(e)(f) at v is equal to⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f(v) if v is minimal inP,

f(v) − max

{
r∑

i=1

∣∣∣(Φ(e)f
)

(vi)
∣∣∣ : v > v1 > · · · > vr is a chain inP

}

if v is not minimal inP.

(7)
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Then Φ(e) induces a continuous bijection from O(e)(P ) to C(e)(P ). In partic-
ular, Φ(e) provides a bijection between mO(e)(P ) ∩ Z

P and mC(e)(P ) ∩ Z
P for

any nonnegative integer m.

Moreover, by composing with Φ(e), we also obtain an explicit bijection
between mO(e)(P ) ∩ Z

P and Em(P ) for any nonnegative integer m (Proposi-
tion 2.9).

It can be shown (see Proposition 2.7) that the restriction of Φ(e) to O(P )
gives a continuous piecewise-linear bijection between O(P ) and C(P ), which
coincides with the restriction of Stanley’s transfer map Φ in Theorem 1.1.
Also, by the same technique of [4], we can show that O(e)(P ) and C(e)(P ) are
combinatorially mutation-equivalent using the enriched transfer map Φ(e) (see
[4, Section 5]).

Ohsugi–Tsuchiya [7,8] constructed triangulations of enriched order and
chain polytopes using the algebraic technique of Gröbner bases. Also, Kohl–
Olsen–Sanyal [5] constructed triangulations of enriched chain polytopes from a
viewpoint of convex geometry. Another main result of this paper is an explicit
combinatorial description of triangulations of two enriched poset polytopes,
which are the order complexes of graded posets as simplicial complexes and
are transferred by the enriched transfer map Φ(e). Our result is analogous to
Stanley’s canonical triangulations of two poset polytopes (see Theorem 1.2).

Theorem 1.4. We equip F (e)(P ) with a poset structure by the partial ordering
given in Definition 3.1. For a chain K in F (e)(P ), we define

S
(e)
K = conv K, T

(e)
K = conv Φ(e)(K). (8)

Then we have the following:

(a) The set S(e)
P = {S

(e)
K : K is a chain in F (e)(P )} is a unimodular triang-

ulation of O(e)(P ).
(b) The set T (e)

P = {T
(e)
K : K is a chain in F (e)(P )} is a unimodular triang-

ulation of C(e)(P ).

Remark that the partial ordering on F (e)(P ) given in Definition 3.1 is an
extension of the inclusion ordering on the set of order filters of P , so the poset
F(P ) is the induced subposet of F (e)(P ). Stanley gave the defining inequalities
of facets of the canonical triangulations SP and TP of O(P ) and C(P ) ( [10, Sec-
tion 5]). We also give sets of defining inequalities of facets of the triangulation
S(e)

P and T (e)
P of O(e)(P ) and C(e)(P ) (Corollary 3.16 and Proposition 3.18).

On the other hand, we identify these triangulations with Ohsugi–Tsuchiya’s
triangulations algebraically obtained in [7,8] (Propositions 4.2 and 4.4).

The rest of this paper is organized as follows. In Sect. 2, we prove Theo-
rem 1.3, and give an explicit bijection between left enriched P -partitions and
lattice points of the dilated enriched order polytope. Sect. 3 is devoted to the
proof of Theorem 1.4. We also give sets of defining inequalities for the maximal
faces. In Sect. 4, we prove that the triangulations described in Theorem 1.4
coincide with the Ohsugi–Tsuchiya’s triangulations.
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2. Enriched Transfer Map

In this section, we give a proof of Theorem 1.3, and we use the enriched
transfer map to describe a bijection between left enriched P -partitions and
lattice points of the dilated enriched order polytope.

2.1. Notations

In what follows, we use the following notations and terminologies. Let P be a
finite poset. For v, w ∈ P , we say that v covers w, written v � w, if v > w and
there is no element u such that v > u > w. Given an antichain A, we denote
by 〈A〉 the smallest order filter containing A. Given an element v ∈ P , we put

P≤v = {w ∈ P : w ≤ v}, P<v = {w ∈ P : w < v}.

For a subposet Q of P , we denote by max Q and min Q the set of maximal and
minimal elements of Q, respectively. For a chain C = {v1 > v2 > · · · > vr} of
Q, we say that

• C is saturated if vi � vi+1 for i = 1, . . . , r − 1;
• C is maximal if it is saturated and v1 ∈ max Q and vr ∈ min Q.

Let C(Q), SC(Q), and MC(Q) be the sets of all chains, all saturated chains and
all maximal chains, respectively. We denote by top C the maximum element
of a chain C. For f ∈ R

P and a chain C = {v1 > · · · > vr}, we define

S(f ;C) = |f(v1)| + · · · + |f(vr)|,
T+(f ;C) = −f(v1) − 2f(v2) − · · · − 2r−2f(vr−1) + 2r−1f(vr),

T−(f ;C) = −f(v1) − 2f(v2) − · · · − 2r−2f(vr−1) − 2r−1f(vr).

Note that, if C is a one-element chain {v}, then T+(f ; {v}) = f(v) and
T−(f ; {v}) = −f(v).

2.2. Defining Inequalities for Enriched Poset Polytopes

Our proof of Theorem 1.3 is based on the defining inequalities of O(e)(P ) and
C(e)(P ) given by [8].

Proposition 2.1. ([7, Lemma 1.1], [8, Proposition 6.1 and Theorem 6.2]) We
have

O(e)(P ) =

{
f ∈ R

P :
T+(f ;C) ≤ 1 for allC ∈ SC(P ) with topC ∈ max(P )
T−(f ;C) ≤ 1 for allC ∈ MC(P )

}
,

(9)

and
C(e)(P ) =

{
g ∈ R

P : S(g;C) ≤ 1 for allC ∈ MC(P )
}

. (10)

Example 2.2. Let Λ be the three-element poset on {u, v, w} with covering re-
lations u � w and v � w. If we identify R

Λ with R
3 by the correspondence

f ↔ (f(u), f(v), f(w)), we have

F (e)(Λ) =
{

(0, 0, 0), (0, 0, 1), (0, 0,−1), (1, 0, 1), (−1, 0, 1), (0, 1, 1), (0,−1, 1)
(1, 1, 1), (1,−1, 1), (−1, 1, 1), (−1,−1, 1)

}
,
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A(e)(Λ) =
{

(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)
(1, 1, 0), (1,−1, 0), (−1, 1, 0), (−1,−1, 0)

}
,

and

O(e)(Λ) =

⎧⎨
⎩f ∈ R

Λ :
f(w) ≤ 1
−f(u) + 2f(w) ≤ 1, −f(v) + 2f(w) ≤ 1
−f(u) − 2f(w) ≤ 1, −f(u) − 2f(w) ≤ 1

⎫⎬
⎭ ,

C(e)(Λ) =
{
g ∈ R

Λ : |g(u)| + |g(w)| ≤ 1, |g(v)| + |g(w)| ≤ 1
}

.

2.3. Proof of Theorem 1.3

In this subsection, we prove Theorem 1.3. The inductive definition (7) of Φ(e)

can be written as(
Φ(e)(f)

)
(v)

=

{
f(v) if v is minimal in P,

f(v) − max{S(Φ(e)(f);C) : C ∈ C(P<v)} if v is not minimal inP.

(11)

It is easy to see that the map Φ(e) : R
P → R

P is a bijection.

Lemma 2.3. The map Φ(e) : R
P → R

P is a bijection with inverse map Ψ(e)

given by(
Ψ(e)(g)

)
(v)

=

{
g(v) if v is minimal inP,

g(v) + max{S(g;C) : C ∈ C(P<v)} if v is not minimal inP.

(12)

Here, we note that

max{S(g;C) : C ∈ C(P<v)} = max{S(g;C) : C ∈ MC(P<v)};

hence, we may replace C(P<v) with MC(P<v) in (11) and (12). The following
proposition follows from the definitions of Φ(e) and Ψ(e).

Proposition 2.4. (a) For f ∈ F (e)(P ), we have

(Φ(e)(f))(v) =

{
f(v) if v is minimal in supp(f),
0 otherwise.

In particular, Φ(e)(f) ∈ A(e)(P ) and supp Φ(e)(f) = min(supp(f)).
(b) For g ∈ A(e)(P ), we have

(Ψ(e)(g))(v) =

⎧⎪⎨
⎪⎩

1 if v ∈ 〈supp(g)〉 \ min〈supp(g)〉,
g(v) if v ∈ min〈supp(g)〉,
0 otherwise.

In particular, Ψ(e)(g) ∈ F (e)(P ) and supp Ψ(e)(g) = 〈supp(g)〉.
(c) The map Φ(e) induces a bijection between F (e)(P ) and A(e)(P ).



Two Enriched Poset Polytopes 263

To prove Theorem 1.3, we need to prepare two lemmas. We put

M(g;P≤v) = max{S(g;C) : C ∈ MC(P≤v)},

M(g;P<v) = max{S(g;C) : C ∈ MC(P<v)}.

Lemma 2.5. Let f ∈ R
P and v ∈ P . We put

T (f ; v) = {T+(f ;C) : C ∈ SC(P≤v) with topC = v}
∪{T−(f ;C) : C ∈ MC(P≤v)}.

Then, for any C ∈ MC(P≤v), there exists an element T ∈ T (f ; v) such that
S(Φ(e)(f);C) ≤ T .

Proof. We write g = Φ(e)(f). We proceed by induction on the ordering of P .
If v is a minimal element, then C is a one-element chain {v} and

S(g;C) = |g(v)| = |f(v)| =

{
f(v) = T+(f ;C) if f(v) ≥ 0,

−f(v) = T−(f ;C) if f(v) ≤ 0.

If v is not a minimal element, then by definition

g(v) = f(v) − M(g;P<v).

Let C = {v = v1 � v2 � · · · � vr}. Since C\{v} = {v2 � · · · � vr} ∈ MC(P<v),
we have

S(g;C \ {v}) ≤ M(g;P<v).

If g(v) = f(v) − M(v;P<v) ≥ 0, then we have

S(g;C) = f(v) − M(g;P<v) + S(g;C \ {v})

≤ f(v) = T+(f ; {v}).

If g(v) ≤ 0, then we have

S(g;C) = −f(v) + M(g;P<v) + S(g;C \ {v})

≤ −f(v) + 2M(g;P<v).

Let C ′ ∈ MC(P<v) be a chain which attains the maximum M(g;P<v). Then,
by applying the induction hypothesis to C ′ and w = top C ′, there exists a
chain C ′′ satisfying one of the following conditions:

(i) C ′′ ∈ SC(P≤w) with topC ′′ = w and S(g;C ′) ≤ T+(g;C ′′);
(ii) C ′′ ∈ MC(P≤w) and S(g;C ′) ≤ T−(g;C ′′).

In the case (i), we have

S(g;C) ≤ −f(v) + 2S(g;C ′) ≤ −f(v) + 2T+(g;C ′′) = T+(g; {v} ∪ C ′′),

and in the case (ii), we have

S(g;C) ≤ −f(v) + 2S(g;C ′) ≤ −f(v) + 2T−(g;C ′′) = T−(g; {v} ∪ C ′′).

Since v � w, we can complete the proof. �
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Lemma 2.6. Let g ∈ R
P and v ∈ P . For a chain C = {v1 � v2 � · · · � vr} ∈

SC(P≤v1), we have

2r−1 (|g(vr)| +M(g;P<vr )) +

r−1∑
i=1

2r−i−1 (
|g(vr−i)| − M(g;P<vr−i)

)
≤ M(g;P≤v1).

Proof. We proceed by induction on r. If r = 1, then

|g(v1)| + M(g;P<v1) = |g(v1)| + max{S(g;C ′) : C ′ ∈ MC(P<v1)}
= max{|g(v1)| + S(g;C ′) : C ′ ∈ MC(P<v1)}
= max{S(g;C) : C ∈ MC(P≤v1)}
= M(g;P≤v1).

Let r ≥ 2. Since {vr} ∪ C ′ ∈ MC(P<vr−1) for any C ′ ∈ MC(P<vr
), we

have

|g(vr)| + M(g;P<vr
) = |g(vr)| + max{S(g;C ′) : C ′ ∈ MC(P<vr

)}
≤ max{S(g;C ′′) : C ′′ ∈ MC(P<vr−1)} = M(g;P<vr−1).

Hence, we have

2r−1 (|g(vr)| + M(g;P<vr
)) + 2r−2

(
|g(vr−1)| − M(g;P<vr−1)

)
≤ 2r−1M(g;P<vr−1) + 2r−2

(
|g(vr−1)| − M(g;P<vr−1)

)
= 2r−2

(
|g(vr−1)| + M(g;P<vr−1)

)
.

Therefore, using the induction hypothesis, we see that

2r−1 (|g(vr)| + M(g;P<vr
)) +

r−1∑
i=1

2r−i−1
(
|g(vr−i)| − M(g;P<vr−i

)
)

≤ 2r−2
(
|g(vr−1)| + M(g;P<vr−1)

)
+

r−1∑
i=2

2r−i−1
(
|g(vr−i)| − M(g;P<vr−i

)
)

≤ M(g;P≤v1).

This completes the proof. �

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. First, we shall prove that f ∈ O(e)(P ) implies Φ(e)(f) ∈
C(e)(P ). Let f ∈ O(e)(P ) and put g = Φ(e)(f). We show that S(g;C) ≤ 1 for
all maximal chains C = {v1 � v2 � · · · � vr} ∈ MC(P ). By Lemma 2.5, there
exists a chain C ′ satisfying one of the following conditions:

(i) C ′ ∈ SC(P≤v1) with top C ′ = v1 and S(g;C) ≤ T+(f ;C ′);
(ii) C ′ ∈ MC(P≤v1) and S(g;C) ≤ T−(f ;C ′).

Then it follows from (9) in Proposition 2.1 that S(g;C) ≤ 1. Hence, using
(10), we conclude that g ∈ C(e)(P ).

Conversely, we show that g ∈ C(e)(P ) implies Ψ(e)(g) ∈ O(e)(P ). Let
g ∈ C(e)(P ) and put f = Ψ(e)(g). We need to prove that T+(f ;C) ≤ 1 for all
C ∈ SC(P ) with topC ∈ max(P ) and that T−(f ;C) ≤ 1 for all C ∈ MC(P ).
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Suppose C = {v1 � v2 � · · · � vr} ∈ SC(P ) with v1 ∈ max(P ). Then by
definition

T+(f ;C) = 2r−1f(vr) −
r−1∑
i=1

2r−i−1f(vr−i)

= 2r−1 (g(vr) + M(g;P<vr
)) −

r−1∑
i=1

2r−i−1
(
g(vr−i) + M(g;P<vr−i

)
)
.

Using x ≤ |x| and −x ≤ |x|, we see that

T+(f ;C) ≤ 2r−1 (|g(vr)| + M(g;P<vr
)) +

r−1∑
i=1

2r−i−1
(
|g(vr−i)| − M(g;P<vr−i

)
)
.

Then, using Lemma 2.6, we obtain

T+(f ;C) ≤ M(g;P≤v1) = max{S(g;C ′) : C ′ ∈ MC(P≤v1)}.

Since S(g;C ′) ≤ 1 for all C ′ ∈ MC(P≤v1) by (10), we have T+(f ;C) ≤ 1.
Suppose C = {v1 � v2 � · · · � vr} ∈ MC(P ). Then v1 ∈ max(P ) and

vr ∈ min(P ). It follows from the definition that

T−(f ;C) = −2r−1f(vr) −
r−1∑
i=1

2r−i−1f(vr−i)

= −2r−1g(vr) −
r−1∑
i=1

2r−i−1
(
g(vr−i) + M(g;P<vr−i

)
)
.

Using x ≤ |x| and −x ≤ |x|, we see that

T−(f ;C) ≤ 2r−1|g(vr)| +
r−1∑
i=1

2r−i−1
(
|g(vr−i)| − M(g;P<vr−i

)
)
.

Since {vr} ∈ MC(P<vr−1), we have |g(vr)| ≤ M(g;P<vr−1). Hence, we have

T−(f ;C) ≤ 2r−1M(g;P<vr−1) + 2r−2
(
|g(vr−1)| − M(g;P<vr−1)

)
+

r−1∑
i=2

2r−i−1
(
|g(vr−i)| − M(g;P<vr−i

)
)

= 2r−2
(
|g(vr−1)| + M(g;P<vr−1)

)
+

r−1∑
i=2

2r−i−1
(
|g(vr−i)| − M(g;P<vr−i

)
)
.

Now, we can use Lemma 2.6 and (9) to obtain T−(f ;C) ≤ M(g;Pv1) ≤ 1.
Therefore, we conclude that f ∈ O(e)(P ). �

Here, we show that the bijection Φ(e) : O(e)(P ) → C(e)(P ) restricts to
the bijection Φ : O(P ) → C(P ).

Proposition 2.7. The restriction of the enriched transfer map Φ(e) to O(P )
coincides with the restriction of the transfer map Φ to O(P ).
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Proof. Let f ∈ O(P ) and put g = Φ(f), g̃ = Φ(e)(f). By using the induction
on the ordering of P , we prove

max{f(w) : w � v} = max{g(v1) + · · · + g(vr) : {v1 � · · · � vr} ∈ MC(P<v)},

(13)
g̃(v) = g(v) ≥ 0. (14)

If v is minimal in P , then f(v) = g(v) = g̃(v). If v is not minimal in P and
{w ∈ P : w �v} = {w1, . . . , wk}, then it follows from the induction hypothesis
for (14) that

max{|g̃(v1)| + · · · + |g̃(vr)| : {v1 � · · · � vr} ∈ MC(P<v)}
= max

1≤i≤k

{
g(wi) + max{g(v2) + · · · + v(vr) : {v2 � · · · � vr} ∈ MC(P<wi

)}
}

.

Using the induction hypothesis for (13) and (1), we obtain

max{|g̃(v1)| + · · · + |g̃(vr)| : {v1 � · · · � vr} ∈ MC(P<v)}

= max
1≤i≤k

{
g(wi) + max{f(ui) : ui � wi}

}
= max

1≤i≤k
f(wi) = max{f(w) : w � v}.

Hence, comparing (11) with (1), we obtain (13) and (14). �

2.4. Left Enriched P -Partitions

In this subsection, we use the enriched transfer map to find a bijection from left
enriched P -partitions to lattice points of the dilated enriched order polytope.

Recall the definition of left enriched P -partition introduced by Petersen
[6]. A map h : P → Z is called a left enriched P -partition if it satisfies the
following two conditions:

(i) If v ≤ w, then |h(v)| ≤ |h(w)|;
(ii) If v ≤ w and |h(v)| = |h(w)|, then h(w) ≥ 0.

We denote by Em(P ) the set of left enriched P -partitions h : P → Z, such
that |h(v)| ≤ m for all v ∈ P . Note that F (e)(P ) = E1(P ). Ohsugi–Tsuchiya
[7] gave an explicit bijection between Em(P ) and mC(e)(P ) ∩ Z

P .

Proposition 2.8. ([7, Theorem 0.2 and its proof]) Let Π : Em(P ) → R
P be the

map defined by

(Π(h)) (v)

=

⎧⎪⎨
⎪⎩

h(v) if v is minimal inP,

h(v) − max{|h(w)| : w � v} if v is not minimal inP andh(v) ≥ 0,

h(v) + max{|h(w)| : w � v} if v is not minimal inP andh(v) < 0.

(15)

Then Π gives a bijection from Em(P ) to mC(e)(P ) ∩ Z
P .

By composing this bijection Π with the inverse enriched transfer map
Ψ(e) : mC(e)(P ) ∩ Z

P → mO(e)(P ) ∩ Z
P , we obtain an explicit bijection from

Em(P ) to mO(e)(P ) ∩ Z
P .
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Proposition 2.9. Let Θ : Em(P ) → R
P be the map defined by

(Θ(h)) (v)

=

{
h(v) if v is minimal inP orh(v) ≥ 0,

h(v) + 2max{|h(w)| : w � v} if v is not minimal inP andh(v) < 0.

(16)

Then Θ gives a bijection from Em(P ) to mO(e)(P ) ∩ Z
P .

Proof. We show that Θ = Ψ(e) ◦ Π. Let h ∈ Em(P ) and put g = Π(h). By
comparing (11) with (15) and (16), it is enough to show

max{S(g;C) : C ∈ MC(P<v)} = max{|h(w)| : w � v}. (17)

We proceed by induction on the ordering of P . If v is minimal in P , there is
nothing to prove. Suppose that v is not minimal in P . Since h ∈ Em(P ), we
have |h(v)| ≥ max{|h(w)| : w � v}. Then it follows from (15) that

|g(v)| = |h(v)| − max{|h(w)| : w � v}. (18)

If {w ∈ P : w � v} = {w1, . . . , wk}, then we have

max{S(g;C) : C ∈ MC(P<v)}
= max

1≤i≤k
{|g(wi)| + max{S(g;C ′) : C ′ ∈ MC(P<wi

)}} .

Using (18), we have

max{S(g;C) : C ∈ MC(P<v)} = max
1≤i≤k

{
|g(wi)| + max{|h(ui)| : ui � wi}

}
= max

1≤i≤k
{|h(wi)|},

from which (17) follows. �

2.5. Vertices of Enriched Poset Polytopes

In this subsection, we determine the vertex sets of the enriched order polytope
O(e)(P ) and the enriched chain polytope C(e)(P ).

To state the result, we need a partial ordering � on F (e)(P ) or A(e)(P ).
For f , f ′ ∈ F (e)(P ) (or A(e)(P )), we write f � f ′ if supp(f) ⊂ supp(f ′) and
f |supp(f) = f ′|supp(f).

Example 2.10. If Λ = {u, v, w} is the three-element chain with covering rela-
tions u � w and v � w, then the Hasse diagrams of F (e)(P ) and A(e)(P ) with
respect to � are shown in Figs. 1 and 2 respectively.

The enriched order polytope O(e)(Λ) is the pyramid with five vertices
(1, 1, 1), (1,−1, 1), (−1,−1, 1), (−1, 1, 1), and (0, 0,−1), while the enriched chain
polytope C(e)(Λ) is the bipyramid with six vertices (1, 1, 1), (1,−1, 1),
(−1,−1, 1), (−1, 1, 1), (0, 0, 1), and (0, 0,−1).

Proposition 2.11. (a) A point f ∈ F (e)(P ) is a vertex of O(e)(P ) if and only
if f is maximal with respect to the ordering �.



268 S. Okada and A. Tsuchiya

(0, 0, 0)

(0, 0, 0()1 , 0,−1)

(1, 0, 1) (0,−1, 1) (−1, 0, 1) (0, 1, 1)

(1, 1, 1) (1,−1, 1) (−1,−1, 1) (−1, 1, 1)

Figure 1. Hasse diagram of (F (e)(Λ),�)

(0,0,0)

(1,0,0) (0,−1,0) (−1,0,0) (0,1,0) (0,0,1) (0,0,−1)

(1,1,0) (1,−1,0) (−1,−1,0) (−1,1,0)

Figure 2. Hasse diagram of (A(e)(Λ),�)

(b) A point f ∈ A(e)(P ) is a vertex of C(e)(P ) if and only if f is maximal
with respect to the ordering �.

Note that f ∈ A(e)(P ) is maximal with respect to � if and only if supp(f)
is a maximal antichain.

Proof. (a) Let f be a maximal element of F (e)
P with respect to �. Assume

to the contrary that f is not a vertex of O(e)(P ). Then there exist elements
g1, . . . , gr ∈ F (e)(P ) and positive real numbers λ1, . . . , λr, such that gi �= f
and

f =
r∑

i=1

λigi,

r∑
i=1

λi = 1.

Considering the value at v ∈ P , we have

r∑
i=1

λigi(v) = f(v) =
r∑

i=1

λif(v).

If f(v) = 1, then we see that
∑r

i=1 λi (1 − gi(v)) = 0. Since λi > 0 and
1−gi(v) ≥ 0, we obtain gi(v) = 1 for all i. By a similar reasoning, we see that,
if f(v) = −1, then we have gi(v) = −1 for all i. Hence, we have supp(f) ⊂
supp(gi) and f |supp(f) = gi|supp(f). Since f is maximal with respect to �, we
have f = gi, which contradicts to the assumption gi �= f . Therefore, f is a
vertex of O(e)(P ).
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Conversely, suppose that f is not maximal with respect to �. Then there
exists g ∈ F (e)(P ) such that supp(f) � supp(g) and f |supp(f) = g|supp(f). We
take a maximal element u of supp(g) \ supp(f) and define f ′, f ′′ : P → R by

f ′(v) =

⎧⎪⎨
⎪⎩
f(v) = g(v) if v ∈ supp(f),

g(u) if v = u,

0 otherwise,

f ′′(v) =

⎧⎪⎨
⎪⎩
f(v) = g(v) if v ∈ supp(f),

−g(u) if v = u,

0 otherwise.

Then supp(f ′) = supp(f ′′) = supp(f) � {u} is an order filter of P and u
is an minimal element of supp(f ′) = supp(f ′′). Hence, f ′ ∈ F (e)(P ). Since
f = (f ′ + f ′′)/2, we see that f is not a vertex of O(e)(P ).

(b) Similar to (a). �

Remark 2.12. (1) A characterization of the vertex set of the enriched chain
polytope C(e)(P ) is also given in [5, Section 7].

(2) In general, the image Φ(e)(f) of a vertex f of O(e)(P ) under the enriched
transfer map Φ(e) is not a vertex of C(e)(P ), and the number of vertices
of O(e)(P ) is different from that of C(e)(P ) (see Example 2.10).

3. Triangulations

In this section, we prove Theorem 1.4, which describes triangulations of en-
riched order and chain polytopes.

3.1. Poset Structure on F(e)(P )

We introduce a partial ordering ≥ on F (e)(P ), which is an extension of the
inclusion ordering on the set of order filters of P . Note that this ordering ≥ is
different from the ordering � used in Sect. 2.5.

Definition 3.1. For f , g ∈ F (e)(P ), we write f > g if the following three
conditions hold:

(i) supp(f) � supp(g);
(ii) f(v) ≥ g(v) for any v ∈ supp(g);
(iii) If v ∈ supp(g) and v is minimal in supp(f), then f(v) = g(v).

Also, we write f ≥ g if f = g or f > g.

The following lemma is obvious, but will be used in several places.

Lemma 3.2. If F ⊃ G are order filters of P and v ∈ G is minimal in F , then
v is minimal in G.

Using this lemma, we can prove that F (e)(P ) is equipped with a poset
structure with respect to the binary relation ≥.

Lemma 3.3. The binary relation ≥ given in Definition 3.1 is a partial ordering
on F (e)(P ).
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(0, 0, 0)

(0, 0, 1) (0, 0,−1)

(1, 0, 1) (0,−1, 1) (−1, 0, 1) (0, 1, 1)

(1, 1, 1) (1,−1, 1) (−1,−1, 1) (−1, 1, 1)

Figure 3. Hasse diagram of (F (e)(Λ),≥)

Proof. It is enough to show the transitivity. Let f , g, h ∈ F (e)(P ) satisfy
f > g and g > h. Then it is clear that supp(f) � supp(h) and f(v) ≥ h(v)
for any v ∈ supp(h). Since supp(f) ⊃ supp(g) ⊃ supp(h), it follows from
Lemma 3.2 that, if v ∈ supp(h) is minimal in supp(f), then we have f(v) =
g(v) = h(v). �

Example 3.4. Let Λ be the three-element poset on {u, v, w} with covering re-
lations u � w and v � w. Figure 3 shows the Hasse diagram of (F (e)(Λ),≥).

We collect several properties of this partial ordering on F (e)(P ).

Proposition 3.5. The resulting poset F (e)(P ) has the following properties:
(a) For order filters F and G, we have F ⊃ G if and only if χF ≥ χG in

F (e)(P ), where χS is the characteristic function of S.
(b) The zero map 0 is the unique minimal element of F (e)(P ).
(c) If f covers g in F (e)(P ), then #supp(f) = # supp(g) + 1.
(d) If f is a maximal element in F (e)(P ), then supp(f) = P .
(e) All maximal chains of F (e)(P ) have the same length d = #P .

Proof. (a) and (b) are obvious.
(c) It is enough to show that, if f > g, then there exists h ∈ F (e)(P ),

such that f ≥ h > g and # supp(h) = # supp(g) + 1.
Since supp(f) � supp(g) and they are order filters of P , there exists

u ∈ supp(f) such that supp(g) ∪ {u} is an order filter of P . Then we define
h : P → {1, 0,−1} by putting

h(v) =

{
f(v) if v ∈ supp(g) ∪ {u},

0 otherwise.

We see that h ∈ F (e)(P ), supp(h) = supp(g) ∪ {u}, and f ≥ h > g.
(d) Suppose that supp(g) �= P . Since supp(g) is a proper order filter of

P , there exists u �∈ supp(g) such that supp(g) ∪ {u} is an order filter. Define
f : P → {1, 0,−1} by putting

f(v) =

{
1 if v = u or v covers u,

g(v) otherwise.
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Then we have f ∈ F (e)(P ), supp(f) = supp(g) ∪ {u} and f > g.
(e) follows from (b), (c) and (d). �

Next, we consider chains in the poset F (e)(P ).

Definition 3.6. Given a chain K = {f1 > f2 > · · · > fk} of F (e)(P ), we define
its support supp(K) and signature sgn(K) as follows. The support supp(K)
is the chain {supp(f1) � supp(f2) � · · · � supp(fk)} of order filters. The
signature sgn(K) is the map ϕ : P → {1, 0,−1} given by the following:

(i) If v is not minimal in supp(fi) for any i, then ϕ(v) = 0;
(ii) If v is minimal in supp(fi) for some i, then ϕ(v) = fi(v).

The following lemma guarantees that the definition of ϕ(v) in the case
(ii) is independent of the choice of i.

Lemma 3.7. Let K = {f1 > f2 > · · · > fk} be a chain of F (e)(P ). If v is
minimal in both supp(fi) and supp(fj), then we have fi(v) = fj(v).

Proof. We may assume i < j. Then fi > fj and supp(fi) ⊃ supp(fj). Since
v ∈ supp(fj) and minimal in supp(fi), we have fi(v) = fj(v) by the condition
(iii) in Definition 3.1.

A key property of support and signature is the following.

Proposition 3.8. Let X(P ) be the set of all chains of F (e)(P ) (including the
empty chain), and Y (P ) the set of all pairs (C,ϕ) of chains C = {F1 � F2 �

· · · � Fk} of order filters of P and maps ϕ : P → {1, 0,−1} satisfying

supp(ϕ) =
k⋃

i=1

min Fi, (19)

where min Fi is the set of minimal elements of Fi. Then the map X(P ) �
K �→ (supp(K), sgn(K)) ∈ Y (P ) is a bijection. In particular, maximal chains
in F (e)(P ) are in bijection with pairs (C,ϕ) of maximal chains C of order
filters and maps ϕ : P → {1,−1}.

It follows that the number of maximal chains in F (e)(P ) is equal to
2de(P ), where d = #P and e(P ) is the number of linear extensions of P .

Proof. It follows from Definition 3.6 that (supp(K), sgn(K)) ∈ Y (P ) for K ∈
X(P ).

Given a chain C = {F1 � · · · � Fk} of order filters and a map ϕ : P →
{1, 0,−1} satisfying (19), we define f1, · · · , fk ∈ R

P by

fi(v) =

⎧⎪⎨
⎪⎩

1 if v ∈ Fi and v is not minimal inFi,

ϕ(v) if v ∈ Fi and v is minimal inFi,

0 if v �∈ Fi.

Then we see that fi ∈ F (e)(P ) and supp(fi) = Fi.
We show that fi > fi+1 for 1 ≤ i ≤ k − 1. First, one has supp(fi) = Fi �

Fi+1 = supp(fi+1). Second, we check that fi(v) ≥ fi+1(v) for v ∈ supp(fi+1).
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Since v ∈ supp(fi+1) ⊂ supp(fi), we have fi(v), fi+1(v) ∈ {1,−1}, and there
is nothing to prove in the case fi(v) = 1. If fi(v) = −1, then v is minimal in
supp(fi), so v is minimal in supp(fi+1) by Lemma 3.2. Then we have ϕ(v) = −1
and fi+1(v) = −1 = fi(v). Finally, if v ∈ supp(fi+1) and v is minimal in
supp(fi), then v is minimal in supp(fi+1) by Lemma 3.2 and fi(v) = ϕ(v) =
fi+1(v).

Therefore, K = {f1 > f2 > · · · > fk} is a chain in F (e)(P ), and
supp(K) = {F1 � F2 � · · · � Fk}, sgn(K) = ϕ. �

3.2. Triangulation of C(e)(P )
In this subsection, we use the triangulation of C(P ) given in Theorem 1.2 to
construct a unimodular triangulation of C(e)(P ). We transfer this triangulation
of C(e)(P ) to O(e)(P ) via the inverse enriched transfer map Ψ(e) in the next
subsection.

A (lattice) triangulation of a lattice polytope P ⊂ R
d of dimension d is

a finite collection Δ of (lattice) simplices, such that
(i) every face of a member of Δ is in Δ,
(ii) the union of the simplices in Δ is P, and
(iii) any two elements of Δ intersect in a common (possibly empty) face.
We say that a triangulation Δ is unimodular if all maximal faces of Δ are
unimodular, i.e., have the Euclidean volume 1/d!.

Recall that the simplices SC = conv{χF : F ∈ C} and TC = conv{Φ(χF ) :
F ∈ C} of the triangulation given in Theorem 1.2 are described as follows.

Proposition 3.9. (Stanley [10, Section 5]) If C = {F1 � F2 � · · · � Fk} is a
chain of order filters of P , then we have

SC =

⎧⎨
⎩

f ∈ R
P :

(i) f is constant on the subsetsP \ F1, F1 \ F2, . . . , Fk−1 \ Fk, Fk,
(ii) 0 = f(P \ F1) ≤ f(F1 \ F2) ≤ · · · ≤ f(Fk−1 \ Fk) ≤ f(Fk) = 1.

⎫⎬
⎭ ,

(20)
and

TC = Φ(SC). (21)

If C = {F1 � F2 � · · · � Fk} is a chain of order filters of P , then
χC = {χF1 > χF2 > · · · > χFk

} is a chain in F (e)(P ) by Proposition 3.5 (a),
and

S(e)
χC

= SC , T (e)
χC

= TC .

First, we show that any T
(e)
K = conv Φ(e)(K) is obtained from TC by a compo-

sition of reflections. For ϕ : P → {1, 0,−1}, we define a linear map Rϕ : R
P →

R
P by

(Rϕg) (v) =

{
g(v) ifϕ(v) = 1 or 0,
−g(v) ifϕ(v) = −1.

The linear map Rϕ is a composition of reflections along coordinate hyper-
planes.
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Proposition 3.10. For a chain K in F (e)
P , we obtain

T
(e)
K = Rsgn(K)(Tsupp(K)). (22)

Proof. Let K = {f1 > · · · > fk} and put C = supp(K) = {F1 � · · · � Fk}
(Fi = supp(fi)) and ϕ = sgn(K). Since TC = conv Φ(χC), we have

RϕTC = Rϕ(conv Φ(e)(χC)) = conv(Rϕ(Φ(e)(χC))).

Hence, it is enough to show that Rϕ(Φ(e)(χFi
)) = Φ(e)(fi) for each i.

By the definition of the enriched transfer map, we have

Φ(e)(χFi
)(v) =

{
1 if v is minimal in Fi,

0 otherwise,

Φ(e)(fi)(v) =

{
fi(v) if v is minimal in Fi,

0 otherwise.

On the other hand, it follows from the definition of ϕ = sgn(K) that

ϕ(v) =

{
fi(v) if v is minimal in some supp(fi),
0 otherwise.

Hence, we obtain Rϕ(Φ(e)(χFi
)) = Φ(e)(fi). �

To prove Theorem 1.4 (b), we prepare several lemmas. Given ϕ ∈
{1, 0,−1}P , we put

Vϕ =

⎧⎨
⎩g ∈ R

P :
(i) ifϕ(v) = 1, then g(v) ≥ 0,
(ii) ifϕ(v) = 0, then g(v) = 0,
(iii) ifϕ(v) = −1, then g(v) ≤ 0

⎫⎬
⎭ .

For ε ∈ {1,−1}P , we put

C(e)
ε (P ) = C(e)(P ) ∩ Vε, A(e)

ε (P ) = A(e)(P ) ∩ Vε.

Since R
P =

⋃
ε∈{1,−1}P Vε, we have

C(e)(P ) =
⋃

ε∈{1,−1}P

C(e)
ε (P ), A(e)(P ) =

⋃
ε∈{1,−1}P

A(e)
ε (P ).

Lemma 3.11. ([7, Lemma 1.1]) For ε ∈ {1,−1}P , we have

C(e)
ε (P ) = conv(A(e)

ε (P )) = Rε(C(P )).

Proof. The first equality is proved in [7, Lemma 1.1]. We prove the second
equality. Let ε0 be the map given by ε0(v) = 1 for all v ∈ P . Then A(e)

ε0 (P ) =
A(P ) and C(e)

ε0 (P ) = conv(A(P )) = C(P ). Since A(e)
ε (P ) = Rε(A(e)

ε0 (P )) =
Rε(A(P )), we have

C(e)
ε (P ) = conv(Rε(A(P ))) = Rε(conv(A(P ))) = Rε(C(P )).

�
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Lemma 3.12. Suppose that ϕ ∈ {1, 0,−1}P and ε ∈ {1,−1}P satisfy ϕ|supp(ϕ) =
ε|supp(ϕ). Then we have
(a) Vϕ ⊂ Vε.
(b) Rϕ|V|ϕ| = Rε|V|ϕ| , where |ϕ| is defined by |ϕ|(v) = |ϕ(v)|.

Proof. (a) Let g ∈ Vϕ. If ε(v) = 1, then ϕ(v) = 1 or 0 and g(v) ≥ 0. If
ε(v) = −1, then ϕ(v) = −1 or 0 and g(v) ≤ 0. Hence, g ∈ Vε.

(b) Let g ∈ V|ϕ|. If v ∈ supp(ϕ), then we have ϕ(v) = ε(v) and (Rϕg)(v) =
ϕ(v)g(v) = ε(v)g(v) = (Rεg)(v). If v �∈ supp(ϕ), then we have ϕ(v) =
g(v) = 0, thus (Rϕg)(v) = g(v) = 0 and (Rεg)(v) = ε(v)g(v) = 0. �

Lemma 3.13. (a) Let C = {F1 � · · · � Fk} be a chain of order filters of P .
If ϕ ∈ {1, 0,−1}P satisfies supp(ϕ) =

⋃k
i=1 min Fi, then TC ⊂ V|ϕ|.

(b) If K is a chain in F (e)(P ), then we have T
(e)
K ⊂ Vsgn(K).

(c) If K is a chain in F (e)(P ) and ε ∈ {1,−1}P satisfies sgn(K)|supp(sgn(K)) =
ε|supp(sgn(K)), then we have T

(e)
K = RεTsupp(K).

Proof. (a) Let g ∈ TC . It is enough to show that ϕ(v) = 0 implies g(v) = 0.
By Theorem 1.2 (a), there exists f ∈ SC such that g = Φ(f). Let i be
the largest index such that v ∈ Fi, where we use the convention F0 = P .
If i = 0, then f(v) = 0 and g(v) = 0. Suppose that i ≥ 1 and ϕ(v) = 0.
Then, v ∈ Fi\Fi+1 by the maximality of i. Since v is not minimal in Fi,
there exists w ∈ Fi such that w � v. If w ∈ Fi+1, then v ∈ Fi+1 (since
Fi+1 is an order filter), which contradicts to the maximality of i. Hence,
we have w ∈ Fi\Fi+1. Then, by (20), we have f(v) = f(w). Therefore,
g(v) = (Φ(f))(v) = f(v) − max{f(u) : u � v} = f(v) − f(w) = 0.

(b) Let C = supp(K) and ϕ = sgn(K). By (a), we have TC ⊂ V|ϕ|. Since
RϕV|ϕ| = Vϕ, we obtain TK = Rϕ(TC) ⊂ Vϕ.

(c) follows from Proposition 3.10, (a) and Lemma 3.12 (b). �

Note that Φ(e) gives a bijection between F (e)(P ) and A(e)(P ) (Proposi-
tion 2.4 (c)), and that Rϕ preserves A(e)(P ) for any ϕ ∈ {1, 0,−1}P .

Lemma 3.14. Given f1, f2 ∈ F (e)(P ) and ϕ ∈ {1, 0,−1}P , we define f ′
1, f ′

2 ∈
F (e)(P ) by the condition

RϕΦ(e)(f1) = Φ(e)(f ′
1), RϕΦ(e)(f2) = Φ(e)(f ′

2).

Then f1 > f2 implies f ′
1 > f ′

2.

Proof. We may assume that there exists a unique u ∈ P such that ϕ(u) = −1,
that is

(Rϕg)(v) =

{
g(v) if v �= u,

−g(v) if v = u.

Then it follows from Proposition 2.4 that, if Rϕ(Φ(e)(f)) = Φ(e)(f ′), then

f ′(v) =

{
−f(v) ifu ∈ min(supp(f)) and v = u,

f(v) otherwise,
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and supp(f ′) = supp(f).
Now, we assume that f1 > f2. Then it is enough to prove the following

two claims:
(1) If u ∈ supp(f ′

2), then f ′
1(u) ≥ f ′

2(u).
(2) If u ∈ supp(f ′

2) and u is minimal in supp(f ′
1), then f ′

1(u) = f ′
2(u).

First, we prove (1) by dividing into four cases. If u ∈ min(supp(f1)) and
u ∈ min(supp(f2)), then we have f1(u) = f2(u); thus, f ′

1(u) = −f1(u) =
−f2(u) = f ′

2(u). If u ∈ min(supp(f1)) and u �∈ min(supp(f2)), then it follows
from Lemma 3.2 that u �∈ supp(f2), which contradicts to the assumption
u ∈ supp(f ′

2) = supp(f2). If u �∈ min(supp(f1)) and u ∈ min(supp(f2)), then
we have f ′

1(u) = f1(u) = 1, thus f ′
1(u) ≥ f ′

2(u). If u �∈ min(supp(f1)) and
u �∈ min(supp(f2)), then we have f ′

1 = f1 and f ′
2 = f2; thus, f ′

1(u) ≥ f ′
2(u).

Next, we prove (2). If u ∈ supp(f ′
2) and u is minimal in supp(f ′

1), then it
follows from Lemma 3.2 that u is minimal in supp(f ′

2), and hence, we see that
f ′
1(u) = −f1(u) = −f2(u) = f ′

2(u). This completes the proof. �
Now, we are in position to prove Theorem 1.4 (b).

Proof of Theorem 1.4 (b). We need to show the following four claims:

(1) If K is a chain in F (e)(P ), then T
(e)
K is a unimodular simplex.

(2) If K is a chain in F (e)(P ), then T
(e)
K ⊂ C(e)(P ).

(3)
⋃

K T
(e)
K = C(e)(P ), where K runs over all chains in F (e)(P ).

(4) If K and L are chains in F (e)(P ), then T
(e)
K ∩ T

(e)
L = T

(e)
K∩L.

Recall that T
(e)
K = conv Φ(e)(K) and Rϕ : R

P → R
P is a linear map given

by

(Rϕg) (v) =

{
g(v) ifϕ(v) = 1 or 0,
−g(v) ifϕ(v) = −1,

for ϕ : P → {1, 0,−1}.

(1) If we put C = supp(K) and ϕ = sgn(K), then T
(e)
K = Rϕ(TC) by Propo-

sition 3.10. Since TC is a unimodular simplex (Theorem 1.2 (b)) and Rϕ

is a composition of reflections, we see that T
(e)
K is a unimodular simplex.

(2) We put C = supp(K) and ϕ = sgn(K), and take ε ∈ {1,−1}P such that
ϕ|supp(ϕ) = ε|supp(ϕ). Then, using Lemma 3.13 (c) and Lemma 3.11, we
have

T
(e)
K = Rε(TC) ⊂ Rε(C(P )) = C(e)

ε (P ) ⊂ C(e)(P ).

(3) Using Lemma 3.11 and Theorem 1.2 (b), we have

C(e)(P ) =
⋃

ε∈{1,−1}P

C(e)
ε (P ) =

⋃
ε∈{1,−1}P

Rε(C(P )) =
⋃

ε∈{1,−1}P

⋃
C

Rε(TC),

where C runs over all chain of order filters of P . Given a chain C of order
filters of P and ε ∈ {1,−1}P , we define ϕ : P → {1, 0,−1} by putting

ϕ(v) =

{
ε(v) if v is minimal in some Fi,

0 otherwise.
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Then it follows from Lemma 3.13 (c) that RεTC = T
(e)
K , where K is the

chain in F (e)(P ) corresponding to (C,ϕ) under the bijection of Proposi-
tion 3.8.

(4) We put C = supp(K), ϕ = sgn(K), D = supp(L) and ψ = sgn(L).
Then we have T

(e)
K ⊂ Vϕ and T

(e)
L ⊂ Vψ by Lemma 3.13 (b). If we define

η : P → {1, 0,−1} by putting

η(v) =

⎧⎪⎨
⎪⎩

1 ifϕ(v) = ψ(v) = 1,
−1 ifϕ(v) = ψ(v) = −1,

0 otherwise,

then we have Vϕ ∩ Vψ = Vη. Hence, we have

T
(e)
K ∩ T

(e)
L = T

(e)
K ∩ T

(e)
L ∩ Vη.

Since T
(e)
K = conv(Φ(e)(K)) by definition, and Vη is a “boundary” of Vϕ,

we see that

T
(e)
K ∩ Vη = conv(Φ(e)(K)) ∩ Vη = conv(Φ(e)(K) ∩ Vη).

We take ε ∈ {1,−1}P satisfying η|supp(η) = ε|supp(η). Then we have
Φ(e)(K) ∩ Vη and Φ(e)(L) ∩ Vη ⊂ A(e)

ε (P ). Since Rε gives a bijection
between A(e)

ε (P ) and A(P ), it follows from Lemma 3.14 that there exists
a chain C ′ of order filters of P , such that Rε(Φ(e)(χC′)) = Φ(e)(K) ∩ Vη.
Hence, we have

T
(e)
K ∩ Vη = conv(Rε(Φ(e)(χC′))) = Rε conv(Φ(e)(χC′)).

Similarly, there exists a chain D′ of order filters of P , such that

T
(e)
L ∩ Vη = conv(Rε(Φ(e)(χD′))) = Rε conv(Φ(e)(χD′)).

Therefore, we have

T
(e)
K ∩ T

(e)
L = (T (e)

K ∩ Vη) ∩ (T (e)
L ∩ Vη)

= Rε conv(Φ(e)(χC′)) ∩ Rε conv(Φ(e)(χD′))

= Rε

(
conv(Φ(e)(χC′)) ∩ conv(Φ(e)(χD′))

)
= Rε(TC′ ∩ TD′).

By Theorem 1.2 (b), we see that TC′∩TD′ = TC′∩D′ = conv(Φ(e)(χC′∩D′)).
Hence, we have

T
(e)
K ∩ T

(e)
L = Rε

(
conv(Φ(e)(χC′∩D′))

)
= Rε

(
conv(Φ(e)(χC′) ∩ Φ(e)(χD′))

)
= conv

(
Rε(Φ(e)(χC′)) ∩ Rε(Φ(e)(χD′)

)
= conv

(
(Φ(e)(K) ∩ Vη) ∩ (Φ(e)(L) ∩ Vη)

)
= conv

(
Φ(e)(K) ∩ Φ(e)(L) ∩ Vη

)
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= conv
(
Φ(e)(K) ∩ Φ(e)(L)

)
= conv

(
Φ(e)(K ∩ L)

)
= T

(e)
K∩L.

This completes the proof of Theorem 1.4 (b). �

We conclude this subsection with giving a set of defining inequalities of a
facet T

(e)
K , where K is a maximal chain in F (e)(P ). Recall the result of Stanley

[10] on the defining inequalities of facets of the triangulations of O(P ) and
C(P ). To a maximal chain C = {F0 � F1 � · · · � Fd} of order filters of P , we
associate a linear extension (v1, . . . , vd) and chains C1, . . . , Cd of P as follows.
The linear extension (v1, . . . , vd) is defined by

Fi = Fi−1 ∪ {vi} (i = 1, . . . , d).

The chain Ci is given inductively by
(i) If vi is minimal, then we put Ci = {vi};
(ii) If vi is not minimal and j is the largest index satisfying vj � vi, then we

put Ci = {vi} ∪ Cj .

Proposition 3.15. (Stanley [10, Section 5]) Let C be a maximal chain of or-
der filters of P . Let (v1, . . . , vd) be the associated linear extension of P and
C1, . . . , Cd the associated chains of P . Then we have
(a) The facet SC of the triangulation SP of O(P ) is given by

SC = {f ∈ R
P : 0 ≤ f(v1) ≤ f(v2) ≤ · · · ≤ f(vd) ≤ 1}.

(b) If f ∈ SC , then we have

(Φ(f))(vi) = f(vi) − f(vj),

where j is the largest index satisfying vj � vi.
(c) If we define

LC
i (g) =

∑
v∈Ci

g(v),

then the facet TC of the triangulation TP of C(P ) is given by

TC = {g ∈ R
P : 0 ≤ LC

1 (g) ≤ LC
2 (g) ≤ · · · ≤ LC

d (g) ≤ 1}.

(d) If g ∈ TC , then we have

(Ψ(g))(vi) =
∑
v∈Ci

g(v),

where Ψ : C(P ) → O(P ) is the inverse transfer map.

Corollary 3.16. Let K be a maximal chain in F (e)(P ) and put C = supp(K),
ε = sgn(K). Let C1, . . . , Cd be the chains of P associated with C, and define

L̃K
i (g) =

∑
v∈Ci

ε(v)g(v) (g ∈ R
P ).
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Then the face T
(e)
K of the triangulation T (e)

P of C(e)(P ) is given by

T
(e)
K = {g ∈ R

P : 0 ≤ LK
1 (g) ≤ LK

2 (g) ≤ · · · ≤ LK
d (g) ≤ 1}. (23)

Proof. It follows from Proposition 3.10 and Proposition 3.15 (c). �

3.3. Triangulation of O(e)(P )

In this subsection, we transfer the triangulation of C(e)(P ) to O(e)(P ) via the
inverse map Ψ(e) of the enriched transfer map Φ(e). To prove Theorem 1.4 (a),
it is enough to show that S

(e)
K = conv K = Ψ(e)(T (e)

K ) and it is a unimodular
simplex.

Lemma 3.17. Let K be a maximal chain in F (e)(P ) and put C = supp(K),
ε = sgn(K). Let (v1, . . . , vd) be the linear extension and C1, . . . , Cd the chains
of P associated with C. For g ∈ T

(e)
K , we have

(Ψ(e)(g))(vi) = g(vi) +
∑

v∈Ci\{vi}
ε(v)g(v).

Proof. Since T
(e)
K ⊂ Vε by Lemma 3.13 (b), we have |g(v)| = ε(v)g(v) for

g ∈ T
(e)
K and v ∈ P ; thus, |g| ∈ TC . By Proposition 3.15, we see that

max{S(|g|;B) : B ∈ MC(P≤vj
)} =

∑
v∈Cj

|g(v)| =
∑

v∈Cj

ε(v)g(v),

where we recall S(f ;C) =
∑

v∈C |f(v)| for f ∈ R
P and a chain C of P , and

MC(P≤vj
) is the set of maximal chains of the subposet P≤vj

. Hence, we obtain
the desired identity. �

Proof of Theorem 1.4 (a). If K is a maximal chain in F (e)(P ), then it follows
from Lemma 3.17 that Ψ(e) is a unimodular linear map on T

(e)
K . Hence, if L

is a chain in F (e)(P ) contained in K, then we see that S
(e)
L = Ψ(e)(T (e)

L ) is a
unimodular simplex, because T

(e)
L is a unimodular simplex (Theorem 1.4 (b)).

�

We can use Lemma 3.17 to give a set of defining inequalities of a facet
S

(e)
K , where K is a maximal chain in F (e)(P ).

Proposition 3.18. Let K be a maximal chain in F (e)(P ) and put C = supp(K),
ε = sgn(K). Let (v1, . . . , vd) be the linear extension and C1, . . . , Cd the chains
of P associated to C. If we put

M̃K
i (f) =

r∑
l=1

ε(ul)
r∏

j=l+1

(1 − ε(uj))f(ul) (f ∈ R
P ),

where Ci = {u1 � u2 � · · · � ur = vi}, then the face S
(e)
K of the triangulation

S(e)
P of O(e)(P ) is given by

S
(e)
K = {f ∈ R

P : 0 ≤ M̃K
1 (f) ≤ M̃K

2 (f) ≤ · · · ≤ M̃K
d (f) ≤ 1}. (24)



Two Enriched Poset Polytopes 279

Proof. It is easy to prove by induction on k that

f(uk) = g(uk) +
k∑

i=1

ε(ui)g(ui) (k = 1, . . . , r)

if and only if

g(uk) = f(uk) −
k−1∑
i=1

ε(ui)
k−1∏

j=i+1

(1 − ε(uj))f(ui) (k = 1, . . . , r).

Hence, we have

M̃K
i (f) = L̃K

i (Φ(e)(f)).

On the other hand, by Theorem 1.4 (b) and Corollary 3.16, we see that f ∈ S
(e)
K

if and only if

0 ≤ L̃K
1 (Φ(e)(f)) ≤ · · · ≤ L̃K

d (Φ(e)(f)) ≤ 1.

Hence, we obtain (24). �

4. Identification With Ohsugi–Tsuchiya’s Triangulations

Ohsugi–Tsuchiya [7,8] computed the squarefree initial ideals of the toric ideals
of O(e)(P ) and C(e)(P ) with respect to certain monomial orderings. This gives
regular unimodular triangulations of O(e)(P ) and C(e)(P ). In this section, we
show that these triangulations coincide with the triangulations given in The-
orem 1.4.

Let K[x] = K[x1, . . . , xn] be the polynomial ring in n variables x1, . . . , xn

over a field K and Δ a simplicial complex on [n] := {1, 2 . . . , n}. To a subset
F ⊂ [n], we associate a monomial

xF =
∏
i∈F

xi.

The Stanley–Reisner ideal of Δ is the ideal IΔ of K[x] which is generated
by those squarefree monomials xF with F /∈ Δ. On the other hand, given
an arbitrary squarefree monomial ideal I of K[x], there is a unique simplicial
complex Δ(I) such that I = IΔ(I).

4.1. Triangulation of Enriched Order Polytope

In this subsection, we prove that the triangulation S(e)
P of O(e)(P ) given in

Theorem 1.4 (a) coincides with the one algebraically defined in [8].
Let P be a finite poset with d elements and let R[O(e)] = K[{xf : f ∈

F (e)(P )}] be the polynomial ring in the variables xf (f ∈ F (e)(P )).

Proposition 4.1. ([8, Theorem 5.2]) Let IO(e)(P ) be the ideal of R[O(e)] gener-
ated by all squarefree monomials xfxg satisfying either of the following condi-
tions:

(i) there exists v ∈ min(supp(f)) ∩ min(supp(g)) such that f(v) �= g(v);
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(ii) supp(f) �∼ supp(g) and f(v) = g(v) for each v ∈ min(supp(f))∩min(supp(g)),
where the symbol A �∼ B means that A � B and A � B.

Then Δ(IO(e)(P )) is a regular unimodular triangulation of O(e)(P ).

Now, we can show that this triangulation Δ(IO(e)(P )) coincides with the
triangulation given in Theorem 1.4 (a).

Proposition 4.2. With the notations above, we have Δ(IO(e)(P )) = S(e)
P .

Proof. Since both of Δ(IO(e)(P )) and S(e)
P are unimodular triangulations of

O(e)(P ), the numbers of maximal simplices are same. Hence, it is enough to
show that xf0 · · · xfd

�∈ IO(e)(P ) for any maximal chain K = {f0 � · · · � fd} of
F (e)(P ).

Let K = {f0 > · · · > fd} be a maximal chain of F (e)(P ), and assume to
the contrary that xf0 · · · xfd

∈ IO(e)(P ). Then there exists a pair of indices i < j

such that fi and fj satisfy the condition (i) or (ii) in Proposition 4.1. Since
fi > fj in F (e)(P ), one has supp(fi) � supp(fj) and fi and fj do not satisfy
the condition (ii). Hence, there exists v ∈ min(supp(fi)) ∩ min(supp(fj)) with
fi(v) �= fj(v). However, since fi > fj in F (e)(P ) and v ∈ supp(fj) and v is
minimal in supp(fi), we obtain fi(v) = fj(v), which is a contradiction. Thus,
it follows that xf0 · · · xfd

�∈ IO(e)(P ). �

4.2. Triangulation of Enriched Chain Polytope

In this subsection, we prove that the triangulation T (e)
P of C(e)(P ) given in

Theorem 1.4 (b) coincides with the one algebraically defined in [7]. Let R[C(e)]
be the polynomial ring in variables yg (g ∈ A(e)(P )).

Proposition 4.3. ([7, Theorem 1.4]) Let IC(e)(P ) be the ideal of R[C(e)] generated
by all squarefree monomials ygyh satisfying either of the following conditions:

(i) there exists v ∈ supp(g) ∩ supp(h), such that g(v) �= h(v);
(ii) 〈supp(g)〉 �∼ 〈supp(h)〉 and g(v) = h(v) for any v ∈ supp(g) ∩ supp(h).

Then Δ(IC(e)(P )) is a regular unimodular triangulation of C(e)(P ).

Finally, we show that this triangulation Δ(IC(e)(P )) coincides with the
triangulation given in Theorem 1.4 (b).

Proposition 4.4. With the same notation as above, we have Δ(IC(e)(P )) = T (e)
P .

Proof. This follows from the fact that the map xf �→ yΦ(e)(f) induces the ring
isomorphism:

R[O(e)(P )]
IO(e)(P )

∼= R[C(e)(P )]
IC(e)(P )

.

�
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