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Abstract. We say that a Hamilton cycle C = (x1, . . . , xn) in a graph G is
k-symmetric, if the mapping xi �→ xi+n/k for all i = 1, . . . , n, where in-
dices are considered modulo n, is an automorphism of G. In other words,
if we lay out the vertices x1, . . . , xn equidistantly on a circle and draw
the edges of G as straight lines, then the drawing of G has k-fold rota-
tional symmetry, i.e., all information about the graph is compressed into
a 360◦/k wedge of the drawing. The maximum k for which there exists
a k-symmetric Hamilton cycle in G is referred to as the Hamilton com-
pression of G. We investigate the Hamilton compression of four different
families of vertex-transitive graphs, namely hypercubes, Johnson graphs,
permutahedra and Cayley graphs of abelian groups. In several cases, we
determine their Hamilton compression exactly, and in other cases, we pro-
vide close lower and upper bounds. The constructed cycles have a much
higher compression than several classical Gray codes known from the
literature. Our constructions also yield Gray codes for bitstrings, combi-
nations and permutations that have few tracks and/or that are balanced.
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1. Introduction

180◦

A Hamilton cycle in a graph is a cycle that visits every vertex of the graph
exactly once. This concept is named after the Irish mathematician and as-
tronomer Sir William Rowan Hamilton (1805–1865), who invented the Icosian
game, in which the objective is to find a Hamilton cycle along the edges of
the dodecahedron. The figure above shows the dodecahedron with a Hamilton
cycle on the circumference. Hamilton cycles have been studied intensively from
various different angles, such as graph theory (necessary/sufficient conditions,
packing, covering, etc. [19–21,30]), optimization (shortest tours, approxima-
tion [1]), algorithms (complexity [18], exhaustive generation [36,43]) and al-
gebra (Cayley graphs [6,27,40,51]). In this work, we introduce a new graph
parameter that quantifies how symmetric a Hamilton cycle in a graph can be.
For example, the cycle in the dodecahedron shown above is 2-symmetric, as
the drawing has 2-fold (i.e., 360◦/2 = 180◦) rotational symmetry.

1.1. Hamilton Cycles with Rotational Symmetry

Formally, let G = (V,E) be a graph with n vertices. We say that a Hamilton
cycle C = (x1, . . . , xn) is k-symmetric if the mapping f : V → V defined by
xi �→ xi+n/k for all i = 1, . . . , n, where indices are considered modulo n, is an
automorphism of G. In this case, we have

C = P, f(P ), f2(P ), . . . , fk−1(P ) for the path P := (x1, . . . , xn/k). (1)

The idea is that the entire cycle C can be reconstructed from the path P ,
which contains only a 1/k-fraction of all vertices, by repeatedly applying the
automorphism f to it. In other words, if we lay out the vertices x1, . . . , xn

equidistantly on a circle, and draw edges of G as straight lines, then we ob-
tain a drawing of G with k-fold rotational symmetry, i.e., f is a rotation by
360◦/k; see Fig. 1 for more examples. We refer to the maximum k for which
the Hamilton cycle C of G is k-symmetric as the compression factor of C, and
we denote it by κ(G,C).
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Figure 1. Hamilton cycles C1, . . . , C4 in the 4-
permutahedron Π4 with different LCF sequences and
compression factors

1.2. Connection to LCF Notation

There is yet another interesting interpretation of the compression factor in
terms of the LCF notation of a graph, which was introduced by Lederberg
as a concise method to describe 3-regular Hamiltonian graphs (such as the
dodecahedron). It was later improved by Coxeter and Frucht (see [16]), and
dubbed LCF notation, using the initials of the three inventors. The idea is
to describe a 3-regular Hamiltonian graph by considering one of its Hamilton
cycles C = (x1, . . . , xn). Each vertex xi has the neighbors xi−1 and xi+1 (mod-
ulo n) in the graph, plus a third neighbor xj , which is di := j − i (modulo n)
steps away from xi along the cycle. The LCF sequence of G is the sequence
d = (d1, . . . , dn), where each di is chosen so that −n/2 < di ≤ n/2. Clearly,
we also have di /∈ {−1, 0,+1}. Note that if C is k-symmetric, then the LCF
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Figure 2. Symmetric Hamilton cycles in the a 4-cube; b mid-
dle levels of the 5-cube; c Johnson graph J7,2; d abelian Cayley
graph (Z2

5, {(0, 1), (1, 0)})

sequence d of G is k-periodic, i.e., it has the form d = (d1, . . . , dn/k)k, where
the k in the exponent denotes k-fold repetition; see Fig. 1. While LCF nota-
tion is only defined for 3-regular graphs, we can easily extend it to arbitrary
graphs with a Hamilton cycle C = (x1, . . . , xn), by considering a sequence
of sets D = (D1, . . . , Dn), where Di is the set of distances to all neighbors
of xi along the cycle except xi−1 and xi+1; see Fig. 2a+d. As before, if C is
k-symmetric, then the corresponding sequence D is k-periodic, i.e., it has the
form D = (D1, . . . , Dn/k)k. Frucht [16] writes:

‘What happens with the LCF notation if we replace one hamiltonian
circuit by another one? The answer is: nearly everything can happen!
Indeed the LCF notation for a graph can remain unaltered or it can
change completely [...] In such cases we should choose of course the
shortest of the existing LCF notations.’
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This observation is illustrated in Fig. 1, which shows four different Hamil-
ton cycles of the same graph G that have different LCF sequences and com-
pression factors.

1.3. Hamilton Compression

Frucht’s suggestion is to search for a Hamilton cycle C in G whose compression
factor κ(G,C) is as large as possible. Formally, for any graph G we define

κ(G) := max
{
κ(G,C) | C is a Hamilton cycle in G

}
, (2)

and we refer to this quantity as the Hamilton compression of G. If G has no
Hamilton cycle, then we define κ(G) := 0. While the maximization in (2) is
simply over all Hamilton cycles in G, and the automorphisms arise as possible
rotations of those cycles, this definition is somewhat impractical to work with.
In our arguments, we rather consider all automorphisms of G, and then search
for a Hamilton cycle that is k-symmetric under the chosen automorphism.
Specifically, proving a lower bound of κ(G) ≥ k amounts to finding an auto-
morphism f of G and a k-symmetric Hamilton cycle under this f . To prove
an upper bound of κ(G) < k, we need to argue that there is no k-symmetric
Hamilton cycle in G, for any choice of automorphism f .

By what we said in the beginning, the quantity κ(G) can be seen as a
measure for the nicest (i.e., most symmetric) way of drawing the graph G on
a circle. Thus, our paper contains many illustrations that convey the aesthetic
appeal of this problem.

1.4. Easy Observations and Bounds

We start to collect a few basic observations about the quantity κ(G). Trivially,
we have 0 ≤ κ(G) ≤ n, where n is the number of vertices of G. The upper
bound n can be improved to

κ(G) ≤ max
f∈Aut(G)

ord(f), (3)

where Aut(G) is the automorphism group of G, and ord(f) is the order of f .
An immediate consequence of (1) is that all orbits of the automorphism f
must have the same size n/k, and the path P = (x1, . . . , xn/k) visits every
orbit exactly once. This can be used to improve (3) further by restricting the
maximization to automorphisms from Aut(G) whose orbits all have the same
size. Furthermore, as k must divide n, we obtain that κ(G) ∈ {0, 1, n} for
prime n.

Clearly, every Hamilton cycle of a graph G is 1-symmetric, by taking the
identity mapping f = id as automorphism. Consequently, we have κ(G) ≥ 1
for any Hamiltonian graph. On the other hand, if G is Hamiltonian and highly
symmetric, i.e., if it has a rich automorphism group, then intuitively G should
have a large value of κ(G), i.e., it should admit highly symmetric Hamilton
cycles. For example, for the cycle Cn on n vertices and the complete graph Kn

on n vertices we have κ(Cn) = κ(Kn) = n. More generally, note that κ(G) = n
if and only if G is a special circulant graph, namely a Cayley graph of a cyclic
group Zn for which the generating set contains at least one element coprime
with n.
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1.5. Our Results

Vertex-transitive graphs are a prime example of highly symmetric graphs. A
graph is vertex-transitive if for any two vertices there is an automorphism that
maps the first vertex to the second one. In other words, the automorphism
group of the graph acts transitively on the vertices. In this paper, we in-
vestigate the Hamilton compression κ(G) of four families of vertex-transitive
graphs G, namely hypercubes, Johnson graphs, permutahedra, and Cayley
graphs of abelian groups. Note that in the following definitions and the rest
of the paper we use the letter n to denote a graph parameter instead of the
number of vertices used in Sects. 1.1–1.4. The n-dimensional hypercube Qn,
or n-cube for short, has as vertices all bitstrings of length n, and an edge
between any two strings that differ in a single bit; see Fig. 2a. The John-
son graph Jn,k has as vertices all bitstrings of length n with fixed Hamming
weight k, and an edge between any two strings that differ in a transposition
of a 0 and 1; see Fig. 2c. The n-permutahedron Πn, has as vertices all permu-
tations of [n] := {1, . . . , n}, and an edge between any two permutations that
differ in an adjacent transposition, i.e., a swap of two neighboring entries of the
permutations in one-line notation; see Fig. 1. Cayley graphs of abelian groups
will be introduced formally in Sect. 2.7; see Fig. 2d. Note that the hypercube
is isomorphic to a Cayley graph of the abelian group Z

n
2 .

Hamilton cycles with various additional properties in the aforementioned
families of graphs have been the subject of a long line of previous research under
the name of combinatorial Gray codes [36,43]. We will see that some classical
constructions of such cycles have a non-trivial small compression factor, and
we construct cycles with much higher compression factor that we show to be
optimal or near-optimal. Along the way, many interesting number-theoretic
and algebraic phenomena arise.

1.5.1. Hypercubes. One of the classical constructions of a Hamilton cycle
in Qn is the well-known binary reflected Gray code (BRGC) [22]. This cy-
cle in Qn is defined inductively by Γ0 := ε and Γn := 0Γn−1, 1

#        „

Γn−1 for
all n ≥ 1, where ε is the empty sequence and

#        „

Γn−1 denotes the reversal of
the sequence Γn−1; see Figs. 2a and 4a. In words, the cycle Γn is obtained by
concatenating the vertices of Γn−1 prefixed by 0 with the vertices of Γn−1 in
reverse order prefixed by 1. It turns out that the BRGC Γn has only com-
pression κ(Qn,Γn) = 4 for n ≥ 2, which is not optimal (Proposition 3.1).
We construct new Hamilton cycles in Qn with compression κ(Qn) = 2�log2 n�

for n ≥ 3, which is the optimal value (Theorem 3.8); see Fig. 4b. Note that
n ≤ κ(Qn) < 2n, in particular κ(Qn) = Θ(n), i.e., the optimal compression
grows linearly with n.

1.5.2. Johnson Graphs and Relatives. Our definition of Hamilton compres-
sion is inspired by a variant of the well-known middle levels problem raised
by Knuth in Problem 56 in Section 7.2.1.3 of his book [29]. Let M2n+1 de-
note the subgraph of Q2n+1 induced by all bitstrings with Hamming weight n
or n + 1. In other words, M2n+1 is the subgraph of the cover graph of the
Boolean lattice of dimension 2n + 1 induced by the middle two levels. There
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is a natural automorphism of M2n+1 all of whose orbits have the same size,
namely cyclic left-shift of the bitstrings by one position. Knuth asked whether
M2n+1 admits a (2n+1)-symmetric Hamilton cycle under this automorphism,
and he rated this the hardest open problem in his book, with a difficulty rating
of 49/50. Such cycles are shown in Figs. 2b and 5a for the graphs M5 and M7,
respectively. Knuth’s problem was answered affirmatively in full generality in
[34], which establishes the lower bound κ(M2n+1) ≥ 2n+1. We show that this
is at most a factor of 2 away from optimality, by proving the upper bound
κ(M2n+1) ≤ 2(2n+1) (Theorem 4.4). Interestingly, it seems that both bounds
can be improved.

For the Johnson graph Jn,k, we show that κ(Jn,k) = n if n and k are
coprime (Theorem 4.8). In the other cases we establish bounds for κ(Jn,k)
that are at most by a factor of 4 apart, and for large n, we obtain κ(Jn,k) =
(1 − o(1))n for n �= 2k.

1.5.3. Permutahedra. Another classical Gray code is produced by the Steinhaus–
Johnson–Trotter (SJT) algorithm, which generates permutations by adjacent
transpositions. This algorithm computes a Hamilton cycle in Πn, which can
be described inductively as follows: Λ1 := 1 and for all n ≥ 2 the cycle
Λn is obtained from Λn−1 by replacing each permutation of length n − 1
by the n permutations given by inserting n in every possible position, alter-
natingly from right to left or vice versa; see Figs. 1a and 7a. It turns out
that the SJT cycle Λn has only compression κ(Πn,Λn) = 3 for n ≥ 5, which
is not optimal (Proposition 5.1). We construct new Hamilton cycles in Πn

whose compression is at most a factor of 2 away from the optimum com-
pression κ(Πn) = e(1+o(1))

√
n lnn (Theorem 5.6); see Fig. 7b+c. The growth

of the optimum compression is determined by Landau’s function, and it is
mildly exponential. Moreover, we achieve the optimal compression in infin-
itely many cases, in particular for the following values of n ≤ 100: n =
3, 4, 5, 15, 22, 46, 49, 51, 52, 53, 55, 68, 69, 72, 73, 74, 75, 80, 82, 85, 87, 88, 89, 91, 92,
93, 96, 97, 99, 100.

1.5.4. Abelian Cayley Graphs. A classical folklore result asserts that every
Cayley graph of an abelian group has a Hamilton cycle. The Chen-Quimpo
theorem [7] asserts that in fact much stronger Hamiltonicity properties hold.
It is thus natural to ask whether Cayley graphs of abelian groups have highly
symmetric Hamilton cycles. It turns out that not all abelian Cayley graphs
admit a Hamilton cycle with non-trivial compression. In particular, we show
that toroidal grids Zp ×Zq for two distinct odd primes p, q have only compres-
sion 1 (Theorem 6.4 (i)). In contrast to that, we prove that if the order of the
abelian group is even or divisible by a square greater than 1, then the Cayley
graph admits a Hamilton cycle with compression at least 2 (Theorems 6.4 (ii)
and 6.6).

1.6. Related Problems

We proceed to discuss some applications of our results to closely related prob-
lems.
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Figure 3. One of the smallest vertex-transitive non-Cayley
graphs G with κ(G) = 1

1.6.1. Lovász’ Conjecture. A well-known question of Lovász’ [32] asks whether
there are infinitely many vertex-transitive graphs that do not admit a Hamilton
cycle. So far, only five such graphs are known, namely K2, the Petersen graph,
the Coxeter graph, and the graphs obtained from the latter two by replacing
every vertex by a triangle. Vertex-transitive graphs have a lot of automor-
phisms, and we may take the quantity κ(G) as a measure of how strongly G is
Hamiltonian. In particular, Lovász’ question may be rephrased as ‘Are there
infinitely many vertex-transitive graphs G with κ(G) = 0?’ More generally, we
may ask: ‘Are there infinitely many vertex-transitive graphs G with κ(G) = k,
for each fixed integer k?’ We may ask the same question more restrictively for
Cayley graphs or non-Cayley graphs. From our results mentioned in Sect. 1.5.4,
we obtain an infinite family of Cayley graphs G with κ(G) = 1. In a follow-up
work to this paper, Kutnar, Marušič, and Razafimahatratra [28] answered this
question affirmatively for Cayley graphs and any fixed integer k ≥ 2, and also
for non-Cayley graphs and k = 1.

Computer experiments show that the smallest vertex-transitive non-
Cayley graphs G with κ(G) = 1 have 26 vertices, and one of them is shown in
Fig. 3 (its ID in the House of Graphs database is 36346).

The path P in (1) is a Hamilton path in the quotient graph G/f obtained
by collapsing each orbit of f into a single vertex. The idea of constructing a
Hamilton cycle in G by constructing a Hamilton cycle in the much smaller
graph G/f that is then ‘lifted’ to the full graph is well known in the literature,
and has been used to solve some special cases of Lovász’ problem affirmatively;
see e.g. [2,9,27,34,45]. It is particularly useful for computer searches, as it
reduces the search space dramatically.

1.6.2. t-track and Balanced Gray Codes. We say that a sequence C of strings
of length n consists of t tracks if in the |C| × n matrix corresponding to C
there are t columns such that every other column is a cyclically shifted copy
of one of these columns. For example, the Gray code shown in Fig. 4c has two
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(a)

(b)

(c)

Figure 4. Symmetric Hamilton cycles in Q8. Cycles are on
the left (0 = white, 1 = black), with the first and last bit on the
inner and outer track, respectively. The full graph Q8 is on the
right, with vertices arranged in cycle order and edges drawn as
straight lines. a Binary reflected Gray code Γ8 with compres-
sion 4; b Hamilton cycle with compression 8 from Theorem 3.7
(h is complementation of the first bit and Q = Γ4); c 2-track
Hamilton cycle with compression 8 from Theorem 3.9 (h = g
and Q = Γ′

4, i.e., Γ4 with every bitstring reversed)
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tracks, each consisting of four cyclically shifted columns of bits. This property
is relevant for applications, as it saves hardware when implementing Gray-
coded rotary encoders. Instead of using n tracks and n reading heads aligned
at the same angle (each reading one track), one can use only t tracks, and
place some of the n reading heads at appropriately rotated positions.

Hiltgen, Paterson, and Brandestini [24] showed that the length of any 1-
track cycle in Qn must be a multiple of 2n. In particular, such a cycle cannot
be a Hamilton cycle unless n is a power of 2. For the case n = 2r, r ≥ 3, Etzion
and Paterson [13] showed that there is 1-track cycle of length 2n − 2n, and
Schwartz and Etzion [44] subsequently showed that the length 2n − 2n is best
possible. Taken together, these results show that there is no 1-track Hamilton
cycle in Qn for any n ≥ 3.

We complement this negative result by constructing a 2-track Hamilton
cycle in Qn, for every n that is a sum of two powers of 2 (Theorem 3.9); see
Fig. 4c. More generally, we obtain t-track Hamilton cycles in Qn for every n
that is a sum of t ≥ 2 powers of 2 (Theorem 3.10). In particular, Qn admits a
Hamilton cycle with at most logarithmically many tracks for all n.

From our construction in the Johnson graph Jn,k when n and k are co-
prime, we obtain 1-track Hamilton cycles that are also balanced (Theorem 4.5),
i.e., each bit is flipped equally often (cf. [4,15]).

We also construct a 1-track Hamilton cycle in Π+
n , for every odd n, where

Π+
n is obtained from Πn by adding edges that correspond to transpositions of

the first and last entry of a permutation (i.e., cyclically adjacent transposi-
tions). This cycle has the additional property that every transposition appears
equally often. In other words, we obtain a balanced 1-track Gray code for
permutations of odd length that uses cyclically adjacent transpositions (The-
orem 5.7).

1.7. Outline of This Paper

In Sect. 2, we provide definitions and auxiliary results that will be used later
in the paper. In Sects. 3–6, we prove our results about the Hamilton compres-
sion of hypercubes, Johnson graphs and relatives, permutahedra, and abelian
Cayley graphs, in that order. The Hamilton compression κ(G) is a newly intro-
duced graph parameter, so many natural follow-up questions arise. We collect
some of those open problems in Sect. 7. The proofs of some technical lemmas
that interfere with the main exposition are deferred to the appendix.

2. Preliminaries

We collect definitions, preliminary observations and various results from the
literature that we will use in our proofs later.

2.1. Graphs, Groups and Permutations

For a graph G, we write V (G) and E(G) for the vertex set and edge set of G,
respectively. For a sequence Γ, we write

#„

Γ for the reversed sequence.
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All groups considered in this paper are finite. For standard terminology
regarding groups, we refer to the textbook [8]. We denote the group operation
of a general group G multiplicatively, and we write e for its identity element.
On the other hand, we denote abelian groups additively, writing 0 for the
identity element and for k ∈ N, g ∈ G we define kg := g + · · · + g

︸ ︷︷ ︸
k times

.

Let G be a finite group acting on a set X. For f ∈ G let 〈f〉 denote the
(cyclic) subgroup of G generated by f and let ord(f) := |〈f〉| denote the order
of f . The orbit of an element x ∈ X under f is denoted by 〈x〉f := {f i(x) |
i = 0, 1, . . .} where the index f may be omitted whenever it is clear from the
context. We write O(f) for the set of all orbits of f .

Abelian groups are direct sums of cyclic groups Zn, which is captured by
the following well-known structure theorem.

Theorem 2.1. [8, Theorem 5.2] For any finite abelian group G, there are primes
p1, . . . , p� ≥ 2 and integers e1, . . . , e� ≥ 1 such that G ∼= Zp

e1
1

⊕ · · · ⊕ Zp
e�
�

.

For any ordered set X let SX denote the symmetry group on X. For the
set [n] = {1, . . . , n} we write Sn := S[n]. Permutations x ∈ SX , X = {i1 <
· · · < in}, are denoted in one-line notation x = xi1 · · · xin

without commas and
parentheses, and in cycle notation with commas and parentheses, for example
342165 = (1, 3, 2, 4)(5, 6) ∈ S6.

The parity of a permutation x = xi1 · · · xin
is the number of its inversions,

i.e., the number of pairs (xa, xb) with a < b and xa > xb. Equivalently, the
parity of x is given by the parity of the number of inversions whose product
is x. As odd cycles are products of an even number of inversions, the parity is
also equal to the parity of the number of even cycles in x. A permutation is
even or odd, if its parity is even or odd, respectively.

2.2. Hypercubes and Cartesian Products

Given two graphs G and H, the Cartesian product G � H has the vertex set
V (G) × V (H) and edges between pairs (u, v) and (u′, v′) if and only if u = u′

and vv′ ∈ E(H), or uu′ ∈ E(G) and v = v′.
We define a ‘zigzag’ path P �Q in a Cartesian product G � H as follows.

For a path P = (u1, . . . , ur) in G and a vertex v in H, we define

(P, v) :=
(
(u1, v), (u2, v), . . . , (ur, v)

)
. (4a)

Furthermore, for a path Q = (v1, . . . , vs) in H, where s is even, we define

P � Q := (P, v1), (
#„

P , v2), (P, v3), (
#„

P , v4), . . . , (P, vs−1), (
#„

P , vs). (4b)

Clearly, the path P�Q is a subgraph of G�H. Furthermore, it starts at (u1, v1),
ends at (u1, vs), and it visits all vertices of P � Q.

The hypercube Qn+m defined in Sect. 1.5 can be viewed as the Cartesian
product Qn � Qm.

It is well known that for every automorphism f of Qn, there is a unique
π ∈ Sn and a unique z ∈ Z

n
2 such that

f(x1 · · · xn) = xπ(1) · · · xπ(n) + z (5)
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for every x ∈ {0, 1}n, where + is the addition from Z
n
2 (bitwise XOR). In

fact, the automorphism group of the hypercube is Aut(Qn) ∼= Sn � Z
n
2 , the

hyperoctahedral group (� denotes the inner semidirect product).
We will also need the following result about the automorphism group of

certain Cartesian products of graphs. This result is a special case of Theo-
rem 6.13 from [23].

Lemma 2.2. Let G1, . . . , G� be graphs such that |V (G1)|, . . . , |V (G�)| are all
distinct primes, then Aut(G1 � · · · � G�) ∼=×�

i=1 Aut(Gi), where the multipli-
cation on the right-hand side denotes the direct product.

2.3. Johnson Graphs and Relatives

For integers n > k > 0, an (n, k)-combination is a bitstring of length n with
Hamming weight k. Recall that the Johnson graph Jn,k has as vertices all
(n, k)-combinations, and an edge between any two strings that differ in a
transposition of a 0 and 1. We defined the middle levels graph M2n+1 as the
subgraph of Q2n+1 induced by all bitstrings with Hamming weight n or n+ 1,
so these are all (2n + 1, n)-combinations and (2n + 1, n + 1)-combinations.

If n �= 2k, the automorphism group of Jn,k is the symmetric group Aut
(Jn,k) ∼= Sn; see [25,41]. Every automorphism f = π of Jn,k permutes the
entries of a vertex x, i.e., f(x1 · · · xn) = xπ(1) . . . xπ(n).

If n = 2k, the automorphism group of Jn,k is Aut(Jn,k) ∼= Sn × Z2 with
Z2

∼= {id, cpl}, where id is the identity map and cpl complements all bits; see
[17,25]. Every automorphism of Jn,k is a pair f = (π, α) with π ∈ Sn and
α ∈ {id, cpl}, and f acts on a vertex x by f(x1 · · · xn) = α(xπ(1) · · · xπ(n)).

The automorphism group of the middle levels graph M2n+1 is also Aut
(M2n+1) ∼= S2n+1 × Z2 with Z2

∼= {id, cpl}; see [41].
To construct symmetric Hamilton cycles in Johnson graphs, we will use

the automorphism f = (π, id) that cyclically shifts all bits to the left by one
position (no complementation is applied). Formally, f maps x = x1 · · · xn to
f(x) = x2x3 · · · xnx1. The orbits of f are known as necklaces. Note that if n
and k are coprime, then every necklace has the same size n.

We will use the following result due to Wang and Savage [52] (see also
[49]).

Theorem 2.3. [52] For all n − 1 > k > 1, there is a path in Jn,k from 1k0n−k

to 1k−1010n−k−1 that visits every necklace exactly once.

Note that the end vertices of this path are adjacent, so the path can be
completed to a cycle.

2.4. Permutahedra

As mentioned before, an adjacent transposition in Sn is a permutation that
flips two adjacent positions, in cycle notation it is ti := (i, i + 1) for some
1 ≤ i < n. Two permutations x, y ∈ Sn differ by an adjacent transposi-
tion if x = tiy (equivalently y = tix) for some 1 ≤ i < n where the com-
posed permutations are applied from left to right, i.e., xj = yti(j); see Fig. 1.
The permutahedron of order n is the graph Πn with vertex set Sn and edge
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set {{x, tix} | x ∈ Sn, 1 ≤ i < n}; that is, the vertices are all permutations
of [n] and the edges are between any two permutations that differ by an ad-
jacent transposition. Equivalently, Πn is the Cayley graph of Sn generated by
adjacent transpositions. Note that our definition of Πn is equivalent to another
definition of the permutahedron sometimes used in geometry where edges con-
nect permutations that differ in a transposition of adjacent values (consider
the inverse permutations). Our definition of Πn extends straightforwardly to
the symmetric group SX on any ordered ground set X, and we write ΠX for
this graph with vertex set SX and edges between pairs of permutations on X
that differ by an adjacent transposition.

Clearly, the graph Πn is bipartite with partition classes given by the par-
ity of permutations, into sets of equal size for all n ≥ 2. Tchuente established
the following strong Hamiltonicity property of Πn.

Theorem 2.4. [47] For any n ≥ 4 or n = 2, the permutahedron Πn has a Hamil-
ton path between any two permutations of opposite parity (i.e., it is Hamilton-
laceable). For n = 3, it has a Hamilton path between any two permutations
that differ by an adjacent transposition.

It is known [14] that Aut(Πn) ∼= Z2 � Sn with Z2
∼= {id, rev} where

id is the identity permutation and rev(x1 · · · xn) := xn · · · x1 is the reversal
permutation. So any f ∈ Aut(Πn) can be uniquely written as a pair f = (α, π)
of α ∈ {id, rev} and π ∈ Sn. However, for our purposes we let α act on positions
and π on values, formally

(α, π)(x1 · · · xn) = π(xα(1)) · · · π(xα(n)), (6)

that is, (α, π)(x) = αxπ under composition (applied in the order from left to
right) where α is the identity or the reversal of positions and π is a permutation
of values. The automorphism group Aut(Πn) with this action is therefore a
direct product of Z2 and Sn since

(α, π)(β, ρ)(x) = β(αxπ)ρ = (αβ)x(πρ) = (αβ, πρ)(x),

using the commutativity of Z2.

2.5. Multiset Permutations

A composition of an integer n ≥ 1 is a sequence a = (a1, · · · , am) of positive
integers with

∑m
i=1 ai = n. The partition of the set [n] associated to a is

A1∪· · ·∪Am = [n] with |Ai| = ai and x < y if x ∈ Ai and y ∈ Aj with i < j. For
example, A1 = {1, 2, 3} and A2 = {4, 5} for a = (3, 2). A multiset permutation
with frequencies a, or a-permutation for short, is a sequence u = u1 · · · un of
values from [m] with exactly ai occurrences of the value i for all 1 ≤ i ≤ m. The
set of all a-permutations is denoted by

(
[n]
a

)
, their number is the multinomial

coefficient
(

n
a1,...,am

)
. The lexicographically smallest a-permutation is called the

identity a-permutation and is denoted by id(a). For example, for a = (3, 2)
we have id(a) = 11122. Let u = u1 · · · un be an a-permutation and for each
1 ≤ i ≤ m, let xi = xi

1 · · · xi
ai

be a permutation of Ai, where the sets Ai

form the partition of [n] associated to a. The mix of u with x1, . . . , xm is the
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permutation of [n] denoted by u⊗(x1, . . . , xm) obtained from u by replacing the
jth occurrence of the value i with xi

j . For example, 12211⊗ (213, 54) = 25413.
Let G(a) denote the graph with vertex set

(
[n]
a

)
and edges between any

two a-permutations that differ by an adjacent transposition of distinct values.
We will use the following two results on Hamilton paths and cycles in G(a).

Theorem 2.5 [5,12,42]. Let a = (a1, a2) be a composition of n such that both a1

and a2 are odd. Then, the graph G(a) has a Hamilton path between 1a12a2 and
2a21a1 .

Note that the vertices 1a12a2 and 2a21a1 mentioned in Theorem 2.5 have
degree 1 in G(a), so there is no Hamilton cycle in this case. However, for
a-permutations on at least three distinct values with at least two odd multi-
plicities ai, Stachowiak [46] proved there is a Hamilton cycle in G(a), apart
from one exception.

Theorem 2.6 [46]. Let a = (a1, . . . , am), m ≥ 3, be a composition of n such
that at least two of the ai are odd. Then, G(a) has a Hamilton cycle, unless
m = 3 and n is even and {a1, a2, a3} = {n − 2, 1, 1}.

2.6. Landau’s Function

A partition of an integer n ≥ 1 is a sequence a = (a1, . . . , am) of positive
integers with

∑m
i=1 ai = n and a1 ≥ a2 ≥ · · · ≥ am. The maximal order of an

element of Sn is called Landau’s function [31], and we denote it by λ(n). It is
determined by

λ(n) = max
a1+···+am=n

lcm(a1, . . . , am), (7)

where the maximum ranges over all partitions of n, and lcm(a1, . . . , am) de-
notes the least common multiple of a1, . . . , am. The first values of λ(n) are
shown in Table 1 (see also the appendix); this is OEIS sequence A000793 [39].

Concerning the asymptotic growth of λ(n), Landau showed that

λ(n) = e(1+o(1))
√

n lnn. (8)

For our arguments, we will need two variants of Landau’s function that
we define in the following. For any partition (a1, . . . , am) write e(a1, . . . , am)
for the number of even entries of the partition. We define

λ0(n) := max
a1+···+am=n
e(a1,...,am)=0

lcm(a1, . . . , am), (9a)

λ2(n) := max
a1+···+am=n

e(a1,...,am)∈{2,4,6,...}
lcm(a1, . . . , am). (9b)

The maximizations in (9) are over all integer partitions of n that have 0 even
parts (i.e., only odd parts), or exactly 2, 4, 6, . . . even parts, respectively. The
only difference of these definitions to (7) are the additional requirements about
the parity of the ai. The sequences (λ0(n))n≥1 and (λ2(n))n≥1 appear not to
have been studied before.
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The first few values of λ0(n) and λ2(n) are shown in Table 1, comparing
them with the corresponding values for λ(n). We clearly have λ0(n) ≤ λ(n) for
all n ≥ 1, with equality e.g. for n = 1, 3, 8, 15. Similarly, we have λ2(n) ≤ λ(n)
for all n ≥ 1, with equality e.g. for n = 21, 22, 45, 46, 51, 52, 55, 56, 74, 75, 81, 82,
87, 88, 91, 92, 99, 100. On the other hand, λ0(n) can be much smaller than λ(n).
For example, for n = 19, 20 we have λ(n)/λ0(n) = 28/11 = 2.54 . . ., for n =
30, 31 we have λ(n)/λ0(n) = 44/13 = 3.38 . . . and for n = 53, 54 we have
λ(n)/λ0(n) = 72/17 = 4.23 . . .. One can also see that λ0(n) ≤ α(n) ≤ λ(n),
where α(n) is the maximal order of an element of the alternating group An

(OEIS sequence A051593). More numerical experiments about the Landau
function and its variants are reported in the appendix.

Lemma 2.7. The functions λ(n), λ0(n) and λ2(n) have the following proper-
ties:

(i) The maximum in (7) is attained for a partition of n into powers of distinct
primes and 1s.

(ii) The maximum in (9a) is attained for a partition of n into powers of
distinct odd primes and 1s.

(iii) The maximum in (9b) is attained for a partition of n into powers of
distinct odd primes, a positive power of 2, a 2 and 1s. For n ≥ 12, this
partition has at least m ≥ 4 parts.

(iv) We have max{λ0(n), λ2(n)} ≥ λ(n)/2.
(v) We have λ(n)/λ0(n) ≥ 4 for n ≥ 739 and limn→∞ λ(n)/λ0(n) = +∞,

and we have λ(n)/λ2(n) ≤ 2 for n ≥ 18. Consequently, we have 2λ0(n) ≤
λ2(n) for n ≥ 739 and limn→∞ 2λ0(n)/λ2(n) = 0.

(vi) There are arbitrarily long intervals with λ(n) = λ2(n).

For example, λ(11) = 30 is attained by the partition (6, 5) but also by the
partition (5, 3, 2, 1). Similarly, λ2(10) = 12 is attained by the partition (6, 4)
but also by the partition (4, 3, 2, 1). The proof of Lemma 2.7 is deferred to the
appendix.

2.7. Cayley Graphs

For a group G and a generating set S ⊆ G, we define the Cayley graph Γ(G,S)
as the graph with vertex set G and undirected edges {x, y} for all x, y ∈ G
and s ∈ S with y = xs. As the edges are undirected, the graphs Γ(G,S) and
Γ(G,S ∪ S−1) are the same, where S−1 := {s−1 | s ∈ S}, so we can assume
w.l.o.g. that if s ∈ S, then also s−1 ∈ S. If P = (x1, . . . , xn) is a path in the
Cayley graph Γ(G,S), then for any g ∈ G the sequence gP := (gx1, . . . , gxn)
is also a path.

It has long been conjectured that all Cayley graphs admit a Hamilton
cycle, but despite considerable effort and many partial results (see the surveys
[6,27,40,51]), this problem is still very much open in general. On the other
hand, for Cayley graphs of abelian groups several results are known. A classical
folklore result (see e.g. [51, Sec. 3]) states that every Cayley graph of an abelian
group has a Hamilton cycle.
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Theorem 2.8. Let G be an abelian group with |G| ≥ 3 and S ⊆ G a generating
set. Then the Cayley graph Γ(G,S) has a Hamilton cycle.

In fact, this result can be generalized considerably using the following
stronger notions of Hamiltonicity. A graph is called Hamilton-connected if
for any two vertices there is a Hamilton path starting and ending at these
two vertices. Similarly, a bipartite graph is called Hamilton-laceable if for any
two vertices in different partition classes there is a Hamilton path joining
these two vertices. The following theorem of Chen and Quimpo asserts that
Cayley graphs of abelian groups possess the strongest possible of these two
Hamiltonicity notions.

Theorem 2.9 [7]. Let G be an abelian group and S ⊆ G a generating set. If the
Cayley graph Γ = Γ(G,S) has minimum degree at least 3, then we have the
following:

(i) If Γ is bipartite, then Γ is Hamilton-laceable.
(ii) If Γ is not bipartite, then Γ is Hamilton-connected.

We will also need the fact that Cayley graphs are highly connected.

Lemma 2.10 [50, Theorem 3]. If Γ is a connected d-regular Cayley graph, then
the vertex-connectivity of Γ is at least 2d/3.

3. Hypercubes

In this section, we consider the family of hypercubes Qn introduced in Sect. 1.5
(recall also Sect. 2.2). We first show that the binary reflected Gray code has
constant compression 4. We then establish a general linear (in n) upper bound
for κ(Qn), and a matching lower bound construction, i.e., an automorphism
and a Hamilton cycle in Qn whose compression equals this upper bound.
Lastly, we apply our constructions to derive t-track Hamilton cycles in Qn.

3.1. The Binary Reflected Gray Code (BRGC)

Recall the definition of the BRGC Γn given in Sect. 1.5.1.

Proposition 3.1. The BRGC Γn has compression κ(Qn,Γn) = 4 for n ≥ 2.

The BRGC Γn is illustrated in Figs. 2a and 4a for n = 4 and n = 8,
respectively, and those two pictures indeed have 4-fold rotational symmetry.

Proof. For n = 2 the graph Q2 is a 4-cycle, so the claim is trivially true.
For the rest of the proof, we assume that n ≥ 3. Unrolling the inductive
definition Γn = 0Γn−1, 1

#        „

Γn−1 two more times gives

Γn = 00Γn−2, 01
#        „

Γn−2, 11Γn−2, 10
#        „

Γn−2 (10)

and
Γn = 000Γn−3, 001

#„

Γn−3,

011Γn−3, 010
#„

Γn−3,

110Γn−3, 111
#„

Γn−3,

101Γn−3, 100
#„

Γn−3.

(11)
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From (11), we see that Γn has compression at least 4 under the automorphism
x1x2x3 �→ x2x1x3 (the bits x4, . . . , xn are not modified), which maps each line
in (11) to the next line.

To show that the compression is at most 4, let x1, . . . , xN , N := 2n, be
the sequence of bitstrings of Γn. From (10) we see that xi differs from xi+N/2

by complementing the first two bits, for all i = 1, . . . , N , where indices are
considered modulo N . It follows that if xi and xi+1 have the same first two
bits, then Si := (xi, xi+1, xi+N/2, xi+1+N/2) is not a 4-cycle. On the other
hand, if xi and xi+1 differ in one of the first two bits, then Si is a 4-cycle.
From (10) we see that this happens precisely for i = N/4, 2N/4, 3N/4, N ,
proving that the compression is at most 4. �

3.2. An Upper Bound

Recall from Sect. 2.2 that Aut(Qn) ∼= Sn � Z
n
2 , so from (3) we obtain κ(Qn) ≤

2λ(n), where λ(n) is Landau’s function. We now improve this upper bound
drastically to a function that is linear in n (cf. (8)).

Lemma 3.2. Let n ≥ 3. If Qn has a k-symmetric Hamilton cycle, then k =
2i < 2n for some i.

Proof. Consider an automorphism f of Qn and a path P such that

C = P, f(P ), f2(P ), . . . , fk−1(P ) (12)

is a k-symmetric Hamilton cycle in Qn for some k (recall (1)). It follows that
k must divide 2n, i.e., we have k = 2i for some i ≤ n. Let π ∈ Sn and
z ∈ Z

n
2 be such that (5) holds. Suppose that π is a product of cycles of lengths

a1 ≥ · · · ≥ am, and note that ord(π) = lcm(a1, . . . , am). As πk = id, each aj

divides k = 2i, implying that ord(π) = lcm(a1, . . . , am) = a1 ≤ n. We conclude
that ord(f) = k = 2i ≤ 2 ord(π) ≤ 2n, in particular i < n for n ≥ 3.

To complete the proof, it remains to rule out the possibility k = 2n.
In this case, π has just a single cycle of length a1 = n = 2i−1 > 2. As
|P | = 2n−i is even (because of i < n), the first and last vertex of P have
opposite parity. Observe that z must have odd parity, otherwise we would
have fn = id (contradicting ord(f) = k = 2n), implying that the first vertices
of P and f(P ) have opposite parity. Combining these observations shows that
the last vertex of P and the first vertex of f(P ) have the same parity, so they
cannot be adjacent, contradicting (12). We conclude that k = 2i < 2n, which
completes the proof. �

3.3. An Optimal Construction

We consider the automorphism

g(x1x2 · · · xn) = x2 · · · xnx1, (13)

of Qn, i.e., g cyclically shifts all bits to the left by one position and then
complements the last bit. The mapping g is an auxiliary automorphism and the
automorphism f that determines κ(Qn) will be defined below in Lemma 3.6.
Clearly g2n = id, so all orbits have size at most 2n. We will see that if n is a
power of 2, i.e., n = 2r for some r ≥ 1, then all orbits have the same size 2n.
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For every n = 2r, r ≥ 1, we inductively define a set Rn of vertices
of Qn that are representatives of orbits of g, i.e., from every orbit precisely
one vertex is in Rn. First, we define a function that interleaves the bits of two
bitstrings u = u1 · · · un and v = v1 · · · vn of equal length by

u ◦ v := u1v1u2v2 . . . unvn, (14)

i.e., the result is a bitstring of length 2n that alternately contains the bits of u
and v, starting by the first bit of u. Observe that

g2i(u ◦ v) = gi(u) ◦ gi(v), (15a)

g2i+1(u ◦ v) = gi(v) ◦ gi+1(u) (15b)

for every 0 ≤ i < 2n and u, v ∈ {0, 1}n. For n = 2r, r ≥ 1, we define the set Rn

inductively by

R2 := {00}, (16a)

R2n := {gk(u) ◦ v | u, v ∈ Rn and 0 ≤ k < n}. (16b)

For example, we have R4 = {0000, 0010} and

u = 0000 u = 0010
v = 0000 v = 0010 v = 0000 v = 0010

R8 = { 00000000, 00000100, 00001000, 00001100, k = 0
00000010, 00000110, 00100010, 00100110, k = 1
00001010, 00001110, 10001010, 10001110, k = 2
00101010, 00101110, 00101000, 00101100 }. k = 3

Lemma 3.3. For every n = 2r, r ≥ 1, 0 ≤ j < 2n, and x, y ∈ Rn, we have
gj(x) �= y unless x = y and j = 0.

Proof. We proceed by induction on r. The statement holds trivially for r = 1.
For the induction step from r to r+1 let 0 ≤ j < 4n and x, y ∈ R2n. By (16b),
x = gk(u) ◦ v and y = gk′

(u′) ◦ v′ for some u, v, u′, v′ ∈ Rn and 0 ≤ k, k′ < n.
We distinguish two cases based on the parity of j.

If j = 2i where 0 ≤ i < 2n then from (15a), we have

gj(x) = g2i(gk(u) ◦ v) = gk+i(u) ◦ gi(v),

which equals y = gk′
(u′) ◦ v′ only if

gk+i(u) = gk′
(u′) and gi(v) = v′.

By the induction hypothesis, this holds only if

u = u′, k + i = k′ mod 2n, and v = v′, i = 0,

equivalently, x = y and j = 0.
Similarly, if j = 2i + 1 where 0 ≤ i < 2n then from (15b) we have

gj(x) = g2i+1(gk(u) ◦ v) = gi(v) ◦ gk+i+1(u),
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which equals y = gk′
(u′) ◦ v′ only if

gi(v) = gk′
(u′) and gk+i+1(u) = v′.

By the induction hypothesis, this holds only if

v = u′, i = k′ mod 2n, and u = v′, k + i + 1 = 0 mod 2n.

However, it cannot be that k + k′ + 1 = 0 mod 2n since 0 ≤ k, k′ < n. So in
this case, gj(x) �= y. �
Lemma 3.4. For every n = 2r, r ≥ 1, all orbits of g have the same size 2n and
Rn is a set of representatives for all 2n/(2n) = 2n−r−1 orbits.

Proof. Lemma 3.3 shows that no two elements of Rn are in the same orbit,
and that every such orbit has size 2n. It remains to argue that there is no other
orbit, simply because |Rn| · 2n = 2n, which is equivalent to |Rn| = 2n−r−1.
Indeed from (16) we have |R2| = 1 = 2n−r−1 for r = 1 and

|R2n| = |Rn|2 · n = (2n−r−1)2 · 2r = 22n−(r+1)−1

by induction for all r ≥ 1. �
Lemma 3.5. For every n = 2r, r ≥ 2, there is a path Pn in Qn that visits all
vertices Rn and that starts in 0n and ends in 0n−210.

Proof. For r = 2, we set P4 := (0000, 0010). It is straightforward to verify
from (16) that 0n, 0n−210 ∈ Rn. Note that g2 is an automorphism of Qn with
orbits of size n, and 0n−210 is adjacent in Qn to g2(0n) = 0n−211. For the
induction step r → r + 1, we construct the path P2n recursively from Pn.
Specifically, by the observations from before

P ′ := Pn, g2(Pn), . . . , gn−2(Pn), (17a)

P ′′ := g(Pn), g3(Pn), . . . , gn−1(Pn) (17b)

are vertex-disjoint paths in Qn that start in 0n and 0n−11, respectively. Con-
sider the path

P2n := h(P ′ � Pn), h(P ′′ � #„

P n) (18)

in Q2n = Qn � Qn, where � is defined in (4) and h(u, v) := u ◦ v, for u, v ∈
{0, 1}n, is the interleaving function defined in (14), applied to all vertices along
the paths.

As |Pn| = |Rn| = 2n−r−1 is even and the first vertices of P ′ and P ′′ differ
in a single bit, the transition between the two halves of (18) flips a single bit,
as desired. Specifically, P ′ � Pn ends in 0n ◦ 0n−210 and P ′′ � #„

P n starts in
0n−11◦0n−210. Observe furthermore that P2n starts in 0n ◦0n = 02n and ends
in 0n−11 ◦ 0n = 02n−210. By induction, we know that Pn visits every vertex
of Rn exactly one. Using this with (16b) and (17) shows that P2n visits every
vertex of R2n exactly once.

To illustrate the construction, for n = 4 we have P4 = (0000, 0010), so

P ′ = P4, g2(P4) = (0000, 0010, 0011, 1011),

P ′′ = g(P4), g3(P4) = (0001, 0101, 0111, 0110)
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and

P8 = ( 00000000, 00001000, 00001010, 10001010, h(P ′, 0000) h(P ′ � P4)
10001110, 00001110, 00001100, 00000100, h(P ′, 0010)
00000110, 00100110, 00101110, 00101100, h(P ′′, 0010) h(P ′′ � #„

P 4)
00101000, 00101010, 00100010, 00000010 ). h(P ′′, 0000)

�

Note that the end vertex 0n−210 of Pn is not adjacent to g(0n) = 0n−11
in Qn, so Pn with g does not directly produce a 2n-symmetric Hamilton cycle
in Qn (recall (1)). However, in the following, we show that Pn can produce a
2n-symmetric Hamilton cycle in Qn+m for any m ≥ 1.

Lemma 3.6. Let g be an automorphism of a graph G with orbits of the same
size k ≥ 2 and let P be a path in G on orbit representatives R starting at
some vertex u that is adjacent to g(u) in G. Let h be an automorphism of
a graph H on an even number of vertices such that ord(h) divides k and let
Q be a Hamilton path of H between v and h(v) for some vertex v. Then the
Cartesian product G � H has a k-symmetric Hamilton cycle

C := P � Q, f(P � Q), f2(P � Q), . . . , fk−1(P � Q) (19)

where f := (g, h) is the (product) automorphism of G � H.

Proof. Since fk = id, all orbits of f have size at most k. Furthermore, for any
(u, v) and (u′, v′) from the set

A := R × V (H) = {(u, v) | u ∈ R, v ∈ V (H)}
and any 0 ≤ i, i′ < k we have that f i(u, v) = f i′

(u′, v′) only if

gi(u) = gi′
(u′) and hi(v) = hi′

(v′),

which holds only if u = u′, i = i′, and v = v′ since u, u′ are orbit representatives
for g. Thus no two elements of A are from the same orbit of f and since

|A| = |R| · |V (H)| = |V (G)|/k · |V (H)| = |V (G � H)|/k,

the set A contains representatives of all orbits of f and they all have the same
size k.

As Q has even length, the path P � Q starts in (u, v), ends in (u, h(v)),
and it contains exactly the vertices of A. Furthermore, (u, h(v)) is adjacent to
f(u, v) = (g(u), h(v)), so C defined in (19) is a k-symmetric Hamilton cycle
in G � H. �

Theorem 3.7. For every n = 2r, r ≥ 2, and m ≥ 1, the hypercube Qn+m has
a 2n-symmetric Hamilton cycle.

The 8-symmetric Hamilton cycle in Q8 obtained from Theorem 3.7 for
n = m = 4 is illustrated in Fig. 4b.
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Proof. Let g be the automorphism of Qn given by (13). All orbits of g have
the same size k := 2n and by Lemmas 3.4 and 3.5, there is a path Pn on
orbit representatives Rn that starts in u := 0n, which is adjacent to g(u) =
0n−11. Let h be the automorphism of Qm that flips the first bit. Clearly,
ord(h) = 2 divides k, and there is a Hamilton path in Qm between v := 0m

and h(v) = 10m−1; take for example the BRGC Γm defined in Sect. 1.5.1.
Applying Lemma 3.6, we obtain that the graph Qn+m = Qn � Qm has the
2n-symmetric Hamilton cycle defined in (19). �

Combining the previous results, we obtain the following closed formula
for the Hamilton compression of Qn.

Theorem 3.8. We have κ(Q2) = 4 and κ(Qn) = 2�log2 n� for all n ≥ 3.

Note that n ≤ κ(Qn) < 2n for n ≥ 2, in particular κ(Qn) = Θ(n).

Proof. Q2 is a 4-cycle, which has optimal compression κ(Q2) = 4. Note that
2�log2 n� is the largest power of 2 that is less than 2n. By Lemma 3.2, this
is a valid upper bound for κ(Qn) for all n ≥ 3. For n = 3 and n = 4, this
upper bound is 4, and it is attained by the BRGC Γn, which has compression
κ(Qn,Γn) = 4 by Proposition 3.1. For any n ≥ 5 we define r := �log2 n� − 1,
n′ := 2r, and m := n − 2r, and Theorem 3.7 yields a 2n′-symmetric Hamilton
cycle in Qn′+m = Qn, and since 2n′ = 2r+1 = 2�log2 n�, this matches the upper
bound, so it is best possible. �

3.4. Application to t-Track Gray Codes

Recall the definition of t-track Hamilton cycles given in Sect. 1.6.2. As discussed
before, there is no 1-track Hamilton cycle in Qn. We now provide a construction
of a 2-track Hamilton cycle for every n that is a sum of two powers of 2.

Theorem 3.9. For every n = 2r and m = 2s, where r ≥ 2 and r ≥ s ≥ 0, there
is a 2n-symmetric Hamilton cycle in Qn+m that has 2 tracks.

The 2-track Hamilton cycle in Q8 obtained from Theorem 3.9 for n =
m = 4 is illustrated in Fig. 4c.

Proof. Since 2m divides 2n, we may apply Lemma 3.6 with the automor-
phism g of Qn given by (13) and the automorphism h of Qm given by h(x) :=
g(x). Furthermore, as a Hamilton path Q in Qm between v := 0m and h(v) =
0m−11 we can take the listing Γ′

m obtained from the BRGC Γm by revers-
ing every bitstring. In this way, we obtain a 2n-symmetric Hamilton cycle C
of Qn+m. Furthermore, as the automorphism f from Lemma 3.6 is the product
of g and h, and both g and h cyclically shift positions, we obtain that in the
matrix corresponding to C, the first n columns are cyclic shifts of each other,
and the last m columns are cyclic shifts of each other. �

Theorem 3.9 can be generalized immediately, yielding a t-track Hamilton
cycle for every n that is a sum of t ≥ 2 powers of 2. This shows in particular
that every dimension n ≥ 5 admits a Hamilton cycle with at most �log2(n+1)�
many tracks.
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Theorem 3.10. For every n = 2r and (m1, . . . ,mt−1) = (2s1 , . . . , 2st−1), where
r, t ≥ 2 and r ≥ s1 ≥ · · · ≥ st−1 ≥ 0, there is a 2n-symmetric Hamilton cycle
in Qn+m1+···+mt−1 that has t tracks.

Proof. The proof is analogous to the proof of Theorem 3.9, using the auto-
morphism h of Qm1+···+mt−1 that complements the first bit and then cyclically
shifts groups of bits of sizes m1, . . . ,mt−1, each group one position to the left,
and using any Hamilton path in Qm1+···+mt−1 between v := 0m1,...,mt−1 and
h(v) = 0m1−110m2,...,mt−1 . �

4. Johnson Graphs and Relatives

In this section, we consider Johnson graphs and middle levels graphs intro-
duced in Sect. 1.5 (recall also Sect. 2.3). We first derive some upper bounds for
their Hamilton compression, and then provide corresponding lower bound con-
structions. For Johnson graphs, the classical construction of a Hamilton cycle
is to consider the sublist of the BRGC Γn obtained by restricting to bitstrings
with fixed Hamming weight k (see [48]). The resulting cycle in Jn,k is only
1-symmetric in general, so we did not analyze it further (unlike the BRGC
and the SJT cycles in the previous and next section, respectively, which have
compression factors > 1).

4.1. An Upper Bound

Recall from Sect. 2.3 that Aut(Jn,k) ∼= Sn if n �= 2k and Aut(Jn,k) ∼= Sn ×Z2 if
n = 2k, so from (3) we obtain κ(Jn,k) ≤ λ(n) or κ(Jn,k) ≤ 2λ(n), respectively,
where λ(n) is Landau’s function. We now improve these bounds drastically to
linear functions (cf. (8)).

Lemma 4.1. If n �= 2k, then we have κ(Jn,k) ≤ n. If n = 2k, then we have
κ(Jn,k) ≤ 2n.

Proof. We first consider the case n �= 2k. Let f = π be any automorphism
of Jn,k, and consider a fixed cycle decomposition C1, . . . , Cm of the permuta-
tion π. Consider the permutation ρ of [n] obtained by ‘flattening’ the lists C1,
. . . , Cm. For example, if n = 9 and π = (1, 5, 4)(2, 9, 7, 8)(3, 6) we have ρ =
154297836. Let x = x1 · · · xn be the vertex of Jn,k defined by xρ(i) := 1 for
i = 1, . . . , k and xρ(i) := 0 for i = k+1, . . . , n. By definition, for all i = 1, . . . , m
except possibly one index i = s, we have that the entries of x on the indices
of Ci are all the same (either all 1s or all 0s), whereas on the indices of Cs we
see both 1s and 0s in x. It follows that the size of the orbit of x under π is at
most |Cs| ≤ n (if there is no exceptional cycle Cs, then the orbit has size 1).
This proves the first part of the lemma.

The proof of the second part is analogous, and here the additional factor
of 2 comes from the possible complementation operation. �

As the automorphism group of the middle levels graph is also Aut(Jn,k) ∼=
Sn × Z2, the same proof idea immediately gives an analogous upper bound of
twice the length of the bitstrings.
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Lemma 4.2. For all n ≥ 1, we have κ(M2n+1) ≤ 2(2n + 1).

4.2. Known Construction for Middle Levels Graphs

The following is the main result of [34].

Theorem 4.3 [34]. For all n ≥ 1, the graph M2n+1 has a (2n + 1)-symmetric
Hamilton cycle.

Cycles obtained from Theorem 4.3 are shown in Figs. 2b and 5a. These
cycles also have the 1-track property and they are balanced (as the underlying
automorphism is cyclic rotation of all bits). From this we can determine the
Hamilton compression of M2n+1 up to a factor of 2.

Theorem 4.4. For all n ≥ 1, we have 2n + 1 ≤ κ(M2n+1) ≤ 2(2n + 1).

Proof. The upper bound comes from Lemma 4.2, and the lower bound from
Theorem 4.3. �

Interestingly, both bounds in Theorem 4.4 can sometimes be improved.
For example, in dimension 7, we can take the automorphism f defined by
x1 · · · x7 �→ x1x2x4x5x6x7x3, which fixes the first two bits, cyclically left-shifts
the remaining five bits by one position, and then complements all bits. A 10-
symmetric Hamilton cycle under this f is shown in Fig. 5b, whereas the lower
and upper bounds are 7 and 14, respectively. In fact, computer experiments
show that κ(M7) = 10.

4.3. A Near-Optimal Construction for Johnson Graphs

Our next result provides Hamilton cycles in Jn,k with optimal compression for
the case when n and k are coprime (this in particular means that n �= 2k).

Theorem 4.5. Let n > k > 0 be such that n and k are coprime. Then, Jn,k has
an n-symmetric Hamilton cycle that has 1 track and is balanced, i.e., each bit
is flipped equally often (

(
n
k

)
/n many times).

This construction is illustrated in Fig. 6a for J11,3.

Proof. For k = 1 and k = n − 1, the Johnson graph Jn,k is the complete
graph Kn, so the statement is trivial. For the rest of the proof we, therefore,
assume that n − 1 > k > 1.

We use the automorphism f that cyclically left-shifts all bits by one
position. The orbits of f are necklaces, and as n and k are coprime, every
necklace has the same size n. Let P be the path in Jn,k guaranteed by The-
orem 2.3 from x := 1k0n−k to y := 1k−1010n−k−1. Note that y is adjacent to
f(x) = 1k−10n−k1. Consequently, C := P, f(P ), f2(P ), . . . , fn−1(P ) is an n-
symmetric Hamilton cycle in Jn,k. Furthermore, any two columns of the |C|×n
matrix corresponding to C are cyclic shifts of each other, so C has the 1-track
property. This immediately implies that every bit is flipped equally often. �

When n and k are not coprime, we can slightly modify the automorphism
used to prove the previous theorem. Instead of cyclically shifting all n bits,
we now shift only the first q bits, leaving the last n − q bits unchanged. The
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(a)

(b)

Figure 5. Symmetric Hamilton cycles in the middle levels
graph M7: a A solution to Knuth’s problem with compres-
sion 7 for f being cyclic left-shift; b Hamilton cycle with
compression 10 for f being left-shift of the last 5 bits and
complementation of all bits

parameter q is chosen as close to n as possible, but it has to satisfy certain
coprimality conditions that are needed so that all necklaces have the same
size q. This construction is illustrated in Fig. 6b for J10,4 and q = 7.

Theorem 4.6. Let q < n be such that q > max{k, n − k} and q and 	 are
coprime for all 	 = k − (n− q), . . . , k. Then, Jn,k has a q-symmetric Hamilton
cycle that has 1 + n − q tracks.

The number of tracks could be reduced to at most 1 + �log2(n − q + 1)�
tracks with the help of Theorem 3.10.

Proof. Let r := n − q. We use the automorphism f that cyclically left-shifts
the first q bits by one position and leaves the last r bits unchanged, i.e.,
f(x1 · · · xn) = x2x3 · · · xqx1xq+1 · · · xn. By the assumption q > max{k, n − k},
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)b()a(

Figure 6. Symmetric Hamilton cycles in Johnson graphs:
a balanced 1-track Hamilton cycle in J11,3 with compres-
sion n = 11; the automorphism left-shifts all n bits; b 4-track
Hamilton cycle in J10,4 with compression q = 7; the automor-
phism left-shifts the first q bits

every (n, k)-combination has both 0-bits and 1-bits among the first q bits, and
as q and 	 are coprime for all 	 = k−r, . . . , k by the assumptions in the lemma,
all orbits of f have the same size q (independent of 	).

The different values of 	 specify the number of 1-bits among the first q
positions. Specifically, for 	 = k − r, . . . , k, let R� be the path on necklaces for
(q, 	)-combinations guaranteed by Theorem 2.3, i.e., R� starts at 1�0q−� and
ends at 1�−1010q−�−1. For the special cases 	 = 1 (i.e., q = n − k + 1), or
	 = k and q = k + 1 the sequence R� is just the single vertex 10q−1 or 1k0,
respectively. Furthermore, let Q = (x1, . . . , xN ), N := 2r, a Hamilton cycle
in Qr, for example the BRGC Q = Γr, which satisfies x1 = 0r.

In the following, we write w(xi) for the Hamming weight of xi. We now
define a path

P := R1x1, R2x2, . . . , RN−1xN−1R
′
NxN

where Ri := R� with 	 := k − w(xi) for i = 1, . . . , N − 1, and R′
N is ob-

tained from R�, 	 := k − w(xN ), by reversing all bitstrings and cyclically
shifting them by q − 	 positions to the left so that R′

N starts at 1�0q−�

and ends at 01�−10q−�−11. By construction, for i = 1, . . . , N − 1 the last
vertex of Rixi differs from the first vertex of Ri+1xi+1 by a transposition
of 0 and 1. Furthermore, by our choice of x1 = 0r, the first vertex of P
is x := 1k0q−kx1 = 1k0q−k0r and as w(xN ) = 1 the last vertex of P is
y := 01k−20q−k1xN , i.e., y is connected to f(x) = 1k−10q−k10r.

We conclude that C := P, f(P ), f2(P ), . . . , fq−1(P ) is a q-symmetric
Hamilton cycle in Jn,k. In the corresponding |C|×n matrix, the first q columns
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are cyclic shifts of each other, so they form one track, and each of the remaining
r columns is its own track. The total number of tracks is therefore 1 + r =
1 + n − q. �

The next lemma provides the good news that an integer q satisfying the
conditions of Theorem 4.6 exists for all n and k.

Lemma 4.7. For all n > k > 0, there is an integer q ≤ n such that q >
max{k, n − k} and q and 	 are coprime for all 	 = k − (n − q), . . . , k.

One natural idea would be to take q as a prime number with k < q ≤ n,
this would automatically guarantee that q is coprime to all 	 = k−(n−q), . . . , k.
However, as the integers contain arbitrarily long intervals of non-primes, such
a choice is not always possible, so we need to argue differently. It turns out that
the proof of Lemma 4.7 requires some delicate number-theoretic reasoning, so
we defer it to the appendix. For n > k > 0 we write q(n, k) for the largest
integer q satisfying the conditions of Lemma 4.7. The function n − q(n, k) is
visualized in the appendix for small values of n and k. This is the difference
of the compression factor q achievable by Theorems 4.5 and 4.6 and the upper
bound n provided by Lemma 4.1.

We now combine the results of this section to determine the Hamilton
compression of Jn,k exactly or almost exactly.

Theorem 4.8. The Hamilton compression of the Johnson graph Jn,k, where
n > k > 0, has the following properties:

(i) If n and k are coprime, we have κ(Jn,k) = n.
(ii) If n and k are not coprime and n �= 2k, we have n/2<max{k, n − k}<

q(n, k)≤κ(Jn,k)≤n.
(iii) If n and k are not coprime and n = 2k, we have n/2 < κ(Jn,k) ≤ 2n.
(iv) For any ε > 0, there is an n0 such that for all n > n0 with n �= 2k, we

have (1−ε)n ≤ κ(Jn,k) ≤ n. In particular, we have κ(Jn,k) = (1−o(1))n
for n �= 2k.

Proof. The upper bounds in (i)–(iii) are from Lemma 4.1. The lower bound
in (i) is from Theorem 4.5. The lower bound in (ii)+(iii) is from Theorem 4.6,
using Lemma 4.7.

The last part (iv) follows from (ii). Specifically, the prime number theorem
guarantees that for any ε there is an n0 such that for all n > n0 there is a
prime number in the interval [(1−ε)n, n], which shows that q(n, k) ≥ (1−ε)n.
We conclude that q(n, k) ≥ (1 − o(1))n. �

For quantitative bounds on the dependence of n0 on ε in Theorem 4.8 (iv),
see e.g. [11].

5. Permutahedra

We now consider the family of permutahedra Πn introduced in Sect. 1.5 (recall
also Sects. 2.4–2.6). We first show that the Steinhaus–Johnson–Trotter cycle
has constant compression (6 or 3). We then establish a mildly exponential
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upper bound for κ(Πn) that involves the Landau function λ(n) and its variants,
and we provide a near-optimal lower bound construction. Lastly, we apply our
constructions to derive a balanced 1-track Gray code for permutations of odd
length that uses cyclically adjacent transpositions.

5.1. The Steinhaus–Johnson–Trotter (SJT) Cycle

Recall the definition of the SJT cycle Λn given in Sect. 1.5.3.

Proposition 5.1. The SJT cycle Λn has compression

κ(Πn,Λn) =

{
6 n = 3, 4,

3 n ≥ 5.

The SJT cycle Λn is illustrated in Figs. 1a and 7a for n = 4 and n = 5,
respectively, and those two pictures indeed have 6-fold or 3-fold rotational
symmetry. While the latter might seem to have 6-fold symmetry at first glance,
a careful inspection of the short chords shows that this is not the case.

Proof. The cycle Λ3 = 123, 132, 312, 321, 231, 213 is a 6-cycle, and the au-
tomorphism f = (α, π) of Π3 with α = rev and π = 231 shows that it is 6-
symmetric (recall (6)). The cycle Λ4 is shown in Fig. 1a, and the automorphism
f = (α, π) of Π4 with α = rev and π = 2314 shows that it is 6-symmetric.

Note that f2 = (id, 3124) is another automorphism of Π4, which shows
that Λ4 is 3-symmetric, and we will now generalize this automorphism to show
that Λn, n ≥ 5, has compression at least 3. Note that (n − 1)!/3 is even for
n ≥ 5, so by the definition of Λn the value n is at the rightmost position in
the permutations of Λn at positions 1, N/3 + 1, 2N/3 + 1, where N := n!.
Consequently, for n ≥ 5 the automorphism f = (id, 31245 · · · n) of Πn shows
that Λn has compression at least 3.

It remains to show that the compression of Λn is at most 3 for n ≥ 5.
Let f = (α, π) be any automorphism of Λn for n ≥ 4, and consider the
movement of the largest value n in the sequence Λn. By definition of Λn,
we alternately see the following two patterns: n − 1 transpositions involving n
and a smaller value, followed by a transposition involving two smaller values.
In particular, every value i < n is involved in at most 2 adjacent transpositions
consecutively. It follows that for n ≥ 4, the permutation π must map i �→ i for
all i = n, n − 1, . . . , 4. Note that in Λ4 the value 4 reaches the leftmost and
rightmost position precisely 3 times each (and stays at this position for one
step each time). Consequently, to complete the proof it suffices to show that f
does not yield the mapping xi �→ xi+N/6 for all i = 1, . . . , N when n ≥ 5. To
see this note that 4 and 5 are adjacent in x1 = 12345 · · · n, but non-adjacent
in x1+N/6 = 41325 . . . n (and π preserves both values). �

5.2. An Upper Bound

Recall from Sect. 2.4 that Aut(Πn) ∼= Z2 �Sn, so from (3), we obtain κ(Πn) ≤
2λ(n), where λ(n) is Landau’s function. The next lemma improves this bound,
based on a parity argument. Recall the definitions of λ0(n) and λ2(n) from (9).
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Lemma 5.2. Let n ≥ 4. If n ≡ 0, 1 mod 4, then we have κ(Πn) ≤ max{2λ0(n),
λ2(n)}. If n ≡ 2, 3 mod 4, then we have κ(Πn) ≤ λ(n).

The relation between 2λ0(n) and λ2(n) is somewhat unclear. While for n ≤
37, we have 2λ0(n) > λ2(n), for increasing values of n it seems that more and
more values satisfy 2λ0(n) < λ2(n), for example n = 38, 49, 50, 51, 52, 53, 54,
55, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 99, 100 (see the appendix).

Proof. Consider an automorphism f = (α, π) of Πn and a path P = (x1, . . . , x�),
	 := n!/k, such that C = P, f(P ), f2(P ), . . . , fk−1(P ) is a k-symmetric Hamil-
ton cycle in Πn, i.e., k = ord(f).

We clearly have ord(f) ∈ {ord(π), 2 ord(π)}. Furthermore, note that if
ord(f) = 2 ord(π), i.e., α = rev, then ord(π) must be odd, otherwise we would
have fk/2 = ford(π) = πord(π) = id, a contradiction.

We first show that 	 is even. Let 2i be the largest power of 2 in ord(π).
Note that 2i also divides the length of one of the cycles of π, so 2i ≤ n. Conse-
quently, if n ≥ 6, then n!/2i+1 is even, as the product n! contains the factor 2i

and two additional even factors. This implies that 	 = n!/k = n!/ ord(f) is
even, as ord(f) ∈ {ord(π), 2 ord(π)}. For n = 4, 5, the product n! contains
the factor 2i and one additional even factor, implying that n!/2i is even and,
therefore, 	 is even unless ord(f) = 2 ord(π). However, in the latter case, ord(π)
must be odd, i.e., we have i = 0, showing that n!/2i+1 = n!/2 and therefore 	
is even.

As 	 is even and xi has opposite parity to xi+1 for all i = 1, . . . , 	, we
obtain that x1 and x� have opposite parity, and x1 and x�+1 = f(x1) have
the same parity (recall (1)), showing that the mapping f(x) = αxπ preserves
parity (recall (6)).

If n ≡ 0, 1 mod 4, then
(
n
2

)
is even, so α ∈ {id, rev} is an even permuta-

tion. Therefore π must be an even permutation, i.e., the number of even cycles
of π is even. If π consists of only odd cycles, then k ≤ 2 ord(π) ≤ 2λ0(n) by
the definition 9a. Otherwise, ord(π) will be even, and therefore, k = ord(π) ≤
λ2(n) by our initial observations about the parity of ord(π) and by the defini-
tion 9b. The maximum of the bounds obtained in both cases yields the claimed
bound.

If n ≡ 2, 3 mod 4, then
(
n
2

)
is odd, so rev is an odd permutation. If α = id,

then k = ord(π) ≤ λ(n). If α = rev, then π must be an odd permutation, i.e.,
the number of even cycles of π is odd. In particular, there is at least one even
cycle, which implies that ord(π) is even, so k = ord(π) ≤ λ(n) as well. �

5.3. A Near-Optimal Construction

Our aim is to use an automorphism of Πn whose order is close to Landau’s
function λ(n). Let a = (a1, . . . , am) be a composition of n and let A1∪· · ·∪Am

be its associated partition of [n] as defined in Sect. 2.5. By definition, we have
Ai = {bi + 1, . . . , bi + ai} where bi :=

∑i−1
j=1 aj . So fi := (bi + 1, . . . , bi + ai) is

a cyclic permutation of Ai. Its (|Ai| − 1)! orbits can be represented by fixing a
value from Ai on a particular position and permuting the remaining values in
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the remaining positions in all possible ways. For example, if f = (1, 2, 3), then
by fixing the value 3 on the last position we have representatives 123, 213, by
fixing the value 1 on the first position we have representatives 123, 132, and in
both cases these are representatives of the two orbits 〈123〉f = {123, 231, 312}
and 〈213〉f = 〈132〉f = {213, 321, 132}. Let us define an automorphism fa
of Πn as a product of the cyclic permutations fi applied on values (without
reversal of positions), i.e.,

fa := (id, f1f2 · · · fm). (20)

First, we need to consider the orbits of fa. For the following characterization,
recall the definitions from Sects. 2.1 and 2.5. This lemma follows immediately
from the Chinese remainder theorem.

Lemma 5.3. Let a = (a1, . . . , am) be a composition of n and let fa be as in (20).
(i) If a1, . . . , am are pairwise coprime, then the orbits of fa are

{
u ⊗ (

X1 × · · · × Xm

) | u ∈ (
[n]
a

)
and (X1, . . . , Xm) ∈ O(f1) × · · · × O(fm)

}
.

(21)

(ii) If m ≥ 2, a1 = 2, a2 = 2c for some c ≥ 1, and a2, . . . , am are pairwise
coprime, then the orbits of fa are

{
u ⊗ (

B × X3 × · · · × Xm

)
, u ⊗ (

B′ × X3 × · · · × Xm

) | u ∈ (
[n]
a

)
and

(X3, . . . , Xm) ∈ O(f3) × · · · × O(fm)
}

,
(22)

where B := {12} × X0
2 ∪ {21} × X1

2 , B′ := {12} × X1
2 ∪ {21} × X0

2 , and
X0

2 ∪ X1
2 is the partition of X2 =: {x, f2(x), f2

2 (x), . . . , fa2−1
2 (x)} defined

by X0
2 := {f2i

2 (x) | i = 0, . . . , (a2 − 2)/2} and X1
2 := {f2i−1

2 (x) | i =
1, . . . , a2/2}, respectively.

To illustrate part (i) of the lemma with an example, for a = (2, 3) we
have
(
[n]
a

)
= {11222, 12122, 12212, 12221, 21122, 21212, 21221, 22112, 22121, 22211},

O(f1) = {{12, 21}} and O(f2) = {{345, 453, 534}, {543, 435, 354}} and hence
the orbits of fa are

{
u ⊗ ({12, 21} × {345, 453, 534}) | u ∈ (

[n]
a

)}

∪
{

u ⊗ ({12, 21} × {543, 435, 354}) | u ∈ (
[n]
a

)}
.

The first two of those 20 orbits, namely those corresponding to u = 11222 are
{12345, 21453, 12534, 21345, 12453, 21534} and {12543, 21453, 12534, 21543,
12435, 21354}.

Using Lemma 5.3, we now build a path in Πn on representatives of orbits
where each permutation fi of values Ai acts on the positions Ai. That is,
the orbits are obtained from the orbits of the fi by mixing with the identity
permutation id(a).
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Lemma 5.4. Let a = (a1, . . . , am) be a composition of n and let fa be as in (20).
(i) If a1, . . . , am are pairwise coprime and odd, and a1 ≥ 3, then Πn contains

a path Q that starts at id = 1 · · · n, ends at a neighbor of fa(id) and that
visits each orbit of fa from (21) with u = id(a) exactly once.

(ii) If m ≥ 2, a1 = 2, a2 = 2c for some c ≥ 1, and a2, . . . , am are pairwise
coprime, then the same conclusion holds for the orbits from (22) with
u = id(a).
Note that in part (i) of the lemma, the ai are not only required to be

pairwise coprime, but also odd (unlike in part (i) of Lemma 5.3). In part (ii), all
ai, i = 3, . . . ,m, are odd by the assumption that they are coprime to a2 = 2c.
Proof. We prove both statements by induction on m, the only difference being
the base case.

We first consider the base case m = 1 for part (i). We have a = (n), fa =
f1 = (1, . . . , n), and id(a) = 1n where n ≥ 3 is odd. As orbit representatives we
choose permutations that have the value n fixed in the last position, using that
O(f1) = {〈xn〉f1 | x ∈ Sn−1}. By Theorem 2.4, there is a Hamilton path P
in Πn−1 from x := 1 · · · (n− 1) to y := 2 · · · (n− 1)1 (note that y is odd as n is
odd). Thus, Πn contains the path Q := Pn from xn = id to yn = 2 · · · (n−1)1n,
which is adjacent to fa(id) = 2 · · · (n − 1)n1 by a transposition of the last two
entries. Moreover, Q visits every orbit in

⋃
X1∈O(f1)

id(a)⊗X1 = O(f1) exactly
once.

We now consider the base case m = 2 for part (ii). We have a = (2, 2c),
fa = f1f2 = (1, 2)(3, . . . , n) for n := 2 + 2c, and id(a) = 122n−2. As before,
we choose orbit representatives with value n at the last position, using that
O(f2) = {〈xn〉f2 | x ∈ S{3,...,n−1}}. If c = 1, then n = 4, and in this case
Q := (1234, 2134) is the desired path in Πn since 2134 is adjacent to fa(1234) =
2143. Otherwise, we have c ≥ 2 and therefore n = 2+2c ≥ 6. By Theorem 2.4,
there are Hamilton paths P, P ′ in Π{3,...,n−1} from x := 34 · · · (n − 1) to y :=
435 · · · (n−1) and from y′ := 435 . . . (n−1) to x′ := 4 · · · (n−1)3, respectively
(note that x′ is even as n is even). Thus Πn contains the path Q := 12Pn, 21P ′n
from 12xn = id to 21x′n = 214 · · · (n − 1)3n, which is adjacent to fa(id) =
214 · · · (n − 1)n3 by a transposition of the last two entries. Moreover, Q visits
every orbit in {id(a)⊗B}∪{id(a)⊗B′} exactly once (B and B′ are as defined
after (22)).

For the induction step, consider a composition (a1, . . . , am) of n as in
the lemma, with m ≥ 2 in part (i) and m ≥ 3 in part (ii), and define a′ :=
(a1, . . . , am−1) and n′ := n−am. By induction there is a path Q′ = (z1, . . . , z�)
in Πn′ from z1 = id′ := 1 · · · n′ to a neighbor z� of fa′(id′) that visits each
orbit of fa′ exactly once. If am = 1 then Q := Q′n is the desired path in Πn

from z1n = id to z�n, which is a neighbor of fa(id) = fa′(id′)n, and we are
done. Otherwise, we have am ≥ 3 and we use two sets of representatives of
orbits of fm, namely

O(fm) = {〈xn〉fm
| x ∈ S{n′+1,...,n−1}} = {〈(n′ + 2)x〉fm

| x ∈ S{n′+1,n′+3,...,n}}.

By Theorem 2.4, there is a Hamilton path P in Π{n′+1,··· ,n−1} from x := (n′ +
1) · · · (n−1) to y := (n′ +2)(n′ +1)(n′ +3) . . . (n−1) and a Hamilton path P ′
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in Π{n′+1,n′+3,...,n} from y′ := (n′+1)(n′+3) · · · n to x′ := (n′+3) · · · n(n′+1).
Using that yn = (n′ + 2)y′, we obtain that

Q :=
(
z1Pn, z2

#„

Pn, . . . , z�−3Pn, z�−2
#„

Pn, z�−1Pn, z�(n′ + 2)P ′) (23)

is a path in Πn from z1xn = id to z�(n′ +2)x′ = z�(n′ +2)(n′ +3) · · · n(n′ +1),
which is adjacent to fa(id) = fa′(id′)(n′ + 2)(n′ + 3) · · · n(n′ + 1), as z� is
adjacent to fa′(id′) in Πn′ . Note that (23) requires 	 to be even, which is
satisfied as the number of orbits of f1 is even in part (i) and the number
of orbits of f1f2 is even in part (ii). By this construction and the induction
hypothesis, the path Q visits every orbit from (21) or (22) with u = id(a)
exactly once. �

Theorem 5.5. Let a = (a1, . . . , am) be a composition of n ≥ 3 and let fa be as
in (20). If

(i) a1, . . . , am are pairwise coprime and odd, and a1 ≥ 3, or
(ii) m ≥ 4, a1 = 2, a2 = 2c for some c ≥ 1, and a2, . . . , am are pairwise

coprime,
then Πn has a k-symmetric Hamilton cycle for fa for k := lcm(a).

The 5-symmetric Hamilton cycle in Π5 obtained from Theorem 5.5 (i)
for a = (5) is illustrated in Fig. 7b.

Proof. Note that k = ord(fa). From Lemma 5.4, we obtain a path Q =
(x1, . . . , x�) in Πn that starts at x1 = id, ends at a neighbor x� of fa(id)
and that visits each orbit of fa from (21) or (22) with u = id(a) exactly once.
Note that 	 is even as some f1 has an even number of orbits in part (i) and f1f2
has an even number of orbits in part (ii). For i = 1, . . . , 	, let yi be the m-tuple
of permutations of the sets Aj whose concatenation gives xi, i.e., xi = u ⊗ yi.

In part (i) and m = 1, we have k = n and we are done as Q already visits
all orbits, so

Q, fa(Q), . . . , fk−1
a (Q)

is a k-symmetric Hamilton cycle in Πn.
In part (i) and m = 2, we apply Theorem 2.5 to obtain a Hamilton path R

in G(a) from the identity a-permutation u := id(a) = 1a12a2 to v := 2a21a1 .
For any two consecutive vertices xi = u ⊗ yi and xi+1 = u ⊗ yi+1 on the

path Q, we have that v ⊗ yi and v ⊗ yi+1 are also adjacent. It follows that

P :=
(
R ⊗ y1,

#„

R ⊗ y2, . . . , R ⊗ y�−1,
#„

R ⊗ y�

)

is a path in Πn from x1 = u ⊗ y1 = id to x� = u ⊗ y�, which is a neighbor
of fa(id). Moreover, P visits all orbits of fa exactly once. Therefore,

P, fa(P ), . . . , fk−1
a (P )

is a k-symmetric Hamilton cycle in Πn.
In part (i) and m ≥ 3 and in part (ii) with c ≥ 2 we apply Theorem 2.6

to obtain a Hamilton C in G(a) (in part (i), all ai are odd, which rules out the
exceptional case (n − 2, 1, 1) with even n, and in part (ii), we assumed m ≥ 4,
which guarantees at least two odd ai). We consider the a-permutation u :=
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(a)

(b)

(c)

Figure 7. Symmetric Hamilton cycles in Π5 (1=red, 2=or-
ange, 3=yellow, 4=green, 5=blue): a Steinhaus–Johnson–
Trotter cycle Λ5 with compression 3; b cycle with compres-
sion 5 from Theorem 5.5 for f = (id, 23451); c cycle with
compression 10 for f = (rev, 23451)
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id(a), and let v, v′ ∈ (
[n]
a

)
be the neighbors of u on C. Furthermore, let R,R′

denote the Hamilton paths of G(a) from u to v or v′, respectively, obtained
from C by removing the corresponding edge. Clearly, v and v′ differ from u by
adjacent transpositions of a different pair of values, and as all ai, i = 2, . . . , m
are either 1 or ≥ 3, we have that for any pair of positions with same values in u,
at least one of the transpositions to reach v or v′ from u does not involve any of
these two positions. It follows that for any two consecutive vertices xi = u⊗yi

and xi+1 = u ⊗ yi+1 on the path Q, we have that v ⊗ yi and v ⊗ yi+1 are
adjacent, or v′ ⊗ yi and v′ ⊗ yi+1 are adjacent. In the former case, we define
Ri := R, whereas in the latter case, we define Ri := R′. With these definitions

P :=
(
R1 ⊗ y1,

#„

R1 ⊗ y2, . . . , R�−1 ⊗ y�−1,
#„

R�−1 ⊗ y�

)

is a path in Πn from x1 = u ⊗ y1 = id to x� = u ⊗ y�, which is a neighbor of
fa(id). Moreover, P visits all orbits of fa exactly once. Therefore,

P, fa(P ), . . . , fk−1
a (P )

is a k-symmetric Hamilton cycle in Πn.
The only case that has to be treated separately is part (ii) with c = 1,

i.e., a1 = a2 = 2. In this case, we use u := 123a34a4 . . . mam22 in the argument
above, and we obtain a path P in Πn from u⊗y1 to u⊗y�, which is a neighbor
of fa(u ⊗ y1), yielding a k-symmetric Hamilton cycle in Πn. This completes
the proof. �

Combining our previous results, we obtain the following near-optimal
bounds for the Hamilton compression of Πn, which are tight in infinitely many
cases.

Theorem 5.6. The Hamilton compression of the permutahedron Πn has the
following properties:

(i) We have κ(Π3) = 6, κ(Π4) = 6 and κ(Π5) = 10.
(ii) For n ≥ 3 we have κ(Πn) ≥ max{λ0(n), λ2(n)} ≥ λ(n)/2.
(iii) For n ≥ 4, if n ≡ 0, 1 mod 4, then we have κ(Πn) ≤ max{2λ0(n), λ2(n)},

and if n ≡ 2, 3 mod 4, then we have κ(Πn) ≤ λ(n).
(iv) Let n ≥ 4. If n ≡ 0, 1 mod 4 and 2λ0(n) ≤ λ2(n), then we have κ(Πn) =

λ2(n), and the second condition holds for all n ≥ 739. If n ≡ 2, 3 mod 4
and λ(n) ∈ {λ0(n), λ2(n)}, then we have κ(Πn) = λ(n), and the condition
λ(n) = λ2(n) holds for arbitrarily large intervals.

(v) The lower and upper bounds in (ii) and (iii) differ at most by a factor
of 2. In particular, we have κ(Πn) = Θ(λ(n)) = e(1+o(1))

√
n lnn.

From part (iv) of the theorem, we obtain exact results for the following
values n ≤ 100: We have κ(Πn) = λ0(n) for n = 15 and κ(Πn) = λ2(n) for n =
22, 46, 49, 51, 52, 53, 55, 68, 69, 72, 73, 74, 75, 80, 82, 85, 87, 88, 89, 91, 92, 93, 96,
97, 99, 100. See the appendix for more exact results and the corresponding
values of κ(Πn). A 10-symmetric Hamilton cycle in Π5 obtained by computer
search is shown in Fig. 7c.
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Proof. The exact values for n = 3, 4, 5 stated in (i) were obtained by computer
search.

We now prove (ii). Let n ≥ 3. By Lemma 2.7 (ii) there is a parti-
tion a = (a1, . . . , am) of n into powers of distinct odd primes and 1s such
that lcm(a) = λ0(n), and we clearly have a1 ≥ 3. In particular, a1, . . . , am are
pairwise coprime and odd, so by Theorem 5.5 (i) there is a k-symmetric Hamil-
ton cycle in Πn where k := lcm(a) = λ0(n). This shows that κ(Πn) ≥ λ0(n)
for n ≥ 3.

Let n ≥ 12. By Lemma 2.7 (iii), there is a partition a = (a1, . . . , am)
of n into powers of distinct odd primes, 2c for some c ≥ 1, 2 and 1s such that
lcm(a) = λ2(n), and moreover m ≥ 4. In particular, all the ai except 2 and 2c

are pairwise coprime, so by Theorem 5.5 (ii) there is a k-symmetric Hamilton
cycle in Πn where k := lcm(a) = λ2(n). This shows that κ(Πn) ≥ λ2(n) for
n ≥ 12.

For n = 3, . . . , 11, we can verify from Table 1 that λ0(n) ≥ λ2(n).
Combining the three observations from before shows that κ(Πn) ≥ max

{λ0(n), λ2(n)} for n ≥ 3, and the lower bound λ(n)/2 for the maximum follows
from
Lemma 2.7 (iv).

The upper bounds stated in (iii) are from Lemma 5.2.
The statements in (iv) are an immediate consequence of (ii) and (iii), also

using Lemma 2.7 (v)+(vi).
The statements in (v) follow by observing that max{a, b} and max{2a, b}

differ by at most a factor of 2, and by using (8). �
5.4. Application to Balanced 1-Track Gray Codes

We write Π+
n for the graph obtained from Πn by adding edges that correspond

to transpositions of the first and last entry of a permutation, i.e., we allow
cyclically adjacent transpositions.

Theorem 5.7. For every odd n ≥ 3 there is an n-symmetric Hamilton cycle
in Π+

n that has 1 track and is balanced, i.e., each of the n transpositions is
used equally often ((n − 1)! many times). The Hamilton cycle in Π+

5 obtained
from Theorem 5.7 is illustrated in Fig. 8.

Proof. We consider the automorphism f of Π+
n that cyclically shifts all entries

one position to the left, i.e., f(x1 · · · xn) = x2 · · · xnx1. We choose permuta-
tions that have the symbol n fixed at the last position as representatives. By
Theorem 2.4, there is a Hamilton path Q in Πn−1 from x := 1 · · · (n − 1)
to y := 2 · · · (n − 1)1 (note that y is odd as n is odd). Thus Π+

n contains the
path P := Qn from xn = id to yn = 2 · · · (n − 1)1n, which is adjacent to
f(id) = 2 · · · (n−1)n1 by a transposition of the last two entries. Consequently,
C := P, f(P ), f2(P ), · · · , fn−1(P ) is an n-symmetric Hamilton cycle of Π+

n .
Furthermore, in the matrix corresponding to C, any two columns are cyclic
shifts of each other, so C has the 1-track property. Lastly, note that if P applies
a transposition (i, i + 1), then this becomes a transposition (i − j, i + 1 − j)
(modulo n) in f j(P ), which implies the balancedness property. �
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Figure 8. Balanced 1-track Hamilton cycle in Π+
5 with com-

pression 5 from Theorem 5.7 (cyclically adjacent transposi-
tions)

6. Abelian Cayley Graphs

In this section, we consider the Hamilton compression of Cayley graphs of
abelian groups, introduced in Sect. 2.7 (recall also Sect. 2.1). After deriving
a stronger version of the well-known factor group lemma, we construct an
infinite family of abelian Cayley graphs that have Hamilton compression 1.
We complement this by showing that all other abelian Cayley graphs have
Hamilton compression at least 2.

6.1. The Factor Group Lemma

An important tool for proving Hamiltonicity in Cayley graphs is the so-called
factor group lemma.

Lemma 6.1. (Factor group lemma, [51, Sec. 2.2]) Let G be a group, S ⊆ G a
generating set, and N a normal subgroup of G. If s1, . . . , s|G/N | is a sequence
of elements in S such that

(i) Ns1, Ns1s2, . . . , Ns1 · · · s|G/N | is a Hamilton cycle of Γ(G/N, {Ns | s ∈
S}),

(ii) N = 〈s1 · · · s|G/N |〉,
then the Cayley graph Γ(G,S) has a Hamilton cycle.

It turns out that while proving the factor group lemma one can also
guarantee some symmetry in the Hamilton cycle obtained. Thus, we state and
prove the following compression version of the factor group lemma.

Lemma 6.2. Let G be a group, S ⊆ G a generating set, g ∈ G and s ∈ S. If
there exists a path in the Cayley graph Γ = Γ(G,S) from e to gs that intersects
every right coset of 〈g〉 exactly once, then κ(Γ) ≥ ord(g).
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e

gs

P

...

· · · g

g2s

gP

...

g2

g3s

...

g2P

· · ·g3

g4s

...

g3P

Figure 9. Illustration of the proof of Lemma 6.2

Note that Lemma 6.2 implies Lemma 6.1 by setting g := s1 · · · s|G/N |,
yielding a lower bound for the Hamilton compression of κ(Γ(G,S)) ≥ |N |.
Proof. We begin by noting that f : G → G defined by f(x) = gx is an auto-
morphism of Γ. We consider the subgroup 〈g〉 generated by g, and we define
k := ord(g). By the orbit-stabilizer theorem, the number of right cosets of 〈g〉
is 	 := |G|/k. Let P = (x1, . . . , x�) be a path in Γ from e to gs that intersects
every right coset of 〈g〉 exactly once. We claim that the paths P, gP, . . . , gk−1P
are pairwise vertex-disjoint. Suppose for the sake of contradiction that there ex-
ists i, j ∈ {0, . . . , k−1}, i �= j, such that giP ∩gjP �= ∅. Then there are a, b ∈ [	]
such that gixa = gjxb, which means that xa and xb lie in the same coset of 〈g〉.
As both are on P , we obtain that a = b, and therefore i = j, a contradiction,
so the claim is proved. Consequently, we have

∣
∣ ⋃k−1

i=0 giP
∣
∣ = 	k = |G|. Fur-

thermore, since {gis, gi} is an edge of Γ for all i ∈ {0, . . . , k − 1}, we obtain
that

C := P, f(P ), . . . , fk−1(P ) = P, gP, . . . , gk−1P

is a k-symmetric Hamilton cycle in Γ; see Fig. 9. It follows that κ(Γ) ≥ k =
ord(g). �

We can also phrase Lemma 6.2 in the language of graph covers. Let G be
a group, S ⊆ G a generating set, and N a normal subgroup of G. We define
the quotient Cayley graph ΓN := Γ(G/N, {Ns | s ∈ S}). The voltage of a
cycle C = Ns1, . . . , Ns1 · · · sk in ΓN is given by the product s1 · · · sk. A direct
application of Lemma 6.2 gives the following lemma.

Lemma 6.3. Let G be a group, S ⊆ G a generating set, Γ = Γ(G,S) its Cayley
graph, and N a normal subgroup of G. If there is a Hamilton cycle in ΓN with
voltage v such that 〈v〉 = N , then κ(Γ) ≥ |N |.
Remark 1. For a group G and a generating set S, automorphisms of Γ(G,S)
in the left regular representation of the group are the automorphisms of the
form x �→ gx for some g ∈ G. In particular, note that the automorphisms in
Lemma 6.3 are in the left regular representation. Such mappings are automor-
phisms of Γ(G,S) independently of the generating set S. The same observation
holds for mappings f : G → G that satisfy

f(y)−1f(x) = x−1y (24)
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for all x, y ∈ G, as they are also automorphisms of Γ(G,S) independently
of S. All automorphisms considered in this section are either in the left regular
representation or they satisfy (24), so we may assume without loss of generality
that the generating set S is inclusion-minimal.

6.2. Odd Order

In this section, we consider Cayley graphs of abelian groups G for which the or-
der n := |G| is odd. We will distinguish two regimes: when n is square-free and
when n has a square divisor. Note that when n is square-free, by Theorem 2.1,
G is a direct sum of cyclic groups of prime order, i.e., G =

⊕�
i=1 Zpi

for dis-
tinct odd primes p1, . . . , p�. In this case, we say that a generating set S ⊆ G
is canonical if S = {s1, . . . , s�} and for every i, j ∈ [	] we have that sj

i = 0
if and only if i �= j. The main result of this section is that, in the odd order
case, the Cayley graphs are incompressible if and only if n is composite and
square-free, and S is a canonical generating set.

Theorem 6.4. Let G be an abelian group of odd order n, S ⊆ G a generating
set and Γ = Γ(G,S) its Cayley graph.

(i) If n is composite and square-free, and S is a canonical generating set,
then κ(Γ) = 1.

(ii) Otherwise, there is a prime p in the decomposition of n such that κ(Γ) ≥
p.

A particularly useful lemma in the odd order case is the following.

Lemma 6.5. [3, consequence of Theorem 2.1] Let G be an abelian group of
odd order, S ⊆ G a generating set, and Γ = Γ(G,S) its Cayley graph. If
C is a cycle in Γ, then there are Hamilton cycles H1, . . . ,Hr in Γ such that
C = H1 � · · · � Hr, i.e., C is the symmetric difference of H1, . . . , Hr.

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. We begin by proving (i). Let n = p1 · · · p� with pi prime
for i ∈ [	]. By Theorem 2.1, we have that G =

⊕�
i=1 Zpi. Since S is a canonical

generating set, we have that S = {s1, . . . , s�} with ord(si) = pi for every i ∈ [	].
As a consequence, Γ = Cp1 � · · · � Cp�

; i.e., Γ is a Cartesian product of prime
graphs, i.e., graphs that are not products of two non-trivial graphs. Thus,
by [23, Theorem 6.13], the automorphism group of Γ is the product of the
automorphism groups of each prime graph, i.e., Aut(Γ) is the direct product of
D2pi

the dihedral groups of order 2pi for i ∈ [	]. Suppose there is a Hamilton
cycle C with κ(C) = m for some divisor m of n. Then, C is p-symmetric for
every prime p dividing m; in particular, there is an i ∈ [	] such that C is
pi-symmetric, and there is an automorphism f ∈ Aut(Γ) of order pi such that
C is f -invariant. Since 〈si〉 is a normal subgroup of D2pi

, it is also a normal
subgroup of Aut(Γ), which implies that f(x) = ksi + x for some k ∈ [pi − 1].
Hence, there is a path P = x1, . . . , xn/pi

hitting every coset of 〈si〉 exactly
once, and

C = P, f(P ), . . . , fpi−1(P ).
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Thus, there is an edge labelled si or −si between xn/pi
and ksi + x1; i.e.,

xn/pi
− (ksi + x1) equals either si or −si. However, this would imply that

xn/pi
+ 〈si〉 = x1 + 〈si〉, a contradiction.
We now prove part (ii) of the theorem. We consider three subcases.

• Case 1: n is prime. In this case, Γ = Cp and, therefore, κ(Γ) = p.
• Case 2: n is composite and square-free, S is not canonical. Let n =

p1 . . . p� with pi prime for all i ∈ [	]. Since S is not canonical, there exist
an s ∈ S of composite order pim for some i ∈ [	] and m ∈ N. Let h = ms,
and consider the graph Γ〈h〉. By Lemma 2.10, Γ is 2-connected, which
implies that there is a cycle containing two vertices that lie in the same
coset of 〈h〉, and consequently we obtain a cycle C in Γ〈h〉 with nonzero
voltage. Additionally, since G/〈h〉 is an abelian group of odd order, by
Lemma 6.5, we have that there are r Hamilton cycles H1, . . . , Hr in Γ〈h〉

such that C = H1 �· · ·�Hr. Furthermore, since C has nonzero voltage,
at least one of H1, . . . , Hr must have a nonzero voltage. By Lemma 6.3,
we conclude that κ(Γ) ≥ |〈h〉| = pi.

• Case 3: n is divisible by p2 for some prime p. We may assume without loss
of generality that S is inclusion-minimal (recall Remark 1). We claim that
there exists an element of G\S of order p. Note that a Sylow p-subgroup
P of G contains either Zp2 or Z

2
p as a subgroup H. In the first case, we

take a generator a of H, and we let h := pa. By the minimality of S, we
have that h /∈ S. In the second case, we note that H = 〈a〉 ⊕ 〈b〉 for some
a, b ∈ G. By the minimality of S, we have that {a, b, a + b} �⊆ S and let
h ∈ {a, b, a+ b}\S. Thus, in both cases, we have that G/〈h〉 is an abelian
group of odd order, and we can proceed as in case 2 before. �

6.3. Even Order

In the previous section, we saw that if |G| is odd, then the Cayley graph
Γ(G,S) has trivial Hamilton compression if and only if |G| is composite and
square-free, and S is a canonical generating set. The main objective of this
section is to show that if |G| is even, then the Cayley graph for any generating
set has non-trivial compression.

Theorem 6.6. Let G be an abelian group and S ⊆ G a generating set. If |G| ≥ 4
is even, then the Cayley graph Γ = Γ(G,S) has compression κ(Γ) ≥ 2.

Proof. If G = 〈s〉 for some s ∈ S, then we have κ(Γ) = κ(C|G|) = |G| ≥ 4
and the theorem holds. Thus, from now on we assume that G �= 〈s〉 for every
s ∈ S. We begin by noting that S must have an element s ∈ S of even order.
Furthermore, we may assume without loss of generality that S is inclusion-
minimal (recall Remark 1). We consider two cases.

• Case 1: ord(s) = 2. Let S′ := S\{s,−s}. In this case G ∼= 〈s〉 ⊕ 〈S′〉 ∼=
Z2 ⊕ 〈S′〉, and in the rest of the proof we will write elements of G as
pairs w.r.t. this direct sum representation. Theorem 2.8 yields a Hamilton
path P in Γ(〈S′〉, S′) from 0 to v for some v ∈ 〈S′〉. It follows that
P̂ := (0, P ) is a path in Γ from (0, 0) to (0, v). Let us define a mapping
f : G → G by f(x, y) = (s + x, v − y), where x ∈ 〈s〉 and y ∈ 〈S′〉. It
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is easy to check that f is an automorphism of Γ. Furthermore, for every
(x, y), (x′, y′) ∈ G we have

−f(x′, y′) + f(x, y) = (x − x′, y′ − y) = (x′ − x, y′ − y) = −(x, y) + (x′, y′)

which implies that (24) holds.
We claim that C := P̂ , f(P̂ ) is a 2-symmetric Hamilton cycle. Note that
P̂ and f(P̂ ) are disjoint paths, as V (P̂ ) = {0}⊕〈S′〉 and V (f(P̂ )) = {g}⊕
〈S′〉. The path P̂ starts at (0, 0) and ends at (0, v), and the path f(P̂ )
starts at (g, v) and ends (g, 0), so C is indeed a cycle in Γ. Its length
is 2|P̂ | = 2|〈S′〉| = |G|, so it is a Hamilton cycle. The automorphism f
shows that C is 2-symmetric, proving that κ(Γ) ≥ 2.

• Case 2: ord(s) ≥ 4. Let h := s + s and consider the quotient graph Γ〈h〉.
Since Γ〈h〉 is the Cayley graph of an abelian group, by Theorem 2.8, it
has a Hamilton cycle C = x1 + 〈h〉, x2 + 〈h〉, . . . , xn/ ord(h) + 〈h〉. We
say that an edge is labelled +s if it is of the form (x, x + s) for some
x ∈ G. Similarly, we say that an edge is labelled −s if it is of the form
(x, x − s) for some x ∈ G. Let K be the number of edges in C labelled
+s or −s. Since S is minimal, we have that K > 0 and, since C is a
cycle, we have that K is even. Furthermore, since s + 〈h〉 = −s + 〈h〉,
replacing an edge labelled +s with an edge labelled −s (and vice versa)
gives another Hamilton cycle in Γ〈h〉. In particular, for every k, 	 ∈ N

such that k + 	 = K, there is a Hamilton cycle Ck,� of Γ〈h〉 that uses k
edges labelled +s and 	 edges labelled −s. Since the voltage of Ck,� is
(k − 	)s, there is a Hamilton cycle of Γ〈h〉 with voltage s + s. Thus, by
Lemma 6.3, we conclude that κ(Γ) ≥ |〈h〉| = ord(s)

2 ≥ 2. �

7. Open Questions

We conclude this paper with a number of interesting open questions.

(Q1) Can the Gray codes constructed in this paper be computed efficiently?
While our proofs translate straightforwardly into algorithms whose run-
ning time is polynomial in the size of the graph, a more ambitious goal
would be algorithms whose running time per generated vertex is poly-
nomial in the length of the vertex labels (bitstrings, combinations, per-
mutations, etc.). For the cycles in the hypercube with optimal Hamilton
compression it should be possible to derive such an algorithm from our
construction. For Johnson graphs this should also be possible, as the path
guaranteed by Theorem 2.3 is efficiently computable. For permutahedra,
this task seems most complicated, as it would require efficiently com-
puting the structures guaranteed by Theorems 2.4 and 2.6, for which no
algorithms are known (unlike for Theorem 2.5).

(Q2) What is the Hamilton compression of the middle levels graph? The best
known bounds are 2n + 1 ≤ κ(M2n+1) ≤ 2(2n + 1) (recall Theorem 4.4).

(Q3) Odd graphs are another interesting class of vertex-transitive graphs with
unknown Hamilton compression. For any integer k ≥ 1, the odd graph Ok
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has as vertices all (2k +1, k)-combinations, and an edge between any two
combinations that have no 1s in common. Note that the odd graph Ok

is the special Kneser graph K(2k + 1, k). Odd graphs Ok, k ≥ 3, were
shown to have a Hamilton cycle in [35], so κ(Ok) ≥ 1. Similarly to the
middle levels graph, we can use cyclic shifts as the automorphism. It is
easy to see that κ(Ok) ≤ 2k + 1, and since all necklaces have the same
size 2k + 1, there is hope to build a (2k + 1)-symmetric Hamilton cycle.
We constructed such a solution for k = 4, and we indeed conjecture that
κ(Ok) = 2k + 1 for all k ≥ 4.

(Q4) What is the Hamilton compression of the associahedron, which has as
automorphism group the dihedral group of a regular n-gon? For n =
5, 6, 7, 8 we determined the values 5, 2, 7, 2 by computer, and we suspect
that the primality of n plays a role.

(Q5) Instead of asking about the largest number k = κ(G) such that Aut(G,C)
(automorphisms of G that preserve C) contains the cyclic subgroup of
order k for some Hamilton cycle C in G, we may ask for the dihedral
subgroup of the largest order, which would allow not only for rotations
of the drawings but also reflections.

(Q6) Is there a 1-track Hamilton cycle in Πn (recall Theorem 5.7)? In other
words, can all n! permutations be listed by adjacent transpositions so
that every column is a cyclic shift of every other column?

(Q7) Is there a balanced Hamilton cycle in Πn? In other words, can all n!
permutations be listed using each of the n − 1 adjacent transpositions
equally often? Alternatively, can all n! permutations be listed using each
of the

(
n
2

)
transpositions equally often (see [15])? For n = 5, we found

orderings satisfying the constraints of both questions.
(Q8) Is there a balanced Gray code for listing permutations by star transposi-

tions, i.e., transpositions (1, i) for i = 2, . . . , n? One idea to build such a
code is to use the automorphism f that cyclically left-shifts the last n−1
positions, leaving the first position unchanged, and to search any path P
from id = 123 · · · n to a neighbor of f(id) = 134 . . . n2 that visits every
orbit exactly one. By construction, the cycle C := P, f(P ), . . . , fn−2(P )
would be balanced. We found such a solution for n = 6 with computer
help, and we believe it exists for all even n ≥ 6 (for odd n there are parity
problems, and the Gray code has to be built differently).

(Q9) An automorphism of a graph in which all orbits have the same size is
called semiregular. Marušič [33] asked if every vertex-transitive digraph
has a semiregular automorphism. This question, independently raised by
Jordan [26], is now known as ‘polycirculant conjecture’. It was shown to
hold in some special cases, but remains open in general.
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Appendix A. Proof of Lemma 2.7

Proof of Lemma 2.7. For any finite sequence a of integers, we write S(a) for
the sum of its entries. Let x be an entry of a that has the prime factorization
x = Π�

i=1p
ei
i . Defining s :=

∑�
i=1 pei

i , we clearly have x ≥ s and therefore
d := x − s ≥ 0. Let a′ be the sequence obtained from a by replacing the
entry x by the subsequence (pe1

1 , . . . , pe�

� , 1d). Observe that

lcm(a) = lcm(a′) and S(a) = S(a′). (25)

Suppose that a contains two prime powers x = pa and x′ = pb with 1 ≤
a ≤ b, and let a′ denote the sequence obtained from a by replacing x by the
subsequence (p, 1d) where d := pa − p. Then we also have (25). Similarly, let a′

be the sequence obtained from a by replacing x by the subsequence 1x. Then
we also have (25).

Applying these rules exhaustively shows that for any partition a, there
is a partition a′ satisfying (25) and the additional conditions stated in (i), so
the claim follows from (7). Moreover, for any partition a into odd parts (i.e., 0
even parts), there is a partition a′ satisfying (25) and the additional conditions
stated in (ii), so the claim follows from (9a). Lastly, for any partition a with
2, 4, 6, . . . even parts, there is a partition a′ satisfying (25) and the additional
conditions stated in (iii), so the first part of the claim follows from (9b).

It remains to prove that for n ≥ 12 the partition as in (iii) has at least
4 parts. For n = 12, . . . , 35 this can be verified by direct computation of the

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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relevant partitions a for which lcm(a) = λ2(n). For n ≥ 36 we argue as follows:
Note that any partition a of n into 1,2 or 3 parts has lcm(a) ≤ f(n) :=
max{n, n2/4, n3/27} = Θ(n3). We now identify partitions a with 2, 4, 6, . . .
even parts and at least 4 parts in total that satisfy lcm(a) > f(n), and this
construction is split into two cases. First note that any partition a of n−8 can
be turned into a partition a′ of n with 4, 6, 8, . . . even parts and at least 5 parts
in total by inserting either 2, 2, 2, 2 or 2, 2, 2, 1, 1. It follows that λ2(n) ≥ λ(n−
8), and λ(n−8) > f(n) holds for n = 36, . . . , 675, which can be shown by using
the values of λ(n) tabulated on the OEIS (sequence A000793). For n ≥ 676 we
argue as follows: There is a partition a = (p1, p2, p3, p4, 2, 2, 1n−4−p1−p2−p3−p4)
of n with two even parts and at least 6 parts in total with lcm(a) = 2p1p2p3p4
obtained as follows: We define a0 := �(n − 4)/2� and for i = 1, . . . , 4 we define
ai := �ai−1/2� and let pi be a prime number in the interval ]ai, ai−1], which
exists by Bertrand’s postulate. Clearly, we have p1+p2+p3+p4 ≤ (n−4)(1/2+
1/4 + 1/8 + 1/16) ≤ n − 4 and p1p2p3p4 ≥ a1a2a3a4 =: g(n) = Θ(n4), and we
have g(n) > f(n) for all n ≥ 676 (we also have p4 ≥ a4 > 2 for those n).

We now prove (iv). Let a be a partition of n into powers of distinct
primes and 1s such that lcm(a) = λ(n). If all entries of a are odd, then we
have λ0(n) = λ(n). If a contains 2, then replacing 2 by 1, 1 yields a partition a′

into powers of distinct odd primes and 1s that satisfies lcm(a′) = lcm(a)/2,
which shows that λ0(n) ≥ λ(n)/2. If a contains 2c for some c ≥ 2, then
replacing 2c by 2c−1, 2c−1 yields a partition a′ into powers of distinct odd
primes, two powers of 2 and 1s that satisfies lcm(a′) = lcm(a)/2, which shows
that λ2(n) ≥ λ(n)/2. Combining these three observations proves (iv).

We now prove (v). Consider a partition a of n into powers of distinct odd
primes and 1s such that lcm(a) = λ0(n). If a contains a power of 3, then let
a ≥ 1 be the exponent of 3 in a, otherwise let a := 0. Furthermore, let pe be the
largest prime power in a. We consider two ways of modifying a. If a ≥ 2, we
let c be such that 3a/3 ≤ 2c ≤ 2 · 3a/3, and then replacing 3a in a by 3a−1, 2c

and 1s yields a partition a′ that satisfies lcm(a′) = lcm(a)/3·2c ≥ 3a−2 lcm(a),
which proves that

λ(n) ≥ 3a−2 · λ0(n). (26)

Note that this inequality holds trivially also for a = 0 and a = 1. Now let b and
c be such that pe/6 ≤ 3b ≤ pe/2 and pe/4 ≤ 2c ≤ pe/2. Replacing pe in a by
3b, 2c and 1s yields a partition a′ that satisfies lcm(a′) = lcm(a)/pe ·3b−a ·2c ≥
pe3−a/24 · lcm(a), which proves that

λ(n) ≥ pe3−a/24 · λ0(n). (27)

Multiplying the inequalities (26) and 27 and taking the square root yields

λ(n) ≥ 1
6
√

6
pe/2 · λ0(n).

As pe → ∞ as n → ∞, we obtain limn→∞ λ(n)/λ0(n) = +∞. In order to show
that λ(n)/λ0(n) ≥ 4 for n ≥ 739, we consider the inequality 1

6
√
6
pe/2 ≥ 4,

which can be rearranged to pe ≥ 3456 =: q. We consider the set {p2, p3, . . . ,
p482} = {3, 5, . . . , 3449} of all odd primes with value at most q, and for i =



422 P. Gregor et al.

2, . . . , 482 we let ei ≥ 1 be the largest exponent so that pei
i ≤ q. For example,

we have e2 = 7, as 37 ≤ q but 38 > q, and e3 = 5, as 55 ≤ q but 56 > q.
We also consider the first prime p483 = 3457 that is larger than q. Clearly, if
n ≥ p483 +

∑482
i=2 pei

i = 788670 =: s, then for any partition a of n into powers
of distinct odd primes and 1s such that lcm(a) = λ0(n) we must have pe ≥ q.
Indeed, if we restrict the partition to using only distinct powers of primes that
are at most q, then the partition would contain more than p483 many 1s, and
those could be replaced by the prime p483, yielding a better partition, which
is a contradiction. We now show that λ(n)/λ0(n) ≥ 4 for n = 739, . . . , s − 1,
and this is done in two steps. Let a be a partition of n into powers of distinct
primes and 1s such that lcm(a) = λ(n). If a contains 2c for some c ≥ 1, then
we have

λ0(n − 2c) = λ(n)/2c. (28)

Using one of the algorithms from [10,37], we can compute λ(n) for all n < s.
From (28) we can then compute exact values for λ0(n) for about half of all
values of n < s, and for the remaining ones we can compute upper bounds
via λ0(n) ≤ λ0(n + 1). Doing this shows that λ(n)/λ0(n) ≥ 4 for all n =
4507, . . . , s−1. For the remaining values n = 739, . . . , 4506 we can use a simple
dynamic program to compute λ0(n) exactly, verifying that λ(n)/λ0(n) ≥ 4.

Consider a partition a of n into powers of distinct primes and 1s such that
lcm(a) = λ(n). By a similar replacement argument as before, we can argue that
for all large enough n the partition a must contain 2c for some c ≥ 2. Replacing
2c, by 2c−1, 2 and 1s, yields a partition a′ with two even parts that satisfies
lcm(a′) = lcm(a)/2. We obtain that λ2(n) ≥ λ(n)/2, i.e., λ(n)/λ2(n) ≤ 2 for
all large enough n. This argument can be made effective for n ≥ 78 (again by
verifying a finite number of small cases with computer help). For the remaining
cases n = 18, . . . , 77 the inequality λ(n)/λ2(n) ≤ 2 can be verified by direct
computation. This proves the first part of (v). The second part of (v) is an
immediate consequence of the first part.

It remains to prove (vi). Nicolas [38] showed that there are arbitrarily long
intervals where λ(n) is constant. Let [n, n+ 	] be such an interval of length 	+
1 ≥ 3, i.e., we have λ(n) = λ(n + i) for all i = 0, . . . , 	. All numbers λ(n + i)
have the same prime factorization, so the corresponding partition ai of n + i
into distinct prime powers and 1s with lcm(ai) = λ(n + i) and S(a) = n + i
has at least i many 1s. Moreover, this partition must contain a positive power
of 2, otherwise we could replace 1, 1 in a2 by 2, yielding a partition a′

2 with
lcm(a′

2) > lcm(a2), which is impossible. Consequently, replacing 1, 1 in ai by 2
for i = 2, . . . , 	 yields a partition a′

i with two even parts satisfying lcm(a′
i) =

lcm(ai) and therefore λ2(n + i) = λ(n + i) holds for all i = 2, . . . , 	.
This completes the proof of the lemma. �

Appendix B. Proof of Lemma 4.7

To prove Lemma 4.7, we need the following notation. For integers a ≤ b,
we write [a, b] := {a, a + 1, . . . , b}. Furthermore, we write pi for the ith prime
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number, i.e., p1 = 2, p2 = 3, p3 = 5 etc. We use the following number-theoretic
properties about the integers sieved by the first r primes.

Lemma B.1. For any r ≥ 1 consider the set Sr := {p1, . . . , pr} of the first
r prime numbers. The numbers from Z that are divisible by at least one of
the primes from Sr form maximal intervals whose lengths are in {pi − 2 |
i = 2, . . . , r + 1}, and the intervals of maximum length pr+1 − 2 are exactly
Ic := [2, (pr+1 − 1)] + c · p1 · · · pr and I ′

c := [−(pr+1 − 1),−2] + c · p1 · · · pr for
any c ∈ Z.

Furthermore, for any prime number pr+1 we have for all j = 0, . . . , pr+1−
pr − 2 that every prime factor of j + 2 is also a factor of pr+1 − 1 − j.

Lemma B.1 can be proved by straightforward induction on r; we omit
the details.

Proof of Lemma 4.7. The proof uses the following two basic number-theoretic
facts about integers a, b ∈ Z and r ≥ 1:

(i) a and b are coprime if and only if a and a − b are coprime.
(ii) if |b| < pr+1, then a and b are coprime if and only if a + p1 · · · pr and b

are coprime.

From (i) we see that q and 	 are coprime for all 	 = k − (n − q), . . . , k if
and only if q and 	′ are coprime for all 	′ = k′−(n−q), . . . , k′ where k′ := n−k.
Consequently, it suffices to prove the lemma for n ≥ 2k.

We argue by induction on k. If n and k are coprime, then the integer
q := n satisfies the conditions of the lemma. In particular, the lemma holds
whenever k = 1, which settles the base case for the induction. For the induction
step we consider some fixed value of k ≥ 2, and we prove that the lemma holds
for this fixed k and all n ≥ 2k.

Let r be such that pr ≤ k < pr+1, and define Sr := {p1, . . . , pr} and
d := pr+1 − k. We consider all k numbers qi = n − i, where i = 0, . . . , k − 1,
which satisfy the requirement qi = n − i > max{k, n − k} = n − k, and we
need to show that for some i ∈ {0, . . . , k − 1}, the number qi is coprime to all
numbers in the set Li := [k − (n − qi), k] = [k − i, k] (note that |Li| = i + 1).

If qi is not coprime some number in Li, then as max Li = k < pr+1, the
number qi is divisible by a prime from Sr. We have to rule out that this happens
to qi for all i = 0, . . . , k − 1 simultaneously. For the sake of contradiction
suppose that it does happen, then we have found an interval [qk−1, q0] of k
integers that are all divisible by at least one of the primes from Sr. By the
first part of Lemma B.1, the possible intervals of such numbers have lengths
in {pi − 2 | i = 2, . . . , r + 1}, and all those lengths except pr+1 − 2 are strictly
less than k (since k ≥ pr). Furthermore, if d = 1, i.e., k = pr+1 − 1, then we
also have pr+1 − 2 < k, i.e., we arrived at a contradiction.

It remains to investigate the situation where the interval [qk−1, q0] is
contained in an interval of length pr+1 − 2 and d ≥ 2. By the first part of
Lemma B.1 this must be an interval Ic or I ′

c as defined in the lemma for some
c ∈ Z. If the interval [qk−1, q0] is contained in Ic, then q0 = max Ic −j for some
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j ∈ {0, . . . , d − 2}. For the following investigations about coprimality, we can
set c := 0 by (ii). Using the definition of I0, we obtain

q0 = pr+1 − 1 − j = n,

q1 = pr+1 − 1 − (j + 1),
...

qd−2−j = pr+1 − 1 − (j + (d − 2 − j)) = pr+1 − 1 − (d − 2) = k + 1.

(29)

The corresponding sets Li are

L0 = [k, k] = [pr+1 − d, pr+1 − d],

L1 = [k − 1, k] = [pr+1 − d − 1, pr+1 − d],
...

Ld−2−j = [k − (d − 2 − j), k] = [pr+1 − d − (d − 2 − j), pr+1 − d].

(30)

We aim to show that there is a qi coprime to all elements of Li for some
i ∈ {0, . . . , d−2−j}. To prove this, we use (i) and consider the sets L′

i := qi−Li,
which are

L′
0 = [d − j − 1, d − j − 1],

L′
1 = [d − j − 2, d − j − 1],
...

L′
d−2−j = [1, d − j − 1].

The fact that one of the qi, i ∈ {0, . . . , d − 2 − j}, is coprime to all elements
of L′

i now follows by induction for k′ := d − j − 1, observing that

k′ = d − j − 1 ≤ d − 1 = pr+1 − k − 1 ≤ pr+1 − pr − 1 ≤ 2pr − pr − 1
= pr − 1 < k,

where the estimate pr+1 ≤ 2pr follows from Bertrand’s postulate.
It remains to consider the case that [qk−1, q0] is contained in the inter-

val I ′
c. In this case we have q0 = max I ′

c − j for some j ∈ {0, . . . , d − 2}, and
again we can set c := 0 by (ii). The sets Li are as in (30), and using the
definition of I ′

0, the numbers qi =: q′
i are now

q′
0 = q0 = −2 − j = −(j + 2),

q′
1 = q1 = −3 − j = −(j + 3),

...

q′
d−2−j = qd−2−j = (−2 − (d − 2 − j)) − j = −d,

(31)

Comparing (29) and (31), we see that we can apply the second part of Lemma
B.1 (as d − 2 ≤ pr+1 − pr − 2), which shows that every prime factor of q′

i is
also a factor of qi. We have already demonstrated that one of the qi in (29)
is coprime to all numbers in Li, so this implies that q′

i is also coprime to all
numbers in Li. This completes the proof of the lemma. �
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Figure 10. The function n−q(n, k), which has values 0, . . . , 5
in the depicted range, shaded by corresponding gray values (0
= white, 5 = black)

Figure 10 shows the function n − q(n, k), with q(n, k) as defined after
Lemma 4.7. The white squares correspond to n − q(n, k) = 0, i.e., these are
the cases when n and k are coprime, yielding optimal compression.

Appendix C. Values of λ(n), λ0(n) and λ2(n) for
n = 1, . . . , 140

See Table 2.
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