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Localised Graph Maclaurin Inequalities

Lucas Aragão and Victor Souza

Abstract. The Maclaurin inequalities for graphs are a broad generalisation
of the classical theorems of Turán and Zykov. In a nutshell they provide
an asymptotically sharp answer to the following question: what is the
maximum number of cliques of size q in a graph with a given number
of cliques of size s and a given clique number? We prove an extension of
the graph Maclaurin inequalities with a weight function that captures the
local structure of the graph. As a corollary, we settle a recent conjecture
of Kirsch and Nir, which simultaneously encompass the previous localised
results of Bradač, Malec and Tompkins and of Kirsch and Nir.

1. Introduction

One of the foundational results in extremal graph theory is Turán’s theorem
[15], which states that a graph G that is Kr+1-free cannot have more edges
than a balanced complete r-partite graph. Zykov [16] later showed that these
graphs also maximise the number of copies of Kq amongst Kr+1-free graphs.

Denote by Ks(G) the set of s-cliques in G and ks(G) = |Ks(G)|. If G is
Kr+1-free, Zykov’s theorem gives

kq(G) ≤
(

r

q

)(
k1(G)

r

)q

. (1)

The graph Maclaurin inequalities are a broad extension of (1). Indeed, they
state that if G is Kr+1-free, then

k1(G)(
r
1

) ≥
(

k2(G)(
r
2

)
)1/2

≥ · · · ≥
(

kr(G)(
r
r

)
)1/r

. (2)

Whilst Khadzhiivanov [6] was the first to prove this result, his original proof
had a gap, later filled by Nikiforov [11]. This inequality was also rediscovered
and reproved by Sós and Straus [14], by Fisher and Ryan [3] and by Petingi
and Rodriguez [12].
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Using (2), one can address the following question: for s < q ≤ r, what
is the maximum number of copies of Kq that a Kr+1-free graph can have
assuming that it has a given number of copies of Ks? Turán’s theorem gives
the exact answer for s = 1 and q = 2 and Zykov’s theorem for s = 1 and
q ≥ 2. Eckhoff [2] and Frohmander [4] gave further exact results. Inequality (2)
is asymptotically sharp and gives the precise answer under certain divisibility
conditions. Our main result is a strengthening of (2).

Theorem 1.1. Given a graph G and integers 1 ≤ s ≤ q, we have

∑
I∈Kq(G)

(
σ(I)

s

)q/s(
σ(I)

q

)−1

≤ ks(G)q/s, (3)

where σ(I) is the size of the largest clique in G containing I. Moreover, equality
holds only when the subgraph of G induced on the set of vertices that belong to
an s-clique is a complete multipartite graph with equal parts.

Indeed, Theorem 1.1 generalises (2). The function t �→ (
t
s

)q/s
/
(

t
q

)
is de-

creasing for t ≥ q for any fixed 1 ≤ s ≤ q. Therefore, when G is Kr+1-free,
inequality (3) implies

kq(G)
(

r

s

)q/s(
r

q

)−1

≤ ks(G)q/s

which is precisely the Maclaurin inequalities in (2).
An important feature Theorem 1.1 is the local nature of the function

σ(I). This result fits in an ongoing enterprise to show similarly localised ver-
sions of results in extremal combinatorics. The case s = 1 and q = 2, a localised
version of Turán’s theorem, was proposed in 2022 by Balogh and Lidický in
an Oberwolfach [8] problem session. Soon after, this case was settled indepen-
dently by Bradač [1] and by Malec and Tompkins [9]. The full case s = 1, a
localised version of Zykov’s theorem, was then proven analytically by Kirsch
and Nir [7]. They also conjectured in [7, Conjecture 6.1] the case s = 2, which
we settle in greater generality.

To prove Theorem 1.1, we follow the strategy of Nikiforov and Khadzhi-
ivanov, building upon the Motzkin–Straus [10] analytical proof of Turán’s the-
orem. We now review some aspects of this analytical approach.

For x = (xv)v∈V ∈ R
V , write x ≥ 0 (or x > 0) if xv ≥ 0 (or xv > 0) for

all v ∈ V. For a set I ⊆ V, denote the product xI :=
∏

v∈I xv. Given a graph
G and an integer s, define the following homogeneous polynomial

hs,G(x) :=
∑

J∈Ks(G)

xJ .

The following inequalities appear in the work of Khadzhiivanov [6]. If G is a
Kr+1-free graph and x ≥ 0, then

h1,G(x)(
r
1

) ≥
(

h2,G(x)(
r
2

)
)1/2

≥ · · · ≥
(

hr,G(x)(
r
r

)
)1/r

. (4)
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Applying (4) with x = 1 (i.e. xv = 1 for all v ∈ V ), we recover (2). In the case
that G = Kn, the functions hs,Kn

are the elementary symmetric polynomials,
and for r = n, the inequalities (4) are the classical Maclaurin inequalities (see
[5, p. 52]). For this reason, we refer to (4) (and (2)) as a Maclaurin inequality
for graphs. Our main technical result is the following.

Theorem 1.2. Given a graph G and 1 ≤ s ≤ q, define

fs,q,G(x) :=
∑

I∈Kq(G)

(
σ(I)

s

)q/s(
σ(I)

q

)−1

xI . (5)

Then, for every x ≥ 0, we have

fs,q,G(x) ≤ hs,G(x)q/s. (6)

Moreover, equality holds for x > 0 only when the subgraph of G induced on the
set of vertices that belong to an s-clique is a complete �-partite graph with parts
V1, . . . , V�, for some � ≥ q, and

∑
v∈Vi

xv =
∑

u∈Vj
xu for all 1 ≤ i, j ≤ �.

To obtain Theorem 1.1 from Theorem 1.2, just take x = 1. At first glance
(6) seems stronger than (3), but they are in fact equivalent, as we will see in
Proposition 2.3.

Whilst it is not evident at first glance why we take the weight as we do
in (3) and (5), if we want an inequality of the form∑

I∈Kq(G)

ρ (σ(I))xI ≤ hs,G(x)β ,

that attains equality when G = Kn and x = 1, then we must take ρ(t) =(
t
s

)q/s(t
q

)−1
. Homogeneity forces us to take β = q/s.

2. Localised Inequalities for Clique Counts

For a graph G = (V,E), the clique number ω(G) is the size of its largest
clique. For a subset S ⊆ V, denote by G[S] the subgraph of G spanned by S.
If a subset I ⊆ V spans a clique, we denote by σG(I) the size of the largest
clique in G containing I. We omit the subscript and write σ(I) whenever G is
clear from context.

Recall that for x = (xv)v∈V ∈ R
V , we write x ≥ 0 if xv ≥ 0 for

all v ∈ V and x > 0 analogously. The support of x is the set suppx :=
{v ∈ V : xv �= 0} . For a set I ⊆ V, recall that xI :=

∏
v∈I xv. For integers

1 ≤ s ≤ q, consider the function

fs,q,G(x) :=
∑

I∈Kq(G)

ρs,q(σ(I))xI , (7)

where ρs,q is defined, for t ≥ s, as

ρs,q(t) :=
(

t

s

)q/s(
t

q

)−1

.
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Note that in (7), ρs,q(t) is only evaluated for t ≥ q. It is important to note
that in this range, ρs,q(t) is a decreasing function of t. Indeed, we have

ρs
s,q(t) =

(q!)s

(s!)q

qs−1∏
i=0

t − 	i/q

t − 	i/s
 ,

so ρs
s,q is the product of sq terms, each of which is non-increasing in t ≥ q.

Recall from the introduction that

hs,G(x) :=
∑

J∈Ks(G)

xJ .

Note that fs,q,G is homogeneous of degree q and hs,G homogeneous of degree
s. Moreover, for x > 0, if hs,G(x) = 0, then G has no s-clique, and thus
fs,q,G(x) = 0 as well. Therefore, to show that fs,q,G(x) ≤ hs,G(x)q/s for all
x ≥ 0, it is enough to do so restricted to

Ss,G =
{
x ∈ R

V : x ≥ 0, hs,G(x) = 1
}

.

The inequality (6) in Theorem 1.2 is then equivalent to the following proposi-
tion.

Proposition 2.1. Given a graph G and 1 ≤ s ≤ q ≤ ω(G), we have

fs,q,G(x) ≤ 1, (8)

for every x ∈ Ss,G.

We defer the discussion of the case of equality in Theorem 1.2 to Sect. 3.
The goal of this section is to prove Proposition 2.1. For convenience, we denote

Ms,q,G := sup
x∈Ss,G

fs,q,G(x). (9)

We note that if kq(G) > 0, then Ms,q,G > 0. For every graph G, the set S1,G is
the standard simplex, which is compact. For s ≥ 2, the set is Ss,G is closed and
unbounded. The following proposition gives the crucial structural information
about the optimisation problem.

Proposition 2.2. Given a graph G and 1 ≤ s ≤ q ≤ ω(G), the function
fs,q,G(x) attains its maximum at a point x ∈ Ss,G with suppx being a clique
in G.

We will now see that Proposition 2.2 quickly gives us Proposition 2.1.

Proof of Proposition 2.1. By Proposition 2.2, there is x∗ ∈ Ss,G such that
fs,q,G(x∗) = Ms,q,G and suppx∗ is a clique, let’s say, a KR. Recall that ρs,q is
decreasing, so

fs,q,G(x∗) ≤
∑

I∈Kq(KR)

ρs,q(σG(I))x∗
I ≤ ρs,q(R)

∑
I∈Kq(KR)

x∗
I

= ρs,q(R)hq,KR
(x∗).
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By Maclaurin’s inequality (4), we have

hq,KR
(x∗) ≤

(
R

q

)(
hs,KR

(x∗)(
R
s

)
)q/s

= 1/ρs,q(R).

Therefore, fs,q,G(x∗) ≤ 1 as we wanted. �

With Proposition 2.1, we can easily get the inequality (3) in Theorem 1.1
by setting x = Ks(G)−1/s1. What is less clear to see is that Theorem 1.1 if
actually equivalent to Theorem 1.2. The idea of using combinatorial means to
prove analytical inequalities can be traced back to Sidorenko [13].

Proposition 2.3. Inequality (3) implies inequality (6).

Proof. The inequality (3) in Theorem 1.1 says that fs,q,G(x) ≤ hs,G(x)q/s for
x = 1. To get the inequality for all x ≥ 0 note that since both fs,q,G and hs,G

are continuous, it is enough to prove it for x with all coordinate rationals. If
some coordinate is 0, we can remove the associated vertex. Moreover, fs,q,G

and h
q/s
s,G are both homogeneous of the same degree, so we can rescale the

coordinates of x to be all integers.
To go from integer coordinates to all 1’s coordinates, we can consider

the blowup of G. Denote by Gx the graph obtained from G by replacing each
vertex v with an independent set Uv of size xv, and for every edge uv ∈ E(G),
replace the edge uv with a complete bipartite graph with vertex classes Uu

and Uv. By construction, the vertices of a clique in Gx belongs to distinct
classes Uv. Moreover, every J ∈ Ks(G) leads to the creation of xJ cliques in
Gx. Therefore, we have

ks(Gx) =
∑

J∈Ks(G)

xJ = hs,G(x).

Similarly, every I ∈ Kq(G) leads to the creation of xI cliques in Gx with the
same value of σ, therefore

fs,q,Gx(1) =
∑

I∈Kq(G)

ρs,q(σG(I))xI = fs,q,G(x).

Finally, this gives

fs,q,G(x) = fs,q,Gx(1) ≤ ks(Gx)q/s = hs,G(x)q/s,

as claimed. �

The proof of Proposition 2.2 is divided in two steps. The first step is a
quite technical one, we must show that the supremum (9) is actually attained.
That is, we must show that there is x∗ ∈ Ss,G such that fs,q,G(x) ≤ fs,q,G(x∗)
for all x ∈ Ss,G. As pointed out before, the set S1,G is compact and the
existence of x∗ is trivial. For s ≥ 2, however, Ss,G is closed and unbounded,
so we must deal with this issue. This is the content of Lemma 2.4, the proof
which we postpone to Sect. 4 as it is quite lengthy and not the highlight of
the proof.
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Lemma 2.4. Given a graph G and 1 ≤ s ≤ q ≤ ω(G), the function fs,q,G(x)
attains a maximum with x ∈ Ss,G.

The last ingredient of the proof of Proposition 2.2 is a symmetrisation
argument.

Lemma 2.5. Let G be a graph and 1 ≤ s ≤ q ≤ ω(G). Suppose that every
vertex of G is in an s-clique and that fs,q,G attains a maximum, restricted to
Ss,G, at some point x > 0. If u and v are not adjacent, then there is y ∈ Ss,G

such that fs,q,G(y) = fs,q,G(x) and yu = 0.

Proof. Define y as

yz :=

⎧⎪⎨
⎪⎩
xz if z �= u, v,

xu + ξu if z = u,

xv + ξv if z = v,

where ξu and ξv will be chosen later. Observe that for any w ∈ V, we have

∂hs,G(x)
∂xw

=
∑

J∈Ks(G)
w∈J

xJ\{w}.

Thus, as u and v are not neighbours, we obtain

hs,G(y) = ξu
∂hs,G(x)

∂xu
+ ξv

∂hs,G(x)
∂xv

+ hs,G(x), (10)

and similarly,

fs,q,G(y) = ξu
∂fs,q,G(x)

∂xu
+ ξv

∂fs,q,G(x)
∂xv

+ fs,q,G(x). (11)

Note that ∂hs,G(x)/∂xw > 0 for all w ∈ V as x > 0 and all vertices are
in some s-clique. We set

ξu = −xu, ξv = xu
∂hs,G(x)/∂xu

∂hs,G(x)/∂xv
,

so hs,G(y) = hs,G(x) = 1 by (10). In particular, y ∈ Ss,G.
By the Lagrange’s method, as fs,q,G is maximised at x subject to hs,G(x) =

1, there is λ ∈ R such that,

∂fs,q,G(x)
∂xw

= λ
∂hs,G(x)

∂xw
,

for all w ∈ V. Together with (11), this implies that

fs,q,G(y) = λ

(
ξu

∂hs,G(x)
∂xu

+ ξv
∂hs,G(x)

∂xv

)
+ fs,q,G(x) = fs,q,G(x).

We are done as yu = 0. �

We are now ready to prove Proposition 2.2, that is, to show that there is
a maximum point x ∈ Ss,G whose support is a clique.
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Proof of Proposition 2.2. Amongst the points x ∈ Ss,G with fs,q,G(x) = Ms,q,G,
choose one with |suppx| being minimal. Such x exists from Lemma 2.4. More-
over, x is also a maxima restricted to the support R = suppx, that is,
fs,q,G[R](x) = Ms,q,G[R]. Suppose that G[R] is not a clique and let u, v ∈ R
be distinct vertices such that uv /∈ E(G). Applying Lemma 2.5 to G[R], there
is y ∈ Ss,G[R] such that fs,q,G[R](y) = Ms,q,G[R] and moreover, yu = 0. This
contradicts the minimality of |suppx|. �

As previously established, the inequalities in Theorems 1.1 and 1.2 follow
from Proposition 2.2.

3. When Equality Holds

Having established the inequalities (3) in Theorem 1.1 and (6) in Theorem 1.2,
we now determine when equality holds. To do so, we must apply the symmetri-
sation argument of Lemma 2.5 is a more careful way. Moreover, we must use
the fact that equality holds in the original Maclaurin’s inequality (4) for cliques
only when all the coordinates are equal.

Proposition 3.1. Let G be a graph with clique number ω and 1 ≤ s < q ≤ ω.
Let Us ⊆ V (G) be the set of vertices that are contained in an s-clique in G.
The equality

fs,q,G(x) = hs,G(x)q/s, (12)

holds for x > 0 if and only if the graph G induced on Us is a complete ω-partite
graph with parts V1, . . . , Vω and

∑
v∈Vi

xv =
∑

u∈Vj
xu for all 1 ≤ i, j ≤ ω.

Proof. Let x > 0 be such that (12) holds. We may assume that G = G[Us],
the values of xv for v /∈ Us do not interfere with the values of neither fs,q,G(x)
nor hs,G(x). As x > 0, we also have hs,G(x) > 0, so by homogeneity of both
sides of (12), we may assume that hs,G(x) = 1. By Theorem 1.2, we then have
fs,q,G(x) = Ms,q,G = 1.

Let V1, . . . , V� be the vertices of the connected components of the com-
plement of G. We say that a clique I ⊆ V (G) is canonical if |I ∩ Vj | ≤ 1 for
all 1 ≤ j ≤ �. Our goal is to show that σ(I) = � for every canonical clique in
G.

Let U be a canonical K� in G. Repeatedly applying Lemma 2.5 over the
non-edges in Vi, we find y ∈ Ss,G with fs,q,G(y) = fs,q,G(x) = Ms,q,G and
supp y = U. Indeed, we may do so as each Vi is connected in the complement.
We obtain

1 = fs,q,G(y) =
∑

I∈Kq(U)

ρs,q(σG(I))yI ≤ ρs,q(�)hq,G[U ](y). (13)

By Maclaurin’s inequality (4), we have

hq,G[U ](y) ≤ (
hs,G[U ](y)

)q/s
(

�

q

)(
�

s

)−q/s

= ρs,q(�)−1.
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Therefore, we have equality in (13), which means that σG(I) = � for all canon-
ical copies of Kq in G[U ]. Since a canonical Kq in G can be extended to a
canonical K�, we have that σG(I) = � for every canonical Kq in G.

We now claim that each Vi is an independent set. Indeed, suppose that
there is an edge uv ∈ G[Vi]. There must be a canonical clique U in G of size �
with u ∈ U. Then U ∪{v} must span a K�+1 clique in G, which contradicts the
fact that σG(I) = � for every Kq in U. Therefore, G is a complete multipartite
graph, and thus, � = ω.

Consider now the reduced graph R, which is a clique with vertex set
{1, . . . , ω} . Let z ∈ R

R be defined as zi =
∑

v∈Vi
xv. For W ⊆ V (R) denote

by VW :=
⋃

i∈W Vi. Thus, if W = {w1, . . . , wt} , we have

zW =
∏

w∈W

( ∑
v∈Vw

xv

)
=

∑
vi∈Vwi
i=1,...,t

t∏
i=1

xvi
= ht,VW

(x).

Since σ(I) = ω for every clique in G, we have

hs,G(x) =
∑

J∈Ks(G)

xJ =
∑

W∈Ks(R)

∑
J∈Ks(VW )

xJ =
∑

W∈Ks(R)

hs,VW
(x) = hs,R(z).

In particular hs,R(z) = 1. Similarly, we have

1 = fs,q,G(x) = ρs,q(ω)hq,G(x) = ρs,q(ω)hq,R(z).

By Maclaurin’s inequality (4),

1 = ρs,q(ω)hq,R(z) ≤ ρs,q(ω) (hs,R(z))q/s

(
ω

q

)(
ω

s

)−q/s

= 1.

As equality holds for Maclaurin inequality only when zi are all equal, we are
done. The converse follows in the same way. �

Now, a proof of Lemma 2.4 is the only step missing for a complete proof
of Theorems 1.1 and 1.2.

4. Attaining the Maxima

In this section, we give a proof of Lemma 2.4. Nikiforov [11] noticed that
Khadzhiivanov’s [6] proof of (4) was incomplete as it assumed without proof
that the supremum (9) was actually attained, which is not a triviality when
s ≥ 2. We deal with this issue in essentially the same way that Nikiforov did.
Unfortunately, our proof is lengthy, for which we apologise.

Proof of Lemma 2.4. As S1,G is compact, f1,q,G attains a maximum in S1,G,
so assume s ≥ 2. If s = q, then fs,q,G = hs,G, so fs,q,G attains the maximum
at any point x ∈ Ss,G. Assume s < q.

First note that fs,q,G is bounded on Ss,G. Indeed, let x ∈ Ss,G and we
give an uniform bound on fs,q,G(x). First observe that for J ∈ Ks(G), we have
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xJ ≤ hs,G(x) = 1. For any t ≥ s, if I ∈ Kt(G), the AM-GM inequality gives

xI =

⎛
⎝ ∏

J∈Ks(I)

xJ

⎞
⎠

1/(t−1
s−1)

≤
(∑

J∈Ks(I)
xJ(

t
s

)
)(t

s)/(t−1
s−1)

≤ 1. (14)

Applying this bound with t = q, and recalling that ρs,q is decreasing, we
obtain the bound fs,q,G(x) ≤ ρs,q(q)kq(G) < ∞ for all x ∈ Ss,G. In particular,
Ms,q,G < ∞.

We prove this lemma by induction on n, the number of vertices of G.
Since ω(G) ≥ q, we may assume n ≥ q. For n = q, we can assume G = Kq.
For every x ∈ Ss,G, the AM-GM inequality gives

fs,q,G(x) = ρs,q(q)xV ≤ ρs,q(q)

(∑
I∈Ks(Kq)

xI(
q
s

)
)(qs)/(

q−1
s−1)

= ρs,q(q)

(
q

s

)−q/s

= 1.

On the other hand, if y is defined as yv =
(
q
s

)−1/s for all v ∈ V, then y ∈ Ss,G

and

fs,q,G(y) = ρs,q(q)yV = ρs,q(q)
(

q

s

)−q/s

= 1,

so the maximum is of fs,q,G is indeed attained in Ss,G, and moreover Ms,q,Kq
=

1.

Now, assume that the assertion holds for all graphs with n − 1 vertices
or fewer. If G contains a vertex v not in any Ks of G, then xv does not
occur in fs,q,G nor in hs,G. That is to say, we have fs,g,G(x) = fs,q,G−v(x′)
and hs,G(x) = hs,G−v(x′), where x′ = (xu)u∈V (G−v). Therefore, the assertion
holds for G as it holds for G − v by induction. We now assume that every
vertex of G is contained in a copy of Ks.

Our goal is to show that there is y ∈ Ss,G with fs,q,G(y) = Ms,q,G.

Consider a sequence x(i) in Ss,G with limi→∞ fs,q,G(x(i)) = Ms,q,G. If for all
v ∈ V, the sequence x(i)

v is bounded, then x(i) has an accumulation point
y ∈ Ss,G and by continuity, fs,q,G(y) = Ms,q,G as desired.

The remaining case is when there is a vertex v ∈ V, for which x(i)
v is

unbounded. By our previous assumption, there is a clique W ∈ Ks(G) with
v ∈ W. If there is some c > 0 such that x(i)

u > c for all u ∈ W, u �= v and all
i ≥ 1, then we have

1 ≥ x(i)
J > cs−1x(i)

v ,

which contradicts the fact that x(i)
v is unbounded.

Therefore, there is u ∈ W, u �= v for which lim infi→∞ x(i)
u = 0. We pass

to a subsequence where x(i)
u → 0, x(i)

v → ∞ and fs,q,G(x(i)) → Ms,q,G as
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i → ∞. Observe that

fs,q,G(x(i)) =
∑

I∈Kq(G),u∈I

ρs,q(σG(I))x(i)
I +

∑
I∈Kq(G),u/∈I

ρs,q(σG(I))x(i)
I

=
∑

I∈Kq(G)

ρs,q(σG(I))x(i)
I\{u}x

(i)
u +

∑
I∈Kq(G−u)

ρs,q(σG(I))x(i)
I .

(15)

To bound the first sum in (15), recall from (14) that x(i)
I\{u} ≤ 1, and so

∑
I∈Kq(G)

ρs,q(σG(I))x(i)
I\{u}x

(i)
u ≤

∑
I∈Kq(G)

ρs,q(σG(I))x(i)
u ≤ ρs,q(q)kq(G)x(i)

u .

(16)

For the second sum in (15), observe that
∑

I∈Kq(G−u)

ρs,q(σG(I))x(i)
I ≤

∑
I∈Kq(G−u)

ρs,q(σG−u(I))x(i)
I = fs,q,G−u(x̃(i)),

where x̃(i) = (x(i)
z )z∈V (G−u). The point x̃(i) may not be in Ss,G−u, so we may

need a rescaling. To be precise, we need to rule out that hs,G−u(x̃(i)) = 0.

Indeed, if that is the case, then x(i)
J = 0 for all J ∈ Ks(G − u), thus x(i)

I = 0
for all I ∈ Kq(G − u). In particular, fs,q,G−u is identically zero, so combining
(16) with (15) and taking the limit i → ∞, we have Ms,q,G = 0. This implies
that kq(G) = 0, a contradiction.

We now assume that hs,G−u(x̃(i)) > 0 and let αi := 1/(hs,G−u(x̃(i)))1/s,

so that we have αix̃(i) ∈ Ss,G−u. Also notice that hs,G−u(x̃(i)) ≤ hs,G(x(i)) =
1. Therefore, we have

fs,q,G−u(x̃(i)) =
(
hs,G−u(x̃(i))

)q/s

fs,q,G−u(αix̃(i)) ≤ fs,q,G−u(αix̃(i)). (17)

By induction, there is a point ỹ ∈ Ss,G−u at which fs,q,G−u attains the
maximum, that is fs,q,G−u(ỹ) = Ms,q,G−u. Combining (16) and (17) back in
(15), we obtain

fs,q,G(x(i)) ≤ ρs,q(q)kq(G)x(i)
u + fs,q,G−u(ỹ). (18)

Define y ∈ R
V as yz = ỹz for z ∈ V (G−u) and yu = 0. Note that y ∈ Ss,G as

hs,G(y) = hs,G−u(ỹ). Similarly, fs,q,G−u(ỹ) = fs,q,G(y) ≤ Ms,q,G. Therefore,
as i → ∞, (18) implies

Ms,q,G ≤ fs,q,G(y) ≤ Ms,q,G.

Hence, the supremum is indeed attained in y ∈ Ss,G.

All the proofs are then complete.
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5. Further Directions

In this paper, we have provided a so called localised version of the graph
Maclaurin inequalities. It would be of great interest to explore further which
combinatorial results can be extended in this way. Malec and Tompkins [9]
have provided, for instance, localised versions of Erdős–Gallai theorem, the
Lubell–Yamamoto–Meshalkin–Bollobás inequality, the Erdős–Ko–Rado theo-
rem and the Erdős–Szekeres theorem on monotone sequences. Kirsch and Nir
[7] extended this list with several results in generalised Turán problems. More
importantly, we believe that these versions should have interesting applications
that are yet to be discovered.
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