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Complexity of Ice Quiver Mutation
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Abstract. We prove NP-hardness results for determining whether ice quiv-
ers are mutation equivalent to quivers with given properties, specifically,
determining whether an ice quiver is mutation equivalent to an ice quiver
with exactly k arrows between any two of its vertices is NP-hard. Also,
determining whether an ice quiver is mutation equivalent to a quiver with
no edges between frozen vertices is strongly NP-hard. Finally, we present
a characterization of mutation classes of ice quivers with two mutable
vertices.

1. Introduction

Quivers and their mutations (defined in Sect. 2) were introduced by Fomin and
Zelevinsky in [11] and [12] in the context of cluster algebras. They are widely
used in algebraic combinatorics (see [16] for a survey or [10] for an introductory
book). However, many combinatorial questions about these objects remain
unresolved.

The question of whether a given quiver Q is equivalent to only finitely
many other quivers was addressed in [6], where a list of such quivers is given.
Also, Fomin and Neville show in [8] that there are long cycles in the graph of
quivers. Recently, Fomin asked in [7] for algorithmic solutions to the following
questions:

1. Given quivers Q1 and Q2, determine whether Q1 and Q2 are mutation
equivalent.

2. Given a quiver Q and a nonnegative integer k, determine whether there
exists a quiver Q′ ∈ [Q] such that Q′ has two vertices with exactly k
arrows between them.

However, Fomin also proposed that these problems may be computation-
ally difficult or even undecidable:
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“We don’t have any algorithm that would detect if two quivers are mutation
equivalent or not ... of course it would be absurd if this were algorithmically
undecidable - there must be an algorithm - well, who knows? Maybe not.”

–Sergey Fomin, [7, approx. 19:00], May 16, 2022

Formally, Fomin’s problem asks whether these questions are decidable for
general quivers (cf. Problem 2.6.14 and Remark 4.1.13 in [10]). We approach
the problem from both ends. First, we present a couple of NP-hardness results
about the second of Fomin’s questions. Past results such as [3] have shown that
certain determinants are preserved by quiver mutation. Since determinants
can be computed in polynomial time, however, these results show that it is
unlikely that a determinantal formula can capture everything that is going on
in a quiver. Next, we will show that quivers with only two mutable vertices
can only have a very limited set of equivalent quivers and derive asymptotics
of the quivers in such mutation classes.

Note that we use a slight generalization of quivers, namely ice quivers,
in which we do not ignore edges between frozen vertices. Such quivers have
been studied in the literature (in e.g. [18]). For brevity, we will use the term
‘quivers’ throughout the paper.

1.1. Hardness Results

We begin by stating our main results. Both concern complexity of questions
related to quiver mutation equivalence, specifically Fomin’s second question.
We note that these results do assume that frozen vertices and arrows between
them are permitted in quivers.

Theorem 1.1. (NP-hardness) Let Q be a quiver, and let k > 1 be an integer.
The following problem is NP-hard: Determine whether there exists a quiver
Q′ which is mutation equivalent to Q such that Q′ contains two vertices with
exactly k arrows between them.

In the context of quivers, it is natural to be interested in strong NP-
hardness. In ordinary NP-hardness, the inputs to the problem are assumed to
be in binary. Specifically, when there are k arrows between two vertices in
a quiver, this is assumed to take log2 k bits of input. However, the arrows
in a quiver may each carry algebraic information and thus have independent
meaning. When inputs to a decision problem are given in unary instead of
binary, then the corresponding notion is strong NP-hardness. Problems such as
Knapsack or Subset Sum do not meet this stronger criterion. See [14] for
background on this topic.

Let an arrow in a quiver be icebound if it goes between two frozen vertices.

Theorem 1.2. (Strong NP-hardness) Let Q be a quiver. The following problem
is strongly NP-hard: Determine whether there exists a sequence of mutations
which takes Q to a quiver with no icebound arrows.

See Sect. 4.3 for implications of these results.
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1.2. Asymptotic Result

Let us limit the number of vertices at which we are allowed to mutate the
quiver, then the set of mutation-equivalent quivers becomes quite limited. If
there is only one mutable vertex, then, since mutation is an involution, there
can only be two quivers in a mutation class.

Our theorem describes the mutation classes of quivers with exactly two
mutable vertices. Again, since mutations are involutions, the only way to get
new quivers is to alternate mutating at the two vertices.

Theorem 1.3. Let Q be a quiver with exactly two mutable vertices called C and
D. Define α to be the number of arrows between C and D. Then:

If α = 0, we have
∣
∣[Q]

∣
∣ ≤ 4.

If α = 1, we have
∣
∣[Q]

∣
∣ ≤ 10.

If α = 2, then in any nontrivial case the number of arrows in (μDμC)n(Q)
grows linearly.
If α ≥ 3, then in any nontrivial case the number of arrows in (μDμC)n(Q)
grows exponentially.

Furthermore, if α ≥ 2, let δI,J(n) be the number of arrows between ver-
tices I and J in (μDμC)n(Q). For any vertex A �= C,D we have:

lim
n→∞

δA,C(n)
δA,D(n)

=
1
2

(

α ±
√

α2 − 4
)

.

See 4.6 for possible extensions of this result.

1.3. Structure of the paper

We will proceed as follows. In Sect. 2 we begin with notation, definitions, and
examples. Next, we prove our theorem in Sect. 3. We conclude with final re-
marks in Sect. 4.

2. Notation, Definitions, and Examples

2.1. Basic Definitions

For positive integers n, define [n] to be the set {1, 2, . . . , n}. Also, let N be the
set {0, 1, 2, · · · }.

2.2. Quivers

A quiver is a directed multigraph with no loops or 2-cycles, the edges of which
are called arrows. We will indicate multiple arrows between vertices by label-
ing edges with numbers. For example, the following graph is a quiver on five
vertices with eight arrows:

A B C

D E

2

3
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2.3. Quiver Mutation

In a quiver, we assign a subset of the vertices to be mutable; the remaining
vertices are frozen. While Fomin and Zelevinsky’s original definition ignored
any arrows between frozen vertices, we will follow [18] and allow them. To each
mutable vertex in the quiver, we associate an operation called mutation. For
a vertex X, mutation at X, denoted by μX , proceeds in the following three
steps:

1. for every two-step path Y → X → Z, add an arrow from Y to Z,
2. reverse the direction of every arrow incident to X,
3. remove 2-cycles one by one.

For example, applying the mutation μB will turn the quiver on the left into
the quiver on the right and vice versa in the picture below:

A B C A B C

D E D E

2

3
µB 5

2

3
3

It is easily seen that every mutation is an involution. That is, μX(μX(Q)) =
Q for every quiver Q with vertex X. It is also easy to see that mutations at
nonadjacent vertices commute. Two quivers are said to be mutation equiva-
lent if one can be obtained from the other by a finite sequence of mutations.
Mutation equivalence is an equivalence relation, so we can define the mutation
class of a quiver Q, denoted [Q], to be the equivalence class of Q under this
relation.

3. Proofs

Proof of Theorem 1.1

We reduce the problem to Subset Sum, which is defined as follows:
Subset Sum
Input: X ⊂ N a finite set, and k ∈ N.
Decide: ∃A ⊆ X such that

∑

a∈A a = k?
This problem is known to be NP-hard (see e.g., [15, §A3.2]). Let X =

{x1, . . . , xn} be a set of positive integers, and let k > 1 be another integer. Let
Q be the following quiver:

A

C1 C2 C3 · · · Cn

B

x1

x2

x3

xn

1

1
1

1
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For each i ∈ [n], let μi be μCi
. Suppose we apply the sequence of muta-

tions μ = μi1 · · · μik . Define Y ⊆ [n] by

Y = {j ∈ [n] μCj
is used an odd number of times}.

Then, for each j ∈ [n] let

εj =

{

1 if j /∈ Y

−1 if j ∈ Y.

An easy induction shows that μ(Q) is given by

A

C1 C2 C3 · · · Cn where y =
∑

j∈Y xj

B .

ε1x1

ε2x2

ε3x3

εnxn

ε1
ε2

ε3

εn

y

That means that if k /∈ {0, 1} ∪ X, the only way for μ(Q) to contain an
arrow with weight k is for k to be the weight of the arrow between B and A.
That means that k is present in some quiver equivalent to Q if and only if k is
a subset sum of X. The result follows from NP-hardness of Subset Sum. �

Proof of Theorem 1.2

We use the following formulation of the 3-partition problem:
3-Partition
Input: n ≥ 3, and X ⊆ ([n]

3

)

.

Decide: ∃A ⊆ X such that every i ∈ [n] is contained in exactly one A ∈ A?

Given a positive integer n and a subset X ⊆ (
[n]
3

)

, does there exist a
partition of [n] into elements of X ? This is strongly NP-hard (see e.g., [GJ],
§A3.1). Without loss of generality, we may assume that each element of [n] is
in at least one of the elements of X .

Given n and X, we construct a quiver with vertices:

A1, . . . , An
︸ ︷︷ ︸

frozen

, {BX}X∈X , C
︸︷︷︸

frozen

.

Take the following edges:
One edge from Ai to BX if i ∈ X.
One edge from BX to C for each X.
One edge from C to Ai for each i.

The resulting quiver has this shape:

A

B

C
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Here A and B represent the sets of vertices of the form Ai and BX ,
respectively. There is only one vertex labeled C. The solid arrows represent
one arrow between every pair of vertices from the respective sets. The squiggly
arrow between A and B represents arrows between an Ai and a BX if and only
if i ∈ X.

If a partition P ⊂ X exists, we can apply the mutations {μBP
: P ∈ P},

which will eliminate all icebound edges.
More generally, note that all mutations commute. Moreover, they are

all involutions. So we need only consider the effect of using mutations at most
once. In that case, we eliminate the icebound edges if and only if the mutations
we use correspond to a partition of [n]. We have therefore reduced the problem
to 3-partition. Because 3-partition is strong NP-hard, the result follows.

Proof of Theorem 1.3

First, we note that it suffices to prove the case where Q has exactly four
vertices. This is because, for any subset Q′ ⊂ V (Q) of size 4 containing both
C and D, the action of μC and μD commutes with restriction to Q′.

Let the other two vertices in Q′ be A and B. It also suffices to consider
the case where A and B start with no arrows between them. If C and D have
no arrows between them to start, then the statement is trivial. If C and D
have one arrow between them, then it is an easy computation to check that
(μDμC)10Q = Q.

So assume there are α ≥ 2 arrows from C to D. One possible case consists
of arrows from A to C and from D to B Then we can write down the first few
quivers that we get:

A B A B

C D C D

A B A B

C D C D

βα

βαγ

βα2−β γβ

α

γ

α

βα

βαγ

βα3−2βα

γ

βαγ

τ

αγ

βα2−β

α α

γ
σ

where σ = βα3 − 2βα and τ = βα4 − 2βα2 − βα3 + β. Note that these
are both positive since α ≥ 2.

Consider the quivers Q1(x, y, z, w) and Q2(p, q, r, s):

A B A B

C D C D

βαγ

x
z

βαγ

q

s

α

w

y

p
r

α
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We claim that all future quivers will be of one of these two forms and
thus βαγ is the only thing that appears on top. We can compute that

μC

(

Q1(x, y, z, w)
)

= Q2(x, αx − y, z, αz − w),

so long as αx > y and αz > w. Next, we apply μD to find

μD

(

μC

(

Q1(x, y, z, w)
))

= Q1

(

α(αx − y) − x, αx − y, α(αz − w) − z, αz − w
)

:= Q1(x′, y′, z′, w′),

this time assuming α(αx − y) > x and α(αz − w) > w. This is a stronger
condition than the previous one. Note that our conditions are equivalent to

α

α2 − 1
< min

(
x

y
,

z

w

)

,

which is satisfied by our original picture.
However, we have computed

x′

y′ =
α(αx − y) − x

αx − y
= α − x

αx − y
= α − x/y

α(x/y) − 1
.

So the problem reduces to iteratively applying the function

f(t) = α − t

αt − 1
,

and it is easy to see that this converges to a limit of

x

y
= t =

1
2

(

α ±
√

α2 − 4
)

.

A similar picture holds for the other three starting positions. �

4. Final Remarks and Open Problems

4.1. Undecidability

The paper [8] does show the existence of small quivers which are nonetheless
polynomially far apart with respect to mutation. Of course, undecidability
is far stronger. Suppose, for example, that it is undecidable whether or not
two quivers are mutation equivalent. Then, there would exist quivers Q1 and
Q2 with a1 and a2 arrows, respectively, such that the shortest sequence of
mutations taking one to the other has length

	 ≥ (Tow(Tow(a1 + a2)),

where Tow(k) is a tower of 2’s of length k. Put fancifully, this means there
is no limit as to how far into the sky one has to go to show that two quivers
are mutation equivalent. Note that Theorem 1.3 shows that more than two
mutable vertices are needed for this to happen.
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4.2. Knots and Plabic Graphs

Deep connections exist between quiver mutation equivalence and knot theory
including via plabic graphs (see e.g., [13], [2], [19] or [9]). For knots and links,
upper bounds exist for the number of Reidemeister moves needed to show
equivalence.

Here is the best known bound due to [5]. Suppose D1 and D2 are diagrams
of the same link or knot. Let their crossing numbers be c1 and c2, respectively.
Then there exists a sequence of Reidemeister moves taking D1 to D2 of length
at most

Tow(C)(c1+c2) where C =
(

1010
6
)(c1+c2)

.

Again, Tow(k) is a tower of 2 s of length k. It may well be the case that such
a bound exists for mutation equivalence of quivers as well.

4.3. Quiver Invariants

Fix a quiver Q and some k ∈ N. Fomin’s question in the introduction asks for
an algorithm to determine whether there exists a quiver Q′ ∈ [Q] such that
two vertices in Q′ have exactly k arrows between them.

One hope is that determinantal invariants would be able to answer these
questions. Our results suggest that one should investigate the quivers used in
the construction of Theorems 1.1 and 1.2.

4.4. Mutable and Immutable Vertices

Frozen vertices and arrows between them are essential for the proofs of Theo-
rems 1.1 and 1.2. It would be interesting to see whether the number of frozen
vertices can be reduced.

4.5. Other Properties of Quivers

There are many other questions about quivers for which an algorithmic test
would be of interest. For instance, one could ask whether a quiver is mutation
acyclic, that is, mutation equivalent to an acylic quiver. Much work remains
to be done in this area.

4.6. Quiver Gadgets

Embedding difficult problems into quiver mutation equivalence requires the
construction of quivers whose mutations can be controlled. Many questions
even about simple quivers remain unanswered. In particular, one method would
be to embed Hilbert’s tenth problem or the post-correspondence problem into
quivers (see e.g., [17]). We are still far away from this.

To illustrate, we give a natural possible generalization of Theorem 1.3.
Let Q be a quiver of the following form:

A C1 · · · Ck B
x0 x1 xk−1 xk

Then we conjecture that for all Q′ which is mutation equivalent to Q, the
number of arrows between A and B is always 0 or x0x1 · · · xk. The cases k = 0
and k = 1 are trivial, and the case k = 2 is proven in Theorem 1.3. However,
the general case is open.
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