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Abstract. A permutation is called Grassmannian if it has at most one
descent. The study of pattern avoidance in such permutations was ini-
tiated by Gil and Tomasko in 2021. We continue this work by studying
Grassmannian permutations that avoid an increasing pattern. In partic-
ular, we count the Grassmannian permutations of size m avoiding the
identity permutation of size k, thus solving a conjecture made by Weiner.
We also refine our counts to special classes such as odd Grassmannian
permutations and Grassmannian involutions. We prove most of our re-
sults by relating Grassmannian permutations to Dyck paths and binary
words.
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1. Introduction

For n ≥ 1, let π = π1 · · · πn be the one-line representation of a permutation
of the set [n] = {1, . . . , n}. For n ≥ m ≥ 1, a permutation σ = σ1 · · · σn

contains a permutation (or pattern) π = π1 · · · πm if there exists a subsequence
1 ≤ h(1) < h(2) < · · · < h(m) ≤ n such that for any i, j ∈ [m], σh(i) < σh(j)

if and only if πi < πj . We say that the permutation σ avoids π if it does not
contain π.

The study of pattern avoidance in permutations was initiated by Knuth
[18], and the work of Simion and Schmidt [22] was the first one to focus solely
on enumerative results. Since then many authors have studied pattern avoid-
ance for various combinatorial objects. This includes the study of pattern
avoidance in binary trees [8,21], rooted forests [2,11], circular permutations
[7,26], Dyck paths [4], set partitions [14,17] and compositions [15]. Pattern
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avoidance has also been studied for its applications to algebraic geometry (see,
for example [1,5,9,10,27]).

Very recently, Gil and Tomasko [12,13] initiated the study of pattern
avoidance in Grassmannian permutations. In particular, they have shown that
all non-identity Grassmannian permutations are Wilf-equivalent and obtained
expressions for the number of Grassmannian permutations of a given size avoid-
ing a non-identity Grassmannian permutation. They also count the number of
Grassmannian permutations of size 2k − 2 and 2k − 3 that avoid the identity
permutation of size k (denoted idk). In this article, we build on their work by
studying Grassmannian permutations of arbitrary size avoiding idk . We also
refine our results to some special classes of Grassmannian permutations.

The outline of the article is as follows. In Sect. 2, we describe a conve-
nient representation of Grassmannian permutations using binary words that
will help in proving results in the sequel. In Sect. 3, we count the number of
Grassmannian permutations of size m avoiding idk . We first do this using bi-
nary words and recursions, thus proving a conjecture by Michael Weiner (see
Theorem 3.1). We also use Dyck paths to obtain a different expression for
these numbers. We then refine this result in Sect. 4 by studying avoidance of
an increasing pattern in odd and even Grassmannian permutations. Finally,
we obtain similar counts for other classes of Grassmannian permutations in
Sect. 5.

2. Preliminaries

We denote the set of Grassmannian permutations of [n] by Gn. We use binary
words to encode these permutations. Let w = w1w2 · · · wn be a binary word
of length n. We construct the Grassmannian permutation G(w) as follows. If
A = {i ∈ [n] | wi = 0} is a set of size k, then we set the first k terms of G(w)
to be those of A listed in increasing order. The remaining n−k terms are those
of [n]\A listed in increasing order.

Example 2.1. The Grassmannian permutation associated with the binary word
0310130 = 000101110 is 123594678 ∈ G9.

The following result is an immediate consequence of the definitions.

Proposition 2.2. Each permutation in Gn is of the form G(w) for some bi-
nary word w of length n. This representation is unique for any non-identity
permutation, and the binary words that correspond to the identity permutation
are those of the form 0j1n−j for j ∈ [0, n].

As a warm-up exercise, we count the Grassmannian permutations accord-
ing to the number of fixed points. A fixed point in a permutation π of [n] is a
number i ∈ [n] such that π(i) = i.

Proposition 2.3. The number of Grassmannian permutations of length n with
k fixed points is 1 if k = n, 0 if k = n − 1 and (k + 1)2n−k−2 otherwise.
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Proof. The case k = n corresponds to the identity permutation, and it is clear
that no permutation can have exactly n − 1 fixed points. Let w be a binary
word not of the form 0i1n−i for i ∈ [0, n]. This means that there is at least one
1 that appears before a 0. Hence, w is of the form 0a1w′01b for some a, b ≥ 0
and binary word w′ of length n − (a + b + 2). From the way the permutation
G(w) is defined, it can be checked that the number of fixed points is a + b,
which are {1, 2, . . . , a, n − b + 1, n − b + 2, . . . , n}. So, if we want G(w) to have
k fixed points, we have to choose a ∈ [0, k] and a binary word w′ of length
n − k − 2. This gives us the required result. �

We now turn to pattern avoidance. We say a binary word w′ contains
a binary word w if it contains w as a subsequence. We say a binary word w′

avoids w if it does not contain w.

Example 2.4. The binary word 01001101100 contains the pattern 1100. One
such instance is indicated in the following: 01001101100. It avoids the pattern
001001 since any pair of 1s that have at least two 0s between them must use
the first 1.

It can be checked that pattern avoidance in Grassmannian permutations
translates to binary words as described in the following proposition.

Proposition 2.5. If G(w) is not the identity permutation, G(w′) contains G(w)
if and only if w′ contains w. If G(w) is the identity permutation of size k, then
G(w′) contains G(w) if and only if w′ contains 0j1k−j for some j ∈ [0, k].

For any binary word w, denote by Gn(w) the set of Grassmannian per-
mutations of length n that avoid G(w). We reprove a result from [12] using
the language of binary words.

Theorem 2.6. [12, Theorem 3.3] If w is a binary word of length k and G(w) is
not the identity permutation,

|Gn(w)| = 1 +
k−1∑

j=2

(
n

j

)
.

Proof. The proof is in the same lines as that of [20, Proposition 3.22]. By
Proposition 2.5, we have to count the binary words v of length n that do not
contain the subsequence w = w1w2 · · · wk. Suppose j ∈ [0, k − 1] is the largest
number such that v contains w1w2 · · · wj . Then, using the left most occurrence
of w1w2 · · · wj , we can see that v must be of the form

(1 − w1)i1 w1 (1 − w2)i2 w2 · · · (1 − wj)ij wj (1 − wj+1)ij+1 ,

where (i1, . . . , ij+1) is a sequence in Z≥0 and i1 + · · · + ij+1 = n − j. There
are

(
n
j

)
such words of length n. Since all words corresponding to the identity

permutation avoid w, removing the over-counting, we get

|Gn(w)| =
k−1∑

j=0

(
n

j

)
− n = 1 +

k−1∑

j=2

(
n

j

)
.

�
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As we make use of Dyck paths in the sequel, we now set up relevant
notations. A Dyck path of semilength n is a lattice path that starts at the
origin, ends at (2n, 0), has steps U = (1, 1) and D = (1,−1), and never falls
below the x-axis. A peak in a Dyck path is an up-step immediately followed by
a down-step. The height of a peak is the y-coordinate of the point at the end
of its up-step. Similarly, a valley is a down-step immediately followed by an
up-step and its height is the y-coordinate of the point at the end of its down-
step. The number of Dyck paths of semilength n is the nth Catalan number
(for example, see [24]) given by

Cn =
1

n + 1

(
2n

n

)
.

For any n ≥ 1 and k ≥ 0, the number of Dyck paths of semilength n + 1
whose last peak is of height n + 1 − k is given by

T (n, k) =
n − k + 1

n + 1
·
(

n + k

n

)
.

A proof of this can be found, for example, in [3]. These numbers are sometimes
called the ballot numbers and are listed as [23, A009766].

3. Counting Grassmannian Permutations Avoiding idk

In this section, we prove an expression conjectured by Michael Weiner, stated in
[12, Page 4], for the number of Grassmannian permutations of size m avoiding
idk . We do this using binary words and recursions. We also obtain a different
expression for the same numbers by representing the binary words as Dyck
paths.

Theorem 3.1. [12, Conjecture] For any k ≥ 2 and m ∈ [k, 2k − 2], we have

|Gm(0k)| =
2k−m∑

j=1

(−1)j−1j ·
(

2k − m − j

j

)
· Ck−j . (1)

We note that the terms on the right-hand side of the above equation
for those j where 2k − m − j < j are 0, and hence the sum only runs over
j ∈ [1, k − �m/2�]. But we write the sum as above to make the expressions in
the following computations easier to read.

For m ≥ 0, let B(m) denote the set of binary words of length m. Set
B(0,m) = ∅, and for k ≥ 1, let

B(k,m) = {w ∈ B(m) : w avoids 0j1k−j for all j ∈ [0, k]}.

Moreover, we let B(k,m) denote the cardinality of B(k,m).
Note that if m ≥ k, for any i ∈ [0,m], 0i1m−i contains 0j1k−j for some

j ∈ [0, k]. Hence, the results in Sect. 2 imply that B(k,m) = |Gm(0k)| for
m ≥ k ≥ 2. We show that B(k,m) is defined by the following recurrence:

(i) B(0,m) = 0 for all m ≥ 0 and B(k, 0) = 1 for all k ≥ 1.
(ii) If m ≥ 2k − 1, then B(k,m) = 0.
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(iii) For all other values of k,m ≥ 1, we have

B(k,m) = B(k,m − 1) + B(k − 1,m − 1) − T (k − 1,m − k).

The first two points are easy to see. We now prove the point (iii). Let
w = w1w2 · · · wm be a binary word of length m. Set w′ = w1w2 · · · wm−1. We
have the following:

• w ∈ B(k,m) with wm = 1 if and only if w′ ∈ B(k − 1,m − 1).
• w ∈ B(k,m) with wm = 0 if and only if w′ ∈ B(k,m − 1) and does not

have (k − 1) 0s.
Binary words in B(k,m − 1) that have (k − 1) 0s are of the form

1ak−101ak−20 · · · 1a10

for some sequence (a1, . . . , ak−1) in Z≥0 such that a1 + · · · + ai ≤ i for all
i ∈ [k − 1] and a1 + · · · + ak−1 = m − k. Associating the Dyck path given by

UDa1UDa2 · · · Dak−1UD2k−m

to such a sequence shows that they are counted by T (k − 1,m− k). This gives
us the required recursion.

For any k,m ≥ 0, we define A(k,m) to be the right-hand side of (1), i.e.,

A(k,m) =
2k−m∑

j=1

(−1)j−1j ·
(

2k − m − j

j

)
· Ck−j .

We show that it satisfies the same recurrence as B(k,m). The fact that A(0,m) =
0 for all m ≥ 0 and that A(k,m) = 0 if m ≥ 2k follows from the definition of
A(m, k). To prove that A(k, 0) = 1 for all k ≥ 1, we have to show that for all
k ≥ 1,

k∑

j=1

(−1)j−1j ·
(

2k − j

j

)
· Ck−j = 1.

Simplifying the summands and re-indexing, this is equivalent to proving that
n∑

j=0

(−1)j
(

n + 1
n − j

)(
n + j + 1

j

)
= (−1)n

for any n ≥ 0. This can be proved using the binomial theorem for negative
powers by considering the generating function equality

(1 + x)n+1 · (1 + x)−(n+2) =
1

1 + x
.

Proving the analogue of point (iii) for A(k,m) boils down to proving that

T (k − 1,m − k) =
2k−m−1∑

j=0

(−1)j
(

2k − m − 1 − j

j

)
· Ck−1−j

for all k ≥ 1 and m ∈ [2k − 1]. This is a consequence of the following lemma,
which is given as Equation (5) in [19] (set a = n + k − 1 and b = k to obtain
the expression given in [19]).
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Lemma 3.2. [19, Equation (5)] For any a, b ≥ 0 with b ∈ [−a, a], we have

T (a, b) =
a−b∑

j=0

(−1)j
(

a − b − j

j

)
· Ca−j . (2)

This shows that A(k,m) = B(k,m) for all k,m ≥ 0 and hence proves
Theorem 3.1.

3.1. Count Using Dyck Paths

In this sub-section, we count the binary words in B(k,m) using Dyck paths.

Lemma 3.3. For any k,m ≥ 1, B(k,m) is the number of Dyck paths of semilength
(k + 1) where the sum of the heights of the first and last peak is (2k − m).

Proof. The binary words in B(k,m) with j 0s are of the form

1aj01aj−10 · · · 1a201a101a0

where (a0, a1, . . . , aj) is a sequence in Z≥0 such that

• j ∈ [0, k − 1],
• a0 + a1 + · · · ai < (k − j) + i for all i ∈ [0, j], and
• j + a0 + a1 + · · · aj = m.

We associate the Dyck path given by

Uk−jDa0+1UDa1 · · · UDaj−1UDajUDk+j−m

to such a sequence. This gives us the required result. �

As a consequence of the above lemma and Theorem 3.1, we obtain the fol-
lowing result which gives an expression for the numbers listed as [23, A114503].

Proposition 3.4. The number of Dyck paths of semilength n where s ≤ 2n − 2
is the sum of the heights of the first and last peaks is

�s/2�∑

j=1

(−1)j−1j

(
s − j

j

)
Cn−1−j .

We now use Lemma 3.3 to obtain an alternate expression for B(k,m).
To do this we use a refinement of the ballot numbers.

Lemma 3.5. The number of Dyck paths of semilength n + 1 with first peak of
height a and last peak of height b where a + b ≤ 2n is given by

(
2n − a − b

n − a

)
−

(
2n − a − b

n

)
.

Proof. This lemma is an easy consequence of the result proved in [6]. The Dyck
paths we want to count correspond to paths from (a+1, a−1) to (2n−b+1, b−1)
using the steps U = (1, 1) and D = (1,−1) that do not fall below the x-axis.
These can be counted using the reflection principle (for example, see [16]). �
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Theorem 3.6. For any k,m ≥ 1, we have

|Gm(0k)| = B(k,m) =
2k−m−1∑

a=1

[(
m

k − a

)
−

(
m

k

)]
.

Studying the bijection in Lemma 3.3 and the representation of Grass-
mannian permutations using binary words, we get the following results.

Corollary 3.7. The number of binary words (of any length, including the empty
word) that avoid 0i1k−i for all i ∈ [0, k] and have exactly j 0s is the ballot
number T (k, j + 1).

Corollary 3.8. For any k ≥ 1, the number of binary words that avoid 0i1k−i

for all i ∈ [0, k] is
2k−2∑

m=0

B(k,m) = Ck+1 − 1.

Corollary 3.9. The number of Grassmannian permutations that avoid idk is
2k−2∑

m=0

|Gm(0k)| = Ck+1 −
(

k

2

)
− 1.

4. Parity Restrictions

A permutation is said to be odd if it has an odd number of inversions (oc-
currences of the pattern 21). We define a binary word w to be odd if the
corresponding permutation G(w) is odd. We have the following characteriza-
tion of odd binary words.

Proposition 4.1. If w is the binary word

1ak01ak−10 · · · 1a101a0

then the number of inversions in the permutation G(w) is
∑k

i=1 i · ai. In
particular, w is odd if and only if an odd number of terms in the sequence
(a1, a3, a5, . . .) are odd.

Proof. We need to count the number of occurrences of the pattern 21 = G(10)
in the Grassmannian permutation G(w). This is just the number of times 10
appears as a subsequence of w. Hence, the number of inversions contributed
by a 0 in w is the number of 1s before it. This gives us the required expression
for the number of inversions. �
Remark 4.2. As a consequence of the above result, we obtain a generating
function for Grassmannian permutations keeping track of the number of in-
versions. Using x to keep track of the length of the permutation and t for the
number of inversions, the required generating function is

(
1

1 − x

)⎡

⎣1 +
∑

k≥1

(
x

1 − xt

)(
x

1 − xt2

)
· · ·

(
x

1 − xtk

)⎤

⎦ − x

(1 − x)2
.

The last term removes the over-counting for the identity permutations.
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We study odd and even Grassmannian permutations that avoid idk . We
use O(k,m) to denote the number of odd binary words in B(k,m) and similarly
define E(k,m). Note that in particular, we have

B(k,m) = O(k,m) + E(k,m)

and that O(k,m) is the number of odd permutations in Gm(0k). Since we have
already obtained expressions for B(k,m) in Sect. 3, we only list expressions
for O(k,m).

In the following results, we set Cn to be 0 if n is not an integer. Similar
to [12, Proposition 3.1], we have the following.

Proposition 4.3. For any k ≥ 2, we have

O(k, 2k − 2) =
Ck−1 + C(k−2)/2

2
.

Also, O(k, 2k − 3) = 2E(k, 2k − 2).

Before proving this result, we need a small lemma.

Lemma 4.4. The number of Dyck paths of semilength n that have all peaks and
valleys at odd height is C(n−1)/2.

Proof. Since the first peak should be at odd height, the first string of up-steps
should be of odd length. The string of down-steps following it should be of even
length since the first valley should be at odd height. Continuing this logic, we
see that such Dyck paths are those of the form

U2a1+1D2b1 · · · U2akD2bk+1.

This shows that the semilength n should be odd. Also, note that such a Dyck
path is primitive (i.e., it only touches the x-axis at (0, 0) and (2n, 0)). Hence,
associating the Dyck path of semilength (n − 1)/2 given by

Ua1Db1 · · · UakDbk

to this Dyck path gives the required count. �
Proof of Proposition 4.3. Just as in the proof of [12, Proposition 3.1], we use
Dyck paths to represent the words in B(k, 2k − 2). Notice that any word in
B(k, 2k − 2) is of the form

1ak−101ak−20 · · · 1a201a10

where (a1, a2, . . . , ak) is a sequence in Z≥0 such that a1 + a2 + · · · + ai ≤ i for
all i ∈ [k − 1] and a1 + a2 + · · · + ak−1 = k − 1. These sequences correspond to
Dyck paths of semilength (k−1) by setting ai to be the number of down-steps
immediately following the ith up-step:

UDa1UDa2 · · · UDak−1 .

An odd Dyck path is one where, when written in the above form, an odd
number of terms in (a1, a3, a5, . . .) are odd. We define even Dyck paths to be
those that are not odd.

Note that O(k, 2k − 2) is the number of odd Dyck paths of semilength
(k−1) and E(k, 2k−2) is the number of even Dyck paths of semilength (k−1).
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↔

Figure 1. Changing the first peak or valley at even height

The total number of Dyck paths of semilength (k − 1) is Ck−1. Hence, we can
prove the expression for O(k, 2k − 2) by showing that there are C(k−2)/2 more
odd Dyck paths than even ones.

We first consider Dyck paths that have at least one peak or valley at even
height. For such a Dyck path, find the first peak or valley at even height. If it
is a peak, change it to a valley and if it is a valley, change it to a peak.

Example 4.5. The first peak or valley at even height in the Dyck path on
the left in Fig. 1 is the first valley, which is at height 0. Changing this to a
peak gives the Dyck path on the right. Note that the change in the sequence
(a1, a2, a3, a4) corresponding to the Dyck path is as follows:

(1, 0, 1, 2) → (1 − 1, 0 + 1, 1, 2) = (0, 1, 1, 2).

Hence, the Dyck path on the left is even and the one on the right is odd.

It can be checked that this gives a bijection between odd and even Dyck
paths that have at least one peak or valley at even height.

We now show that Dyck paths where all peaks and valleys are at odd
heights must be odd. This will then prove our required result by Lemma 4.4.
Suppose the Dyck path

UDa1UDa2 · · · UDak−1

has all peaks and valleys at odd heights. If ai 	= 0 and i < (k − 1), then there
is a peak after the ith up-step of height i − (a1 + a2 + · · · + ai−1) and a valley
before the (i + 1)th up-step of height i − (a1 + a2 + · · · + ai). This shows that
all ai for i < (k − 1) are even. If k is odd, then a1 + a2 + · · · + ak−1 = k − 1
and hence ak−1 is even. This means that the last peak is of even height ak−1,
which is a contradiction. This means that k is even, ak−1 is odd, and hence
the Dyck path is odd. This proves the first part of the proposition.

To prove the second statement in the proposition, we use the same
method to study B(k, 2k − 3) as in [12, Proposition 3.1]. The binary words
in B(k, 2k − 3) that

• have (k − 2) 0s are in bijection with the words in B(k, 2k − 2) via adding
a 0 at the end of the word, and

• those that have (k − 2) 1s are in bijection with the words in B(k, 2k − 2)
via adding a 1 at the start of the word.

Both these actions change the parity of the word if and only if k is even.
This shows that O(k, 2k − 3) = 2O(k, 2k − 2) if k is odd and O(k, 2k − 3) =
2E(k, 2k − 2) if k is even. But the expression for O(k, 2k − 2) shows that
O(k, 2k − 2) = E(k, 2k − 2) when k is odd. This proves the second part of the
proposition. �
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Remark 4.6. The expression for O(k, 2k − 2) can also be derived using re-
cursions just as in [22, Proposition 1]. The numbers O(k, 2k − 2) are listed
as [23, A007595] and E(k, 2k − 2) are listed as [23, A000150]. The number
Ck−1 = B(k, 2k − 2) coincides with the number of permutations of length
(k − 1) that avoid the pattern 132. Similarly, the number O(k, 2k − 2) coin-
cides with the number of even permutations of length (k − 1) that avoid the
pattern 132 and E(k, 2k − 2) coincides with the number of such odd permu-
tations. The numbers O(k, 2k − 2) also count the Dyck paths of semilength
(k −1) that have an even number of peaks at even height. A bijection between
odd Dyck paths and such Dyck paths can be obtained using the same ideas as
in the proof of Proposition 4.3.

The idea in the proof of Proposition 4.3 can be generalized to obtain an
expression for O(k,m) in terms of B(k,m).

Theorem 4.7. For any k,m ≥ 1, we have

2O(k,m) =

⎧
⎪⎨

⎪⎩

B(k,m) + B(k
2 ,

m−2
2 ) − B(k

2 ,
m
2 )

−B(k−2
2 , m−2

2 ), if both k and m are even

B(k,m) − 2B(
⌊
k
2

⌋
,
⌊
m−1

2

⌋
), otherwise.

Proof. For j ∈ [0, k − 1], the words in B(k,m) with j 0s are of the form

1aj01aj−10 · · · 1a201a101a0

where j + a0 + a1 + · · · + aj = m and (j − i) + a0 + a1 + · · · + ai ≤ k − 1 for
all i ∈ [0, j]. We associate the following lattice path to such a binary word:

Da0UDa1UDa2 · · · UDaj . (3)

These are lattice paths that start at the origin, have j up-steps, m − j down-
steps, and do not fall below the line y = j − k + 1. We use B(k,m) to denote
the set of these lattice paths as well. Such a lattice path is called odd if an odd
number of terms in (a1, a3, a5, . . .) are odd. The remaining lattice paths are
called even. Note that O(k,m) is the number of odd lattice paths in B(k,m).

Remark 4.8. We could have used Dyck paths, just as in Lemma 3.3, to repre-
sent such binary words. However, under this bijection, an odd Dyck path (in
the sense mentioned in Proposition 4.3) might correspond to an even binary
word depending on the parity of k and j. To avoid this confusion, we use these
lattice paths.

We deal with the case when k is odd and m is even, the others are similar.
We have to show that there are 2B(k−1

2 , m−2
2 ) more even lattice paths than

odd ones. We first consider lattice paths that have a peak or valley whose
height has the same parity as j − k + 1 (which, since k is odd, is the parity
of j). For such lattice paths, changing the first such peak or valley gives a
bijection between odd and even lattice paths.

Example 4.9. Figure 2 shows two lattice paths that are matched by this bijec-
tion corresponding to the binary words 110011 and 110101. Here k = 5,m = 6,
and j = 2.
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↔

Figure 2. Matching lattice paths of opposite parity

It is easy to see that if j is odd, or if j is even and a0 > 0 is even, then
a lattice path of type (3) must have at least one peak or valley whose height
has the same parity as j. So, if a lattice path in B(k,m) does not have a peak
or valley whose height has the same parity as j, then we must have that

• j is even,
• a0 = 0 or a0 is odd, and
• a1, . . . , aj−1 are even (which means that the path must be even).

In addition, since m is assumed to be even, the first and third items imply
that a0 + aj must be even, so a0 and aj have the same parity.

If both a0 and aj are non-zero, then the lattice path is of the form

D2b0+1U2c1D2b1U2c2 · · · U2cpD2bp+1.

Associating the lattice path given by

Db0U c1Db1 · · · U cpDbp

to such a lattice path gives a bijection with the lattice paths in B(k−1
2 , m−2

2 ).
If both a0, aj = 0, then the lattice path is of the form

U2c1+1D2b1U2c2 · · · D2bp−1U2cp+1.

Associating the lattice path given by

U c1Db1U c2 · · · Dbp−1U cp

to such a lattice path gives a bijection with lattice paths in B(k−1
2 , m−2

2 ).
The above observations show that there are 2B(k−1

2 , m−2
2 ) more even

lattice paths than odd ones in B(k,m) and hence proves the expression for
O(k,m) when k is odd and m is even.

The same method works for the other cases as well. When k and m are
both even, there are some odd lattice paths that do not have a peak or valley
at height having the same parity as j − k + 1. In fact, precisely B(k2 , m−2

2 ) of
them are odd and B(k2 , m

2 ) + B(k−2
2 , m−2

2 ) of them are even. This is why the
expression in this case is slightly different. �

From the proof of the above result and Corollaries 3.7and 3.8, we obtain
the following.

Corollary 4.10. The number of odd binary words that avoid 0i1k−i for all i ∈
[0, k] and have exactly j 0s is

1
2 (T (k, j + 1) − 2T (k2 , j+2

2 )), if both k and j are even,

1
2 (T (k, j + 1) − 2T (k−1

2 , j+2
2 ) − T (k−1

2 , j
2 )), if k is odd and j is even, and
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1
2 (T (k, j + 1) − T (�k−1

2 �, j+1
2 )), otherwise.

Corollary 4.11. The number of odd Grassmannian permutations avoiding idk

is
Ck+1

2
− 2C k+1

2
+ 1

when k is odd and if k is even it is

Ck+1 − Ck/2

2
− C k+2

2
+ 1.

5. Other Restrictions

In this section, we consider the avoidance of idk in special classes of Grass-
mannian permutations mentioned in [12, Section 2].

5.1. BiGrassmannian Permutations

A permutation π is said to be biGrassmannian if both π and π−1 are Grass-
mannian. Rewriting a result from [12] in terms of binary words, we have the
following.

Proposition 5.1. [12, Proposition 2.1] The biGrassmannian permutations of
size m are those in Gm(1010) and are counted by

1 +
(

m + 1
3

)
.

We study biGrassmannian permutations avoiding idk .

Theorem 5.2. For k ≤ m < 2k, the number of biGrassmannian permutations
of size m that avoid idk is

(
2k − m + 1

3

)
.

Proof. When m = k, the only biGrassmannian permutation of size k that
contains idk is the identity itself. Using Proposition 5.1, we get that there are

(
k + 1

3

)

biGrassmannian permutations of size k that avoid idk .

When m ≥ k, the binary words corresponding to biGrassmannian per-
mutations of size m that avoid idk are of the following forms:

(i) 0a1b0c for some a, b, c ≥ 1 such that a + b ≤ k − 1 and a + c ≤ k − 1.
(ii) 0a1b0c1d for some a, b, c, d ≥ 1 such that a+ b+d ≤ k −1 and a+ c+d ≤

k − 1.
(iii) 1a0b for some a, b ≥ 1 such that a ≤ k − 1 and b ≤ k − 1.
(iv) 1a0b1c for some a, b, c ≥ 1 such that a + c ≤ k − 1 and b + c ≤ k − 1.
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If m > k, we show that the binary words listed above are in bijection
with the non-identity biGrassmannian permutations of size 2k − m. This will
then prove the second part of the result. Since m > k, words of type (i) cannot
have b ≤ m−k or c ≤ m−k. We replace b by b− (m−k) and c by c− (m−k).
We make the same replacement for words of type (ii). For words of type (iii)
and (iv) we replace a by a − (m − k) and b by b − (m − k). It can be checked
that this gives us the required bijection. �

We now consider odd biGrassmannian permutations avoiding idk . Since
biGrassmannian permutations are precisely those Grassmannian permutations
that avoid the pattern 2413 [12, Proposition 2.1], we have the following from
[13].

Proposition 5.3. [13, Theorem 3.3] Set a(m) to be the number of odd biGrass-
mannian permutations of size m. Then,

a(m) =

{
1
4

(
m+2
3

)
, if m is even

1
24 (m − 1)(m + 1)(m + 3), if m is odd.

Theorem 5.4. The number of odd biGrassmannian permutations of size m that
avoid idk is

a(m), if m ≤ k,

a(2k − m), if m > k and (m − k) is even, and

a(2k − m − 2), if m > k and (m − k) is odd.

Proof. If m ≤ k, then all odd biGrassmannian permutations avoid idk . Also,
if m ≥ 2k, then all odd biGrassmannian permutations contain idk . The proof
for the other two cases are similar to the proof of Theorem 5.2. For example,
suppose that m > k, (m − k) is odd, and

0a1b0c1d

is an odd biGrassmannian permutation avoiding idk . The Grassmannian per-
mutation associated to the binary word

0a1b−(m−k−1)0c−(m−k−1)1d

is an odd biGrassmannian permutation of length (2k − m − 2). Similar opera-
tions on other odd biGrassmannian permutations of size m avoiding idk show
that they correspond to odd biGrassmannian permutations of size (2k−m−2).
A similar technique works for proving the result when m > k and (m − k) is
even. �

5.2. Grassmannian Involutions

These are Grassmannian permutations π that satisfy π−1 = π. Rewriting a
result from [12] in terms of binary words, we have the following characterization
of Grassmannian involutions.
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Proposition 5.5. [12, Proposition 2.3] The Grassmannian involutions are those
of the form G(0k11k20k21k3) for some k1, k2, k3 ≥ 0 and the number of those
of size m is

⌈
m2 + 1

4

⌉
.

The following result can be proved using a similar bijection to the one
described in the proof of Theorem 5.2.

Theorem 5.6. For k ≤ m < 2k, the number of Grassmannian involutions of
size m that avoid idk is

⌊
(2k − m)2

4

⌋
.

Just as we did for biGrassmannian permutations, we now study odd
Grassmannian involutions avoiding idk .

Proposition 5.7. Set b(m) to be the number of odd Grassmannian involutions
of size m. Then,

b(m) =
⌊

(m + 1)2

8

⌋
.

Proof. For m ≤ 4, direct calculations show that b(m) = m − 1. We now show
that for m ≥ 5, we have

b(m) = b(m − 4) + m − 1.

This will prove the required result.
The binary words corresponding to odd Grassmannian involutions of size

m are of the following forms:
(i) 0a1b0b where a, b ≥ 1 and b is odd.
(ii) 0a1b0b1c where a, b, c ≥ 1 and b is odd.
(iii) 1a0a where a ≥ 1 is odd.
(iv) 1a0a1b where a, b ≥ 1 and a is odd.
In words of the first two types, if b 	= 1, replace b by (b−2). Similarly, in words of
the last two types, if a 	= 1, replace a by (a−2). This gives a bijection between
such words and odd Grassmannian involutions of size (m − 4). The number of
remaining binary words is (m − 1). This proves the required recursion. �

Using the same ideas as in the proof of Theorem 5.4, we have the following
result.

Theorem 5.8. The number of odd Grassmannian involutions of size m that
avoid the idk is

b(m), if m ≤ k,

b(2k − m), if m > k and (m − k) is even, and

b(2k − m − 2), if m > k and (m − k) is odd.
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6. Concluding Remarks

It would be interesting to see if Theorem 3.1 (or equivalently, Proposition 3.4)
and Lemma 3.2 can be proved directly, possibly by the Principle of Inclusion-
Exclusion, instead of using recursions. We list some particular cases of these
identities which might be easier to tackle than the general results.

(i) For 0 ≤ m < k, we have

k∑

j=1

(−1)j−1j ·
(

2k − m − j

j

)
· Ck−j = 2m.

(ii) For k ≥ 1, we have

k∑

j=1

(−1)j−1j ·
(

k − j

j

)
· Ck−j = 2k − k − 1.
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