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Positivity Properties for Spherical Functions
of Maximal Young Subgroups
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Abstract. Let Sk ×Sn−k be a maximal Young subgroup of the symmetric
group Sn. We introduce a basis Bn,k for the coset space Sn/Sk × Sn−k

that is naturally parametrized by the set of standard Young tableaux
with n boxes, at most two rows, and at most k boxes in the second row.
The basis Bn,k has positivity properties that resemble those of a root
system, and there is a composition series of the coset space in which each
term is spanned by the basis elements that it contains. We prove that the
spherical functions of the associated Gelfand pair are nonnegative linear
combinations of the Bn,k.
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1. Introduction

A pair (G,K) of finite groups is called a Gelfand pair if K ≤ G and the
permutation representation of G on the set of left cosets X = G/K of K in G
is multiplicity-free as a CG-module. One source of examples of Gelfand pairs
arises from the action of a group G on a finite metric space (X, d). Such an
action is said to be distance transitive if for all (x1, y1), (x2, y2) ∈ X × X,
we have d(x1, y1) = d(x2, y2) if and only if there exists a g ∈ G satisfying
g(x1) = x2 and g(y1) = y2; this condition implies that G acts transitively as
a group of isometries of X. If K is the stabilizer of x0 ∈ X under a distance
transitive action of G, then (G,K) is a Gelfand pair [2, Lemma 4.3.4, Example
4.3.7]. Furthermore, in this case, the number of orbits of K on X (i.e., the rank
of G acting on X as a permutation group as in [8, Definition 8.2.4]) is equal
to the number of irreducible direct summands of the permutation module on
the cosets G/K [2, Corollary 4.4.3 (iii)].
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The action of a Weyl group on the weights of a minuscule representation
of a simple Lie algebra satisfies the conditions of the previous paragraph with
respect to Euclidean distance by [8, Theorem 8.2.22 (ii)], so each minuscule
representation of a simple Lie algebra gives rise to a Gelfand pair. In this
paper, we concentrate on the special case where the Lie algebra has type
An−1, which means that the Gelfand pair (G,K) is given by (Sn, Sk × Sn−k)
for some 0 < k < n. We will assume that n ≥ 2 throughout, and without loss
of generality that k ≤ n/2. In this case, each left coset of X = G/K can be
naturally identified with a squarefree monomial of degree k in the commuting
indeterminates x1, x2, . . . , xn, where the action of G is the natural action on
subscripts, and where the identity coset K is identified with the monomial
x1x2 · · · xk. If we denote the set of C-valued functions on X by L(X), then
L(X) decomposes as a CG-module into a direct sum of pairwise nonisomorphic
irreducible representations

L(X) ∼= V0 ⊕ V1 ⊕ · · · ⊕ Vk.

We will identify the vector space L(X) with the linear span, Vn,k, of the square-
free monomials of degree k in the commuting indeterminates {x1, x2, . . . , xn}.
We will refer to both these versions of the coset basis as the monomial basis,
and denote it by Mn,k.

It follows from Frobenius reciprocity that each of the Vj has a 1-
dimensional K-invariant submodule. For each 0 ≤ j ≤ k, the jth spherical
function Φ(n, k, j) ∈ L(X) is defined to be the element of this 1-dimensional
submodule that is normalized so that Φ(n, k, j) sends the identity coset K =
x1x2 · · · xk to 1. The value of the spherical function Φ(n, k, j) on a coset gK
turns out to be a function of the distance d between gK and K in the natu-
ral metric on X. These spherical functions are known explicitly [2, Theorem
6.1.10] and are sometimes called dual Hahn polynomials. They have applica-
tions to random walks and the Bernoulli–Laplace diffusion model [3, §3]. We
will not use the metric in this paper, and instead view the spherical functions
Φ(n, k, j) as homogeneous polynomials of degree k. Because the irreducible
representations of Sn over C are defined over Q, we will work over the field Q

unless stated otherwise, but scalars can be extended if necessary.
If B is a basis for an F -vector space V with F ≤ R, we say that an

element v =
∑

b∈B λbb is B-positive with coefficients {λb}b∈B if we have λb ≥ 0
for all b ∈ B. The spherical functions Φ(n, k, j) are generally not Mn,k-positive
elements of Vn,k, but in this paper, we will introduce a basis Bn,k for Vn,k with
respect to which the spherical functions are Bn,k-positive. To illustrate this,
consider the case n = 4 and k = 1, where we have M4,1 = {x1, x2, x3, x4} and

B4,1 = {x1 − x2, x2 − x3, x3 − x4, x3 + x4}.

If we identify the xi with an orthonormal basis of Rn, the latter basis corre-
sponds to the basis of simple roots of type D4, as in [10, §2.10]. In this case,
Φ(4, 1, 0) is both M4,1-positive and B4,1-positive:

Φ(4, 1, 0) = x1 + x2 + x3 + x4

= (x1 − x2) + 2(x2 − x3) + (x3 − x4) + 2(x3 + x4),
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whereas Φ(4, 1, 1) is not M4,1-positive, but is B4,1-positive:

Φ(4, 1, 1) = x1 − 1
3
x2 − 1

3
x3 − 1

3
x4 = (x1 − x2) +

2
3
(x2 − x3) +

1
3
(x3 − x4).

The purpose of this paper is to study Bn,k-positivity for arbitrary n ≥ 2
and 0 < k ≤ n/2. We replace the root system of type Dn by a generalization
called k-roots. Using a suitable total order, we can construct a canonical basis
Bn,k of k-roots analogous to the simple roots in the case k = 1. The basis
Bn,k is naturally parametrized by the set of lattice words in the alphabet
{1, 2} that have length n and at most k occurrences of 2, or equivalently (see
Remark 3.2) by the set of standard Young tableaux with n boxes that have
at most two rows and at most k boxes in the second row. The basis Bn,k may
be constructed in other ways, for example by using Kazhdan–Lusztig theory
(see Remark 3.13), but the k-root approach has the advantage that it is easy
to deal with computationally.

The results of this paper are largely self-contained, although the key
result Proposition 2.7 is implicit in recent work of the author and Xu [9] on
the case k = 2 in a much more general setting. In [9], a k-root is defined
to be a symmetrized tensor product of k mutually orthogonal roots in the
sense of Lie theory. The cases we study in this paper correspond to performing
this construction with a root system of type D, where convenient Euclidean
coordinates are available. We therefore usually dispense with the root system
point of view, and instead think of k-roots as polynomials in these Euclidean
coordinates. It should be noted that the polynomials corresponding to certain
pairs of orthogonal roots, such as (x1 − x2)(x1 + x2), do not appear in the
construction because they are not linear combinations of squarefree monomials,
and such polynomials are not counted as k-roots for the purposes of this paper.

We develop the combinatorial tools needed to define and study the canon-
ical basis Bn,k in Sects. 2 and 3. Although the initial definition of Bn,k in Def-
inition 2.6 may seem ad hoc, we will prove in Theorem 3.10 that Bn,k has a
simple characterization as the set of positive k-roots that are minimal in the
sense of being indecomposable into sums of other positive k-roots. Sect. 4 ex-
plores some applications of k-roots to representation theory. Theorem 4.5 gives
a closed formula for the spherical functions in terms of k-roots; the formula
does not involve the metric on the coset space G/K. We use this formula to
prove that the main result of this paper, which is that the spherical functions
are Bn,k-positive. Theorem 4.8 gives a sufficient condition for a monomial basis
element to be Bn,k-positive.

2. k-Roots

Let n ≥ 2 and 0 < k ≤ n/2 be integers, and let Vn,k be the Q-vector space of
dimension

(
n
k

)
with basis consisting of the set Mn,k of all squarefree monomials

of degree k in the commuting indeterminates {x1, x2, . . . , xn}.
The set Mn,k can be ordered lexicographically, as follows. Let I =

{i1, i2, . . . , ik} and J = {j1, j2, . . . , jk} be two distinct subsets of {1, 2, . . . , n}
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of size k, and let xI = xi1xi2 · · · xik and xJ = xj1xj2 · · · xjk be the corre-
sponding squarefree monomials. If t is the smallest element of the symmetric
difference I Δ J , then we say xI ≺ xJ if t ∈ I, and xJ ≺ xI if t ∈ J . (For
example, we have x1x2x5 ≺ x1x3x4, with t = 2.)

We order the Q-vector space Vn,k by saying that a nonzero vector v ∈ Vn,k

satisfies v > 0 (respectively, v < 0) if the lexicographically minimal monomial
appearing in v has a positive (respectively, negative) coefficient. We then say
that v1 < v2 if v2−v1 > 0. This makes Vn,k into a totally ordered vector space.
(Note that we have x1x2x5 > x1x3x4 in this case.)

Definition 2.1. Let Cn,k be the subset of Vn,k consisting of all elements of the
form

k∏

r=1

(±xi2r−1 ± xi2r ),

where the signs are chosen independently and where the set {i1, i2, . . . , i2k}
is a set of 2k distinct indices from the set {1, 2, . . . , n}. An element of Cn,k is
called a k-root. A k-root is called positive if it is positive in the ordering on
Vn,k, and negative otherwise.

Remark 2.2. The definitions imply that if λ is a scalar and α is a k-root, then
λα is also a k-root if and only if λ = ±1. Note that for each k-root α, the
factors (±xi ± xj) are well-defined up to order and multiplication by nonzero
scalars, because they are the irreducible factors of the k-root in the unique
factorization domain Q[x1, x2, . . . , xn].

Lemma 2.3. A k-root is positive if and only if it can be written in the form

k∏

r=1

(xi2r−1 ± xi2r ),

where the indices satisfy i2r−1 < i2r for all i.

Proof. Let α be a k-root. We can reorder each factor of α to be of the form
(±xi ± xj) where i < j, and commute the negative signs on xi to the front to
obtain

α = ±
k∏

r=1

(xi2r−1 ± xi2r ),

where i2r−1 < i2r for all i. The lexicographically minimal monomial appearing
in α is

xi1xi3 · · · xi2k−1 ,

which occurs with coefficient 1 if α is in the form given in the statement, and
with coefficient −1 if −α is in the form given in the statement. The conclusion
now follows. �
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Definition 2.4. We say that a positive k-root is in normal form if it is in the
form given by Lemma 2.3. If α is a positive k-root in normal form, then we
call a factor of α antisymmetric if it is of the form (xi − xj) for i < j, and
symmetric if it is of the form (xi+xj). If xi does not appear in the factorization
of α, then we say that i is an unused index of α.

Note that the normal form of a k-root is unique up to reordering the
factors.

In the next result, χ(n−i,i) refers to the character of the irreducible CSn-
module corresponding to the two-part partition (n − i, i) of n, as in [6, §4].
Part (ii) is well known.

Lemma 2.5. (i) The set Cn,k is a spanning set for Vn,k over Q.
(ii) The character of Vn,k as a CSn-module is

∑k
i=0 χ(n−i,i).

Proof. Let xI = xi1xi2 · · · xik be an arbitrary monomial basis element. Because
k ≤ n/2, we can choose indices j1, j2, . . . , jk so that the set {i1, i2, . . . , ik, j1, j2,
. . . , jk} has cardinality 2k. By substituting (xir + xjr ) + (xir − xjr ) for 2xir ,
the monomial 2kxI can be expressed as a sum of 2k distinct k-roots, and (i)
follows.

Since Vn,k is induced from the trivial module of Sk × Sn−k, its character
corresponds to the product of the Schur functions s(n−k) and s(k). The Pieri
rule shows that we have

s(n−k)s(k) =
k∑

i=0

s(n−i,i),

which proves (ii). �

Definition 2.6. Let α ∈ Cn,k be a positive k-root. We say that α has a defect
if the normal form of α has any of the following features, where in each case
we have i < j < r < s:

(i) two factors of the form (xi ± xr) and (xj ± xs);
(ii) a factor of the form (xi±xs) and a symmetric factor of the form (xj +xr);
(iii) a factor of the form (xi ± xr), and an unused index j;
(iv) a symmetric factor of the form (xi + xj), and an unused index r.

In case (i), we say that α has a crossing; in case (ii), we say that (xj +xr) is a
nested symmetric factor; in case (iii), we say that j is a nested unused index;
and in case (iv), we say that (xi + xj) is an obstructed symmetric factor.

We define Bn,k to be the set of positive k-roots with no defects.

The next result is implicit in [9, §5], and will be very useful in the sequel.

Proposition 2.7. Let α ∈ Cn,k be a positive k-root, written in normal form,
and suppose that α has a defect. Then α can be written as a sum of positive
k-roots that are strictly lower than α in the total order on Vn,k, by replacing
the factor(s) involved in the defect according to the following rules, where i <
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j < r < s in all cases:

(xi − xr)(xj − xs) −→ (xi − xj)(xr − xs) + (xi − xs)(xj − xr); (2.1)

(xi + xr)(xj − xs) −→ (xi + xj)(xr − xs) + (xi + xs)(xj − xr); (2.2)

(xi − xr)(xj + xs) −→ (xi − xj)(xr + xs) + (xi + xs)(xj − xr); (2.3)

(xi + xr)(xj + xs) −→ (xi + xj)(xr + xs) + (xi − xs)(xj − xr); (2.4)

(xi − xs)(xj + xr) −→ (xi − xj)(xr + xs)

+ (xi + xj)(xr − xs) + (xi + xs)(xj − xr); (2.5)

(xi + xs)(xj + xr) −→ (xi − xj)(xr − xs)

+ (xi + xj)(xr + xs) + (xi − xs)(xj − xr); (2.6)

(xi − xr) −→ (xi − xj) + (xj − xr); (2.7)

(xi + xr) −→ (xi − xj) + (xj + xr); (2.8)

(xi + xj) −→ (xi − xj) + (xj − xr) + (xj + xr). (2.9)

The index j in relations 2.7 and 2.8 and the index r in relation 2.9 are assumed
to be unused indices of α, and they may be chosen arbitrarily subject to the
constraint that i < j < r.

Proof. If α has a defect, then the normal form factorization of α must contain
the factor(s) on the left-hand side of one of these nine identities, as follows. If
α has a crossing, then one of the relations 2.1, 2.2, 2.3, or 2.4 is applicable.
If α has a nested symmetric factor, then one of the relations 2.5 or 2.6 is
applicable. If α has a nested unused index, then one of the relations 2.7 or 2.8
is applicable. Finally, if α has an obstructed symmetric factor, then relation 2.9
is applicable.

A routine verification shows that in each of the nine cases in the state-
ment, the polynomial on the left-hand side is equal to the polynomial on the
right-hand side. By inspection, all of the factors appearing are of the correct
type to appear in a normal form factorization. It follows that making the sub-
stitutions indicated will express the normal form of the positive k-root α as a
sum of other positive k-roots that are also in normal form.

It remains to show that if we have α =
∑m

p=1 βp as above, where the βp

are positive k-roots and m > 1, then we have βp < α for all p. This follows
from the definition of the total order on Vn,k, because we have

α − βp =
∑

q:1≤q≤m,q �=p

βq.

The right-hand side is positive because it is a nontrivial sum of positive ele-
ments of Vn,k, which means that α − βp > 0. By definition, this means that
we have βp < α, as required. �

Remark 2.8. It may be convenient to visualize the relations in Proposition 2.7
as (singular) skein relations, in which the factors of the form (xi −xj) (respec-
tively, (xi + xj)) are represented by an undecorated (respectively, decorated)
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−→ + +

Figure 1. Relation 2.6 interpreted as a skein relation

arc from i to j. Figure 1 shows the pictorial version of relation 2.6, and Re-
mark 3.13 gives some more details on the relationship between k-roots and
diagram algebras.

Lemma 2.9. (i) Every positive k-root in Cn,k can be written as a linear com-
bination of elements of Bn,k with nonnegative integer coefficients.

(ii) The set Bn,k is a spanning set for Vn,k over Q, and we have |Bn,k| ≥ (
n
k

)
.

Proof. To prove (i), suppose that α is a positive k-root. If we have α ∈ Bn,k,
then we are done, so suppose that α has a defect. We then apply Proposition 2.7
repeatedly to α, applying the nine types of reduction in any order. This process
must eventually terminate because the poset Cn,k is finite, and it will result
in an expression for α as a positive integral linear combination of elements of
Bn,k.

The first assertion of (ii) follows from (i) and Lemma 2.5, and the second
assertion holds because Vn,k has dimension

(
n
k

)
. �

Remark 2.10. If 1 ≤ i < j ≤ n are integers, then the signed transposition
(i, j) of the 2n symbols {±x1,±x2, . . . ,±xn} is the permutation that sends
±xi to ∓xj , and fixes ±xr for r 
= i, j. For each k-root α, there is a natural
way to assign a transposition (i, j) to each antisymmetric factor (xi − xj) and
a signed transposition (i, j) to each symmetric factor (xi + xj) to give a set
{t1, t2, . . . , tk} of distinct, mutually commuting signed and unsigned transposi-
tions with the property that ti(α) = −α for all i. Up to multiplying by nonzero
scalars, the vector α ∈ Vn,k can be characterized as the unique common eigen-
vector of the {t1, t2, . . . , tk} with common eigenvalue −1.

3. The Canonical Basis

The main result of this section is Theorem 3.10, which proves that the set Bn,k

of k-roots without defects is a Q-basis for Vn,k, and that Bn,k can naturally
be parametrized by a certain set of lattice words. Recall that a lattice word
is a sequence a1a2 · · · an of positive integers with the property that for each
positive integer i, each initial segment of the sequence contains at least as
many occurrences of i as of i + 1.

Definition 3.1. Let α ∈ Bn,k be a positive k-root with no defects. We define
the label, λ(α), of α to be the word of length n in the alphabet {1, 2} with the
property that λ(α)j = 2 if and only if the normal form of α has a factor of the
form (xi − xj) for some i < j. We define Λn,k to be the set of lattice words of
length n that have entries in the set {1, 2}, and at most k occurrences of 2.
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Remark 3.2. The set Λn,k is in canonical bijection with the set of all standard
Young tableaux with n boxes having at most two rows and at most k boxes
in the second row. The positions of the occurrences of 2 in the lattice word
correspond to the labels of the boxes in the second row of the tableau.

Because each negative term −xj in the normal form is paired with a
distinct term xi with i < j, the following result follows immediately.

Lemma 3.3. If α ∈ Bn,k is a positive k-root with no defects, then we have
λ(α) ∈ Λn,k. �
Definition 3.4. Let α ∈ Cn,k be a positive k-root. We define the height, h(α),
of α to be the number of symmetric factors appearing in the normal form of
α. We define Bn,k,h to be the subset of Bn,k consisting of k-roots of height h.

Note that if α ∈ Cn,k then we always have 0 ≤ h(α) ≤ k.

Lemma 3.5. (i) There is a function f : Bn,k,h → Bn,k−h,0, where f(α) is
defined to be the homogeneous polynomial of degree k − h obtained by
removing the h = h(α) symmetric factors from the normal form of α.

(ii) The label λ(α) has k−h(α) occurrences of 2, and satisfies λ(α) = λ(f(α)).
(iii) The function f is injective.

Proof. It follows from the definition of normal form that removing h factors
from the normal form of a positive k-root will give the normal form of a positive
(k −h)-root. It remains to show that the resulting (k −h)-root has no defects.

Because f(α) has no symmetric factors by construction, it can have no
defects of types (ii) or (iv) in Definition 2.6. It is also immediate that the
removal of factors cannot create new crossings, which means that f(α) has
no defects of type (i) in Definition 2.6. The only way f(α) can have a defect
is if we are in the situation of Definition 2.6 (iii), and because f(α) has no
symmetric factors, we must be in the more specific situation of relation 2.7 of
Proposition 2.7.

We may now assume that f(α) has a factor of the form (xi − xr) and an
unused index j with i < j < r. Because α has no defects, the index j must be
involved in a symmetric factor (xj +xm) of α, for some m 
= i, j, r. We cannot
have m < i or m > r because the factors (xi − xr) and (xj + xm) of α would
create a crossing, and we cannot have i < m < r because the factors (xi − xr)
and (xj + xm) of α would create a nested symmetric factor. This completes
the proof of (i).

Part (ii) follows from (i) and Definition 3.1.
To prove (iii), we need to show that the h symmetric factors of α are

uniquely determined by h and f(α). Because α has no obstructed symmetric
factors, it must be the case that the largest 2h unused indices of f(α) are
precisely the indices of the symmetric factors of α. Let us denote these indices
by {i1, i2, . . . , i2h}, where i1 < i2 < · · · < i2h. Because α has no crossings and
no nested symmetric factors, the symmetric factors of α must be

(xi1 + xi2), (xi3 + xi4), . . . , (xi2h−1 + xi2h).

This completes the proof of (iii). �
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Example 3.6. Consider the case n = 12, k = 5, h = 2. Let α be the element of
B12,5,2 given by

α = (x2 − x3)(x5 + x10)(x6 − x9)(x7 − x8)(x11 + x12),

so that f(α) is the element of B12,3,0 given by

f(α) = (x2 − x3)(x6 − x9)(x7 − x8).

Both α and f(α) have the label 112111122111, where the 2 s appear in po-
sitions 3, 8, and 9. The largest 2h(= 4) indices not appearing in f(α) are
{5, 10, 11, 12}, from which it follows that the symmetric factors appearing in
α are (x5 + x10) and (x11 + x12).

Lemma 3.7. Let α ∈ Bn,k,0 be a k-root of height 0 that has no defects, and let
p(α) be the normal form of α. For each index j satisfying λ(α)j = 2, define
g(j) to be the unique index for which (xg(j) − xj) is a factor in p(α). Then
i = g(j) is the largest index i < j such that both λ(α)i = 1 and p(α) contains
no factor of the form (xi − xm) for any m < j.

Remark 3.8. If one replaces the 1 s in λ(α) by open parentheses and the 2 s by
close parentheses, then the map g in the statement locates the open parenthesis
that matches a given close parenthesis. Lemma 3.3 shows that it is always
possible to find a match.

Proof of Lemma 3.7. We know that there is at least one index i < j such that
both λ(α)i = 1 and p(α) contains no factor of the form (xi−xm) for any m < j,
because g(j) itself satisfies these conditions. Suppose for a contradiction that
there exists such an i for which g(j) < i < j.

If i is an unused index in α, then it is a nested unused index relative to the
factor (xg(j) − xj), which contradicts the assumption that α ∈ Bn,k,0 ⊆ Bn,k.
Because λ(α)i = 1, the only other possibility is for xi to be involved in a factor
of the form (xi −xm) with g(j) < i < j < m. In this case, the pair (xg(j) −xj),
(xi − xm) forms a crossing, which also contradicts the assumption α ∈ Bn,k,0,
completing the proof. �

Lemma 3.9. Maintain the above notation.
(i) For each 0 ≤ h ≤ k, the restriction of λ to Bn,k,h is injective.
(ii) The labelling function λ : Bn,k → Λn,k is injective.

Proof. Lemma 3.7 shows that if h = 0 then we can use induction on j to
reconstruct α from λ(α). This proves (i) in the case h = 0. The general result
of (i) now follows by combining the result for h = 0 with Lemma 3.5.

For (ii), observe that the set Bn,k is the disjoint union of the sets Bn,k,h

for 0 ≤ h ≤ k. If α ∈ Bn,k,h, then the number of occurrences of 2 in λ(α) is
k − h. It follows that the images of the sets Bn,k,h for 0 ≤ h ≤ k are pairwise
disjoint, which completes the proof. �

Theorem 3.10. Let n ≤ 2 and 0 ≤ k ≤ n/2 be integers, and let Bn,k be the set
of positive k-roots with no defects.

(i) The labelling function λ : Bn,k → Λn,k is a bijection.
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(ii) The set Bn,k is a basis for Vn,k over Q.
(iii) Every positive k-root is Bn,k-positive, with integer coefficients.
(iv) The elements Bn,k are the only positive k-roots that cannot be written as

positive linear combinations of other positive k-roots.

Proof. Let T (n, j) be the number of lattice words of length n in the alphabet
{1, 2} where there are precisely j occurrences of 2. It is known (see Sequence
A008315 of [12]) that

|T (n, j)| =
(

n

j

)

−
(

n

j − 1

)

,

where we interpret
(

n
−1

)
to be zero.

Lemma 3.5 now implies that we have |Bn,k,h| ≤ T (n, k−h), and summing
over h gives

|Bn,k| =
k∑

h=0

|Bn,k,h| ≤
k∑

h=0

T (n, k − h) =
k∑

h=0

T (n, h)

=
k∑

h=0

[(
n

h

)

−
(

n

h − 1

)]

=
(

n

k

)

.

Lemma 2.9 (ii) now implies that the inequality of the last paragraph is
an equality, and the injective maps of Lemma 3.9 are bijective, proving (i).

Part (ii) follows because we have |Bn,k| =
(
n
k

)
= dim(Vn,k), and part (iii)

follows by combining (ii) with Lemma 2.9 (i).
If α is a positive k-root that is not an element of Bn,k, then α has a

defect, and it can be written as a positive integral linear combination of other
positive k-roots by Proposition 2.7. On the other hand, if α ∈ Bn,k and α is a
positive linear combination of other positive k-roots, it follows from (iii) that
each of these positive k-roots must be a scalar multiple of α. By Remark 2.2,
each of the positive k-roots must equal α, which is a contradiction and proves
(iv). �

From now on, we will call Bn,k the canonical basis of Vn,k.

Remark 3.11. Parts (iii) and (iv) of Theorem 3.10 are familiar in the context of
root systems. They show that the canonical basis may be characterized purely
in terms of the vector space ordering on Vn,k, without relying on the concept
of defects at all.

Example 3.12. An example of the basis Bn,k that does not come from a root
system is the case n = 4, k = 2. There are 12 positive and 12 negative 2-roots,
and the elements of B4,2 and their labels are as follows.
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Canonical basis element Label

(x1 + x2)(x3 + x4) 1111
(x1 + x2)(x3 − x4) 1112
(x1 + x4)(x2 − x3) 1121
(x1 − x2)(x3 + x4) 1211
(x1 − x4)(x2 − x3) 1122
(x1 − x2)(x3 − x4) 1212

The six positive roots that are not basis elements come from the left hand
sides of relations 2.1–2.6 of Proposition 2.7, taking i = 1, j = 2, r = 3 and
s = 4.

Remark 3.13. There are other constructions of the basis Bn,k. One of these
comes from the Kazhdan–Lusztig basis {Cw} from [11], specifically, the basis of
the module arising from the left cell containing the permutation (1, 2)(3, 4) · · ·
(k − 1, k) in type Dn with q = 1. One can also construct Bn,k from a basis for
the generalized Temperley–Lieb algebra of type Dn, after specializing q to 1
and twisting by sign. The latter basis may be defined in terms of monomials as
in [4, §6.2], or in terms of diagrams as in [7], and the definition of “defect” in
this paper is closely related to the diagrammatic rules in [7]. When k = n/2,
it is necessary for all these constructions to take the union of two cells: the
one just described, and its image under the automorphism that sends xn to
−xn and fixes xi for i < n. One can find module isomorphisms between these
various constructions using the characterization of Remark 2.10.

The k-root approach has a significant advantage over these other con-
structions, which is that Proposition 2.7 makes it easy (a) to work out the
effect of applying an arbitrary (signed) permutation w to a basis element α
and then (b) to express the result as a linear combination of basis elements.

4. Main Results

In Sect. 4, we explore some applications of k-roots and the basis Bn,k in repre-
sentation theory. We first show how Bn,k naturally gives rise to a composition
series of Vn,k as an Sn-module. We refer the reader to Fulton and Harris [6]
for background information on the character theory of the symmetric groups.

Definition 4.1. Let Vn,k,t be the Q-linear span of all k-roots in Bn,k that have
height at most t; that is,

Vn,k,t := Span

(
t⊔

h=0

Bn,k,h

)

.

Proposition 4.2. (i) The subspaces Vn,k,t of Definition 4.1 are QSn-
submodules of Vn,k.

(ii) The chain

Vn,k,−1 := 0 < Vn,k,0 < Vn,k,1 < · · · < Vn,k,k = Vn,k
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is a composition series of Vn,k as a QSn-module.

Proof. Let α ∈ Bn,k be a canonical basis element of height h, and let w ∈ Sn

be a permutation. One of ±w(α) is a positive k-root of height h. A routine
case-by-case check shows that the reduction rules in Proposition 2.7 all express
a positive k-root as a linear combination of positive k-roots of the same, or
lower heights. It follows that w(α) is a linear combination of canonical basis
elements of height at most h, and this proves part (i).

Note that for each j satisfying 0 ≤ j ≤ k, there exists an element of Λn,k

with precisely j occurrences of 2; for example, the word 1n−j2j . Each such
word corresponds via Theorem 3.10 (i) to an element of Bn,k of height k − j,
so there exist basis elements of all possible heights h in the range 0 ≤ h ≤ k.
It follows that each step in the chain in (ii) corresponds to a strict submodule,
and thus that the series has k + 1 nontrivial quotients Vn,k,h/Vn,k,h−1.

Lemma 2.5 (ii) implies that Vn,k is the direct sum of k + 1 irreducible
Sn-submodules. Since this is the same as the number of nontrivial quotients
in the series of (ii), it follows both that Vn,k is a direct sum of k+1 irreducible
submodules over Q, and that the series in (ii) is a composition series. �

The next result is useful for determining when a positive k-root stays
positive after a permutation acts on it.

Lemma 4.3. Let α ∈ Cn,k be a positive k-root, and let w ∈ Sn be a permutation.
If w(α) is negative, then the normal form of α must contain a factor (xi −xj)
for which w(i) > w(j).

Proof. If w(α) is negative, but there is no factor in α of the form (xi − xj)
satisfying w(i) > w(j), then each factor in the normal form of α is sent by
w to another factor in normal form. It follows from Lemma 2.3 that w(α) is
positive, which is a contradiction. �

Although we know that the irreducible components of Vn,k have charac-
ters χ(n−i,i), we will need to be able to match these to the composition factors
of the series in Proposition 4.2. The next result helps with this.

Lemma 4.4. Let A be a subset of {1, 2, . . . , n} of cardinality a, and let SA be
the full symmetric group on A considered as a subgroup of Sn of order a!.
Define

xA :=
∑

w∈SA

w.

(i) If Vi is an irreducible CSn-module with character χ(n−i,i) for some i ≤
n/2, then we have xA.Vi 
= 0 if and only if a ≤ n − i.

(ii) If 1 ≤ j ≤ k, then the k-root

βj =
j∏

i=1

(xi − xk+i)
k∏

i=j+1

(xi + xk+i)

lies in Vn,k,k−j.
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(iii) If Vn,k,t is as in Proposition 4.2, then we have xA.Vn,k,t 
= 0 if and only
if a ≤ n − k + t.

(iv) The composition factor Vn,k,t/Vn,k,t−1 has character χ(n−k+t,k−t), and
Vn,k,t has character

k∑

i=k−t

χ(n−i,i).

Proof. If we define B = {1, 2, . . . , a}, then we have xA = gxBg−1 for some
g ∈ Sn, which implies that xA and xB annihilate the same modules. It is
therefore enough to consider the case where A = {1, 2, . . . , a}.

The condition that xA.Vi 
= 0 is equivalent to the condition that Vi, when
regarded as an SA-module, contains a copy of the trivial representation, that
is, that

〈1, Vi ↓Sn

SA
〉 
= 0

in the usual inner product on characters. By Frobenius reciprocity, this is
equivalent to

〈1 ↑Sn

SA
, Vi〉 
= 0.

Since SA is a Young subgroup of Sn of type Sa × S1 × · · · × S1, where there
are n−a copies of S1, it follows that the character of 1 ↑Sn

SA
corresponds to the

product of Schur functions

s(a)s(1) · · · s(1),
where again there are n − a copies of s(1). This corresponds to adding n − a
boxes, one at a time, to the partition (a). This will result in at least one copy
of s(n−i,i) if and only if we have n − a ≥ i; otherwise, there are not enough
single boxes to fill the second row. This proves (i).

Let the k-root βj be as in the statement of (ii). Observe that βj is a k-
root of height k − j, and it is in the same Sn-orbit as any element of Bn,k,k−j ,
for example, the element of Bn,k whose label is 1n−j2j . Since βj is in the same
Sn-orbit as an element of Vn,k,k−j , it follows that βj ∈ Vn,k,k−j , proving (ii).

To prove (iii), note that any basis element α of Vn,k,t has at least k − t
antisymmetric factors. If we have a > n − (k − t), then it is inevitable that
at least one of the antisymmetric factors of α is of the form (xi − xj) where
both of i and j lie in A. It follows that α is annihilated by 1 + w, where w
is the transposition (i, j). By summing over a set of left coset representatives
of 〈w〉 in SA, we can factorize xA as x′(1 + w), from which it follows that xA

annihilates α. Since α was arbitrary, we deduce that xA annihilates Vn,k,t if
a > n − k + t.

It remains to show that if a ≤ n−k+t, then xA does not annihilate Vn,k,t.
Let β = βk−t be the k-root defined in (ii). By construction, no antisymmetric
factor of β has both endpoints in the set A. Lemma 4.3 now implies that any
w ∈ SA has the property that w(β) is a positive k-root. It follows that xA(β) is
a nontrivial sum of positive k-roots, and Theorem 3.10 (iii) shows that xA(β)
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is a nontrivial sum of canonical basis elements. In particular, xA does not
annihilate β, and therefore xA does not annihilate Vn,k,t, proving (iii).

If we set A = {1, 2, . . . , n − k + t} and B = {1, 2, . . . , n − k + t + 1},
then (iii) implies that xA annihilates Vn,k,t−1, but not Vn,k,t, and that xB

annihilates Vn,k,t. The character of Vn,k,t/Vn,k,t−1 is therefore the character of
the form χ(n−i,i) that is annihilated by xB but not by xA. By (i), we find the
solution is to take i = k− t, which proves the first assertion of (iv). The second
assertion of (iv) follows by summing over all the composition factors of Vn,k,t.

�

Recall (for example, from sections 2 and 3 of [3] or the proof of [2, Corol-
lary 4.6.4 (ii)]) that the spherical functions Φ(n, k, j) are characterized by the
following properties:

(i) Φ(n, k, j) lies in the irreducible summand of L(X) with character χ(n−j,j);
(ii) Φ(n, k, j) is fixed pointwise by the subgroup K = Sk × Sn−k;
(iii) Φ(n, k, j) takes the value 1 at the identity coset; in other words, the

coefficient of x1x2 · · · xk in Φ(n, k, j) is 1.
We are now ready to give the construction of these spherical functions in terms
of k-roots.

Theorem 4.5. Let n ≥ 2 and 0 ≤ k ≤ n/2, and 0 ≤ j ≤ k be integers. Let
A = {1, 2, . . . , k} and let B = {j + 1, j + 2, . . . , n}.

(i) As a homogeneous polynomial in x1, x2, . . . , xn, the jth spherical function
Φ(n, k, j) of the Gelfand pair (Sn, Sk × Sn−k) is given by

(n − 2k)!
k!(n − k)!2k−j(k − j)!

(
∑

v∈SA

v

)(
∑

w∈SB

w

)

· βj ,

where βj is the k-root defined by

βj =
j∏

i=1

(xi − xk+i)
k∏

i=j+1

(xi + xk+i).

(ii) The function Φ(n, k, j) is Bn,k-positive, and its coefficients are nonnega-
tive integer multiples of 1/N , where N is the integer

(k)j(n − k)k =
k!(n − k)!

(k − j)!(n − 2k)!
.

Proof. Let Ψ(n, k, j) be the polynomial given in the formula; we will show that
Ψ(n, k, j) is equal to the jth spherical function, Φ(n, k, j). Any permutation
in SA will fix Ψ(n, k, j), because we have already symmetrized over SA. Any
permutation of {k + 1, k + 2, . . . , n} will commute with each element of SA,
and be equal to an element of SB , so these too will fix Ψ(n, k, j). It follows
that Ψ(n, k, j) is fixed by the subgroup K = Sk × Sn−k.

We next prove that Ψ(n, k, j) lies in the unique irreducible submodule Vj

of Vn,k with character χ(n−j,j). The k-root βj lies in Vn,k,k−j by Lemma 4.4
(ii), and Vn,k,k−j has character

∑k
i=j χ(n−i,i) by Lemma 4.4 (iv). It is enough
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to show that
∑

w∈SB
w · βj lies in Vj . Since B has cardinality n − j, it follows

from Lemma 4.4 (i) that
∑

w∈SB
w will annihilate every submodule whose

character is in the set

{χ(n−i,i) : j ≤ i ≤ k}
except the one with character χ(n−j,j). It follows that

∑
w∈SB

w · βj lies in Vj ,
as required.

To complete the proof of (i), it remains to show that x1x2 . . . xk appears
in Ψ(n, k, j) with coefficient 1. Observe that the polynomial

∏k
i=j+1(xi +xk+i)

is stabilized by a subgroup U ≤ SB , generated by transpositions (i, k + i) that
fix each factor, together with permutations of the k − j factors. It follows
that U has order |U | = 2k−j(k − j)!. By summing over a set of left coset
representatives, XB , for the left cosets SB/U of U in SB , we can obtain an
expression for Ψ(n, k, j) that is equivalent to the one in the statement but has
fewer terms, as follows:

Ψ(n, k, j) =
(n − 2k)!
k!(n − k)!

(
∑

v∈SA

v

)(
∑

w∈XB

w

)

· βj .

Note that every antisymmetric factor of βj contains precisely one index
from the set {1, 2, . . . , j}, and these indices are fixed pointwise by every element
in SB . Lemma 4.3 shows that the k-roots {w · βj : w ∈ XB} are all positive,
and because we are summing over cosets of the stabilizer, each element of XB

gives a different positive k-root w · βj . It is convenient to separate the k-roots
w · βj into three mutually exclusive types.
Type 1: positive k-roots containing at least one antisymmetric factor (xp −xq)

where 1 ≤ p < q ≤ k;
Type 2: positive k-roots that are not of type 1, but that contain least one

symmetric factor (xp +xq) where either 1 ≤ p < q ≤ k or k +1 ≤ p <
q ≤ n;

Type 3: positive k-roots where each factor contains precisely one xp where
1 ≤ p ≤ k.

The k-roots of type 1 are annihilated by elements of the form 1+w where
w is the transposition (p, q). As in the proof of Lemma 4.4 (iii), it follows that
k-roots of type 1 are annihilated by

∑
v∈SA

v, and thus that they make no net
contribution to the sum. These terms may be ignored from now on.

The k-roots of types 2 and 3 contain no antisymmetric factors (xp − xq)
with 1 ≤ p < q ≤ k. If α is a k-root of type 2 or 3 and v ∈ SA, it follows by
Lemma 4.3 that v · α is also a positive k-root.

If α has type 2, then the k-root v ·α will have a factor (xv(p) +xv(q)) with
two indices in the range 1 ≤ v(p), v(q) ≤ k or in the range k +1 ≤ v(p), v(q) ≤
n, and this means that x1x2 · · · xk appears in v · α with a coefficient zero.

A k-root α is of type 3 if and only if it has the form

α =
j∏

i=1

(xi − xι(i))
k∏

i=j+1

(xi + xι(i))
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for some injective function ι : {1, 2, . . . , k} → {k + 1, k + 2, . . . , n}. The mono-
mial x1x2 · · · xk appears in each such k-root with coefficient 1, and the num-
ber of k-roots of type 3 is the same as the number of functions ι, which is
(n − k)k = (n − k)!/(n − 2k)!. The action of a permutation v ∈ SA leaves
invariant the coefficient of x1x2 · · · xk, which implies that the coefficient of
x1x2 · · · xk in

(∑
v∈SA

v
) (∑

w∈XB
w

) · βj is k!(n − k)!/(n − 2k)!, proving (i).
The above argument has also shown that β′

j :=
(∑

v∈SA
v
) (∑

w∈XB
w

) ·
βj is a sum of positive k-roots: the terms of type 1 all cancel, and the terms of
types 2 and 3 lead to sums of positive k-roots. Theorem 3.10 (iii) implies that
β′

j is a linear combination of canonical basis elements with nonnegative integer
coefficients. Now let C = A ∩ B, so that |C| = k − j, and let XA be a set of
left coset representatives of SC in SA. The left SB-invariance of

∑
w∈XB

w ·βj

then implies that

β′
j =

(
∑

v∈XA

v

)(
∑

u∈SC

u

(
∑

w∈XB

w.βj

))

= (k − j)!

(
∑

v∈XA

v

)(
∑

w∈XB

w

)

· βj .

It follows that the coefficients of the canonical basis elements in β′
j are all

integer multiples of (k − j)!, and dividing by the factor of k!(n − k)!/(n − 2k)!
from the previous paragraph then proves (ii). �
Remark 4.6. The bound on the denominator given in Theorem 4.5 (ii) is sharp
in some cases, such as the case n = 4 and k = j = 1 in which the denominator
in the theorem is the best possible denominator of 1/3.

Finally, we consider the problem of expressing elements of Mn,k as linear
combinations of the canonical basis Bn,k. The basis Bn,k only has one element
that is a positive linear combination of the natural basis of monomials, namely
the basis element whose label is 1n. However, it often happens that a square-
free monomial can be written as a positive linear combination of the Bn,k. The
following definition is helpful for understanding this.

Definition 4.7. Let xI = xi1xi2 · · · xik be a squarefree monomial of degree k in
the indeterminates x1, . . . xn. Define the label, μ(xI) of xI to be the sequence
of length n in the alphabet {1, 2} with the property that μ(xI)j = 2 if and
only if xj appears in xI . We say that μ(xI) is a reverse lattice word if every
terminal segment of μ(xI) contains at least as many 1 s as 2 s.

Theorem 4.8. Let n ≥ 2 and 0 ≤ k ≤ n/2 be integers, and let xI = xi1xi2 · · · xik

be a squarefree monomial of degree k in the indeterminates x1, . . . xn. If the
label μ(xI) is a reverse lattice word, then xI is Bn,k-positive, with coefficients
that are nonnegative integer multiples of 1/2k.

Proof. Suppose that xI satisfies the hypotheses in the statement. It is enough
to prove that 2kxI is Bn,k-positive with integer coefficients.

The hypothesis that μ(xI) is a reverse lattice word means that there is an
injective function f : {i1, i2, . . . , ik} → {1, 2, . . . , n} with the properties that
for all 1 ≤ r ≤ k, both (a) f(ir) > ir and (b) μ(xI) has a 1 at position f(ir).
By making the substitutions

2xir → (xir − xf(ir)) + (xir + xf(ir)),
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we can express 2kxI = (2xi1)(2xi2) · · · (2xik) as an sum of 2k positive k-roots
in normal form. The result now follows from Theorem 3.10 (iii). �

Remark 4.9. The number of reverse lattice words with k occurrences of 2 is(
n
k

) − (
n

k−1

)
. It therefore follows that all but at most

(
n

k−1

)
elements of the

monomial basis are Bn,k-positive. If k is small compared to n, then the hy-
potheses of Theorem 4.8 will usually be satisfied, but if k is close to n/2, the
hypotheses will rarely be satisfied. The monomial x1x2 · · · xk, whose label is
2k1n−k, will always satisfy the hypotheses.

It would be interesting to know whether the necessary condition in the
theorem is also sufficient. This is the case when k = 1, where xn is the only
monomial that is not Bn,1-positive.

5. Concluding Remarks

5.1. Other Gelfand Pairs

A natural question is whether the results of this paper have analogues for
other Gelfand pairs. This happens, for example, in the case of the Gelfand
pair (S2n, Sn � (Z/2Z)), which corresponds to the action of S2n on the size n
subsets of {1, 2, . . . , 2n}, where each subset is identified with its complement.
In this case, the coset space of the Gelfand pair has a canonical basis induced
by the elements of B2n,n that have an even number of asymmetric factors.

An example of a Gelfand pair that has a simpler treatment than the one
in this paper is ((Z/2Z) � Sn, Sn). In this case, the 2n cosets correspond to
the weights of the spin representation of a simple Lie algebra of type Bn [8,
Proposition 6.4.5]. There is a well-known action of the Weyl group W (Bn) ∼=
(Z/2Z) �Sn on 2n symbols {1, 1, 2, 2, . . . , n, n} [8, Example 1.4.5]. This induces
an action by signed permutations on the span of the 2n linearly independent
polynomials in the 2n commuting indeterminates x1, x1, . . . , xn, xn of the form

(x1 ± x1)(x2 ± x2) · · · (xn ± xn),

where the signs are chosen independently. This is a basis for the permutation
module on the cosets that is compatible with the direct sum decomposition
into W (Bn)-irreducibles, and the corresponding spherical functions are given
by taking the average of each Sn-orbit of basis elements.

The results of this paper can also be thought of in terms of averaging
operators. It follows from Theorem 4.5 that when the spherical functions of
(Sn, Sk ×Sn−k) are written as linear combinations of canonical basis elements,
the denominators of the coefficients divide the order of K, namely k!(n − k)!.
Using this, one can replace the expression in Theorem 4.5 (i) by an averaging
operator over K acting on a sum with far fewer terms. This suggests that there
may be continuous versions of these results in which the averaging operator is
replaced by a suitable integral.

5.2. Sign-Coherence

Because the set Cn,k of k-roots is permuted by the action of any permuta-
tion w, it follows from Theorem 3.10 (iii) that the matrix ρ(w) representing
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w with respect to Bn,k is an integer-valued column sign-coherent matrix. The
property of column sign-coherence comes from the theory of cluster algebras
([1, Definition 2.2 (i)], [5, Definition 6.12], [9, §5]), and means that any two
nonzero entries in the same column of ρ(w) have the same sign. Each simple
Sn-module Vn,k,t/Vn,k,t−1 inherits a basis from Bn,k that also has the sign-
coherence property. This sign-coherence property is remarkable because it fails
easily for irreducible Sn-modules corresponding to partitions with more than
two rows; for example, the irreducible module for S4 with character χ(2,1,1)

contains a counterexample. The monomial basis for Vn,k and the basis men-
tioned in Sect. 5.1 both have the sign-coherence property, but in the trivial
sense that the matrices representing group elements have only one nonzero
entry per column.

5.3. Differential Operators

Some of the results of this paper say something about the differential operators
d : Vn,k → Vn,k−1 given by d =

∑n
i=1 ∂/∂xi. It follows from the definitions that

d sends positive k-roots to linear combinations of positive k-roots with positive
even integer coefficients. Theorem 3.10 (iii) then implies that the entries of
the matrix of d relative to Bn,k and Bn,k−1 are positive even integers. The
submodules Vn,k,t of Definition 4.1 can be simply characterized as the kernels
of the composite operators dt+1, as in [2, Theorem 6.1.6 (v)].

5.4. Categorification

The appearance of Bn,k-positivity in various contexts in this paper raises the
question of whether the positive integers and rational numbers that arise have
combinatorial interpretations. A related question is whether k-roots can be
categorified, and the connection with Kazhdan–Lusztig bases mentioned in
Remark 3.13 is an additional hint that this may be possible. It seems likely
that the reduction rules in Proposition 2.7 would play an important role in
any such categorification.
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