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Lagrangian-Perfect Hypergraphs

Zilong Yan and Yuejian Peng

Abstract. Hypergraph Lagrangian function has been a helpful tool in
several celebrated results in extremal combinatorics. Let G be an r-
uniform graph on [n] and let �x = (x1, . . . , xn) ∈ [0, ∞)n. The graph
Lagrangian function is defined to be λ(G,�x) =

∑
e∈E(G)

∏
i∈e xi. The

graph Lagrangian is defined as λ(G) = max{λ(G,�x) : �x ∈ Δ}, where
Δ = {�x = (x1, x2, . . . , xn) ∈ [0, 1]n : x1 + x2 + · · · + xn = 1}. The
Lagrangian density πλ(F ) of an r-graph F is defined to be πλ(F ) =
sup{r!λ(G) : G does not contain F}. Sidorenko (Combinatorica 9:207–
215, 1989) showed that the Lagrangian density of an r-uniform hyper-
graph F is the same as the Turán density of the extension of F. There-
fore, determining the Lagrangian density of a hypergraph will add a re-
sult to the very few known results on Turán densities of hypergraphs. For
an r-uniform graph H with t vertices, πλ(H) ≥ r!λ(Kr

t−1) since Kr
t−1

(the complete r-uniform graph with t − 1 vertices) does not contain a
copy of H. We say that an r-uniform hypergraph H with t vertices is λ-
perfect if the equality πλ(H) = r!λ(Kr

t−1) holds. A fundamental theorem
of Motzkin and Straus implies that all 2-uniform graphs are λ-perfect.
It is interesting to understand the λ-perfect property for r ≥ 3. Our
first result is to show that the disjoint union of a λ-perfect 3-graph and
S2,t = {123, 124, 125, 126, . . . , 12(t + 2)} is λ-perfect, this result implies
several previous results: Taking H to be the 3-graph spanned by one edge
and t = 1, we obtain the result by Hefetz and Keevash (J Comb The-
ory Ser A 120:2020–2038, 2013) that a 3-uniform matching of size 2 is
λ-perfect. Doing it repeatedly, we obtain the result in Jiang et al. (Eur J
Comb 73:20–36, 2018) that any 3-uniform matching is λ-perfect. Taking
H to be the 3-uniform linear path of length 2 or 3 and t = 1 repeatedly,
we obtain the results in Hu et al. (J Comb Des 28:207–223, 2020). Earlier
results indicate that K3−

4 = {123, 124, 134} and F5 = {123, 124, 345} are
not λ-perfect, we show that the disjoint union of K3−

4 (or F5) and S2,t

are λ-perfect. Furthermore, we show the disjoint union of a 3-uniform
hypergraph H and S2,t is λ-perfect if t is large. We also give an irrational
Lagrangian density of a family of four 3-uniform hypergraphs.
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1. Introduction

In 1965, Motzkin–Straus [21] applied the graph Lagrangian function to give
a new proof of the theorem on Turán densities of complete graphs [33]. This
aroused the great interests in exploring hypergraph Lagrangian method in
extremal combinatorics. For example, in the celebrated result of Frankl–Rödl
[9], they disproved the long-standing jumping constant conjecture of Erdős by
applying hypergraph Lagrangian method. Frankl–Füredi [8] and Sidorenko [29]
also applied the graph Lagrangian function in evaluating Turán densities of
hypergraphs in 1980s. Recently, the connection between Lagrangian densities
of hypergraphs and Turán densities of their extensions has been developed
further. We refer the reader to Keevash’s survey paper ‘Hypergraph Turán
Problems’ [17] for other interesting applications of hypergraph Lagrangian.

For a set V and a positive integer r, let V r denote the family of all r-
subsets of V. An r-uniform graph or r-graph G consists of a set V (G) of vertices
and a set E(G) ⊆ V (G)r of edges. An edge e = {a1, a2, . . . , ar} will be simply
denoted by a1a2 . . . ar. An r-graph H is a subgraph of an r-graph G, denoted
by H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph of G induced
by V ′ ⊆ V, denoted as G[V ′], is the r-graph with vertex set V ′ and edge set
E′ = {e ∈ E(G) : e ⊆ V ′}. For S ⊆ V (G), let G − S denote the subgraph
of G induced by V (G)\S. Let Kr

t denote the complete r-graph on t vertices.
Let Kr−

t be obtained by removing one edge form the complete r-graph on t
vertices. For a positive integer n, let [n] denote {1, 2, 3, . . . , n}.

Definition 1.1. Let G be an r-graph on [n] and let �x = (x1, . . . , xn) ∈ [0,∞)n.
Define the Lagrangian function

λ(G,�x) =
∑

e∈E(G)

∏

i∈e

xi.

The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G,�x) : �x ∈ Δ},

where

Δ = {�x = (x1, x2, . . . , xn) ∈ [0, 1])n : x1 + x2 + · · · + xn = 1}.

The value xi is called the weight of the vertex i and a vector �x ∈ Δ is called
a feasible weight vector on G. A feasible weight vector �y ∈ Δ is called an
optimum weight vector for G if λ(G, �y) = λ(G).

In [21], Motzkin and Straus established a connection between the La-
grangian of a 2-graph and its maximum complete subgraphs.

Theorem 1.2. [21] If G is a 2-graph in which a maximum complete subgraph
has t vertices, then λ(G) = λ(K2

t ) = 1
2 (1 − 1

t ).
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However, determining the Lagrangian of an r-graph for r ≥ 3 is much
more difficult than graphs and there is no conclusion similar to Theorem 1.2
for hypergraphs. It is of great interests to estimate the Lagrangian of r-graphs
that have some certain properties. An interesting conjecture of Frankl–Füredi
[8] states that the maximum Lagrangian among all r-graphs with m edges
is achieved on the r-graph whose edges are the first r-tuples in colex or-
der. Talbot [30] made a first breakthrough in confirming this conjecture for
some cases. Subsequent progress were made in [18–20,22,31,32,34]. Recently,
Gruslys–Letzter–Morrison [11] confirmed this conjecture for r = 3 and suffi-
ciently large m, and showed that the conjecture is not always true for r ≥ 4.
As remarked in [11], it would be interesting to find the maximizers for other
values of m.

Given an r-graph F, an r-graph G is said to be F -free if it does not
contain an isomorphic copy of F. The Lagrangian density πλ(F ) of an r-graph
F is defined to be

πλ(F ) = sup{r!λ(G) : G is F -free}.

The Lagrangian density is closely related to the Turán density. Determining
the Turán density is one of the central problems in extremal combinatorics. For
a fixed positive integer n and an r-graph F, the Turán number of F, denoted by
ex(n, F ), is the maximum number of edges in an F -free r-graph on n vertices.
An averaging argument of Katona et al. [16] shows that the sequence ex(n,F )

(n
r)

is non-increasing. Hence limn→∞
ex(n,F )

(n
r)

exists. The Turán density of F is

defined as

π(F ) = lim
n→∞

ex(n, F )
(
n
r

) .

Denote

Πr = {π(F) : F is a family of r-uniform graphs}.

For 2-graphs, Erdős–Stone–Simonovits determined the Turán numbers of
all non-bipartite graphs asymptotically. Very few results are known for r ≥ 3
and finding good estimation for Turán densities of hypergraphs is believed
to be one of the most challenging problems in extremal combinatorics. The
following proposition implies that when we get the Lagrangian density of an
r-graph H, then we get the Turán density of a corresponding hypergraph.

A pair of vertices {i, j} is covered in a hypergraph F if there exists an
edge e in F such that {i, j} ⊆ e. We say that F covers pairs if every pair of
vertices in F is covered. Let r ≥ 3 and F be an r-graph. The extension of F,
denoted by HF is obtained as follows: For each pair of vertices vi and vj not
covered in F, we add a set Bij of r−2 new vertices and the edge {vi, vj}∪Bij ,
where the Bijs are pairwise disjoint over all such pairs {i, j}.

Proposition 1.3. [4,28,29] Let F be an r-graph. Then,
(i) π(F ) ≤ πλ(F );
(ii) π(HF ) = πλ(F ). In particular, if F covers pairs, then π(F ) = πλ(F ).
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For an r-graph H on t vertices, it is clear that πλ(H) ≥ r!λ(Kr
t−1). An r-

graph H on t vertices is λ-perfect if πλ(H) = r!λ(Kr
t−1). Theorem 1.2 implies

that all 2-graphs are λ-perfect. It is interesting to understand what kind of
hypergraphs are λ-perfect. Sidorenko [29] and Brandt–Irwin–Jiang [4] showed
that the enlargement of a tree satisfying Erdős–Sos’s conjecture is λ-perfect.
This first implied the Turán densities of infinitely many hypergraphs. Pikhurko
[24] showed that a 4-uniform tight path of length 2 (2 edges intersecting at 3
vertices) is λ-perfect, and this led to confirm the conjecture of Frankl–Füredi
[7] on the Turán number of its extension, the so-called r-uniform generalized
triangle for the case r = 4. Norin and Yepremyan [23] determined for r =
5 or 6 by extending the earlier result of Frankl–Füredi in [8]. Jenssen [14]
showed that a path of length 2 formed by two edges intersecting at r − 2
vertices for r = 3, 4, 5, 6, 7 is λ-perfect. Hefetz and Keevash [12] showed that
the Lagrangian density of a 3-uniform matching of size 2 is λ-perfect, Jiang–
Peng–Wu [15] determined the Lagrangian density for any 3-uniform matching.
Hefetz and Keevash [12] conjectured that an r-uniform matching of size 2 is
not λ-perfect for r ≥ 4. This conjecture was confirmed in [3] by Bene Watts,
Norin and Yepremyan (independently, in [36] for r = 4). Wu [35] also gave
the Lagrangian density of the 4-uniform matching of size 3. In [5,13,37,39],
the authors showed a 3-uniform linear path of length 3 or 4, {123, 234, 456},
{123, 345, 561} and {123, 124, 345}, the disjoint union of a 3-uniform linear
path of length 2 or 3 and a 3-uniform matching, and the disjoint union of a
3-uniform tight path of length 2 and a 3-uniform matching are λ-perfect. It
is shown in [38] that the 5-uniform linear path of length 2 is λ-perfect. These
were all the previously known results on Lagrangian densities. For 3-uniform
graphs spanned by 3 edges, there is one remaining unsolved case: K3−

4 =
{123, 124, 134}. By Proposition 1.3, the Lagrangian density and the Turán
density of K3−

4 are equal. It would be very interesting to obtain the Turán
density of K3−

4 by determining the Lagrangian density of K3−
4 . A well-known

and long-standing conjecture of Frankl and Füredi [7] is that π(K3−
4 ) = 2

7 , one
of the major open hypergraph Turán problems.

An r-uniform hypergraph is linear if any two edges have at most 1 vertex
in common. Let G ∪ H denote the disjoint union of G and H. The following
conjectures were proposed in [39].

Conjecture 1.4. [39] For r ≥ 3, there exists n such that a linear r-graph with
at least n vertices is λ-perfect.

Conjecture 1.5. [39] For r ≥ 3, there exists n such that if G and H are λ-
perfect r-graphs with at least n vertices, then G ∪ H is λ-perfect.

Let S2,t denote the 3-graph with vertex set {v1, v2, u1, u2, . . . , ut} and
edge set {v1v2u1, v1v2u2, . . . , v1v2ut}. A result of Sidorenko in [29] implies that
S2,t is λ-perfect. In [39], we proved that S2,t ∪ H is λ-perfect if H is λ-perfect
and t ≥ 3. Our first result in this paper removes the condition that t ≥ 3.

Theorem 1.6. If H is λ-perfect, then H ∪ S2,t is λ-perfect for any t ≥ 1.
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Taking H to be the 3-graph spanned by one edge and t = 1 in the
theorem, we obtain the result by Heftz and Keevash [12] that a 3-uniform
matching of size 2 is λ-perfect. Doing it repeatedly, we obtain the result in [15]
that a 3-uniform matching is λ-perfect. Taking H to be the 3-uniform linear
path of length 2 or 3 , and t = 1, we obtain the results in [13].

The condition that H is λ-perfect in the above theorem is not neces-
sary. Let F5 denote the 3-graph with vertex set {v1, v2, v3, v4, v5} and edge
set {v1v2v3, v1v2v4, v3v4v5}. In [39], we proved that πλ(F5) = 4

9 and this im-
plies that F5 is not λ-perfect. We show that F5 ∪ S2,t is however λ-perfect.
Let H ∪ {e} denote the disjoint union of H and a single edge throughout the
paper.

Theorem 1.7. F5 ∪ {e} is λ-perfect.

Theorem 1.8. F5 ∪ S2,t is λ-perfect for t ≥ 2.

Frankl and Füredi [7] showed that π(K3−
4 ) ≥ 2

7 which implies that K3−
4

is not λ-perfect. We show however that K3−
4 ∪ {e} is λ-perfect.

Theorem 1.9. K3−
4 ∪ S2,t is λ-perfect for any t ≥ 1.

We also discuss H ∪ S2,t for any 3-graph H.

Theorem 1.10. Let H be a 3-graph with s vertices. Then, H ∪ S2,t is λ-perfect
if t ≥ 3

2s2 − 11
2 s + 4.

In contrast to the case r = 2, we know very few about the set Πr for r ≥ 3.
In 1998, Chung and Graham [6] proposed the conjecture that every element
in Πr is a rational number. Recently, Baber and Talbot [2] applied Razborov’s
flag algebra method [26] to show that the Turán density of a family of three
3-graphs is the Lagrangian of a corresponding 3-graph which is an irrational
number. Independently, Pikhurko [25] showed that there is a finite family of
r-graphs with irrational Turán density for every r ≥ 3 by applying the Strong
Removal Lemma of Rödl and Schacht [27]. In the proof, Pikhurko also used
the theorem that the Lagrangian of an r-graph is the Turán density of a finite
family of r-graphs. In [10], Grosu constructed explicitly some finite families of
r-graphs with irrational densities for every r ≥ 3. Baber and Talbot [2] asked
whether there exists a single r-graph F such that π(F ) is irrational. We give
an irrational Lagrangian density as in the following result.

Theorem 1.11. Let P = {P1, P2, P3, P4} where P1 = {123, 124, 134, 234, 567},
P2 = {123, 124, 134, 234, 561, 562, 783}, P3 = {123, 124, 134, 234, 561, 562, 734}
and P4 = {123, 124, 134, 234, 561, 562, 357}. Then, πλ(P) =

√
3
3 .

To strengthen this result, we show that the Lagrangian density of K3
4∪{e}

is
√
3
3 . Since that proof is quite involving, it is written in a separate paper [40].

This implies that extension of K3
4 ∪ {e} has an irrational Turán density and

answers the question of Baber and Talbot [2].
Although K3

4 ∪ {e} is not λ-perfect, we can show that K3
4 ∪ {e} ∪ {e}

(indeed K3
4 ∪ {e} ∪ S2,t is λ-perfect (similar to the proof of Theorem 1.10, we
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omit the details). These results lead us to ask whether a ‘sparse enough’ r-
graph must be λ-perfect. Let us be a little bit precise. Note that the property
‘λ-perfect’ is monotone in the sense that an r-graph obtained by removing
an edge from a λ-perfect r-graph (keep the same vertex set) is λ-perfect. It
is interesting to understand the relation between the number of edges in a
hypergraph and the ‘λ-perfect’ property. We propose that the number of edges
in a hypergraph is no more than the number of edges in a linear hyperpath
would guarantee the ‘λ-perfect’ property.

Conjecture 1.12. For r ≥ 3, there exists m0 such that for an r-graph G with
m ≥ m0 edges, if the number of vertices in G is at least m(r − 1) + 1, then G
is λ-perfect.

Theorems 1.6 to 1.10 give some evidence to this conjecture. We remark
that a hypergraph is not λ-perfect if it has many edges.

Remark 1.13. Let H be a 3-graph on t vertices with at least
(
t−1
3

)
+

(
t−2
2

)
+ 2

edges. Then, H is not λ-perfect.

Proof. Let G be a 3-graph with vertex set [t] and edge set {ijk|i, j, k ∈ [t −
1]} ∪ {ijt|i, j ∈ [t − 2]} ∪ {1(t − 1)t}. Note that G has

(
t−1
3

)
+

(
t−2
2

)
+ 1 edges,

so G is H-free. Let xi = 1
t−1 for 1 ≤ i ≤ t − 2, xj = 1

2t−2 for t − 1 ≤ j ≤ t,

and �x be a feasible vector such that vertex i has weight xi. Then, λ(G,�x) =
1

(t−1)3

[
(
t−1
3

)
+ 1

4

]

> 1
(t−1)3

(
t−1
3

)
= λ(K3

t−1). Therefore H is not λ-perfect. �

None of the known λ-perfect hypergraphs (r ≥ 3) covers pairs although
a complete graph covers pairs and is λ-perfect. It is interesting to understand
whether the property ‘covering pairs’ plays some role for the ‘λ-perfect’ prop-
erty. Let r ≥ 3. Is it impossible for a λ-perfect r-graph to cover pairs if r ≥ 3?
As stated in Proposition 1.3, the Lagrangian density and the Turán density
are the same for a large class of r-graphs. The advantage of transferring to the
Lagrangian density is that we can assume that G is dense (so covering pairs)
when considering the maximum Lagrangian of an H-free r-graph G. This as-
sumption makes the structural analysis ‘nicer’ in some cases, so we hope that
this method helps us to better understand the set Πr.

We give some properties of Lagrangians of r-graphs in the next section.
The proofs of Theorems 1.6–1.10 will be given in Sect. 3. In Sect. 4, we give
an irrational Lagrangian density.

2. Preliminaries

The following fact follows immediately from the definition of the Lagrangian.

Fact 2.1. Let G1, G2 be r-graphs and G1 ⊆ G2. Then λ(G1) ≤ λ(G2).

Fact 2.2. [9] Let G be an r-graph on [n]. Let �x = (x1, x2, . . . , xn) be an opti-
mum weight vector on G. Then

∂λ(G,�x)
∂xi

= rλ(G)
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for every i ∈ [n] satisfying xi > 0.

Given an r-graph G, and i, j ∈ V (G), define

LG(j\i) = {e : i /∈ e, e ∪ {j} ∈ E(G) and e ∪ {i} /∈ E(G)}.

Fact 2.3. Let G be an r-graph on [n]. Let �x = (x1, x2, . . . , xn) be a feasible
weight vector on G. Let i, j ∈ [n], i �= j satisfying LG(i\j) = LG(j\i) = ∅. Let
�y = (y1, y2, . . . , yn) be defined by letting y� = x� for every � ∈ [n]\{i, j} and
yi = yj = 1

2 (xi + xj). Then λ(G, �y) ≥ λ(G,�x). Furthermore, if the pair {i, j}
is contained in an edge of G, xi > 0 for each 1 ≤ i ≤ n, and λ(G, �y) = λ(G,�x),
then xi = xj .

Proof. Since LG(i\j) = LG(j\i) = ∅, then

λ(G, �y) − λ(G,�x) =
∑

{i,j}⊆e∈G

(
(xi + xj)2

4
− xixj

) ∏

k∈e\{i,j}
xk ≥ 0.

If the pair {i, j} is contained in an edge of G and xi > 0 for each 1 ≤ i ≤ n,
then the equality holds only if xi = xj . �

An r-graph G is dense if λ(G′) < λ(G) for every proper subgraph G′ of
G.

Fact 2.4. [9] Let G = (V,E) be a dense r-graph. Then G covers pairs.

Note that the converse of Fact 2.4 is not true. For example, the Fano
plane covers pairs but it is not dense. Indeed, many counterexamples exist by
Theorem 2.1 in the paper of Talbot [30]. While considering the Lagrangian
density of an r-graph F, we can always reduce to consider dense F -free r-
graphs.

Remark 2.5. Let F, G be r-graphs and G be F -free. Then (a) there exists a
dense subgraph G′ of G such that λ(G′) = λ(G) and G′ is F -free. (b) To show
πλ(F ) ≤ a, it is sufficient to show that λ(G) ≤ a

r! for any dense F -free r-graph.
(c) To show that a t-vertex r-graph is λ-perfect, it is sufficient to show that
λ(G) ≤ λ(Kr

t−1) for any dense F -free r-graph.

Proof. (a) Let G be an r-graph on n vertices. If G is dense, then we are fine. If
not, then we can find G′ ⊂ G such that λ(G′) = λ(G) and |V (G′)| < |V (G)|.
If G′ is dense, then we stop. Otherwise, we continue this process until we
find a dense subgraph. This process terminates since the number of vertices is
reduced by at least one in each step.

(b) and (c) follow immediately from (a). �

3. Proof of the Main Results

We will prove Theorems 1.6–1.10 in this section.
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3.1. Preliminaries

For a 3-graph G and v ∈ V (G), we define the link graph of v as Gv = {ab|vab ∈
E(G)}. Let ω(G) denote the order of a maximum clique of G.

Claim 3.1. Let G be a 3-graph with λ(G) > λ(K3
k+1) and let �x be an optimal

weight vector. Then for any v ∈ V (G), its weight xv satisfies that xv < 1 −√
k(k−1)

k+1 .

Proof. Note that ∂λ(G,�x)
∂xv

= Σ{v1v2v}∈E(G)xv1xv2 and the link graph Gv of v is
a graph with Σu∈V (G)\{v} = 1 − xv. By Fact 2.2 and the theorem of Motzkin
and Straus (Theorem 1.2), we have

3λ(K3
k+1) < 3λ(G) =

∂λ(G,�x)
∂xv

≤ 1
2
(1 − xv)2.

So

xv < 1 −
√

k(k − 1)
k + 1

.

�
Claim 3.2. Let G be a 3-graph with λ(G) > λ(K3

k+1) and let �x be an optimal
weight vector. Then for v ∈ V (G) with ω(Gv) ≤ k, its weight xv satisfies that
xv < 1

k+1 .

Proof. Note that ∂λ(G,�x)
∂xv

= Σ{v1v2v}∈E(G)xv1xv2 and the link graph Gv of v is
a graph with Σu∈V (G)\{v}xu = 1−xv. By Fact 2.2 and the theorem of Motzkin
and Straus (Theorem 1.2), we have

3λ(K3
k+1) < 3λ(G) =

∂λ(G,�x)
∂xv

≤ 1
2

×
(

1 − 1
k

)

(1 − xv)2.

So

xv <
1

k + 1
.

�
Claim 3.3. Let v be a vertex in a 3-graph G and xv be the weight of v in an
optimal weight vector �x of G. If G − {v} is H-free, then λ(G) ≤ πλ(H)(1−xv)

3

6(1−3xv)
.

Proof. Since G − {v} is H-free, λ(G − {v}, �x) ≤ πλ(H)
6 (1 − xv)3. Therefore

λ(G) ≤ πλ(H)
6

(1 − xv)3 + xv
∂λ(G,�x)

∂xv
.

By Fact 2.2, we have

λ(G) ≤ πλ(H)
6

(1 − xv)3 + 3xvλ(G).

Then λ(G) ≤ πλ(H)(1−xv)
3

6(1−3xv)
. �

Remark 3.4. f(x) = (1−x)3

1−3x is increasing in (0, 1
3 ).
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Proof. Since f ′(x) = 6x(1−x)2

(1−3x)2 , then f ′(x) > 0 in (0, 1
3 ). So f(x) = (1−x)3

1−3x is
increasing in (0, 1

3 ). �

Claim 3.5. Let a 3-graph G be H ∪ S2,t-free, where H is a 3-graph with s
vertices. Let S2,s+t = {v1v2b1, v1v2b2, . . . , v1v2bs+t} ⊆ G. Then G−{v1, v2} is
H-free.

Proof. Suppose that H ⊆ G−{v1, v2}. Since |V (H)| = s, then |{b1, b2, . . . , bs+t}∩
V (H)| ≤ s, and |{b1, . . . , bs+t}\V (H)| ≥ t. So the induced subgraph of G by
{v1, v2, b1, . . . , bs+t}\V (H) contains an S2,t, and G contains H ∪ S2,t. �

Claim 3.6. Let a 3-graph G be H ∪ S2,t-free, where H is a 3-graph with s
vertices. Let v ∈ V (H). If H ⊆ G − {v}, then ω(Gv) ≤ s + t.

Proof. Note that G − {v} contains H. If ω(Gv) ≥ s + t + 1, then assume
that a maximum clique of Gv has vertex set U1. Since |U1 ∩ V (H)| ≤ s,
|U1\V (H)| ≥ t+1 and the induced subgraph of G by U1∪{v1}\V (H) contains
an S2,t. So H ∪ S2,t ⊆ G, a contradiction. �

Claim 3.7. Let a 3-graph G be H ∪ S2,t-free, where H is a 3-graph with s
vertices. If H ⊆ G−{v1} and H � G−{v1, v2}, then ω((G−{v2})v1) ≤ s+t−1.

Proof. Assume that ω((G − {v2})v1) ≥ s + t and a maximum clique of (G −
{v2})v1 has vertex set U2. Since H ⊆ G − {v1} and H � G − {v1, v2}, then
v2 ∈ V (H). Therefore |U2 ∩ V (H)| ≤ s − 1. So |U2\V (H)| ≥ t + 1 and the
induced subgraph of G by U2 ∪ {v1}\V (H) contains an S2,t. Therefore, H ∪
S2,t ⊆ G. �

Theorem 3.8. [1,26] π(K3−
4 ) ≤ 0.2871, π(K3

4 ) ≤ 0.5615.

3.2. The Disjoint Union of a λ-Perfect 3-Graph and S2,t

We show that the disjoint union of a λ-perfect 3-graph and S2,t is λ-perfect.

Proof of Theorem 1.6. Assume that H is λ-perfect on s ≥ 3 vertices. Note
that H ∪ S2,t has s + t + 2 vertices. By Remark 2.5(c), it is sufficient to show
that if G is H ∪ S2,t-free dense 3-graph then λ(G) ≤ λ(K3

s+t+1). Suppose on
the contrary that λ(G) > λ(K3

s+t+1). Let �x be an optimal weight vector of G.
Case 1. There exists v ∈ V (G) with weight xv such that G−{v} is H-free.

By Claim 3.1, xv < 1 −
√

(s+t)(s+t−1)

s+t+1 . By Claim 3.3 and that H is λ-
perfect,

λ(G) ≤ λ(K3
s−1)(1 − xv)3

1 − 3xv
= f(xv). (3)

By Remark 3.4, f(xv) is increasing in [0, 1 −
√

(s+t)(s+t−1)

s+t+1 ), then

λ(G) ≤ f(1 −
√

(s + t)(s + t − 1)

s + t + 1
)

=
1

6

(s − 2)(s − 3)

(s − 1)2

(s+t)(s+t−1)
√

(s+t)(s+t−1)

(s+t+1)3

3
√

(s+t)(s+t−1)

s+t+1
− 2
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=
1

6

(s + t)(s + t − 1)

(s + t + 1)2
× (s − 2)(s − 3)

(s − 1)2
×

√
(s + t)(s + t − 1)

3
√

(s + t)(s + t − 1) − 2(s + t + 1)

= λ(K3
s+t+1) × (s − 2)(s − 3)

(s − 1)2
×

√
(s + t)(s + t − 1)

3
√

(s + t)(s + t − 1) − 2(s + t + 1)
.

To prove λ(G) ≤ λ(K3
s+t+1), it is sufficient to prove that

(s − 2)(s − 3)
(s − 1)2

×
√

(s + t)(s + t − 1)
3
√

(s + t)(s + t − 1) − 2(s + t + 1)
≤ 1.

This is equivalent to

2(s − 1)2(s + t + 1)
2s2 − s − 3

≤
√

(s + t)(s + t − 1).

The above inequality is equivalent to

s + t − 1
2

− (6t − 1)s − 10t − 1
4s2 − 2s − 6

≤
√

(s + t)(s + t − 1).

By direct calculation, it holds for s = 3 or 4 and t = 1. Since

s + t − 1
2

− (6t − 1)s − 10t − 1
4s2 − 2s − 6

≤ s + t − 1
2

− 1
s + 1

,

and

s + t − 1
2

− 1
s + 1

≤
√

(s + t)(s + t − 1)

holds for any s ≥ 3 and t ≥ 2 or s ≥ 5 and t = 1. So λ(G) ≤ λ(K3
s+t+1), a

contradiction.
Case 2. For any v ∈ V (G), H ⊆ G − {v}.
Since λ(G) > λ(K3

s+t+1) and S2,s+t is λ-perfect, S2,s+t = {v1v2b1, v1v2b2,
. . . , v1v2bs+t} ⊆ G. By Claim 3.5, G − {v1, v2} is H-free. By Claim 3.6, we
have

ω(Gv1) ≤ s + t and ω(Gv2) ≤ s + t.

By Claim 3.7, we have ω((G−{v2})v1) ≤ s+t−1 and ω((G−{v1})v2) ≤ s+t−1.
Assume the weight of v1 and v2 are a1 and a2 respectively, and a1 +a2 =

2a. Since G − {v1, v2} is H-free and H is λ-perfect, the contribution of edges
containing neither v1 nor v2 to λ(G,�x) is at most λ(K3

s−1)(1 − 2a)3. Since
ω((G − {v2})v1) ≤ s + t − 1 and ω((G − {v1})v2) ≤ s + t − 1, by Theorem 1.2,
the contribution of edges containing either v1 or v2 (but not both) to λ(G,�x)
is at most 2 × 1

2a(1 − 1
s+t−1 )(1 − 2a)2. The contribution of edges containing

both v1 and v2 to λ(G,�x) is at most a2(1 − 2a). Therefore,

λ(G) ≤ λ(K3
s−1)(1 − 2a)3 + a2(1 − 2a) + 2 × 1

2
a

(

1 − 1

s + t − 1

)

(1 − 2a)2

≤ λ(K3
s+t−1)(1 − 2a)3 + a2(1 − 2a) + 2 × 1

2
a

(

1 − 1

s + t − 1

)

(1 − 2a)2

= λ

(

K3
s+t+1,

(

a, a,
1 − 2a

s + t − 1
, . . . ,

1 − 2a

s + t − 1

))

≤ λ(K3
s+t+1).

�
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3.3. Disjoint Union of F5 and S2,t

We show that the disjoint union of F5 and S2,t is λ-perfect.

Proof of Theorem 1.8. Let t ≥ 2. Let G be a dense F5 ∪ S2,t-free 3-graph on
n vertices. By Remark 2.5(c), it is sufficient to show that λ(G) ≤ λ(K3

t+6).
Suppose on the contrary that λ(G) > λ(K3

t+6). By Claim 3.1, for any v ∈ V (G)
with weight xv we have

xv < 1 −
√

(t + 5)(t + 4)
t + 6

.

Case 1. G − {v} is F5-free for some v ∈ V (G).
By the result in [39] that πλ(F5) = 4

9 and Claim 3.3, we have

λ(G) ≤ 2
27

(1 − xv)3

1 − 3xv
= f(xv)

≤ f(1 −
√

(t + 5)(t + 4)
t + 6

)

=
1
6

(t + 4)(t + 5)
(t + 6)2

× 4
9

×
√

(t + 5)(t + 4)
3
√

(t + 5)(t + 4) − 2(t + 6)

= λ(K3
t+6) × 4

9
×

√
(t + 5)(t + 4)

3
√

(t + 5)(t + 4) − 2(t + 6)
.

It is sufficient to show that

4
9

×
√

(t + 5)(t + 4)
3
√

(t + 5)(t + 4) − 2(t + 6)
≤ 1.

It is equivalent to show that

18(t + 6) ≤ 23
√

(t + 5)(t + 4).

It holds for t ≥ 2.
Case 2. G − {v} contains F5 for any v ∈ V (G).
Since λ(G) > λ(K3

t+6) and S2,t+5 is λ-perfect, S2,t+5 = {v1v2u1, v1v2u2,
. . . , v1v2ut+5} ⊆ G. Assume the weight of v1 and v2 are a1 and a2, respectively,
and a1 +a2 = 2a. By Claim 3.5, G−{v1, v2} is F5-free. So, the contribution of
edges containing neither v1 nor v2 to λ(G,�x) is at most πλ(F5)

6 (1−2a)3 = 2
27 (1−

2a)3. By Claim 3.7, we have ω((G−{v2})v1) ≤ t+4 and ω((G−{v1})v2) ≤ t+4.
By Theorem 1.2, the contribution of edges containing either v1 or v2 to λ(G,�x)
is at most 2a× 1

2 (1− 1
t+4 )(1−2a)2. The contribution of edges containing both

v1 and v2 to λ(G,�x) is at most a2(1 − 2a). Therefore,

λ(G) ≤ 2
27

(1 − 2a)3 + a2(1 − 2a) + 2a × 1
2

(

1 − 1
t + 4

)

(1 − 2a)2

≤ λ(K3
t+4)(1 − 2a)3 + a2(1 − 2a) + 2a × 1

2

(

1 − 1
t + 4

)

(1 − 2a)2

= λ

(

K3
t+6,

(

a, a,
1 − 2a

t + 4
, . . . ,

1 − 2a

t + 4

))
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≤ λ(K3
t+6).

�
The following lemma is prepared for the proof of Theorem 1.7.

Lemma 3.9. Let G be a dense and F5 ∪ {e}-free 3-graph. If K3−
4 ∪ K3−

4 ⊆ G,
then λ(G) < 5

49 = λ(K3
7 ).

Proof. Let K = K3−
4 ∪K3−

4 with vertex set {a1, a2, b1, b2, . . . , b6} and edge set
{a1b1b2, a1b1b3, a1b2b3, a2b4b5, } {a2b4b6, a2b5b6}. Let �x be an optimal weight
vector. To simplify the notation, we simply write the weight of vertex a in �x as
a. In other words, in the proof, a sometimes means vertex a, sometimes means
the weight of vertex a in the optimal weight vector �x. They are distinguishable
from the context. By Fact 2.2,

24λ(G) =
2∑

i=1

∂λ(G,�x)
∂ai

+
6∑

i=1

∂λ(G,�x)
∂bi

. (1)

Note that ∂λ(G,�x)
∂xv

= Σ{v1v2v}∈E(G)xv1xv2 . Then we have the following claim.

Claim 3.10. (i) For vertices ci, cj ∈ V (G)\V (K), the product cicj appears at
most twice in

∑2
i=1

∂λ(G,�x)
∂ai

+
∑6

i=1
∂λ(G,�x)

∂bi
.

(ii) For vertex ci ∈ V (G)\V (K), the product cibj appears at most twice in
∑2

i=1
∂λ(G,�x)

∂ai
+

∑6
i=1

∂λ(G,�x)
∂bi

.

(iii) For vertex ci ∈ V (G)\V (K), the products cia1, cia2 appear at most 7
times in

∑2
i=1

∂λ(G,�x)
∂ai

+
∑6

i=1
∂λ(G,�x)

∂bi
.

(iv) The product bibj appears at most 3 times in
∑2

i=1
∂λ(G,�x)

∂ai
+

∑6
i=1

∂λ(G,�x)
∂bi

.

(v) The products aibj , a1a2 appear at most 6 times in
∑2

i=1
∂λ(G,�x)

∂ai
+

∑6
i=1

∂λ(G,�x)
∂bi

.

Proof. Let F be a copy of F5 ∪ {e}.

(i) We first show that cicj can appear at most 1 time in ∂λ(G,�x)
∂a1

+
∑3

i=1
∂λ(G,�x)

∂bi
. If not, suppose that cicj appears at least 2 times in it. If cicjbs,

cicjbt ∈ E(G), where bs, bt ∈ {b1, b2, b3}, then {a1, bs, bt, ci, cj} forms an F5.
So there is an F formed by F5 ∪ {a2b4b5}. If cicjbs, cicja1 ∈ E(G) where bs ∈
{b1, b2, b3}, then {a1, bt, bs, ci, cj} forms an F5, where bt ∈ {b1, b2, b3}\{bs}. So
F5 ∪ {a2b4b5} ⊆ G. Similarly, cicj can appear at most 1 time in ∂λ(G,�x)

∂a2
+

∑6
i=4

∂λ(G,�x)
∂bi

. Therefore, cicj appears at most twice in
∑2

i=1
∂λ(G,�x)

∂ai
+

∑6
i=1

∂λ(G,�x)
∂bi

.

(ii) Without loss of generality, let bj = b1. We first show that cib1 appears
in ∂λ(G,�x)

∂a1
+ ∂λ(G,�x)

∂b2
+ ∂λ(G,�x)

∂b3
at most 1 time. Since if cib1b2, cib1b3 ∈ E(G),

then {a1, b1, b2, b3, ci} forms an F5, then there is an F formed by F5∪{a2b4b5}.
If cib1b2 (or cib1b3) and cib1a1 ∈ E(G), then {a1, b1, b2, b3, ci} forms an F5,
then there is an F formed by F5 ∪ {a2b4b5}.

Next, we show that cib1 appears in ∂λ(G,�x)
∂a2

+
∑6

i=4
∂λ(G,�x)

∂bi
at most 1

time. If cib1bs, cib1bt ∈ E(G), where bs, bt ∈ {b4, b5, b6}, then {a2, b1, bs, bt, ci}
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forms an F5, and there is an F formed by F5 ∪ {a1b2b3}. If cib1a2, cib1bs ∈
E(G), where bs ∈ {b4, b5, b6}, then {a2, b1, bs, bt, ci} forms an F5 where bs, bt ∈
{b4, b5, b6}. So, there is an F formed by F5 ∪ {a1b2b3}.

(iii) Let j = 1 or 2. Since ciaj /∈ ∂λ(G,�x)
∂aj

, then ciaj appears at most 7
times.

(iv) If bi ∈ {b1, b2, b3} and bj ∈ {b4, b5, b6}, without loss of generality, let
i = 1 and j = 4. Note that b1b2b4 /∈ E(G). Otherwise, {a1, b1, b2, b3, b4} forms
an F5 and there is an F formed by F5∪{a2b5b6}. Similarly, b1b3b4, b1b4b5, b1b4b6,
b1b2b5, b1b2b6 /∈ E(G). So at most b1b4a1, b1b4a2 ∈ E(G). If bi, bj ∈ {b1, b2, b3},
without loss of generality, let i = 1 and j = 2. Then at most b1b2a1, b1b2a2, b1b2b3
∈ E(G).

(v) Since aibj can not appear in ∂λ(G,�x)
∂aj

+ ∂λ(G,�x)
∂bi

, then aibj can ap-

pear at most 6 times in
∑2

i=1
∂λ(G,�x)

∂ai
+

∑6
i=1

∂λ(G,�x)
∂bi

. The reason for a1a2 is
similar. �

Combining (1) and Claim 3.10, we have

24λ(G) ≤ 2
∑

ci,cj∈V (G)\V (K)

cicj + 2
∑

i∈[6],cj∈V (G)\V (K)

bicj + 7
∑

i∈[2],cj∈V (G)\V (K)

aicj

+ 3
∑

i�=j∈[6]

bibj + 6
2∑

i=1

6∑

j=1

aibj + 6a1a2.

Let
∑

i ci = c,
∑2

i=1 ai = a,
∑6

i=1 bi = b, then a + b + c = 1. So

24λ(G) ≤ 2
(

c

n − 8

)2(
n − 8

2

)

+ 2bc + 7ac + 3
(

b

6

)2(6
2

)

+ 6ab + 6
(

a

2

)2

≤ c2 + 2bc + 7ac +
3
2
b2 + 6ab +

3
2
a2

= (1 − a − b)2 + 2b(1 − a − b) + 7a(1 − a − b) +
3
2
b2 + 6ab +

3
2
a2

= −9
2
a2 +

1
2
b2 − ab + 5a + 1

= −9
2
a2 + (5 − b)a +

1
2
b2 + 1

≤ 5
9
b2 − 5

9
b +

43
18

(

a =
5 − b

9

)

≤ 43
18

.

So

λ(G) ≤ 43
18 × 24

<
5
49

= λ(K3
7 ).

�

Proof of Theorem 1.7. Let G be a dense F5∪{e}-free 3-graph. By Remark 2.5(c),
it is sufficient to show that λ(G) ≤ λ(K3

7 ). Suppose on the contrary that
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λ(G) > 5
49 = λ(K3

7 ). For v ∈ V (G) with weight xv, if G − {v} is K3−
4 -free,

then by Claim 3.3, Proposition 1.3 and Theorem 3.8, we have

λ(G) ≤ πλ(K3−
4 )

6
(1 − xv)3

1 − 3xv
=

π(K3−
4 )

6
(1 − xv)3

1 − 3xv
≤ 1

18
(1 − xv)3

1 − 3xv
.

By Claim 3.1, we have xv < 1 −
√
30
7 < 1

3 . By Remark 3.4, 1
18

(1−xv)
3

1−3xv
is

increasing in (0, 1
3 ), so

λ(G) ≤ 1
18

(1 − xv)3

1 − 3xv

∣
∣
∣
∣
xv=1−

√
30
7

<
5
49

.

Hence, we may assume that G − {v} still contains K3−
4 for any vertex v. Note

that ω(Gv) ≤ 6. Since if ω(Gv) ≥ 7, assume that U = {u1, u2, . . . , u7} is a
clique in Gv. Let K3−

4 ⊆ G − {v} have the vertex set W. Then |U − W | ≥ 3
and we can find a K3−

4 in {v1} ∪ U − W. Therefore K3−
4 ∪ K3−

4 ⊆ G. Note
that ∂λ(G,�x)

∂xv
= Σ{v1v2v}∈E(G)xv1xv2 and the link graph Gv of v is a graph with

Σu∈V (G)\{v} = 1 − xv. By Fact 2.2 and the theorem of Motzkin and Straus
(Theorem 1.2), we have

3 × 5
49

< 3λ(G) =
∂λ(G,�x)

∂xv
≤ 1

2

(

1 − 1
6

)

(1 − xv)2.

So xv < 1
7 holds for any v.

If for v ∈ V (G) with weight xv, G − {v} is F5-free, then by the result in
[39] that πλ(F5) = 4

9 and Claim 3.3, we have

λ(G) ≤ 2
27

(1 − xv)3

1 − 3xv
≤ 2

27
(1 − xv)3

1 − 3xv

∣
∣
∣
∣
xv=

1
7

<
5
49

.

So, we may assume that G − {v} still contains both F5 and K3−
4 for any

vertex v. Since λ(G) > 5
49 and S2,t is λ-perfect, then S2,6 ⊆ G. Let S2,6 =

{v1v2b1, v1v2b2, . . . , v1v2b6}. By Claim 3.5, G−{v1, v2} is F5-free. By Claim 3.7,
ω((G − {v2})v1) ≤ 5 and ω((G − {v1})v2) ≤ 5. Assume the weight of v1 and
v2 are a1 and a2 respectively and a1 + a2 = 2a. By Claim 3.2, a1 < 1

7 and
a1 < 1

7 . Therefore a < 1
7 . So

λ(G) ≤ a2(1 − 2a) +
2
27

(1 − 2a)3 + 2a × 1
2

×
(

1 − 1
5

)

(1 − 2a)2

=
82
135

a3 − 59
45

a2 +
16
45

a +
2
27

= f(a)

f ′(a) =
82
45

a2 − 118
45

a +
16
45

> 0

if a ∈ [0, 1
7 ]. So, f(a) is increasing in [0, 1

7 ]. Then,

λ(G) ≤ f(a) = f(
1
7
) <

5
49

.

�
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3.4. The Disjoint Union of K3−
4 and S2,t

We show that the disjoint union of K3−
4 and S2,t is λ-perfect.

Proof of Theorem 1.9. Let G be a dense K3−
4 ∪S2,t-free 3-graph on n vertices.

By Remark 2.5(c), it is sufficient to show that λ(G) ≤ λ(K3
t+5). Suppose on the

contrary that λ(G) > λ(K3
t+5). If there exists v ∈ V (G) with weight xv such

that G − {v} is S2,t-free, then by Claim 3.1, Claim 3.3 and S2,t is λ-perfect,
we have

xv < 1 −
√

(t + 3)(t + 4)
t + 5

and

λ(G) ≤ πλ(S2,t)(1 − xv)3

6(1 − 3xv)
=

λ(K3
t+1)(1 − xv)3

1 − 3xv
= f(xv).

Since f(x) is increasing in (0, 1
3 ), then

λ(G) ≤ f

(

1 −
√

(t + 3)(t + 4)
t + 5

)

=
1
6

t(t − 1)
(t + 1)2

(t+4)(t+3)
√

(t+4)(t+3)

(t+5)3

3
√

(t+4)(t+3)

t+5 − 2

=
1
6

(t + 4)(t + 3)
(t + 5)2

t(t − 1)
(t + 1)2

√
(t + 4)(t + 3)

3
√

(t + 4)(t + 3) − 2(t + 5)

= λ(K3
t+5)

t(t − 1)
(t + 1)2

√
(t + 4)(t + 3)

3
√

(t + 4)(t + 3) − 2(t + 5)
.

So, it is sufficient to show that

t(t − 1)
(t + 1)2

×
√

(t + 4)(t + 3)
3
√

(t + 4)(t + 3) − 2(t + 5)
≤ 1.

This is equivalent to show that

t +
7
2

− 11t + 1
4t2 + 14t + 6

≤
√

(t + 4)(t + 3).

This is true since
11t + 1

4t2 + 14t + 6
≥ 1

t + 1
, (t ≥ 1)

and

t +
7
2

−
√

(t + 4)(t + 3) =
(t + 7

2 )2 − (t + 3)(t + 4)

t + 7
2 +

√
(t + 4)(t + 3)

<
1

4(t + 1)
<

1
t + 1

.

So, we may assume that S2,t ∈ G − {v} for any v ∈ V (G). By Claim 3.6,
ω(Gv) ≤ t + 4. Let xv be the weight of v in an optimum vector. By Claim 3.2,
xv < 1

t+5 .

Case 1. G − {v} is K3−
4 -free for some v ∈ V (G).
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Then by Claim 3.3, Proposition 1.3 and Theorem 3.8, we have

λ(G) ≤ 1
18

(1 − xv)3

1 − 3xv
= f(xv)

(

xv <
1

t + 5

)

< f

(
1

t + 5

)

=
1
18

(t + 4)3

(t + 2)(t + 5)2

<
1
6

(t + 4)(t + 3)
(t + 5)2

= λ(K3
t+5).

Case 2. G − {v} contains K3−
4 for any v ∈ V (G).

Since λ(G) > λ(K3
t+5) and S2,t+4 is λ-perfect, then S2,t+4 = {v1v2u1,

v1v2u2, . . . , v1v2ut+4} ⊆ G. By Claim 3.5, G − {v1, v2} is K3−
4 -free. Since

G − {v1} contains K3−
4 and S2,t, by Claim 3.7, ω((G − {v2})v1) ≤ t + 3 and

ω((G − {v1})v2) ≤ t + 3. Assume the weight of v1 and v2 are a1 and a2,
respectively. Let a1 + a2 = 2a. Then,

λ(G) ≤ 1
18

(1 − 2a)3 + a2(1 − 2a) + 2a × 1
2

(

1 − 1
t + 3

)

(1 − 2a)2

≤ λ(K3
t+3)(1 − 2a)3 + a2(1 − 2a) + 2a × 1

2

(

1 − 1
t + 3

)

(1 − 2a)2

< λ

(

K3
t+5,

(

a, a,
1 − 2a

t + 3
, . . . ,

1 − 2a

t + 3

))

≤ λ(K3
t+5).

�

3.5. General Case

We show that H ∪ S2,t is λ-perfect if H is a 3-graph with s vertices and
t ≥ 3

2s2 − 11
2 s + 4.

Proof of Theorem 1.10. Let G be a dense H ∪ S2,t-free 3-graph on n vertices.
By Remark 2.5(c), it is sufficient to show that λ(G) ≤ λ(K3

s+t+1). Suppose on
the contrary that λ(G) > λ(K3

s+t+1). If there exists v ∈ V (G) with weight xv

such that G − {v} is H-free, then by Claims 3.1 and 3.3, we have

λ(G) ≤ 1
6
πλ(H)

(1 − xv)3

1 − 3xv
, and xv < 1 −

√
(s + t)(s + t − 1)

s + t + 1
.

Since πλ(H) ≤ πλ(K3
s ) ≤ 1 − 2

(s−1)(s−2) (see [17]), then

λ(G) ≤ 1
6

(

1 − 2
(s − 1)(s − 2)

)
(1 − xv)3

1 − 3xv

∣
∣
∣
∣
xv=1−

√
(s+t)(s+t−1)

s+t+1

≤ λ(K3
s+t+1)

s2 − 3s

(s − 1)(s − 2)
×

√
(s + t)(s + t − 1)

3
√

(s + t)(s + t − 1) − 2
.
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So, it is sufficient to show that

s2 − 3s

(s − 1)(s − 2)
×

√
(s + t)(s + t − 1)

3
√

(s + t)(s + t − 1) − 2
≤ 1.

This is equivalent to show that

1 − 1
s2 − 3s + 3

≤
√

(s + t)(s + t − 1).

It holds for s ≥ 3 and t ≥ 1.
So we can assume that H ⊆ G − {v} for any v ∈ V (G). By Claims 3.6

and 3.2, we have ω(Gv) ≤ s + t and

xv <
1

s + t + 1
.

Since λ(G) > λ(K3
s+t+1) and S2,s+t is λ-perfect, then S2,s+t = {v1v2u1,

v1v2u2, . . . , v1v2us+t} ⊆ G. By Claim 3.5, G − {v1, v2} is H-free. Applying
Claim 3.7, we have ω((G−{v2})v1) ≤ s+ t−1 and ω((G−{v1})v2) ≤ s+ t−1.
Since t ≥ 3

2s2 − 11
2 s + 4, then

6λ(K3
s+t−1) =

(s + t − 2)(s + t − 3)
(s + t − 1)2

≥ s2 − 3s

s2 − 3s + 2
> πλ(H).

Assume the weight of v1 and v2 are a1 and a2, respectively, and a1 + a2 = 2a,
then

λ(G) ≤ 1

6
πλ(H)(1 − 2a)3 + a2(1 − 2a) + 2a × 1

2

(

1 − 1

s + t − 1

)

(1 − 2a)2

≤ 1

6

s2 − 3s

(s − 1)(s − 2)
(1 − 2a)3 + a2(1 − 2a) + 2a × 1

2

(

1 − 1

s + t − 1

)

(1 − 2a)2

≤ λ(K3
s+t−1)(1 − 2a)3 + a2(1 − 2a) + 2a × 1

2

(

1 − 1

s + t − 1

)

(1 − 2a)2

= λ

(

K3
s+t+1,

(

a, a,
1 − 2a

s + t − 1
, . . . ,

1 − 2a

s + t − 1

))

≤ λ(K3
s+t+1).

�

4. Irrational Lagrangian Densities

In this section, we prove Theorem 1.11.

Fact 4.1. Let V (S2(n)) = [n] and E(S2(n)) = {12i|i ∈ [n]\{1, 2}} ∪ {ijk|i ∈
[2], j, k ∈ [n]\{1, 2}}, then λ(S2(n)) =

√
3

18 as n → ∞.

Proof. Let �x = {x1, x2, . . . , xn} be an optimal weight vector on S2(n). By
Fact 2.3, we may assume that x1 = x2, x3 = x4 = · · · = xn. Let x1 = a, then
x3 = 1−2a

n−2 and a < 1
2 . So,

λ(S2(n)) = max
a∈(0,1)

{

a2(1 − 2a) + 2a

(
1 − 2a

n − 2

)2(
n − 2

2

)}
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n→∞= max
a∈(0,1)

{2a3 − 3a2 + a}

=
√

3
18

,

when a = 3−√
3

6 . �

Proof of Theorem 1.11. Since S2(n) is P-free, then by Fact 4.1 we have πλ(P)
≥ 3!λ(S2(n)) =

√
3
3 . For the upper bound, we assume that G is a P-free dense

3-graph with vertex set [n]. It is sufficient to show that λ(G) ≤
√
3

18 . Suppose on
the contrary that λ(G) >

√
3

18 , then n > 6, since λ(K3
6 ) = 5

54 <
√
3

18 . By Propo-
sition 1.3 and Theorem 3.8, πλ(K3

4 ) = π(K3
4 ) <

√
3
3 . So K3

4 ⊆ G, without loss
of generality, let {1, 2, 3, 4} form a K3

4 . Let P = {123, 124, 134, 234, 561, 562}.

Lemma 4.2. P � G.

Proof of Lemma 4.2. Suppose that P ⊆ G. We claim that for any u1, u2 ∈
V (G)\{1, 2, 3, 4, 5, 6}, N(u1, u2) ⊆ {1, 2}. If there exists u3 ∈ V (G)\{1, 2, 3, 4,
u1, u2} such that u1u2u3 ∈ E(G), then {1, 2, 3, 4, u1, u2, u3} forms a P1. If there
exist u3 ∈ {3, 4} such that u1u2u3 ∈ E(G), then {1, 2, 3, 4, 5, 6, u1, u2, u3}
forms a P2. And u134 /∈ E(G) since otherwise {1, 2, 3, 4, 5, 6, u1} forms a P3.
And u135 /∈ E(G) since otherwise {1, 2, 3, 4, 5, 6, u1} forms a P4, similarly
u136, u145, u146 /∈ E(G). Since G is P1-free, every edge contains a vertex from
{1, 2, 3, 4}. So we have shown that G ⊆ S2(n). By Fact 4.1, λ(G) ≤

√
3

18 , a
contradiction. �

For any v ∈ V (G) with weight xv, we claim that ω(Gv) ≥ 3. Otherwise
by Theorem 1.2 and Fact 2.2, we have

3λ(G) =
∂λ(G,�x)

∂xv
≤ 1

2

(

1 − 1
2

)

(1 − xv)2 ≤ 1
4

<

√
3

6
,

a contradiction. Let x ∈ V (G)\{1, 2, 3, 4}. Since ω(Gx) ≥ 3, then x is con-
tained in a K3−

4 , denoted by Kx, and dKx
(x) = 3. Since G is P1-free, |Kx ∩

{1, 2, 3, 4}| = 2 or 3.
Case 1. There exists x ∈ V (G)\{1, 2, 3, 4} such that |Kx∩{1, 2, 3, 4}| = 2.

Without loss of generality, let Kx = {1, 2, x, y}. Then {1, 2, 3, 4, x, y}
forms a P, by Lemma 4.2, a contradiction.

Case 2. For any x ∈ V (G)\{1, 2, 3, 4}, |Kx ∩ {1, 2, 3, 4}| = 3.

Without loss of generality, let Kx = {1, 2, 3, x} for some x ∈ V (G)\
{1, 2, 3, 4}. Then Kx forms a K3

4 . We claim that for any y ∈ V (G)\{1, 2, 3, 4, x},
Ky = {1, 2, 3, y}. If not, without loss of generality, let Ky = {2, 3, 4, y}. Then,
Kx ∪ {y42, y43} forms a P, by Lemma 4.2, a contradiction. We claim that
for any v1, v2, v3 ∈ V (G)\{1, 2, 3}, v1v2v3 /∈ E(G) since otherwise there exist
a P1. And for any pair v1, v2 ∈ V (G)\{1, 2, 3}, we claim that |N(v1, v2) ∩
{1, 2, 3}| = 1. If N(v1, v2) ∩ {1, 2, 3} ≥ 2, take v3 ∈ V (G)\{1, 2, 3, v1, v2}, then
{1, 2, 3, v1, v2, v3} forms a P, by Lemma 4.2, a contradiction.
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Assume the weight of i ∈ V (G) is xi and a = x1 + x2 + x3. Consider
∑3

k=1
∂λ
∂xk

. From the previous discussion we know that xixj only appears once
in

∑3
k=1

∂λ
∂xk

for 4 ≤ i, j ≤ n.
So

9λ(G) =
3∑

k=1

∂λ(G,�x)
∂xk

≤
( ∑

i,j∈V (G)\{1,2,3}
xixj

)

+ x1x2 + x1x3 + x2x3 + 2(x1 + x2 + x3)
∑

j≥4

xj

=
∑

i,j

xixj + (x1 + x2 + x3)
∑

j≥4

xj

≤ 1
2

+ a(1 − a) ≤ 3
4
.

Then, λ(G) ≤ 1
12 <

√
3

18 , a contradiction. �
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