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Abstract. We investigate the interrelations between labeled trees and ul-
trametric spaces generated by these trees. The labeled trees, which gen-
erate complete ultrametrics, totally bounded ultrametrics, and discrete
ones, are characterized up to isomorphism. As corollary, we obtain a char-
acterization of labeled trees generating compact ultrametrics and discrete
totally bounded ultrametrics. It is also shown that every ultrametric space
generated by labeled tree contains a dense discrete subspace.
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1. Introduction

The following problem was raised in 2001 by Gelfand: using graph theory
describe up to isometry all finite ultrametric spaces [27]. An appropriate rep-
resentation of finite, ultrametric spaces by monotone trees was proposed by
Gurvich and Vyalyi in [23]. A simple geometric description of Gurvich–Vyalyi
representing trees was found in [32]. This description allows us effectively use
the Gurvich–Vyalyi representation in various problems associated with finite
ultrametric spaces. In particular, it leads to a graph-theoretic interpretation of
the Gomory–Hu inequality [20]. A characterization of finite ultrametric spaces
which are as rigid as possible also was obtained [21] on the basis of the Gurvich–
Vyalyi representation. Some other extremal properties of finite ultrametric
spaces and related them properties of monotone rooted trees have been found
in [19]. The interconnections between the Gurvich–Vyalyi representation and
the space of balls endowed with the Hausdorff metric are discussed in [16] (see
also [18,31,33–35]).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-022-00581-8&domain=pdf
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The Gurvich–Vyalyi representing trees can be considered as a subclass of
finite trees endowed with some special labeling on vertex set. The trees with
labeled vertices are studied by many mathematicians and there are a number
of interesting results in this directions. In survey [22], Gallian writes that over
200 graph labelings techniques have been studied in over 2800 paper during
the past 50 years. In this regards, we only note that in almost all studies of
trees with labeled vertices, it is assumed that the trees are finite. The infinite
trees endowed with positive real labelings on the set of edges are known as
the so-called R-trees (see [1] for some interesting results related to R-trees
and ultrametrics). A description of interrelations between finite subtrees of
R-trees and finite, monotone rooted trees can be found in [17]. The categorical
equivalence of trees and ultrametric spaces was investigated in [24] and [28].

Motivated by Gurvich–Vyalyi representation of finite ultrametric spaces
and some results of Bruhn, Diestel, Halin, Kühn, Pott, Sprüssel, and Stein
[3–5,7–9,11–15] on topological aspects of infinite graphs, we consider infinite
trees whose vertices are labeled by nonnegative real numbers and ultrametric
spaces generated by such trees.

The paper is organized as follows. Sections 2 and 3 contain some neces-
sary concepts and facts from the theory of metric spaces and graph theory,
respectively. In Sect. 4, we introduce into consideration the ultrametric spaces
(V (T ), dl) generated by non-degenerate vertex labelings l of arbitrary trees T .
The first main result of the paper is Theorem 2 characterizing, up to isomor-
phism, the labeled trees T (l) for which the corresponding ultrametric spaces
(V (T ), dl) are complete. The characterizations of labeled trees generating dis-
crete ultrametrics and totally bounded ones are found in Theorem 3 and The-
orem 4, respectively. Using these results, we describe, up to isomorphism, the
labeled trees generating discrete totally bounded ultrametrics in Theorem 5.
The final result of Sect. 4 is Theorem 6 characterizing the labeled trees T (l)
for which the ultrametric spaces (V (T ), dl) are compact. The last fifth section
contains some conjectures and examples related to subject of the paper.

Concluding remarks. The results obtained in the paper indicate a close
connection between the combinatorial properties of an infinite tree and the
properties of ultrametric spaces generated by labelings on its vertex set.

– A tree T is rayless if and only if every ultrametric generated by vertex
labeling is complete (Corollary 4).

– T is locally finite if and only if every ultrametric generated by vertex
labeling is discrete (Corollary 5).

– T is rayless, at most countable, and has no adjacent vertices of infinite
degree if and only if there is vertex labeling generating a compact ultra-
metric (Theorem 7).

– T is locally finite if and only if there is vertex labeling generating a
discrete totally bounded ultrametric (Corollary 8).

It seems interesting to study similar problems for general infinite connected
graphs using the spanning trees technique. Another promising direction of
research is the study of ultrametric spaces generated by some special labelings.
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For example, we can consider the case when the label of a vertex depends on
the degree of this vertex.

2. Definitions and Facts from Theory of Metric Spaces

Let us start from basic concepts. In what follows, we will denote by R
+ the half-

open interval [0,∞) and write N for the set of all positive integers, {1, 2, . . .}.
A metric on a set X is a function d : X × X → R

+ such that for all x, y,
z ∈ X

(i) d(x, y) = d(y, x),
(ii) (d(x, y) = 0) ⇔ (x = y),
(iii) d(x, y) ≤ d(x, z) + d(z, y).

A metric space (X, d) is ultrametric if the strong triangle inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.

holds for all x, y, z ∈ X. In this case, the function d is called an ultrametric
on X.

Definition 1. Let (X, d) and (Y, ρ) be metric spaces. A bijective mapping
Φ: X → Y is said to be an isometry if

d(x, y) = ρ(Φ(x),Φ(y))

holds for all x, y ∈ X. The metric spaces are isometric if there is an isometry
of these spaces.

Let (X, d) be a metric space. An open ball with a radius r > 0 and a
center c ∈ X is the set

Br(c) = {x ∈ X : d(c, x) < r}.

We denote by BX the set of all open balls in (X, d).
A sequence (xn)n∈N ⊆ X is a Cauchy sequence in (X, d) if, for every

r > 0, there is an integer n0 ∈ N such that xn ∈ Br(xn0) for every n � n0. It
is easy to see that (xn)n∈N is a Cauchy sequence if and only if

lim
n→∞ sup{d(xn, xn+k) : k ∈ N} = 0.

Remark 1. Here and later, the symbol (xn)n∈N ⊆ X means that xn ∈ X holds
for every n ∈ N.

There exists a comfortable “ultrametric modification” of the notion of
Cauchy sequence (see, for example, [30, p. 4] or [6, Theorem 1.6, Statement (13)]).

Proposition 1. Let (X, d) be an ultrametric space. A sequence (xn)n∈N ⊆ X is
a Cauchy sequence if and only if the limit relation

lim
n→∞ d(xn, xn+1) = 0

holds.
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A sequence (xn)n∈N of points in a metric space (X, d) is said to be con-
vergent to a point a ∈ X,

lim
n→∞ xn = a,

if, for every open ball B containing a, it is possible to find an integer n0 ∈ N

such that xn ∈ B for every n � n0. Thus, (xn)n∈N is convergent to a if and
only if

lim
n→∞ d(xn, a) = 0.

A sequence is convergent if it is convergent to some point. It is clear that every
convergent sequence is a Cauchy sequence.

The next proposition follows, for example, from Theorem 6.8.3 in [36].

Proposition 2. Let (X, d) be a metric space and let (xn)n∈N ⊆ X be a Cauchy
sequence in (X, d). Then, (xn)n∈N is convergent if and only if it has a conver-
gent subsequence.

Now, we present a definition of total boundedness.

Definition 2. A subset A of a metric space (X, d) is totally bounded if for every
r > 0 there is a finite set {Br(x1), . . . , Br(xn)} ⊆ BX such that

A ⊆
n⋃

i=1

Br(xi).

There exists a simple interdependence between the total boundedness of
a set A ⊆ X and Cauchy sequences in A.

Proposition 3. A subset A of a metric space (X, d) is totally bounded if and
only if every sequence of points of A contains a Cauchy subsequence.

See, for example, Theorem 7.8.2 [36].

Corollary 1. Let (X, d) be a metric space. If A ⊆ X is totally bounded in (X, d)
and C is a subset of A, then C is totally bounded in (A, d|A×A).

The next basic for us concept is the concept of completeness.

Definition 3. A metric space (X, d) is complete if for every Cauchy sequence
(xn)n∈N ⊆ X there is a point a ∈ X such that

lim
n→∞ xn = a.

Thus, a metric space is complete if and only if the set of Cauchy sequences
coincides with the set of convergent sequences in this space.

An important subclass of complete metric spaces is the class of compact
metric spaces.

Definition 4. (Borel–Lebesgue property). Let (X, d) be a metric space. A subset
A of X is compact if every family F ⊆ BX satisfying the inclusion

A ⊆
⋃

B∈F
B
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contains a finite subfamily F0 ⊆ F such that

A ⊆
⋃

B∈F0

B.

A standard definition of compactness usually formulated as: every open
cover of A in X has a finite subcover.

The following classical theorem was proved by Frechet and it is a “com-
pact” analog of Proposition 3.

Proposition 4 (Bolzano–Weierstrass property). A subset A of a metric space
is compact if and only if every sequence of points of A contains a subsequence
which converges to a point of A.

The next corollary shows that the class of compact metric spaces is the
intersection of the class of complete metric spaces with the class of totally
bounded ones.

Corollary 2 (Spatial Criterion). A metric space is compact if and only if this
space is complete and totally bounded.

This and other criteria of compactness can be found, for example, in [36,
p. 206].

Let (X, d) be a metric space and let S ⊆ X. The set S is said to be dense
in (X, d) if for every a ∈ X there is a sequence (sn)n∈N ⊆ S such that

a = lim
n→∞ sn.

Recall that a point p of a metric space (X, d) is isolated if there is ε > 0
such that d(p, x) > ε for every x ∈ X\{p}. If p is not an isolated point of
X, then p is called an accumulation point of X. We say that a set A ⊆ X is
discrete if all points of A are isolated.

It will be shown in Proposition 8 of Sect. 4 that every ultrametric space,
generated by labeled graph, contains a dense discrete subset.

3. Definitions and Facts from Graph Theory

A graph is a pair (V,E) consisting of a set V and a set E whose elements are
unordered pairs {u, v} of different points u, v ∈ V . For a graph G = (V,E),
the sets V = V (G) and E = E(G) are called the set of vertices and the set of
edges, respectively. A graph G is finite if V (G) is a finite set. If {x, y} ∈ E(G),
then the vertices x and y are called adjacent. In what follows, we will always
assume that E(G) ∩ V (G) = ∅.

Recall that a graph G1 is a subgraph of a graph G if

V (G1) ⊆ V (G) and E(G1) ⊆ E(G).

In this case, we will write G1 ⊆ G. If {Gi : i ∈ I} is a family of subgraphs of
a graph G, then, by definition, the union

⋃
i∈I Gi is a subgraph G∗ of G such

that

V (G∗) =
⋃

i∈I

V (Gi) and E(G∗) =
⋃

i∈I

E(Gi).
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Similarly, the intersection
⋂

i∈I Gi is a subgraph G∗ of G with

V (G∗) =
⋂

i∈I

V (Gi) and E(G∗) =
⋂

i∈I

E(Gi). (1)

Let v∗ be a vertex of a graph G. The neighborhood N(v∗) = NG(v∗) is a
subgraph of G induced by all vertices adjacent to v∗. Thus, we have

V (N(v∗)) = {u ∈ V (G) : {u, v∗} ∈ E(G)},

E(N(v∗)) =
{{u, v} ∈ E(G) : u, v ∈ V (N(v∗))

}

for every graph G and each v∗ ∈ V (G). Let k be a cardinal number. The vertex
v of a graph G has degree k if

k = cardV (N(v)).

The degree of v will be denoted as δG(v) or simply as δ(v).
A path is a finite graph P whose vertices can be numbered without rep-

etitions so that

V (P ) = {x1, . . . , xk} and E(P ) = {{x1, x2}, . . . , {xk−1, xk}} (2)

with k � 2. We will write P = (x1, . . . , xk) or P = Px1,xk
if P is a path

satisfying (2) and said that P is a path joining x1 and xk. A graph G is
connected if for every two distinct vertices of G there is a path P ⊆ G joining
these vertices.

A finite graph C is a cycle if there exists an enumeration of its vertices
without repetition such that V (C) = {x1, . . . , xn} and

E(C) = {{x1, x2}, . . . , {xn−1, xn}, {xn, x1}} with n � 3.

Definition 5. A connected graph T with V (T ) 	= ∅ and without cycles is called
a tree.

A tree T is locally finite if the inequality δ(v) < ∞ holds for every v ∈
V (T ).

We shall say that a tree T is a star if there is a vertex c ∈ V (T ), the
center of T , such that c and v are adjacent for every v ∈ V (T )\{c}.

An infinite graph G of the form

V (G) = {x1, x2 . . . , xn, xn+1, . . .}, E(G) = {{x1, x2}, . . . {xn, xn+1}, . . .},

where all xn are assumed to be distinct, is called a ray [10]. It is clear that
every ray is a tree. A graph is rayless if it contains no rays.

Proposition 5. Every infinite connected graph has a vertex of infinite degree or
contains a ray.

For the proof, see Proposition 8.2.1 in [10].
The following statement is well known for finite trees (see, for example,

Proposition 4.1 [2]) and is usually considered self-evident for infinite trees.

Lemma 1. In each tree, every two different vertices are connected by exactly
one path.
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Proof. If T is an infinite tree and v1, v2 are two different vertices of T connected
by some paths P1 ⊆ T and P2 ⊆ T , then the graph P1∪P2 is a finite connected
subgraph of T . Since T does not have cycles, P1 ∪ P2 is also acyclic. Hence,
P1 ∪ P2 is a finite tree and P1, P2 are paths connected v1 and v2 in P1 ∪ P2.
Thus, P1 = P2 holds. �

In the next definition, we introduce an analogue of convex hull for arbi-
trary trees.

Definition 6. Let T be a tree and let A be a nonempty subset of V (T ). A
subtree HA of the tree T is the hull of A if A ⊆ V (HA) and, for every subtree
T ∗ of T , the tree HA is a subtree of T ∗ whenever A ⊆ V (T ∗).

Thus, HA is the smallest subtree of T which contains A. We want to
make sure that for every tree T and each nonempty A ⊆ V (T ) the hull HA is
well defined and unique.

Proposition 6. Let T be a tree, A be a nonempty subset of V (T ) and let FA be
the set of all subtrees T ∗ of T for which the inclusion A ⊆ V (T ∗) holds. Then,
the graph

⋂
T ∗∈FA

T ∗ is the hull of A,

HA =
⋂

T ∗∈FA

T ∗. (3)

Proof. It is clear that
⋂

T ∗∈FA
T ∗ is a subgraph of T ∗ for every T ∗ ∈ FA. In

particular,
⋂

T ∗∈FA
T ∗ is a subgraph of T because T ∈ FA. Since T is a tree,

the subgraph
⋂

T ∗∈FA
T ∗ contains no cycles. Hence, to prove (3), it suffices to

show that
⋂

T ∗∈FA
T ∗ is connected.

Let u and v be distinct vertices of
⋂

T ∗∈FA
T ∗ and let Pu,v be the path

joining u and v in T . Then, u and v belong to V (T ∗) for every T ∗ ∈ FA. Using
Lemma 1, we obtain Pu,v ⊆ T ∗ for every T ∗ ∈ FA. From (1) with F = FA, it
follows that the path Pu,v is also a subgraph of

⋂
T ∗∈FA

T ∗. Thus,
⋂

T ∗∈FA
T ∗

is connected as required. �

Example 1. Let T be an infinite tree, let a ray R,

V (R) = {r1, r2, . . . , rn, rn+1, . . .}, E(R) = {{r1, r2}, . . . , {rn, rn+1}, . . .},

be a subgraph of T , and v be a vertex of T such that v /∈ V (R). We claim that
there is a unique n(v) ∈ N such that rn(v) is the only common vertex of R and
of the path Prn(v),v joining rn(v) and v in T ,

{rn(v)} = V (R) ∩ V (Prn(v),v). (4)

We first prove the existence of some n(v) ∈ N satisfying (4) and show that the
graph R ∪ Prn(v),v is the hull in T of the set A

def= V (R) ∪ {v},

HA = R ∪ Prn(v),v.

Let v ∈ V (T )\V (R) be fixed. To find n(v) ∈ N satisfying (4) it suffices to
consider an arbitrary u ∈ V (R) and the path (u1, . . . , um) ⊆ T with u1 = u
and um = v. Since u ∈ V (R) and v /∈ V (R) hold, there is m1 ∈ {1, . . . , m − 1}
such that um1 ∈ V (R) and uj /∈ V (R) whenever j ∈ {m1 + 1, . . . ,m − 1}.
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T

r1 r2 r3 r4 r5 r6

v2

v5
v1 v3

v4 v6

v9 v10

v7 v8

HA

r1 r2 r3 r4 r5 r6

v2

v5

Figure 1. The hull HA of A = {v5} ∪ {ri : i ∈ N} is comb in
T , the vertex r3 is the root of the tooth v5 in this comb

Consequently, there is n1 ∈ N such that rn1 = um1 . If we set n(v) def= n1, then
(4) holds with Prn(v),v

def= (um1 , . . . , um). Since Prn(v),v and R are connected
and have the common vertex rn(v), the union R ∪ Prn(v),v is a subtree of T . It
is also clear that

A ⊆ V (R ∪ Prn(v),v)

holds. Now, Definition 6 implies that HA is a subtree of R ∪ Prn(v),v. If we
have

HA 	= R ∪ Prn(v),v,

then there is j ∈ {m1 + 1, . . . , m − 1} such that uj /∈ V (HA). Lemma 1
and uj /∈ V (HA) imply that HA is disconnected, contrary to Definition 6.
From Proposition 6, it follows that the hull HA is unique. Consequently, the
number n(v) ∈ N satisfying (4) is also unique.

In what follows, we will say that R ∪ Prn(v),v is a comb in T , v is a tooth
of this comb, and rn(v) is the root of the tooth v (see Fig. 1).

Remark 2. Thus, we always assume that each comb has exactly one tooth with
exactly one root. The combs with a large number of teeth are more often used
in theory of ultrametric spaces and graph theory (see, for example, the Comb
representation of compact ultrametric spaces [26] or the Star-Comb Lemma
[10, Lemma 8.2.2]).



Labeled Trees Generating Complete 621

Let us recall the concept of labeled trees.

Definition 7. A labeled tree is a pair (T, l), where T is a tree and l is a mapping
defined on the set V (T ).

We say that T is a free tree corresponding to (T, l) and write T = T (l)
instead of (T, l). In what follows, we will consider only the nonnegative real-
valued labelings l : V (T ) → R

+.

Before introducing into consideration the concept of isomorphism of la-
beled trees, it is useful to remind the definition of isomorphism for free trees.

Definition 8. Let T1 and T2 be trees. A bijection f : V (T1) → V (T2) is an
isomorphism of T1 and T2 if

({u, v} ∈ E(T1)) ⇔ ({f(u), f(v)} ∈ E(T2))

is valid for all u, v ∈ V (T1). Two trees are isomorphic if there exists an
isomorphism of these trees.

For the case of labeled trees, Definition 8 must be modified as follows.

Definition 9. Let Ti = Ti(li) be a labeled tree, i = 1, 2. A mapping f : V (T1) →
V (T2) is an isomorphism of T1(l1) and T2(l2) if it is an isomorphism of the free
trees T1 and T2 and the equality

l2(f(v)) = l1(v)

holds for every v ∈ V (T1).

4. Ultrametrics Generated by Labeled Trees

Let T = T (l) be a labeled tree. Following [17], we define a mapping dl : V (T )×
V (T ) → R

+ as

dl(u, v) =

⎧
⎨

⎩
0 if u = v,

max
v∗∈V (P )

l(v∗) if u 	= v, (5)

where P is the path joining u and v in T .

Remark 3. The correctness of this definition follows from Lemma 1.

To formulate the first theorem of this section, we recall the concept of
pseudoultrametric space. Let X be a set. A symmetric mapping d : X×X → R

+

is a pseudoultrametric on X if

d(x, x) = 0 and d(x, y) � max{d(x, z), d(z, y)}
hold for all x, y, z ∈ X. Every ultrametric is a pseudoultrametric, but a
pseudoultrametric d on a set X is an ultrametric if and only if d(x, y) > 0
holds for all distinct x, y ∈ X.
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The notion of isometries can be extended on pseudoultrametrics as fol-
lows. If (X, d) and (Y, ρ) are pseudoultrametric spaces, then a mapping Φ: X →
Y is an isometry of (X, d) and (Y, ρ) if Φ is bijective and

d(x, y) = ρ(Φ(x),Φ(y))

holds for all x, y ∈ X.

Theorem 1. Let T = T (l) be a labeled tree. Then, (V (T ), dl) is a pseudoul-
trametric space. The function dl is an ultrametric on V (T ) if and only if the
inequality

max{l(u1), l(v1)} > 0

holds for every {u1, v1} ∈ E(T ).

A proof of Theorem 1 can be obtained by simple modification of the proof
of Proposition 3.2 [17].

Proposition 7. Let T1 = T1(l1) and T2 = T2(l2) be labeled trees and let f:V (T1)
→ V (T2) be an isomorphism of these trees. Then, the equality

dl1(u, v) = dl2(f(u), f(v))

holds for all u, v ∈ V (T1).

Proof. It directly follows from Definition 9 and formula (5), because if (v1, . . . ,
vn) is a path joining some distinct v = v1 and u = vn in T1, then f(u) 	= f(v)
holds and (f(v1), . . . , f(vn)) is a path joining f(v) and f(u) in T2 and we have
the equality

{l1(v1), . . . , l1(vn)} = {l2(f(v1)), . . . , l2(f(vn))} .

�

Corollary 3. Let T1 = T1(l1) and T2 = T2(l2) be isomorphic labeled trees.
Then, the pseudoultrametric spaces (V (T1), dl1) and (V (T2), dl2) are isometric.

The converse statement is not valid in general. The following example is
a modification of Example 3.1 [17].

Example 2. Let V = {v0, v1, v2, v3, v4} be a five-point set, and let S = S(lS)
and P = P (lP ) be a labeled star with the center v0 and, respectively, a labeled
path such that V (S) = V (P ) = V , lS(v0) = lP (v0) = 1 and

lS(vi) + 1 = lP (vi) = 1

for i = 1, . . ., 4 (see Fig. 2). Then, for all distinct u, v ∈ V , we have

dlP (u, v) = dlS (u, v) = 1.

Thus, the ultrametric spaces (V, dlP ) and (V, dlS ) coincide, but P (lP ) and S(lS)
are not isomorphic as labeled trees or even as free trees.

Example 2 shows that the properties of ultrametric spaces generated by
different labeled trees can be the same. Thus, the following problem naturally
arises.
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S(lS)

1

0

0

0

0

P (lP )

1 1 1 1 1

Figure 2. The star S and the path P are not isomorphic as
trees, but the labelings lS and lP generate the same ultramet-
ric on V

Problem 1. Let UP be the class of ultrametric spaces with a given property P.
What common properties do the labeled trees T = T (l) generating (V (T ), dl) ∈
UP have?

Below we will consider this problem in the following cases:
– P = completeness,
– P = discreteness,
– P = total boundedness,
– P = discreteness + total boundedness,
– P = compactness,

and in each of these cases, we find the corresponding characteristic properties
of generating labeled trees.

Let us start from the completeness.
In what follows, we shall say that a labeling l : V (T ) → R

+ is non-
degenerate if the inequality

max{l(u), l(v)} > 0

holds for every {u, v} ∈ E(T ).

Lemma 2. Let R be a ray, V (R) = {v1, v2, . . . , vn, vn+1, . . .},
E(R) = {{v1, v2}, . . . , {vn, vn+1}, . . .}, (6)

and let l : V (R) → R
+ be a non-degenerate labeling. The sequence (vn)n∈N is

a Cauchy sequence in the ultrametric space (V (R), dl) if and only if the limit
relation

lim
n→∞ l(vn) = 0 (7)

holds.

Proof. By Proposition 1, (vn)n∈N is a Cauchy sequence in (V (R), dl) if and
only if

lim
n→∞ dl(vn, vn+1) = 0. (8)

Using (5) and (6), we can rewrite (8) as

lim
n→∞ (max{l(vn), l(vn+1)}) = 0.
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Since all l(vn) belong to R
+, (7) holds if and only if

lim sup
n→∞

l(vn) = 0.

Similarly, (8) is equivalent to

lim sup
n→∞

(max{l(vn), l(vn+1)}) = 0.

Now, using the equality

lim sup
n→∞

l(vn) = lim sup
n→∞

(max{l(vn), l(vn+1)})

we see that (7) and (8) are equivalent. �

The next lemma will be useful to prove Theorem 2.

Lemma 3. Let R = R(l) be a labeled ray,

V (R) = {v1, v2, . . . , vn, vn+1, . . .}, E(R) = {{v1, v2}, . . . , {vn, vn+1}, . . .},

with non-degenerate labeling. Then, the sequence (vn)n∈N is a Cauchy sequence
in (V (R), dl) if and only if (vn)n∈N contains a subsequence which is Cauchy
in (V (R), dl).

Proof. If (vn)n∈N is a Cauchy sequence, then (vn)n∈N is a Cauchy subsequence
of itself.

Conversely, let (vnk
)k∈N,

1 � n1 < n2 < . . . < nk < nk+1 < . . . ,

be a Cauchy subsequence of (vn)n∈N. It is easy to see that, for every m � n1,
there is the unique k(m) ∈ N such that

nk(m) � m < nk(m)+1. (9)

Let us denote by Pvnk(m) ,vnk(m)+1
the path joining vnk(m) and vnk(m)+1 in

R. From (9), it follows that

vm ∈ V (Pvnk(m) ,vnk(m)+1
). (10)

Now, using (5) and (10), we obtain

l(vm) � max{l(v) : v ∈ V (Pvnk(m) ,vnk(m)+1
)} = dl(vnk(m) , vnk(m)+1). (11)

It is clear that the mapping

{n1, n1 + 1, . . .} � m �→ nk(m) ∈ N

is increasing and satisfies the limit relation

lim
m→∞ nk(m) = +∞. (12)

Proposition 1, (11) and (12) imply

lim sup
m→∞

l(vm) � lim sup
m→∞

dl(vnk(m) , vnk(m)+1) = 0.

Thus, we have

lim
m→∞ l(vm) = 0,
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because l(vm) ∈ R
+ for every n ∈ N. Using the last limit relation, we obtain

that (vn)n∈N is a Cauchy sequence by Lemma 2. �

Lemma 4. Let T = T (l) be a labeled tree with non-degenerate labeling l : V (T )
→ R

+ and let T1 be a subtree of T having the labeling l1 : V (T1) → R
+ which

is the restriction of l on V (T1), l1 = l|V (T1). Then, the labeling l1 is also non-
degenerate and the ultrametric dl1 is the restriction of the ultrametric dl on
the set V (T1), dl1 = dl|V (T1)×V (T1).

Proof. It follows from formula (5), Lemma 1 and the definition of trees and
subtrees. �

Theorem 2. Let T = T (l) be a labeled tree with non-degenerate labeling. Then,
the following conditions are equivalent:
(i) The ultrametric space (V (T ), dl) is complete.
(ii) For every ray R ⊆ T ,

V (R) = {x1, x2, . . . , xn, xn+1, . . .}, E(R) = {{x1, x2}, . . . , {xn, xn+1}, . . .},

(13)

we have the inequality

lim sup
n→∞

l(xn) > 0. (14)

Proof. (i) ⇒ (ii). Let (V (T ), dl) be a complete ultrametric space. We must
show that condition (ii) is satisfied. Suppose contrary that there is a ray R ⊆ T
such that (13) and lim supn→∞ l(xn) = 0 hold. Since all l(xn) are nonnegative,
the last equality holds if and only if

lim
n→∞ l(xn) = 0. (15)

From (15) and (5), it follows that

lim
n→∞ dl(xn, xn+1) = lim

n→∞ max{l(xn), l(xn+1)} = 0,

because xn and xn+1 are adjacent in R and R ⊆ T . Hence, by Proposition 1,
the sequence (xn)n∈N is a Cauchy sequence in the space (V (T ), dl).

Now, using condition (i) and Definition 3, we can find a point v∗ ∈ V (T )
satisfying the equality

lim
n→∞ dl(xn, v∗) = 0. (16)

If there is n0 ∈ N such that v∗ = xn0 ∈ V (R), then, for every n � n0 + 1, the
path Pxn0 ,xn

joining v∗ and xn in T contains the edge {xn0 , xn0+1} ∈ E(R).
Since l : V (T ) → R

+ is non-degenerate, (5) and {xn0 , xn0+1} ∈ E(Pxn0 ,xn0+1)
imply

dl(v∗, xn) � max{l(xn0), l(xn0+1)} > 0

for every n � n0 + 1, contrary to (16).
Suppose now that v∗ ∈ V (T )\V (R). Then, the hull HA of the set

A
def= V (R) ∪ {v∗}
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is a comb in T with the tooth v∗ (see Definition 6 and Example 1). Write u∗

for the root of v∗ in HA. Since u∗ 	= v∗ and u∗ is the only common vertex of
R and of the path Pu∗,v∗ joining u∗ and v∗ in T , we have

dl(xn, v∗) � dl(u∗, v∗) > 0

for all xn ∈ V (R), contrary to (16). Condition (ii) follows.
(ii) ⇒ (i). Let (ii) hold. We must show that the ultrametric space

(V (T ), dl) is complete. According to Definition 3, the space is complete if
every Cauchy sequence of points of this space is convergent.

Let us consider an arbitrary Cauchy sequence (yn)n∈N ⊆ V (T ) and define
the range A of (yn)n∈N as:

(v ∈ A) ⇔ (∃n ∈ N : yn = v).

If A is finite, then the sequence (yn)n∈N contains an infinite constant subse-
quence and, consequently, (yn)n∈N is convergent by Proposition 2.

Suppose that A is infinite and denote by HA the hull of A in T . Let us
prove that HA is a rayless graph.

Indeed, let a ray R,

V (R) = {r1, r2, . . . , rn, rn+1, . . .}, E(R) = {{r1, r2}, . . . , {rn, rn+1}, . . .},

be a subgraph of HA. If the intersection A∩V (R) is infinite, then the sequence
(rn)n∈N contains a subsequence (rnk

)k∈N which is Cauchy in (V (T ), dl) and,
consequently, in (V (R), dl|V (R)×V (R)). Using Lemmas 3 and 4, we see that the
sequence (rn)n∈N is Cauchy in (V (R), dl|V (R)×V (R)). Now, Lemma 4 implies
that (rn)n∈N is a Cauchy sequence in (V (T ), dl). Moreover, the equality

lim
n→∞ l(rn) = 0

holds by Lemma 2. The last equality contradicts (14) with (xn)n∈N = (rn)n∈N.
Thus, the intersection A ∩ V (R) is finite and A is infinite. We claim that

there is an infinite subset A∗ of the set A\V (R) which satisfies the condition:

(i∗) If a1, a2 are distinct points of A∗, and

A1
def= V (R) ∪ {a1}, A2

def= V (R) ∪ {a2},

and HA1 , HA2 are the corresponding hulls of A1 and of A2 in T , then the
roots r(a1) and r(a2) are distinct.

(Recall that the hulls HA1 and HA2 in T are some combs in T , see Ex-
ample 1). To find a desired A∗ ⊆ A\V (R) let us consider a number N ∈ N

such that

A ∩ V (R) ⊆ {r1, r2, . . . , rN}
and suppose that, for every a ∈ A\V (R), the root r(a) of the tooth a in the
comb HV (R)∪{a} belongs to the set {r1, r2, . . . , rN}. The graph

GR,N
def= (r1, . . . , rN ) ∪

⋃

a∈A\V (R)

Pa,r(a),
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r1 r2 r(ynk1
)

ynk1

r(ynk2
)

ynk2

Figure 3. The path
(
r(ynk1

), . . . , r(ynk2
)
)

is a subgraph of
the path

(
ynk1

, . . . , r(ynk1
), . . . , r(ynk2

), . . . , ynk2

)
. It implies

inequality (17)

where (r1, . . . , rN ) is the path joining r1 and rN in R and Pa,r(a) is the path
joining a and r(a) in the comb HV (R)∪{a}, is a connected subgraph of T sat-
isfying the conditions

A ⊆ V (GR,N ) and rn /∈ V (GR,N )

for every n � N + 1. Since rn ∈ V (HA) holds for every n ∈ N, the inclusion

V (HA) ⊆ V (GR,N )

is false, contrary to Proposition 6. Hence, there is an element yn1 of the se-
quence (yn)n∈N such that yn1 ∈ A\V (R) and r(yn1) = rN1 and N1 > N . If for
every a ∈ A\V (R) the root r(a) belongs to {r1, . . . , rN , . . . , rN1}, then repeat-
ing the above procedure with the graph GR,N1 gives us yn2 ∈ A\V (R) with
r(yn2) = rN2 such that n2 > n1 and N2 > N1 and so on.

Let us consider the sequence (ynk
)k∈N, whose elements are inductively

defined above, and write

A∗ def= {ynk
: k ∈ N}.

Then, condition (i∗) satisfies with this A∗. Since (yn)n∈N is a Cauchy sequence
in (V (T ), dl), the sequence (ynk

)k∈N is also Cauchy. It is easy to prove that
the inequality

dl(r(ynk1
), r(ynk2

)) � dl(ynk1
, ynk2

) (17)

holds for all k1, k2 ∈ N (see Fig. 3). Consequently, (r(ynk
))k∈N is a Cauchy

sequence in (V (T ), dl).
Now, using Lemmas 3 and 4, we can prove that the sequence (rn)n∈N of

all vertices of the ray R is also a Cauchy sequence in (V (T ), dl). Hence, by
Lemma 2, we have the equality

lim
n→∞ l(rn) = 0,
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that contradicts condition (ii).
Thus, the hull HA is rayless. Since A is infinite, HA has a vertex v∗ of

infinite degree by Proposition 5. To complete the proof it suffices to show that
(yn)n∈N converges to the point v∗ in (V (T ), dl),

lim
n→∞ dl(yn, v∗) = 0.

Let us consider the subgraph Fv∗ obtained from HA by deleting the vertex
v∗,

V (Fv∗) = V (HA) \ {v∗}, E(Fv∗) = {{u, v} ∈ E(HA) : u 	= v∗ 	= v}.

Since HA is a tree (as a subtree of T ), Fv∗ is a forest and, for every connected
component T ′ of Fv∗ , there is a unique p ∈ V (N(v∗)) such that

p ∈ V (T ′), (18)

where N(v∗) is the neighborhood of v∗ in HA. We will write T p for the com-
ponent T ′ if (18) holds with p ∈ V (N(v∗)).

It is clear that

HA =

⎛

⎝
⋃

p∈V (N(v∗))

T p

⎞

⎠ ∪ S(v∗) (19)

holds, where S(v∗) is the star with the center v∗ and the vertex set

V (S(v∗)) = V (N(v∗)).

We claim that the set V (T p) ∩ A is nonempty for every p ∈ V (N(v∗)).
Indeed, suppose that there is p∗ ∈ V (N(v∗)) such that

V (T p∗
) ∩ A = ∅. (20)

Let us denote by Sp∗ the graph which is obtained from S(v∗) by deleting of
the vertex p∗, i.e.,

V (Sp∗) = V (S(v∗)) \ {p∗}
holds and

({x, y} ∈ E(Sp∗)
) ⇔ ({x, y} ∈ E(S(v∗)) and x 	= p∗ 	= y

)

is valid for all x, y ∈ V (N(v∗)). Then, Sp∗ is a star with the center v∗. From
(20) it follows that the union

⎛

⎜⎜⎝
⋃

p∈V (N(v∗))
p�=p∗

T p

⎞

⎟⎟⎠ ∪ Sp∗

is a subtree of T and the set A is a subset of the vertex set of this subtree.
Hence, by Definition 6, we have

p∗ /∈ V (HA),

contrary to (19). Using the conditions

δHA
(v∗) = ∞ and V (T p) ∩ A 	= ∅
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for every p ∈ V (N(v∗)), we can find a subsequence (ynm
)m∈N of the sequence

(yn)n∈N such that for every m ∈ N there is p(m) ∈ V (N(v∗)) satisfying ynm
∈

T p, and p(m1) 	= p(m2) whenever m1 	= m2. Then, for every pair of distinct
m1, m2 ∈ N the path Pynm1

,ynm2
joining ynm1

and ynm2
in HA contains the

vertex v∗. Hence, by definition (5), we have the inequality

dl

(
ynm1

, ynm2

)
� max

{
dl

(
ynm1

, v∗) , dl

(
v∗, ynm2

)}
(21)

whenever m1, m2 ∈ N. By Proposition 2, the sequence (yn)n∈N is convergent if
(ynm

)m∈N is convergent. Using Proposition 1 and inequality (21) with nm1 =
nm and nm2 = nm+1 we obtain

0 = lim
m→∞ dl

(
ynm

, ynm+1

)
� lim sup

m→∞
dl (ynm

, v∗) ,

that implies

lim
m→∞ dl (ynm

, v∗) = 0.

Thus, (ynm
)m∈N is convergent to v∗. �

Condition (ii) of Theorem 2 is vacuously true for every rayless tree T .
Moreover, if R ⊆ T is a ray satisfying (13), then it is easy to construct a
non-degenerate labeling l : V (T ) → R

+ such that (14) does not hold. Thus,
Theorem 2 implies the next corollary.

Corollary 4. The following statements are equivalent for every tree T :
(i) The ultrametric space (V (T ), dl) is complete for every non-degenerate

labeling l : V (T ) → R
+.

(ii) T is rayless.

Recall that a metric space (X, d) is discrete if every point of X is isolated.

Theorem 3. Let T = T (l) be a labeled tree with non-degenerate labeling. Then,
the following statements are equivalent:
(i) The ultrametric space (V (T ), dl) is discrete.
(ii) For every v∗ ∈ V (T ), we have either l(v∗) > 0 or l(v∗) = 0 and

0 < inf
u∈V (N(v∗))

l(u), (22)

where N(v∗) is the neighborhood of v∗ in T .

Proof. (i) ⇒ (ii). Let (V (T ), dl) be a discrete ultrametric space. If (ii) does
not hold, then there is a vertex v∗ such that l(v∗) = 0 and

inf
u∈V (N(v∗))

l(u) = 0.

Hence, there exists a sequence (un)n∈N ⊆ V (N(v∗)) such that

lim
n→∞ l(un) = 0.

The last limit relation, the equality l(v∗) = 0, equality (5) and the definition
of the neighborhoods of vertices of graph imply that

lim
n→∞ d(v∗, un) = 0 (23)
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holds. Hence, v∗ is an accumulation point in (V (T ), dl), contrary to state-
ment (i).

(ii) ⇒ (i). Let (ii) hold. Statement (i) is valid if E(T ) = ∅. Indeed, in
this case the vertex set of T is a single-point set {v∗}. Thus, V (N(v∗)) = ∅

holds and, consequently, we have

inf
u∈V (N(v∗))

l(u) = inf
u∈∅

l(u) = +∞,

that implies (22). (We consider here the empty set ∅ as a subset of [−∞,∞]
and adopt the standard agreement on the supremum and infimum of empty
set.)

Let E(T ) 	= ∅ hold.
Suppose that v∗ is a vertex of T such that l(v∗) > 0. Then, (5) implies

dl(u, v∗) � l(v∗)

for every u ∈ V (T )\{v∗}. Hence, v∗ is an isolated point of (V (T ), dl).
Let us consider now the case when v∗ ∈ V (T ) has the zero label, l(v∗) = 0,

and assume that we have δT (v∗) < ∞. Since the inequality max{l(u), l(v∗)} >
0 holds for every u ∈ V (N(v∗)), from 0 < δT (v∗) < ∞ follows the inequality

min
u∈V (N(v∗))

l(u) > 0. (24)

Let u0 ∈ V (T )\{v∗}. Then, there is u∗ ∈ V (Pv∗,u0) such that

u∗ ∈ V (N(v∗)). (25)

Now, from (5) and (25), it follows that

dl(v∗, u0) = max
u∈V (Pv∗,u0 )

l(u) � dl(v∗, u∗) � min
u∈V (N(v∗))

l(u) > 0.

Hence, v∗ is an isolated point of (V (T ), dl).
Using inequality (22) instead of (24) and repeating the above arguments,

we obtain that v∗ is also isolated for the case l(v∗) = 0 and δT (v∗) = ∞. Thus,
the ultrametric space (V (T ), dl) is discrete. �

Corollary 5. The following statements are equivalent for every tree T :

(i) The ultrametric space (V (T ), dl) is discrete for every non-degenerate la-
beling l : V (T ) → R

+.
(ii) The tree T is locally finite.

Proposition 8. Let T be a tree. Then, the ultrametric space (V (T ), dl) contains
a dense discrete subset for every non-degenerate l : V (T ) → R

+.

Proof. Let l : V (T ) → R
+ be non-degenerate. It was shown in the second part

of the proof of Theorem 3 that v ∈ V (T ) is an isolated point of the ultrametric
space (V (T ), dl) if at least one of the conditions:

– δ(v) < ∞,
– l(v) > 0,
– δ(v) = ∞, l(v) = 0 and infu∈V (N(v∗)) l(u) > 0
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is valid. Arguing as in the first part of the proof of Theorem 3, we can show
that, for every v satisfying conditions δ(v) = ∞ and

l(v) = 0 = inf
u∈V (N(v∗))

l(u),

there is a sequence (un)n∈N ⊆ V (N(v)) which converges to v (see (23)). Now,
it suffices to note that all elements of this sequence are isolated points of
(V (T ), dl) because l(v) = 0 holds and l is non-degenerate. �

The following result gives us the necessary and sufficient conditions under
which the ultrametric space (V (T ), dl) is totally bounded.

Theorem 4. Let T = T (l) be a labeled tree with non-degenerate labeling. Then,
the following statements are equivalent:

(i) The ultrametric space (V (T ), dl) is totally bounded.
(ii) The set

Vε =
{
v ∈ V (T ) : l(v) � ε

}
(26)

is finite for every ε > 0 and the inequality δT (v) < ∞ holds whenever
l(v) > 0.

Proof. (i) ⇒ (ii). Let (i) hold. Suppose that the set Vε is infinite for some
ε > 0. Using the definition of dl (see (5)), it is easy to prove the inequality

dl(v1, v2) � ε

for all distinct v1, v2 ∈ Vε. Hence, the subspace (Vε, dl|Vε×Vε
) of totally

bounded ultrametric space (V (T ), dl) is not totally bounded, contrary to Corol-
lary 1. Thus, Vε is finite for every ε > 0.

Assume now that T contains a vertex v∗ of infinite degree, δ(v∗) = ∞,
and l(v∗) > 0 holds.

Let N(v∗) be the neighborhood of v∗. The equality δT (v∗) = ∞ implies
that V (N(v∗)) has an infinite cardinality. For all distinct u1, u2 ∈ V (N(v∗)),
the unique path joining u1 and u2 in T has the form (u1, v

∗, u2). Hence,

dl(u1, u2) � l(v∗) > 0

holds by (5). It implies that the ultrametric space (V (N(v∗)),
dl|V (N(v∗))×V (N(v∗))) is not totally bounded, contrary to (i).

(ii) ⇒ (i). Let (ii) hold. We must show that (V (T ), dl) is totally bounded.
It is clear that (V (T ), dl) is totally bounded for finite T . Let us consider the
case when T is infinite.

By Proposition 3, the ultrametric space (V (T ), dl) is totally bounded if
every sequence of vertices of T contains a Cauchy subsequence. Let us con-
sider a sequence (u0

j )j∈N of pairwise distinct points of V (T ). Let (εi)i∈N be a
decreasing sequence of strictly positive real numbers such that limi→∞ εi = 0.
Statement (ii) implies that the set Vε1 is finite. Write G1 for the subgraph of
T induced by V (T )\Vε1 , i.e., V (G1) = V (T )\Vε1 and

({u, v} ∈ E(G1)
) ⇔ (

u, v ∈ V (G1) and {u, v} ∈ E(T )
)
.
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Every connected component of G1 is a tree. Since Vε1 is a finite set, and
δT (v) < ∞ holds for every v ∈ Vε1 , the number of these components are
finite. Since T is an infinite tree, there is an infinite subtree T 1 of T with
l(v1) < ε1 for all v1 ∈ V (T 1) and such that (u1

j )j∈N ⊆ V (T 1) holds for an
infinite subsequence (u1

j )j∈N of the sequence (u0
j )j∈N ⊆ V (T ). Write u1 = u1

1.
Let us consider the subgraph G2 of T 1 induced by V (T 1)\Vε2 . As above,

the finiteness of Vε2 implies the existence of an infinite tree T 2 ⊆ T 1 and a
subsequence (u2

j )j∈N of the sequence (u1
j )j∈N ⊆ V (T 1) for which (u2

j )j∈N ⊆
V (T 2) holds. Let us write u2 = u2

1.
By induction, for every i � 2, we find an infinite connected component

T i+1 of the subgraph Gi+1 of T i induced by V (T i)\Vεi+1 and a subsequence
(ui+1

j )j∈N of the sequence (ui
j)j∈N such that

(ui+1
j )j∈N ⊆ V (T i+1). (27)

Write ui+1 for the first element ui+1
1 of this sequence.

Let us consider now the sequence (ui)i∈N. It is clear that (ui)i∈N is a
subsequence of the original sequence (u0

j )j∈N. From (27), it follows that

l(ui+1) < εi+1

holds for every i ∈ N. The last inequality and the limit relation limi→∞ εi = 0
imply

lim
i→∞

l(ui) = 0. (28)

Moreover, since for every i � 2 the points ui and ui+1 are vertices of the tree
T i and the inequality l(v) � εi holds for every v ∈ V (T i), formula (5) implies
the inequality

dl(ui, ui+1) � l(ui−1)

for every i � 2. Now, using Proposition 1 and limit relation (28), we obtain
that (ui)i∈N is a Cauchy sequence.

The same reasons show that (u0
j )j∈N contains a Cauchy subsequence

whenever (u0
j )j∈N contains an infinite subsequence of pairwise distinct mem-

bers.
To complete the proof, we note only that if all subsequences of pairwise

distinct members of a sequence are finite, then there is an infinite constant
subsequence of that sequence and this constant subsequence obviously is a
Cauchy sequence. �

Corollary 6. Let T = T (l) be a labeled tree with non-degenerate labeling. If the
ultrametric space (V (T ), dl) is totally bounded, then the set V (T ) is at most
countable.

Proof. It suffices to show that the inequality

δT (v∗) � ℵ0 (29)

holds for every vertex v∗ of T , where ℵ0 is the cardinality of N.
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Let (V (T ), dl) be totally bounded and let v∗ be a vertex of T . Inequality
(29) follows directly from Theorem 4 if l(v∗) > 0. Suppose that l(v∗) = 0 holds.
Then, for every {u, v∗} ∈ E(T ), we have the inequality l(u) > 0. Consequently,
the vertex set V (N(v∗)) satisfies the inclusion

V (N(v∗)) ⊆
⋃

n∈N

V1/n, (30)

where V1/n is defined by (26) with ε = 1/n. By Theorem 4, V1/n is finite for
every n ∈ N. Hence,

⋃
n∈N

V1/n is at most countable. Now, inequality (29)
follows from (30). �

Theorem 5. Let T = T (l) be a labeled tree with non-degenerate labeling. Then,
the following conditions are equivalent:
(i) The ultrametric space (V (T ), dl) is discrete and totally bounded.
(ii) The tree T is locally finite and the set

Vε =
{
v ∈ V (T ) : l(v) � ε

}

is finite for every ε > 0.

Proof. (i) ⇒ (ii). Let (i) hold. Then, the set Vε is finite for every ε > 0 by
Theorem 4.

Assume now that T contains a vertex v∗ of infinite degree, δ(v∗) = ∞.
Then, using Theorem 4 again, we obtain the equality

l(v∗) = 0. (31)

By Theorem 3, equality (31) and discreteness of (V (T ), dl) imply that there is
ε∗ > 0 such that

inf
u∈V (N(v∗))

l(u) � ε∗.

Hence, we have the inclusion V (N(v∗)) ⊆ Vε∗ . It was shown above that Vε is
finite for every ε > 0. Consequently, V (N(v∗)) is also finite as a subset of a
finite set, contrary to δT (v∗) = ∞.

(ii) ⇒ (i). Let (ii) hold. Then, T is locally finite and, consequently, the
ultrametric space (V (T ), dl) is discrete by Corollary 5. To complete the proof,
it suffices to note that (V (T ), dl) is totally bounded by Theorem 4. �

Corollary 5 and Theorem 5 imply the following.

Corollary 7. Let T be a tree. Then, the following statements are equivalent:
(i) There is a non-degenerate labeling l1 : V (T ) → R

+ for which the ultra-
metric space (V (T ), dl1) is discrete and totally bounded.

(ii) The ultrametric space (V (T ), dl) is discrete for every non-degenerate la-
beling l : V (T ) → R

+.

Proof. If (i) holds, then T is locally finite by Theorem 5, that implies (ii) by
Corollary 5.

Conversely, suppose that (ii) holds. Then, using Corollary 5 again, we see
that T is locally finite. If T is finite, then (i) is trivially valid. Every infinite
locally finite tree has countable vertex set. Thus, all vertices of T can be
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numbered in a sequence (vn)n∈N of pairwise different points and we can define
a labeling l1 : V (T ) → R

+ as

l1(vn) =
1
n

for every n ∈ N. Then, l1 is a non-degenerate labeling and T (l1) satisfies condi-
tion (ii) of Theorem 5. Hence, (V (T ), dl1) is discrete and totally
bounded. �

Using Corollaries 5 and 7 we obtain.

Corollary 8. Let T be a tree. Then, the following statements are equivalent:
(i) T is locally finite.
(ii) There is a non-degenerate labeling l1 : V (T ) → R

+ for which (V (T ), dl1)
is discrete and totally bounded.

Theorem 6. Let T = T (l) be a labeled tree with non-degenerate labeling. Then,
the following statements are equivalent:

1. The ultrametric space (V (T ), dl) is compact.
2. The tree T is rayless and the set

Vε =
{
v ∈ V (T ) : l(v) � ε

}

is finite for every ε > 0 and the inequality δT (v) < ∞ holds whenever
l(v) > 0.

Proof. (i) ⇒ (ii). Let (V (T ), dl) be a compact ultrametric space. Every com-
pact metric space is totally bounded and complete by Corollary 2. Hence, by
Theorem 4, for every ε > 0 the set Vε is finite, and δT (v) < ∞ holds for all
vertices v with l(v) > 0.

Suppose that there is a ray R ⊆ T . Then, the completeness of (V (T ), dl)
and Theorem 2 imply the existence of ε∗ > 0 and of a sequence (xn)n∈N of
pairwise distinct vertices of R such that

lim sup
n→∞

l(xn) � ε∗ > 0.

Thus, the set {v ∈ V (R) : l(v) � 1
2ε∗} is infinite, contrary to the finiteness of

the set V ε∗
2

which contains {v ∈ V (R) : l(v) � 1
2ε∗}.

(ii) ⇒ (i). Let (ii) hold. Then, (i) follows from the Spatial Criterion
(Corollary 2) and Theorems 2, 4. �

Theorem 7. Let T be a tree. Then, the following statements are equivalent:
(i) T is rayless, and the set V (T ) is at most countable, and, for every {x, y} ∈

E(T ), at least one from the degrees δ(x) and δ(y) is finite.
(ii) There is a non-degenerate labeling l1 : V (T ) → R

+ for which the ultra-
metric space (V (T ), dl1) is compact.

Proof. (i) ⇒ (ii). Let (i) hold. Let us define the subsets V F and V I of V (T )
as

V F def=
{
v ∈ V (T ) : δ(v) is finite

}
, V I def=

{
v ∈ V (T ) : δ(v) is infinite

}
.
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The set V (T ) is at most countable. Consequently, there is a labeling l1 : V (T )
→ R

+ such that:
– the set Vε = {v ∈ V (T ) : l1(v) � ε} is finite for every ε > 0;
– the inequality l1(u) > 0 holds for every u ∈ V F ;
– the equality l1(w) = 0 holds for every w ∈ V I .

These properties of l1 and statement (i) imply the inequality

max
{
l1(x), l1(y)

}
> 0

for every {x, y} ∈ E(T ). Hence, l1 : V (T ) → R
+ is a non-degenerate labeling.

Thus, (V (T ), dl1) is compact by Theorem 6.
(ii) ⇒ (i). Let l1 : V (T ) → R

+ be a non-degenerate labeling for which the
ultrametric space (V (T ), dl1) is compact. Then, from Theorem 6 it follows that
T is rayless. Moreover, since every compact metric space is totally bounded,
the set V (T ) is at most countable by Corollary 6.

To complete the proof it is enough to show that the inequality

min
{
δ(u), δ(v)

}
< ∞

holds for every {u, v} ∈ E(T ). Assume to the contrary that there exists {u, v} ∈
E(T ) such that

δ(u) = δ(v) = ℵ0.

Since l1 : V (T ) → R
+ is a non-degenerate labeling, {u, v} ∈ E(T ) implies

max
{
l1(u), l1(v)

}
> 0.

Without loss of generality, we may assume that l1(v) > 0. The last inequality,
the inequality δ(v) > 0 and Theorem 6 imply that (V (T ), dl1) is not compact,
contrary to the definition of l1 : V (T ) → R

+. �

Corollary 4 and Theorem 7 imply the following.

Corollary 9. Let T be a tree. If there is a non-degenerate labeling l1 : V (T ) →
R

+ for which the ultrametric space (V (T ), dl1) is compact, then (V (T ), dl) is
complete for every non-degenerate labeling l : V (T ) → R

+.

Remark 4. It is interesting to compare Corollary 9 with the following the-
orem: “A metrizable topological space (X, τ) is compact if and only if ev-
ery metric generated the topology τ is complete.” This result was proved by
Niemytzki and Tychonoff in 1928 [29]. There is also an ultrametric modifi-
cation of Niemytzki–Tychonoff theorem recently obtained by Yoshito Ishiki
[25].

The next corollary follows from Proposition 5 and Theorems 5, 6.

Corollary 10. The following statements are equivalent for every tree T :
(i) There are non-degenerate labelings l1 : V (T ) → R

+ and l2 : V (T ) → R
+

such that (V (T ), dl1) is a compact ultrametric space and (V (T ), dl2) is a
discrete totally bounded ultrametric space.

(ii) T is a finite tree.
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5. Some Examples and Conjectures

Let us consider examples of totally bounded non-complete ultrametric spaces,
and compact ultrametric spaces generated by labeled trees having infinitely
many vertices of infinite degree. To construct these examples, we use the gluing
a given set of labeled trees to a fixed labeled tree.

Let F = {Ti(li) : i ∈ I} be a nonempty set of labeled trees Ti = Ti(li) for
which

V (Ti1) ∩ V (Ti2) = ∅ (32)

holds for all distinct i1, i2 ∈ I, and let T ∗ = T ∗(l∗) be a labeled tree such that
V (Ti) ∩ V (T ∗) is a single-point set {vi},

V (Ti) ∩ V (T ∗) = {vi} (33)

for every i ∈ I. Let us suppose also

l∗(vi) = li(vi) (34)

for every i ∈ I if vi satisfies (33). Then, we define the gluing F to T ∗ as a
labeled graph T = T (l) with

V (T ) def= V (T ∗) ∪
(

⋃

i∈I

V (Ti)

)
, E(T ) def= E(T ∗) ∪

(
⋃

i∈I

E(Ti)

)
(35)

and l : V (T ) → R such that

l(v) =

{
l∗(v) if v ∈ V (T ∗),
li(v) if v ∈ V (Ti) for some i ∈ I.

(36)

Using equalities (32)–(36) one can simply show that T = T (l) is a well-defined
labeled tree for which the labeling l is non-degenerate if and only if all labelings
li, i ∈ I, and l∗ are non-degenerate.

Example 3. Let R∗ = R∗(l∗) be a labeled ray such that V (R∗) = N and
({m,n} ∈ E(R∗)

) ⇔ (|m − n| = 1
)

for all m, n ∈ N and, let the equality

l∗(m) =

{
1
m if m is odd,

0 if m is even

hold for each m ∈ N. Moreover, for every even m ∈ N, we define a labeled star
Sm(lm) with a center cm = m and suppose that the following conditions hold:

V (Sm) ∩ N = {m}, lm(cm) = 0,

and the restriction lm|V (Sm)\{cm} of lm on the set V (Sm)\{cm} is a bijection
to the set { 1

mn : n ∈ N}; and

V (Sm1) ∩ V (Sm2) = ∅

holds for all distinct even m1, m1 ∈ N. Then, we can consider the labeled tree
T = T (l) obtained by gluing the set

{Sm(lm) : m ∈ N and m is even}
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Figure 4. The tree T has ℵ0 vertices with degree ℵ0 and
the ultrametric space (V (T ), dl) is totally bounded but not
complete

to the labeled ray R∗(l∗) (see Fig. 4). The ultrametric space (V (T ), dl) is totally
bounded by Theorem 4 but not complete by Theorem 2.

Example 4. Let P be the set of all integer prime numbers p � 2 and let S∗ =
S∗(l∗) be the labeled star with the vertex set V (S∗) = {p ∈ P} ∪ {0}, and
the center c∗ = 0, and the labeling l∗ : V (S∗) → R

+ for which l∗(0) = 0 and
l∗(p) = 1/p hold for all p ∈ P.

For every p ∈ P, we define a labeled star Sp = Sp(lp) with a center cp

such that

V (Sp) \ {cp} = {pn : n ∈ N},

and

cp /∈
⋃

p∈P

(
V (Sp) \ {cp}

) ∪ V (S∗);

lp(v) =

{
0 if v = cp,

p−n if v = pn for some n ∈ N;

and cp1 	= cp2 for all distinct p1, p2 ∈ P. Then, we obtain V (S∗)∩V (Sp) = {p},
and l∗(p) = lp(p) = 1/p, and δS∗(c∗) = δSp

(cp) = ℵ0 for every p ∈ P.
Let us consider the labeled tree T = T (l) which is obtained by gluing the

set {Sp(lp) : p ∈ P} to S∗(l∗) (see Fig. 5), then the ultrametric space (V (T ), dl)
is compact by Theorem 6.

The following simple example shows that the class of finite ultrametric
spaces, which are representable in the form (V (T ), dl), is a proper subclass of
all finite ultrametric spaces.

Example 5. Let V = {v1, v2, v3, v4} be a four-point set and let an ultrametric
d : V × V → R

+ satisfy the equalities

d(v1, v2) = d(v3, v4) = 1 (37)

and

d(v1, v3) = d(v1, v4) = d(v2, v3) = d(v2, v4) = 2. (38)
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T (l)

0

0

1
2

1
22 1

23
1
24

0

1
3 1

32

1
33

1
34

0

1
5

1
52

1
53

1
54

0

1
7

1
72

1
73

1
74

0

1
p

1
p2

1
p3

1
p4

Figure 5. The tree T has ℵ0 vertices with degree ℵ0 and the
ultrametric space (V (T ), dl) is compact

Let T = T (l) be a labeled tree such that V (T ) = V . We claim that the ultra-
metric spaces (V, d) and (V (T ), dl) are not isometric for any non-degenerate
labeling l. Indeed, if there is a non-degenerate l : V (T ) → R

+ for which (V, d)
and (V (T ), dl) are isomorphic, then from (5) and (37) it follows that

max
1�i�4

l(vi) � 1.

The last inequality and (5) imply that dl(v, u) � 1 holds for all u, v ∈ V ,
contrary to (38).

It seems to be interesting to get a purely metric characterization of ul-
trametric spaces generated by labeled trees.

Conjecture 1. Let (X, d) be a discrete nonempty totally bounded ultrametric
space. Then, the following statements are equivalent:

(i) There is a labeled tree T = T (l) such that (V (T ), dl) and (X, d) are
isometric.

(ii) For every B ∈ BX , there are c ∈ X and r > 0 such that

B = {x ∈ X : d(x, c) = r} ∪ {c}
i.e., the ball B is the sphere S(c, r) = {x ∈ X : d(x, c) = r} with the
added center c.
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In conclusion, we formulate a simple conjecture linking the properties of
Cauchy sequences in (V (T ), dl) with the structure of the hull of the range sets
of these sequences (cf. Lemma 3).

Conjecture 2. Let T be a tree and let (vn)n∈N be a sequence of distinct vertices
of T . Then, the following conditions are equivalent:

(i) The hull of the range set of (vn)n∈N is a union of a ray with some finite
tree.

(ii) For every non-degenerate l : V (T ) → R, the existence of Cauchy subse-
quence in (vn)n∈N implies that (vn)n∈N is also a Cauchy sequence.
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