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On a Theorem of Baxter and Zeilberger via
a Result of Roselle

Joshua P. Swanson

Abstract. We provide a new proof of a result of Baxter and Zeilberger
showing that inv and maj on permutations are jointly independently
asymptotically normally distributed. The main feature of our argument
is that it uses a generating function due to Roselle, answering a question
raised by Romik and Zeilberger.

1. Introduction

For a permutation w in the symmetric group Sn written in one-line notation
w = w1 . . . wn, the inversion and major index statistics are given by

inv(w) := #{i < j : wi > wj} and maj(w) :=
∑

1≤i≤n−1
wi>wi+1

i.

It is well known that inv and maj are equidistributed on Sn [Mac, §1] with
common mean and standard deviation

μn =
n(n − 1)

4
and σ2

n =
2n3 + 3n2 − 5n

72
.

These results also follow easily from our arguments; see Remark 2.7. In [BZ10],
Baxter and Zeilberger proved that inv and maj are jointly independently
asymptotically normally distributed as n → ∞. More precisely, define nor-
malized random variables on Sn

Xn :=
inv −μn

σn
, Yn :=

maj −μn

σn
. (1)

Theorem 1.1 (Baxter–Zeilberger [BZ10]). For each u, v ∈ R, we have

lim
n→∞P[Xn ≤ u, Yn ≤ v] =

1
2π

∫ u

−∞

∫ v

−∞
e−x2/2e−y2/2 dy dx.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-022-00570-x&domain=pdf
http://orcid.org/0000-0002-7027-9153


88 J. P. Swanson

See [BZ10] for further historical background. Baxter and Zeilberger’s ar-
gument involves mixed moments and recurrences based on combinatorial ma-
nipulations with permutations. Romik suggested a generating function due to
Roselle, quoted as Theorem 2.2 below, should provide another approach. Zeil-
berger subsequently offered a $300 reward for such an argument, which has
happily now been collected. Our overarching motivation, and Romik’s original
impetus for suggesting Roselle’s formula, is to give a local limit theorem, i.e. a
formula for the counts #{w ∈ Sn : inv(w) = u,maj(w) = v} with an explicit
error term, which will be the subject of a future article. For further context,
see [Zei] and [Thi16].

2. Consequences of Roselle’s Formula

Here we recall Roselle’s formula, originally stated in different but equivalent
terms, and derive a generating function expression which quickly motivates
Theorem 1.1.

Definition 2.1. Let Hn be the bivariate inv,maj generating function on Sn,
i.e.

Hn(p, q) :=
∑

w∈Sn

pinv(w)qmaj(w).

Theorem 2.2 (Roselle [Ros74]). We have
∑

n≥0

Hn(p, q)zn

(p)n(q)n
=

∏

a,b≥0

1
1 − paqbz

, (2)

where (p)n := (1 − p)(1 − p2) · · · (1 − pn).

The following is the main result of this section. An integer partition μ � n
is a weakly decreasing list of positive integers μ1 ≥ μ2 ≥ · · · ≥ μk > 0 summing
to n. The length of μ is �(μ) = k.

Theorem 2.3. There are constants cμ ∈ Z indexed by integer partitions μ � n
such that

Hn(p, q)
n!

=
[n]p![n]q!

n!2
Fn(p, q), (3)

where

Fn(p, q) =
n∑

d=0

[(1 − p)(1 − q)]d
∑

μ�n
�(μ)=n−d

cμ∏
i[μi]p[μi]q

(4)

and [n]p! := [n]p[n − 1]p · · · [1]p, [c]p := 1 + p + · · · + pc−1 = (1 − pc)/(1 − p).

An explicit expression for cμ is given below in (12). The rest of this section
is devoted to proving Theorem 2.3. Straightforward manipulations with (2)
immediately yield (3), where

Fn(p, q) := (1 − p)n(1 − q)nn! · {zn}
⎛

⎝
∏

a,b≥0

1
1 − paqbz

⎞

⎠ (5)
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and {zn} here refers to extracting the coefficient of zn. Thus it suffices to
show (5) implies (4). By standard arguments, the zn coefficient of the product
over a, b in (5) is the bivariate generating function of size-n multisets of pairs
(a, b) ∈ Z

2
≥0, where the weight of such a multiset is p

∑
i aiq

∑
i bi . We will use

this same componentwise-sum weight throughout.

Definition 2.4. For λ � n, let Mλ be the bivariate generating function for
multisets of pairs (a, b) ∈ Z

2
≥0 of type λ, meaning some element has multiplicity

λ1, another element has multiplicity λ2, etc.

We clearly have

{zn}
⎛

⎝
∏

a,b≥0

1
1 − paqbz

⎞

⎠ =
∑

λ�n

Mλ(p, q), (6)

though the Mλ are inconvenient to work with, so we perform a change of basis.

Definition 2.5. Let P [n] denote the lattice of set partitions of [n] := {1, 2, . . . , n}
with minimum 0̂ = {{1}, {2}, . . . , {n}} and maximum 1̂ = {{1, 2, . . . , n}}.
Here Λ ≤ Π means that Π can be obtained from Λ by merging blocks of Λ.
The type of a set partition Λ is the integer partition obtained by rearranging
the list of the block sizes of Λ in weakly decreasing order. For λ � n, set

Π(λ) := {{1, 2, . . . , λ1}, {λ1 + 1, λ1 + 2, . . . , λ1 + λ2}, . . .},

which has type λ.

Definition 2.6. For Π ∈ P [n], let RΠ denote the bivariate generating function
for lists L ∈ (Z2

≥0)
n where for each block of Π the entries in L from that block

are all equal. Similarly, let SΠ denote the bivariate generating function of lists
L where in addition to entries from the same block being equal, entries from
two different blocks are not equal.

We easily see that

RΛ =
∏

A∈Λ

1
(1 − p#A)(1 − q#A)

(7)

and that

RΛ =
∑

Π:Λ≤Π

SΠ, (8)

so that, by Möbius inversion on P [n],

SΠ =
∑

Λ:Π≤Λ

μ(Π,Λ)RΛ, (9)

where μ(Π,Λ) is the Möbius function of the lattice of set partitions. Under the
“forgetful” map from lists to multisets, a multiset of type λ � n has fiber of
size

(
n
λ

)
. It follows that

SΠ(λ) =
n!
λ!

Mλ, (10)
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where λ! := λ1!λ2! · · · . Combining in order (5), (6), (10), (9), and (7) gives

Fn(p, q) =
n∑

d=0

[(1 − p)(1 − q)]d
∑

λ�n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

μ(Π(λ),Λ)∏
A∈Λ[#A]p[#A]q

. (11)

Now (4) follows from (11), where

cμ =
∑

λ�n

λ!
∑

Λ:Π(λ)≤Λ
type(Λ)=μ

μ(Π(λ),Λ). (12)

This completes the proof of Theorem 2.3.

Remark 2.7. From (12), c(1n) = 1 since the sum only involves Λ = 0̂, where
(1n) refers to the partition with n parts of size 1. Letting p → 1 (or, sym-
metrically, q → 1) in (4), the only surviving term is d = 0 and μ = (1n).
Consequently, Hn(1, q) = [n]q!, recovering a classic result of MacMahon [Mac,
§1]. Explicitly,

∑

w∈Sn

qinv(w) = [n]q! =
∑

w∈Sn

qmaj(w).

The mean and standard deviation may be extracted by recognizing [n]q!/n! as
the probability generating function of the sum of independent discrete random
variables.

Remark 2.8. Using (3), we see that the probability generating function (dis-
cussed below in Example 4.3) Hn(p, q)/n! differs from [n]p![n]q!/n!2 by pre-
cisely the correction factor Fn(p, q). Using (5), this factor has the following
combinatorial interpretation:

Fn =
n! · g.f. of size - n multisets from Z

2
≥0

g.f. of size - n lists from Z
2
≥0

.

Intuitively, the numerator and denominator should be the same “up to first or-
der.” Theorem 3.1 will give one precise sense in which they are asymptotically
equal.

3. Estimating the Correction Factor

This section is devoted to showing that the correction factor Fn(p, q) from
Theorem 2.3 is negligible in an appropriate sense, Theorem 3.1. Recall that
σn denotes the standard deviation of inv or maj on Sn.

Theorem 3.1. Uniformly on compact subsets of R2, we have

Fn(eis/σn , eit/σn) → 1 as n → ∞.

We begin with some simple estimates starting from (11) which motivate
the rest of the inequalities in this section. We may assume |s|, |t| ≤ M for some
fixed M . Setting p = eis/σn , q = eit/σn , we have |1 − p| = |1 − exp(is/σn)| ≤
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|s|/σn. For n sufficiently large compared to M and 1 ≤ c ≤ n, we claim that
|[c]p| ≥ 1. Assuming this for the moment, for n sufficiently large, (11) gives

|Fn(eis/σn , eit/σn) − 1| ≤
n∑

d=1

|st|d
σ2d

n

∑

λ�n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|μ(Π(λ),Λ)|. (13)

As for the claim, one finds |[c]p| = | sinh(cs/2σn)/ sinh(s/2σn)|. For sufficiently
large n, cs/2σn � 1, and sinh(z) is increasing near 0, which gives the claim.
We now simplify the inner sum on the right-hand side of (13).

Lemma 3.2. Suppose λ � n with �(λ) = n − k, and fix d. Then
∑

Λ:Π(λ)≤Λ
#Λ=n−d

μ(Π(λ),Λ) = (−1)d−k
∑

Λ∈P [n−k]
#Λ=n−d

∏

A∈Λ

(#A − 1)! (14)

and the terms on the left all have the same sign (−1)d−k. The sums are empty
unless n ≥ d ≥ k ≥ 0.

Proof. The upper order ideal {Λ ∈ P [n] : Π(λ) ≤ Λ} is isomorphic to P [n− k]
by collapsing the n−k blocks of Π(λ) to singletons. This isomorphism preserves
the number of blocks. Furthermore, recall that in P [n] the Möbius function
satisfies

μ(0̂, 1̂) = (−1)n−1(n − 1)!,

from which it follows easily that

μ(0̂,Λ) =
∏

A∈Λ

(−1)#A−1(#A − 1)!. (15)

The result follows immediately upon combining these observations. �

Lemma 3.3. Let λ � n with �(λ) = n − k and n ≥ d ≥ k ≥ 0. Then
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|μ(Π(λ),Λ)| ≤ (n − k)2(d−k). (16)

Proof. Using (14), we can interpret the sum as the number of permutations of
[n − k] with n − d cycles, which is a Stirling number of the first kind. There
are well-known asymptotics for these numbers, though the stated elementary
bound suffices for our purposes. We induct on d. At d = k, the result is trivial.
Given a permutation of [n − k] with n − d cycles, choose i, j ∈ [n − k] from
different cycles. Suppose the cycles are of the form (i′ · · · i) and (j · · · j′).
Splice the two cycles together to obtain

(i′ · · · i j · · · j′).

This procedure constructs every permutation of [n− k] with n− (d+1) cycles
and requires no more than (n − k)2 choices. The result follows. �
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Lemma 3.4. For n ≥ d ≥ k ≥ 0, we have
∑

λ�n
�(λ)=n−k

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|μ(Π(λ),Λ)| ≤ (n − k)2d−k(k + 1)!. (17)

Proof. For λ � n with �(λ) = n − k, λ! can be thought of as the product
of terms obtained from filling the ith row of the Young diagram of λ with
1, 2, . . . , λi. Alternatively, we may fill the cells of λ as follows: put n − k one’s
in the first column, and fill the remaining cells with the numbers 2, 3, . . . , k+1
starting at the largest row and proceeding left to right. It’s easy to see the
labels of the first filling are bounded above by the labels of the second filling,
so that λ! ≤ (k + 1)!. Furthermore, each λ � n with �(λ) = n − k can be
constructed by first placing n − k cells in the first column and then deciding
on which of the n − k rows to place each of the remaining k cells, so there are
no more than (n−k)k such λ. The result follows from combining these bounds
with (16). �
Lemma 3.5. For n sufficiently large, for all 0 ≤ d ≤ n we have

∑

λ�n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|μ(Π(λ),Λ)| ≤ 3n2d.

Proof. For n ≥ 2 large enough, for all n ≥ k ≥ 2 we see that (k + 1)! < nk−1.
Using (17) gives

∑

λ�n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|μ(Π(λ),Λ)| ≤
d∑

k=0

(n − k)2d−k(k + 1)!

≤ n2d + 2(n − 1)2d−1 +
d∑

k=2

(n − k)2d−knk−1

≤ n2d + 2n2d−1 +
d∑

k=2

n2d−1

= n2d + 2n2d−1 + (d − 1)n2d−1 ≤ 3n2d.

�
We may now complete the proof of Theorem 3.1. Combining Lemma 3.5

and (13) gives

|Fn(eis/σn , eit/σn) − 1| ≤ 3
n∑

d=1

(Mn)2d

σ2d
n

.

Since σ2
n ∼ n3/36 and M is constant, (Mn)2d/σ2d

n ∼ (362M2/n)d. Since M is
constant, using a geometric series it follows that

lim
n→∞

n∑

d=1

(Mn)2d

σ2d
n

= 0,

completing the proof of Theorem 3.1.
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Remark 3.6. Indeed, the argument shows that |Fn(eis/σn , eit/σn)−1| = O(1/n).
The above estimates are particularly far from sharp for large d, though for
small d they are quite accurate. Working directly with (11), one finds the
d = 1 contribution to be

(1 − p)(1 − q)
2 − (

n
2

)

[2]p[2]q
.

Letting p = eis/σn , q = eit/σn , straightforward estimates shows that this is
Ω(1/n). Consequently, the preceding arguments are strong enough to identify
the leading term, and in particular

|Fn(eis/σn , eit/σn) − 1| = Θ(1/n).

4. Deducing Baxter and Zeilberger’s Result

We next summarize enough of the standard theory of characteristic functions
to prove Theorem 1.1 using (3) and Theorem 3.1.

Definition 4.1. The characteristic function of an R
k-valued random variable

X = (X1, . . . , Xk) is the function φX : Rk → C given by

φX(s1, . . . , sk) := E[exp(i(s1X1 + · · · + skXk))].

Example 4.2. It is well known that the characteristic function of the standard
normal random variable with density 1√

2π
e−x2/2 is e−s2/2. Similarly, the char-

acteristic function of a bivariate jointly independent standard normal random
variable with density 1

2π e−x2/2−y2/2 is e−s2/2−t2/2.

Example 4.3. If W is a finite set and stat = (stat1, . . . , statk) : W → Z
k
≥0 is

some statistic, the probability generating function of stat on W is

P (x1, . . . , xk) :=
1

#W

∑

w∈W

x
stat1(w)
1 · · · xstatk(w)

k .

The characteristic function of the corresponding random variable X where the
w are chosen uniformly from W is

φX(s1, . . . , sk) = P (eis1 , . . . , eisk).

From Example 4.3, Remark 2.7, and an easy calculation, it follows that
the characteristic functions of the random variables Xn and Yn from (1) are

φXn
(s) = e−iμns/σn

[n]eis/σn !
n!

and φYn
(t) = e−iμnt/σn

[n]eit/σn !
n!

. (18)

An analogous calculation for the random variable (Xn, Yn) together with
(18) and (3) gives

φ(Xn,Yn)(s, t) = e−i(μns/σn+μnt/σn) Hn(eis/σn , eit/σn)
n!

= φXn
(s)φYn

(t)Fn(eis/σn , eit/σn).
(19)
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Theorem 4.4 (Multivariate Lévy Continuity [Bil95, p. 383]). Suppose that X(1),
X(2), . . . is a sequence of Rk-valued random variables and X is an R

k-valued
random variable. Then X(1),X(2), . . . converges in distribution to X if and
only if φX(n) converges pointwise to φX .

If the distribution function of X is continuous everywhere, convergence
in distribution means that for all u1, . . . , uk we have

lim
n→∞P[X(n)

i ≤ ui, 1 ≤ i ≤ k] = P[Xi ≤ ui, 1 ≤ i ≤ k].

Many techniques are available for proving that inv and maj on Sn are asymp-
totically normal. The result is typically attributed to Feller.

Theorem 4.5 ([Fel68, p. 257]). The sequences of random variables Xn and Yn

from (1) each converge in distribution to the standard normal random variable.

We may now complete the proof of Theorem 1.1. From Theorem 4.5 and
Example 4.2, we have for all s, t ∈ R

lim
n→∞ φXn

(s) = e−s2/2 and lim
n→∞ φYn

(t) = e−t2/2. (20)

Combing in order (20), (19), and Theorem 3.1 gives

lim
n→∞ φ(Xn,Yn)(s, t) = e−s2/2−t2/2.

Theorem 1.1 now follows from Example 4.2 and Theorem 4.4.
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