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Abstract. We study a number of combinatorial and algebraic structures
arising from walks on the two-dimensional integer lattice. To a given
step set X ⊆ Z

2, there are two naturally associated monoids: FX , the
monoid of all X-walks/paths; and AX , the monoid of all endpoints of
X-walks starting from the origin O. For each A ∈ AX , write πX(A) for
the number of X-walks from O to A. Calculating the numbers πX(A)
is a classical problem, leading to Fibonacci, Catalan, Motzkin, Delannoy
and Schröder numbers, among many other well-studied sequences and
arrays. Our main results give relationships between finiteness properties
of the numbers πX(A), geometrical properties of the step set X, alge-
braic properties of the monoid AX , and combinatorial properties of a
certain bi-labelled digraph naturally associated to X. There is an intrigu-
ing divergence between the cases of finite and infinite step sets, and some
constructions rely on highly non-trivial properties of real numbers. We
also consider the case of walks constrained to stay within a given region
of the plane. Several examples are considered throughout to highlight the
sometimes-subtle nature of the theoretical results.
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1. Introduction

The study of lattice paths is a cornerstone of enumerative combinatorics, and
important applications exist in almost all areas of mathematics. The subject
arguably goes back at least to the likes of Fermat and Pascal in the 1600s, and
it would be impossible to adequately recount here its fascinating development
over the subsequent centuries. Fortunately, we may direct the reader to the
survey of Humphreys [15] for an excellent historical treatment, and the recent
habilitation thesis of Bostan [3], which contains 397 references. The current
authors came to the topic through our interest in diagram semigroups and
algebras, where an important role is played by Catalan and Motzkin paths,
Riordan arrays, meanders and so on; see for example [6–9,12].

Many kinds of lattice path problems have been considered in the lit-
erature, but the main ones we are interested in are related to the following
questions (formal definitions will be given below):

• Suppose we have a subset X of the two-dimensional integer lattice Z
2.

Starting from some designated origin, which points from Z
2 can we get

to by taking a “walk” using “steps” from X?
• Further, given a point from Z

2, how many such “X-walks” will take us
to this point?
Sometimes constraints are also imposed, so that the X-walks must stay

within a specified region of the plane (e.g., the first quadrant). In what follows,
the set of all endpoints of (unconstrained) X-walks beginning at the origin O =
(0, 0) will be denoted AX ; this set is always an additive submonoid of Z2. For
any point A ∈ Z

2, we write πX(A) for the number of X-walks from O to A;
this number could be anything from 0 to ∞.

Answers to the above questions are well known in many special cases,
and lead to well-studied number sequences, triangles and arrays, including Fi-
bonacci, Catalan and Motzkin numbers, as well as binomial and multinomial
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coefficients. These and many more are discussed in the above-mentioned sur-
veys and references therein, as well as of course the Online Encyclopedia of
Integer Sequences [1]. Even for (apparently) simple step sets, solving these
problems can be very difficult. As noted in [15], infinite step sets are rarely
studied, as are boundaries with irrational slope; both feature strongly in the
present work.

The current article takes a somewhat meta-level approach to lattice path
problems, and addresses broad questions of the following type: Given a certain
property, which step sets X possess that property? The kinds of properties we
study include the following:

• the monoid AX is a group, or
• πX(A) is finite for all A ∈ AX , in which case we say X has the Finite

Paths Property (FPP), or
• πX(A) is infinite for all A ∈ AX , in which case we say X has the Infinite

Paths Property (IPP).

One of our main results, Theorem 2.24, states (among other things) that every
finite step set has either the FPP or the IPP, and gives a number of equivalent
geometric characterisations of both properties. The situation for infinite step
sets is far more complicated, and there is a whole spectrum of interesting
intermediate behaviours that can occur; the geometric conditions alluded to
just above are no longer equivalent, and there are step sets with neither the
FPP nor the IPP. Rather, the geometric conditions and finiteness properties fit
together into an “implicational hierarchy” that limits the (ostensibly) possible
combinations of these conditions/properties. Characterising the combinations
that actually do occur is a major part of the paper, and to achieve this we will
need to construct some fairly strange step sets; some of these constructions
rely on highly non-trivial properties of real numbers. The paper is organised
as follows.

Section 2 concerns unconstrained walks. We begin with the basic defini-
tions in Sect. 2.1, and then introduce the above-mentioned finiteness proper-
ties and geometric conditions in Sects. 2.2 and 2.3. We classify the algebraic
structure of the monoids arising from step sets of size at most 2 in Sect. 2.4,
and then pause to consider a number of infinite step sets that will be used in
proofs of later theoretical results. The first main result of the paper (Theorem
2.19) is given in Sect. 2.6; it provides geometric, algebraic and combinatorial
characterisations of the IPP, showing among other things that X has the IPP
if and only if the origin belongs to Conv(X), the convex hull of X. Section
2.7 contains the above-mentioned implicational hierarchy (Theorem 2.24); this
simplifies dramatically in the case of finite step sets, leading in particular to
the FPP/IPP dichotomy alluded to above (Corollary 2.25). The main result
of Sect. 2.8 (Theorem 2.30) states that the monoid AX is a non-trivial group
if and only if the origin belongs to the relative interior of Conv(X); a num-
ber of other equivalent geometric characterisations are also given (Theorem
2.27). Finally, Sect. 2.9 classifies the combinations of finiteness properties and
geometric conditions that can be attained by step sets. The above-mentioned
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Theorem 2.24 (proved in Sect. 2.7) limits the set of ostensibly possible com-
binations to ten, and these are enumerated in Table 1. Curiously, we will see
that exactly one of these combinations can never occur (Proposition 2.36), but
that the nine remaining combinations can; this is shown by constructing step
sets with the relevant combinations of properties. Some of these constructions
are quite involved. One of them utilises an ingenious argument from Stewart
Wilcox, which demonstrates the existence of certain sequences of real numbers;
the details are given in Appendix A, which is written jointly with Wilcox.

Section 3 gives a somewhat parallel treatment of walks that are con-
strained to stay within a specified region of the plane. As well as reducing the
number of walks, these contraints also typically limit the extent to which gen-
eral results can be proved. In Sect. 3.1 we give the basic definitions, and then
in Sect. 3.2 prove constrained analogues of many of the results from Sect. 2.
Theorem 3.4 is a constrained version of the implicational hierarchy (Theorem
2.24); even in the finite case, the situation is more complicated than for un-
constrained walks, as for one thing, the FPP/IPP dichotomy no longer holds.
Propositions 3.7 and 3.8 are analogues of the above-mentioned Theorems 2.19
and 2.30, respectively. Finally, Sect. 3.3 explores the natural idea of admis-
sible steps, and shows how these allow for some stronger general results on
constrained walks, especially in the case that the bounding region contains a
lattice cone (Theorems 3.10 and 3.15).

Numerous examples are given throughout the exposition. Some of these
are used to illustrate the underlying ideas; for instance, Examples 2.4 and
3.2(iii) show that interesting finite enumeration can arise from infinite step sets.
Other examples are crucial in establishing theoretical results. The properties
of these step sets, and the combinatorial data associated to them, are displayed
conveniently in certain edge- and vertex-labelled digraphs, defined in Sect. 2.1
and 3.1; see for example Figs. 2, 3, 4 and 13, 14, 15, 16. C++ algorithms
can be found at [13], which can be used to generate the LATEX/TikZ code for
producing such diagrams. (A previous version of this paper [10] contains many
more examples, and an additional section explaining the algorithms at [13].)

Throughout, we assume familiarity with basic linear algebra, number
theory, and plane (convex) geometry and topology. We denote by R, Q and
Z the sets of reals, rationals and integers; we also write N = {0, 1, 2, . . .} and
P = {1, 2, 3, . . .} for the sets of natural numbers and positive integers. We
use �x� to denote the floor of the real number x: i.e., the greatest integer not
exceeding x. For three distinct points A,B,C ∈ R

2, we write ∠ABC for the
angle between the line segments AB and BC; if not otherwise specified, this
will always be the non-reflex angle; we write

−−→
AB for the displacement vector

from A to B.
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2. Unconstrained Walks

2.1. Definitions and Basic Examples

We write Z
2
× = Z

2 \ {O}, where O = (0, 0), and we define a step set to be any
subset of Z2

×. We allow step sets to be finite or (countably) infinite. If X ⊆ Z
2
×

is a step set, then we may consider two natural monoids associated to X. The
first is the free monoid on X, which we denote by FX , and which consists of all
words over X under the operation of word concatenation. So elements of FX

are words of the form u = A1 · · · Ak, where k ∈ N and A1, . . . , Ak ∈ X. The
length of the word u = A1 · · · Ak is defined to be k, and is denoted �(u); when
k = 0, we interpret u to be the empty word, which we denote by ε, and which
is the identity element of FX . For reasons that will become clear shortly, we
will also refer to the elements of FX as X-walks.

The second monoid associated to a step set X ⊆ Z
2
× is the additive

submonoid of Z2 generated by X, which we will denote by AX . So AX consists
of all points of the form A = A1 + · · · + Ak, where k ∈ N and A1, . . . , Ak ∈ X;
when k = 0, we interpret A = O = (0, 0), which is the identity element of AX .

There is a natural monoid surmorphism (surjective homomorphism)

αX : FX → AX defined by αX(A1 · · · Ak) = A1 + · · · + Ak.

In particular, note that αX(A) = A for all A ∈ X. Consider a word u =
A1 · · · Ak ∈ FX , and let B ∈ Z

2 be an arbitrary lattice point. Then u deter-
mines a walk beginning at B, and ending at B+αX(u). The letters A1, . . . , Ak

determine the steps taken in the walk, and the points visited are:

B → B + A1 → B + A1 + A2 → · · ·
→ B + A1 + A2 + · · · + Ak = B + αX(u).

We say that u is an X-walk from B to B + αX(u). In particular, if B = O,
then u is an X-walk from O to αX(u); we say that u is an X-walk to αX(u).

We illustrate these ideas with (arguably) the most commonly studied step
set:

Example 2.1. Consider the step set X = {E,N}, where E = (1, 0) and N =
(0, 1) represent steps of one unit East and North, respectively. So AX =
{aE + bN : a, b ∈ N} = {(a, b) : a, b ∈ N} = N

2. Consider the two X-walks
u = EENEN and v = NNEEE from FX . Although u �= v, we note that
αX(u) = αX(v) = (3, 2); see Fig. 1. For any (a, b) ∈ N

2, there are
(
a+b

a

)
=

(
a+b

b

)

X-walks to (a, b). In fact, this formula is valid for any (a, b) ∈ Z
2, as it is stan-

dard to interpret a binomial coefficient
(
m
k

)
= 0 if m < k or if k < 0.

Consider a step set X ⊆ Z
2
×. For lattice points A,B ∈ Z

2, we define

ΠX(A,B) = {u ∈ FX : A + αX(u) = B} and πX(A,B) = |ΠX(A,B)|.
So ΠX(A,B) is the (possibly empty) set of all X-walks from A to B, and
πX(A,B) is the number of such walks. Note that it is possible to have
πX(A,B) = 0 or ∞. Also note that we always have πX(A,A) ≥ 1 for any
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Figure 1. Two X-walks from O to (3, 2), where X =
{(1, 0), (0, 1)}; cf. Example 2.1

A ∈ Z
2, since the empty word ε always belongs to ΠX(A,A). It is clear that

ΠX(A + C,B + C) = ΠX(A,B) and πX(A + C,B + C) = πX(A,B)
for any A,B,C ∈ Z

2.

Consequently, the numbers πX(A,B), A,B ∈ Z
2, may all be recovered from

the values πX(O,A), A ∈ Z
2. Accordingly, for any A ∈ Z

2, we define

ΠX(A) = ΠX(O,A) and πX(A) = πX(O,A)

to be the set and number of X-walks from O to A, respectively; note that
ΠX(A) = α−1

X (A) for any A ∈ Z
2. If X = {E,N} is the step set from Example

2.1, then for any a, b ∈ Z, we have πX(a, b) =
(
a+b

a

)
=

(
a+b

b

)
.

Given a step set X, the values of πX(A) may be conveniently displayed
on an edge- and vertex-labelled digraph, which we denote by ΓX , and define
as follows:

• The vertices of ΓX are the elements of AX , and each vertex A ∈ AX is
labelled by πX(A).

• For each vertex A ∈ AX , and for each B ∈ X, ΓX has the labelled edge
A

B−−→ A + B.
Since the vertices of the graph ΓX are actually elements of Z2, we generally
draw ΓX in the plane R

2, with the vertices in the specified position. So ΓX

is the Cayley graph of AX with respect to the generating set X, embedded
in the plane, and with each vertex labelled by the number of factorisations
in the generators. As an example, Fig. 2 (left) pictures the graph ΓX , where
X = {E,N} is the step set from Example 2.1. This is of course a rotation of
Pascal’s Triangle [17].

The next pair of examples involve step sets related to that considered in
Example 2.1.

Example 2.2. (i) Let X = {N,E, S,W}, where N = (0, 1), E = (1, 0), S =
(0,−1) and W = (−1, 0). Then AX = Z

2, and πX(A) = ∞ for all A ∈ Z
2.

See Fig. 2 (middle) for an illustration of ΓX .
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Figure 2. The graph ΓX , where (left to right): X =
{(1, 0), (0, 1)}, X = {(±1, 0), (0,±1)} (left) and X =
{(1, 0), (0,±1)}; cf. Examples 2.1 and 2.2

(ii) If X = {N,E, S}, then AX = N × Z, and πX(A) = ∞ for all A ∈ AX ;
see Fig. 2 (right) for ΓX .

We conclude this section by considering a collection of infinite step sets.

Example 2.3. Let X = {1}×Z = {(1, a) : a ∈ Z}. Then AX = {O}∪(P×Z) =
{O} ∪ {(a, b) ∈ Z

2 : a ≥ 1}. For any a, b ∈ Z we have

πX(a, b) =

⎧
⎪⎨

⎪⎩

1 if (a, b) = O or a = 1
∞ if a ≥ 2
0 otherwise.

The graph ΓX is pictured in Fig. 3 (left). Note that while there are infinitely
many X-walks to any (a, b) ∈ AX with a ≥ 2, any such walk is of length a. Fig.
3 (right) also pictures the graph associated to a different step set, whose steps
point in the same direction as the steps from the current one; more details will
be given in Example 2.13.

Although the next collection of step sets are also infinite, all values of
πX(A) are finite.

Example 2.4. (i) Let X = {1}×N. Then AX = {O}∪(P×N). The graph ΓX

is pictured in Fig. 4 (left). It is not hard to show, using standard recursion
techniques, that πX(a, b) =

(
a+b−1

b

)
for (a, b) ∈ P × N. In particular, we

again have a copy of Pascal’s Triangle, but this time with an extra 1 at
the origin, and this happens in the next step set as well.

(ii) Let X = {1} ×P. Then AX = {O} ∪ {(a, b) ∈ P
2 : a ≤ b}. The graph ΓX

is pictured in Fig. 4 (middle). This time we have πX(a, b) =
(

b−1
a−1

)
for

(a, b) ∈ AX \ {O}.
(iii) Let X = {(0, 1)}∪({1}×P). Then AX = {(a, b) ∈ N

2 : a ≤ b}. The graph
ΓX is pictured in Fig. 4 (right). This time we have πX(a, b) =

(
a+b
b−a

)
for

(a, b) ∈ AX .
We leave the reader to investigate the step sets X = {0} × P and X = P

2.
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Figure 3. The graph ΓX , where X = {1} × Z (left) and
X = {(1, 0)} ∪ {(a,±a2) : a ∈ P} (right); cf. Examples 2.3
and 2.13. All edges are directed to the right

2.2. Finiteness Properties: FPP, IPP and BPP

Inspired by Examples 2.1 and 2.2 above, we introduce the following two prop-
erties that might be satisfied by a step set X ⊆ Z

2
×.

• We say X has the Finite Paths Property (FPP) if πX(A) < ∞ for all
A ∈ AX .

• We say X has the Infinite Paths Property (IPP) if πX(A) = ∞ for all
A ∈ AX .
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Figure 4. The graph ΓX , where (left to right): X = {1}×N,
X = {1} × P and X = {(0, 1)} ∪ ({1} × P); cf. Example 2.4.
All edges are directed to the right and/or upwards

Example 2.3 shows that some step sets satisfy neither the FPP nor the IPP;
cf. Fig. 3 (left). By contrast, we will see later that finite step sets must sat-
isfy one or the other. Example 2.3 does suggest a third property worthy of
attention:

• We say X has the Bounded Paths Property (BPP) if for all A ∈ AX , the
set {�(w) : w ∈ ΠX(A)} has a maximum element (equivalently, this set
is finite).

We begin with a simple result concerning the IPP. Recall that the empty word
ε belongs to ΠX(O) for any step set X, so that πX(O) ≥ 1.

Lemma 2.5. Let X ⊆ Z
2
× be an arbitrary step set. Then the following are

equivalent:
(i) X has the IPP ,
(ii) πX(O) = ∞,
(iii) πX(O) ≥ 2.

Proof. Clearly (i) ⇒ (ii) ⇒ (iii). Now assume (iii) holds, and let A ∈ AX be
arbitrary. Let u ∈ ΠX(O) \ {ε} and v ∈ ΠX(A). Then ukv ∈ ΠX(A) for all
k ≥ 0, from which it follows that πX(A) = ∞. �

Thus, if one was primarily interested in enumeration of lattice paths,
one would focus on step sets with πX(O) = 1. Having πX(O) = 1 still does
not guarantee “interesting” enumeration, however. Indeed, Example 2.3 gave
a step set for which the only values of πX(A) are 1 and ∞ (cf. Fig. 3). For an
even more extreme situation, Example 2.17 below shows that it is possible to
have πX(O) = 1 but πX(A) = ∞ for all A ∈ AX \ {O}.

The next result demonstrates a basic relationship between the three
finiteness properties, in particular showing that the BPP is an intermediate
between the FPP and ¬IPP (the symbol ¬ denotes negation). Specifically, we
have FPP ⇒ BPP ⇒ ¬IPP.

Lemma 2.6. Let X ⊆ Z
2
× be an arbitrary step set.

(i) If X has the FPP, then X has the BPP.
(ii) If X has the BPP, then X does not have the IPP.
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Figure 5. A pair of opposite half-planes (left) and a pair of
opposite cones (right)

Proof. (i). If ΠX(A) is finite, then so too is {�(w) : w ∈ ΠX(A)}.
(ii). If the set {�(w) : w ∈ ΠX(O)} is finite, then πX(O) = 1; cf. Lemma 2.5

and its proof. �

We will see later that the three conditions FPP, BPP and ¬IPP are
equivalent for finite step sets.

2.3. Geometric Conditions: CC, SLC and LC

A line splits the plane R
2 into two open subsets, one on each side of the

line; we will call these open sets half-planes, and we will say that they are
opposites of each other. By a cone we mean an intersection of two half-planes
whose bounding lines are not parallel; the intersection of these bounding lines
is called the vertex of the cone; by the opposite of such a cone, we mean the
intersection of the opposite half-planes. See Fig. 5. Note that half-planes and
cones are always open sets. Note also that half-planes are not cones.

Now let X ⊆ Z
2
× be an arbitrary step set.

• We say X satisfies the Line Condition (LC) if it is contained in a half-
plane bounded by a line through the origin.

• We say X satisfies the Strong Line Condition (SLC) if it is contained in
a half-plane whose opposite half-plane contains the origin.

• We say X satisfies the Cone Condition (CC) if it is contained in a cone
with the origin as its vertex.

We say that a line L through the origin witnesses the LC (for X) if X is
contained in one of the half-planes determined by L . Similarly, we may speak
of a line (not through the origin) witnessing the SLC, or of a pair of lines
(through the origin) witnessing the CC, or of a cone (with vertex O) witnessing
the CC.

The reader may wonder why we have not defined a Strong Cone Condi-
tion. For completeness, we do so here (in the obvious way) but show immedi-
ately that it is equivalent to the ordinary Cone Condition.

• We say X satisfies the Strong Cone Condition (SCC) if it is contained in
a cone whose opposite cone contains the origin.
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Figure 6. Schematic diagram of the proof of Lemma 2.7.
The elements of X are drawn as black dots (color figure online)

Lemma 2.7. A step set X ⊆ Z
2
× satisfies the CC if and only if it satisfies the

SCC.

Proof. (SCC ⇒ CC). Any cone whose opposite cone contains the origin is
contained in a cone with O as its vertex.

(CC ⇒ SCC). Suppose X satisfies the CC, as witnessed by the cone C.
Choose points C and D, one on each bounding line of C, and both a distance
of 1

2 from O, noting that the triangle OCD contains no lattice points other
than O. If E is any point in the interior of this triangle, then the SCC is
witnessed by the line through C and E and the line through D and E. All of
this is pictured in Fig. 6. �

Here is the key result of this section:

Lemma 2.8. Let X ⊆ Z
2
× be an arbitrary step set.

(i) If X satisfies the CC, then X satisfies the SLC.
(ii) If X satisfies the SLC, then X satisfies the LC.
(iii) If X is finite and satisfies the LC, then X satisfies the CC.

Proof. (i). If X satisfies the CC, then by Lemma 2.7 it satisfies the SCC. If
a cone C witnesses the SCC, then the bounding lines of C both witness
the SLC.

(ii). If the SLC condition is witnessed by L , then the LC is witnessed by the
line through O parallel to L .

(iii). Suppose the LC is witnessed by L , where X is finite and (without loss of
generality) non-empty. Let A be an arbitrary point on L other than O
(note that A �∈ X). Let B ∈ X be such that the non-reflex angle ∠AOB
is minimal among all points from X; this is well defined because X is
finite, and we have 0 < ∠AOB < π because no point from X lies on L .
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Figure 7. The points A,B and line L ′ constructed during
the proof of Lemma 2.8(iii)

Let L ′ be the line that bisects the angle ∠AOB. Then L and L ′ witness
the CC. This is all shown in Fig. 7. �
It follows from Lemma 2.8 that the three conditions CC, SLC and LC

are equivalent for finite step sets. The step sets from Examples 2.1 and 2.4
satisfy all three conditions, and those from Example 2.2 satisfy none of them.
The step set from Example 2.3 satisfies the SLC (and hence also the LC) but
not the CC. Example 2.17 below shows it is possible to satisfy the LC but not
the SLC (and hence also not the CC).

It will also be convenient to prove the following technical result, which
will be used on many occasions.

Lemma 2.9. Let X ⊆ Z
2
× be a step set with the LC witnessed by a unique line

L . Then
(i) X does not satisfy the CC,
(ii) if X satisfies the SLC, then this can only be witnessed by lines parallel to

L .

Proof. (i). If some cone witnessed the CC, then the two bounding lines would
both witness the LC.

(ii). If a line L ′ witnesses the SLC, then (as in the proof of Lemma
2.8(ii)) the LC is witnessed by the line through the origin parallel to L ′. By
assumption, this must be L . �
2.4. Step Sets of Size at Most 2

In this section, we give a complete description of the additive monoids AX ,
and the numbers πX(A), when X ⊆ Z

2
× is a step set of size at most 2. Parts of

the classification will be used in subsequent sections. One could readily classify
step sets of size 3, although there are several more cases to consider.

We begin with a lemma describing certain 2-generated submonoids of the
additive group (Z,+); it follows from [11, Corollary II.4.2], or is easily proved
directly. For a1, . . . , ak ∈ Z, we write Mon〈a1, . . . , ak〉 for the submonoid of Z
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generated by a1, . . . , ak. If a, b ∈ Z, we write a | b to indicate that a divides
b; if a and b are not both zero, we write gcd(a, b) for their greatest common
divisor. Throughout this section, we use elementary number theoretic facts, as
found for example in [14].

Lemma 2.10. Let a, b ∈ P, and put d = gcd(a, b). Then Mon〈a,−b〉 = Mon〈±d〉.
In particular, Mon〈a,−b〉 is a non-trivial subgroup of Z, and is therefore iso-
morphic to (Z,+). �

For the next proof, recall Euclid’s Lemma: If a, b, c ∈ Z and gcd(a, b) = 1,
then a | bc ⇒ a | c.

Proposition 2.11. Consider a step set X ⊆ Z
2
×.

(i) If X = {A}, then AX
∼= (N,+).

(ii) If X = {A,B} where A �= B and ∠AOB = 0, then AX is isomorphic to
a 2-generated submonoid of (N,+).

(iii) If X = {A,B} where ∠AOB = π, then AX
∼= (Z,+).

(iv) If X = {A,B} where 0 < ∠AOB < π, then AX
∼= (N × N,+).

Proof. The first part being clear, for the duration of the proof, let A = (a, b)
and B = (c, d) be distinct points from Z

2
×.

(ii). Suppose ∠AOB = 0. So A and B both lie on the same side of
the origin on a straight line, L . If the line L is y = 0, then clearly AX =
Mon〈(a, 0), (c, 0)〉 is isomorphic to the submonoid Mon〈a, c〉 of N if a, c > 0, or
to Mon〈−a,−c〉 if a, c < 0. A similar argument covers the case in which L is
x = 0. So suppose instead that L has finite and non-zero gradient. Since the
lattice points A,B lie on L , its gradient must be rational, so we may assume
L has equation y = m

n x, where m,n ∈ Z, n �= 0 and gcd(m,n) = 1. Since
∠AOB = 0, we may further assume that n has the same sign as a and c. Since
A = (a, b) is on L , we see (using Euclid’s Lemma) that

b = m
n a ⇒ n | ma ⇒ n | a ⇒ a = kn for some k ∈ P.

So A = (a, b) = k(n,m). Similarly, B = l(n,m) for some l ∈ P. But then
clearly AX = Mon〈A,B〉 is isomorphic to the submonoid Mon〈k, l〉 of (N,+)
generated by k, l.

(iii). Suppose ∠AOB = π. As in the previous case, the result is trivial
if A,B both lie on x = 0 or y = 0. Otherwise, we may similarly show that
A = k(n,m) and B = l(n,m) for some m,n ∈ Z with gcd(m,n) = 1 and
some non-zero k, l ∈ Z, but this time k, l have opposite sign. It follows that
AX = Mon〈A,B〉 is isomorphic to M = Mon〈k, l〉, the submonoid of (Z,+)
generated by k, l, and the proof in this case concludes after applying Lemma
2.10.

(iv). Finally, suppose 0 < ∠AOB < π. Since AX = Mon〈A,B〉 =
{kA + lB : k, l ∈ N}, there is a surmorphism φ : N × N → AX defined by
φ(k, l) = kA + lB. Injectivity of φ follows quickly from the linear indepen-
dence of A and B. �
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Remark 2.12. Proposition 2.11 has implications for the numbers πX(C),
C ∈ AX , when |X| ≤ 2:

(i) If X = {A}, then AX
∼= (N,+), and πX(C) = 1 for all C ∈ AX .

(ii) If X = {A,B} where A �= B and ∠AOB = 0, then as in the above proof,
we may assume that A = kC and B = lC, where k, l ∈ P, and C ∈ Z

2
× is

some fixed point. The numbers an = πX(nC), n ∈ Z, satisfy

an = 0 (n < 0), a0 = 1, an = an−k + an−l (n > 0).

Thus, for example, we obtain the Fibonacci sequence when (k, l) = (1, 2),
the Narayana’s Cows sequence when (k, l) = (1, 3), the Padovan sequence
when (k, l) = (2, 3), and so on; see [1, A000045, A000930 and A000931].
The study of submonoids of N is a considerable topic, known as numerical
semigroup theory ; see for example [2,18]. Submonoids of N2 (and more
generally N

k, k ≥ 2) have been studied for example in [5], where the
situation is rather more complicated. For example, every submonoid of
N is finitely generated, so there are only countably many of them; by
contrast, even N

2 contains uncountably many pairwise non-isomorphic
subdirect products [5, Theorem C].

(iii) If X = {A,B} where ∠AOB = π, then AX
∼= (Z,+), and so πX(C) = ∞

for all C ∈ AX .
(iv) Finally, if X = {A,B} where 0 < ∠AOB < π, then

AX = {xA+yB : x, y ∈ N} ∼= (N × N,+), and πX(xA + yB) =
(
x+y

x

)
=(

x+y
y

)
; cf. Example 2.1.

2.5. Three More Infinite Step Sets

We now take a brief pause from the theoretical development to consider three
further examples, each involving infinite step sets. These will be crucial in
establishing the main results of Sect. 2.7, and will also be used to highlight
some subtleties in the main results of Sect. 2.6.

Example 2.13. Let X = {(1, 0)}∪{(a,±a2) : a ∈ P}. Note that the steps in X
point in the same directions as those from the step set of Example 2.3. Here it
is not so easy to give a uniform description of the elements of the monoid AX ,
or to draw the graph ΓX , but see Fig. 3 (right) for the first few columns.
Clearly X satisfies the SLC.

Less trivially, we claim that X does not satisfy the CC. To see this,
consider some line L given by y = mx. Let n be an arbitrary integer with
n > |m|. Then the points (n, n2) and (n,−n2) from X lie on opposite sides of
L , meaning that L does not witness the LC. Thus, x = 0 is the unique line
witnessing the LC, so the claim follows from Lemma 2.9(i).

It is also the case that X has the FPP. Indeed, one may easily prove this
directly, but it also follows from Lemma 2.23(i) below, so we will not provide
any further details.

Example 2.14. If X = {(0,−1)} ∪ {(a, a2) : a ∈ P}, then

AX = {(a, b) ∈ Z
2 : a ≥ 0, b ≤ a2}.

https://oeis.org/A000045
https://oeis.org/A000930
https://oeis.org/A000931
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This X does not satisfy the LC: indeed, the line x = 0 contains (0,−1), and
any other line through the origin has (0,−1) below it and infinitely many
points from X above it. As in the previous example, X has the FPP, as also
follows from Lemma 2.23 below.

The next example involves lines of irrational slope. It is first necessary
to prove the following lemma, which is a strengthening of a classical result of
Kempner [16, Theorem 2]. The additional strength is not needed immediately,
but will be useful later.

Lemma 2.15. Let R be an arbitrary positive real number. Between any two
parallel lines of irrational slope, there exist lattice points (a, b), (c, d) ∈ Z

2 with
a > R and c < −R.

Proof. By symmetry, we just show the existence of (a, b). Let the lines have
equations y = αx+γ and y = αx+δ, where α is irrational, and γ < δ. We must
show that there exists (a, b) ∈ Z

2 such that a > R and αa + γ < b < αa + δ:
i.e., γ < b − αa < δ.

Consider the set M = {v − αu : u ∈ P, v ∈ Z}. First we make the fol-
lowing claim:

• For any ε > 0 there exists s, t ∈ M such that −ε < s < 0 < t < ε.
To prove the claim, let ε > 0 be arbitrary; clearly we may assume that ε < 1.
By Dirichlet’s Theorem (see for example [19, Theorem 1A]), there exist u ∈ P

and v ∈ Z such that |v − αu| < ε. Since α is irrational and u �= 0, we have
v − αu �= 0. We assume v − αu > 0, the other case being symmetrical. Put
t = v − αu, noting that t ∈ M and 0 < t < ε. Now consider the numbers
t, 2t, 3t, . . .; since 0 < t < ε, at least one of these belongs to the interval 1−ε <
x < 1, say 1−ε < kt < 1 where k ∈ P. Then put s = kt−1 = (kv−1)−α(ku).

Returning to the main proof now, we consider three cases.

Case 1. If γ < 0 < δ, then by the claim (with ε = δ
R ) there exists

u ∈ P and v ∈ Z such that 0 < v − αu < δ
R . Since γ < 0 it follows that

γ
R < v − αu < δ

R . We then take (a, b) = (Ru,Rv).

Case 2. If 0 ≤ γ < δ, then we put ε = δ−γ
R . By the claim there exists

u ∈ P and v ∈ Z such that t = v − αu satisfies 0 < t < ε. Again one of the
numbers t, 2t, 3t, . . . must lie in the interval γ

R < x < δ
R , say γ

R < kt < δ
R

where k ∈ P. We then take (a, b) = (Rku,Rkv).

Case 3. The case in which γ < δ ≤ 0 is symmetrical. �

Remark 2.16. Consider two parallel lines of irrational slope, say L and L0.
By Lemma 2.15 there is a lattice point A1 = (x1, y1) between L and L0

with x1 ≥ 1. Now let L1 be the line parallel to L through A1. By Lemma
2.15 again, there is a lattice point A2 = (x2, y2) between L and L1 with
x2 ≥ x1 + 1. Continuing in this way, we obtain a sequence of lattice points
Ai = (xi, yi), i ∈ P, satisfying 1 ≤ x1 < x2 < x3 < · · · . Moreover, if we
write δi (i ∈ P) for the distance from L to Ai, then we have δi > 0 for all i,
δ1 > δ2 > δ3 > · · · , and limi→∞ δi = 0.
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Example 2.17. Let L be any line through the origin of irrational slope, let H
be one of the (open) half-planes bounded by L , and let X = H ∩ Z

2 be the
set of all lattice points contained in H. Since H, and hence X, is closed under
addition, we have AX = {O} ∪ X, and also πX(O) = 1. We claim that for any
A ∈ X = AX \ {O}, there are arbitrarily long X-walks from O to A.

To prove the claim, let A ∈ X, and let k ≥ 2 be arbitrary. We will show
that there is an X-walk from O to A of length k (this is obviously true for
k = 1 as well). Let L0 = L , let Lk be the line parallel to L through A,
and let L1, . . . ,Lk−1 be a sequence of distinct lines each parallel to L such
that Li is between Li−1 and Li+1 for each 1 ≤ i ≤ k−1. All of this (and more
information to follow) is pictured in Fig. 8. By Lemma 2.15, we may choose
lattice points A1, . . . , Ak−1 ∈ Z

2 such that Ai is between Li−1 and Li for each
1 ≤ i ≤ k − 1. Also define A0 = O and Ak = A. Let Bi = Ai − Ai−1 for each
1 ≤ i ≤ k. The claim will be established if we can show that B1 · · · Bk is an
X-walk from O to A. Indeed, we certainly have B1 + · · · + Bk = A, so it just
remains to check that Bi ∈ X for each i. But if u is a vector perpendicular
to L pointing into H, we have u · −→

OAi−1 < u · −→
OAi for each 1 ≤ i ≤ k (by

construction), from which it follows that u · −−→OBi = u · (−→
OAi − −→

OAi−1) > 0 for
each such i, giving Bi ∈ H, and so Bi ∈ X.

With the claim now established, there are two immediate consequences:
• πX(A) = ∞ for all A ∈ AX \ {O}, and
• X does not have the BPP.

Since πX(O) = 1, as mentioned above, it follows also that:
• X has neither the IPP nor the FPP.

In terms of the geometric conditions, first note that X satisfies the LC, as
witnessed by L itself. But, since there are points from X arbitrarily close to
L (by Lemma 2.15), it follows that no line parallel to L witnesses the SLC.
Since it is also clear that no other line (through the origin) witnesses the LC,
it follows from both parts of Lemma 2.9 that X satisfies neither the CC nor
the SLC.

2.6. Geometric, Algebraic and Combinatorial Characterisations of the IPP

Recall that a convex combination of a finite collection of points
A1, . . . , Ak ∈ R

2 is a point of the form λ1A1 + · · · + λkAk where λ1, . . . , λk ≥ 0
and λ1 + · · · + λk = 1. The convex hull of a (finite or infinite) subset X ⊆ R

2,
denoted Conv(X), is the set of all convex combinations of (finite collections
of) points from X. For background on basic convex geometry, see for example
[4, Section 2].

The main result of this section shows that a step set X has the IPP if
and only if the origin O is in the convex hull of X; see Theorem 2.19 below,
which also gives algebraic and combinatorial characterisations of the IPP in
terms of the monoid AX and the graph ΓX . First we need a lemma.

Lemma 2.18. Suppose A,B,C ∈ R
2 \ {O} are such that A, B, C and O are

not all collinear. If there exist scalars α, β, γ ∈ R such that α + β + γ = 1 and
αA + βB + γC = O, then there exist unique such scalars.
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Figure 8. Schematic diagram of the proof of the claim in
Example 2.17 (with k = 5)

Proof. Write a,b, c,0 for the position vectors of A,B,C,O, respectively, not-
ing that αa + βb + γc = 0. By the non-collinear assumption, and renam-
ing the points A,B,C if necessary, we may assume that a and b are lin-
early independant. First note that we must have γ �= 0; otherwise, we would
have αa + βb = 0, giving α = β = 0 (by linear independance), contradict-
ing α + β + γ = 1. It then follows that c = −α

γ a − β
γb. Suppose now that

α′A + β′B + γ′C = O where α′ + β′ + γ′ = 1. Then

α′a + β′b = −γ′c = −γ′(−α
γ a − β

γb
)

= αγ′

γ a + βγ′

γ b.

It then follows (by linear independence) that α′ = αγ′

γ and β′ = βγ′

γ . But then

1 = α′ + β′ + γ′ = αγ′

γ + βγ′

γ + γγ′

γ = γ′

γ (α + β + γ) = γ′

γ ,

so that γ′ = γ. We deduce also that α′ = αγ′

γ = α and β′ = βγ′

γ = β. �

Recall that an element of a monoid is a unit if it is invertible with respect
to the identity of the monoid; the set of all units is a subgroup. Here are the
promised characterisations of the IPP.

Theorem 2.19. Let X ⊆ Z
2
× be an arbitrary step set. Then the following are

equivalent:
(i) X has the IPP,
(ii) O ∈ Conv(X),
(iii) AX has non-trivial units,
(iv) ΓX has non-trivial directed cycles.

Proof. (i) ⇒ (ii). If X has the IPP, then O = A1 + · · · + Ak for some k ≥ 1
and some A1, . . . , Ak ∈ X, in which case O = 1

kA1 + · · · + 1
kAk ∈ Conv(X).
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(ii) ⇒ (iii). Suppose O ∈ Conv(X). So O is a convex combination of some
non-empty collection of points A1, . . . , Ak from X, and we assume that k is
minimal, noting that k ≥ 2.

If k = 2, then ∠A1OA2 = π, so πX(O) ≥ π{A1,A2}(O) = ∞; cf. Re-
mark 2.12(iii). It follows that O = xA1 + yA2 for some x, y ≥ 1, and so A1 is
a unit of AX (with inverse (x − 1)A1 + yA2).

For the rest of the proof we assume that k ≥ 3. By minimality of
k, Conv(A1, . . . , Ak) is a non-degenerate convex k-gon in R

2; relabelling if
necessary, we may assume the vertices of this polygon taken clockwise are
A1, . . . , Ak. Since the triangles A1A2A3,A1A3A4, . . . ,A1Ak−1Ak make
up the whole polygon, we see that O lies in one of these triangles, say 
A1Am−1Am; since k ≥ 3 is minimal, O is not on the boundary of this triangle.
(Incidentally, this shows that k = 3; cf. Carathéodory’s Theorem [4, Corollary
2.4].) Write A = A1, B = Am−1 and C = Am. Since O ∈ Conv(A,B,C), we
have

O = αA + βB + γC for some α, β, γ ∈ R

with α, β, γ ≥ 0 and α + β + γ = 1. (2.1)

By the minimality of k ≥ 3, it follows that α, β, γ are all non-zero. Write
A = (a, b), B = (c, d), C = (e, f). So (2.1) gives

aα + cβ + eγ = 0, bα + dβ + fγ = 0, α + β + γ = 1.

That is, (x, y, z) = (α, β, γ) is a solution to the system of linear equations

ax + cy + ez = 0, bx + dy + fz = 0, x + y + z = 1. (2.2)

Since ABC is a non-degenerate triangle, certainly A,B,C,O are not all
collinear, so Lemma 2.18 says that (2.2) has a unique solution. Since the so-
lution is unique, it may be found by inverting the coefficient matrix

[ a c e
b d f
1 1 1

]
;

since this matrix has integer entries, its inverse has rational entries, and so
the solution to (2.2) is rational; that is, α, β, γ are rational. Since we already
know that α, β, γ > 0, there exists δ ∈ P such that x = αδ, y = βδ and z = γδ
are all (positive) integers. But then (2.1) gives O = xA + yB + zC, and since
x > 0, it follows that A is a unit (with inverse (x − 1)A + yB + zC).

(iii) ⇒ (iv). Suppose A ∈ AX is a non-trivial unit, and let B ∈ AX be
its inverse. Write A = A1 + · · · +Ak and B = B1 + · · · + Bl where k, l ≥ 1 and
the Ai, Bi belong to X. Since O = A + B, the edges A1, . . . , Ak, B1, . . . , Bl

determine a directed cycle from O to O in ΓX .
(iv) ⇒ (i). If A

B1−−−→ A + B1
B2−−−→ · · · Bk−−−→ A is a non-trivial directed

cycle in ΓX , then A = A+B1 + · · ·+Bk, which implies O = B1 + · · ·+Bk, and
so B1 · · · Bk ∈ ΠX(O) \ {ε}; Lemma 2.5 then says that X has the IPP. �

Remark 2.20. Theorem 2.19 implies that ΓX is a directed acyclic graph (DAG)
if and only if X does not have the IPP.

Remark 2.21. One may compare Theorem 2.19 with the various examples con-
sidered in Sects. 2.1 and 2.5 (and later in the paper). Of these, only the two
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step sets from Example 2.2 have the IPP, and these are of course the only
step sets containing O in their convex hulls. The step sets considered in Ex-
amples 2.14 and 2.17 are such that O is in the closure of their convex hulls.
Despite having this feature in common, however, the two step sets have very
different finiteness properties: the step set from Example 2.14 has the FPP
(as far away from the IPP as possible), while that from Example 2.17 has
πX(A) = ∞ for all A ∈ AX \ {O} (as close to the IPP as possible without
actually attaining it).

2.7. An Implicational Hierarchy

We have now seen several examples of step sets in this paper. These satisfy
a range of combinations of the finiteness properties (FPP, IPP, BPP) and
geometric conditions (CC, SLC, CC) defined in Sects. 2.2 and 2.3. A natural
problem then arises, namely to try and classify all possible combinations. As a
first step, Theorem 2.24 below establishes an “implicational hierarchy” of these
properties and conditions. This leads to a limit of ten (ostensibly) possible
combinations; in Sect. 2.9 we complete the classification by showing that nine
of these combinations can be realised by a step set, and proving that the tenth
cannot.

We begin with two lemmas.

Lemma 2.22. Let X ⊆ Z
2
× be an arbitrary step set.

(i) If X satisfies the LC, then X does not have the IPP.
(ii) If X satisfies the SLC, then X has the BPP.
(iii) If X satisfies the CC, then X has the FPP.

Proof. (i). Let L be a line witnessing the LC, and let u be a vector perpen-
dicular to L pointing into the half-plane containing X. So u · −→

OA > 0 for all
A ∈ X. By linearity, it follows that u · −→

OA > 0 whenever A = A1 + · · · + Ak

with k ≥ 1 and A1, . . . , Ak ∈ X. Thus, there are no non-empty X-walks to O,
and so πX(O) = 1.

(ii). Let L be a line witnessing the SLC, and let u be a unit vector
perpendicular to L pointing towards the side of L containing X. Let δ be the
(perpendicular) distance from O to L , noting that u · −−→OB > δ for all B ∈ X.
Now let A ∈ AX be arbitrary, and write λ = u · −→

OA. Consider an X-walk
w = B1 · · · Bk to A, where B1, . . . , Bk ∈ X. Since A = B1 + · · · + Bk, we have

λ = u · −−→
OB1 + · · · + u · −−→

OBk. (2.3)

Since u · −−→
OBi > δ for each i, it follows from (2.3) that λ ≥ kδ (with equality

only when k = 0), and so k ≤ λ
δ . We have shown that the length of any X-walk

to A is bounded by λ
δ . Since A ∈ AX was arbitrary, it follows that X has the

BPP.

(iii). Let C be a cone witnessing the CC, and suppose C is bounded by
the lines L1 and L2. Let C ∈ L1 and D ∈ L2 be the points constructed
during the proof of Lemma 2.7; cf. Fig. 6. Let L be the line through C and
D, and note that L witnesses the SLC. Let u and δ be as in the proof of
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(ii) above, defined with respect to L . Further, for μ ≥ 0 define the set Xμ =
{A ∈ X : u · −→

OA ≤ μ}. Now let A ∈ AX be arbitrary. We must show that
πX(A) < ∞. Let λ = u · −→

OA, and suppose w = B1 · · · Bk is an X-walk to A,
where B1, . . . , Bk ∈ X. It follows from (2.3), and the fact that each u·−−→OBi > 0,
that u · −−→

OBi ≤ λ for each i. That is, we must have Bi ∈ Xλ for each i. As in
the proof of (ii), we must also have k ≤ λ

δ . The proof of this part will therefore
be complete if we can show that Xλ is finite. But if we write L ′ for the line
parallel to L and λ units from O, then Xλ is contained in the triangle bounded
by the lines L1, L2 and L ′; since this triangle has finite area, it follows that
Xλ is finite, as required. �

The next technical lemma concerns a special type of step set, namely
one with no steps to the left of the y-axis. It will be used in the proof of the
theorem following it, and also in Sect. 2.9. The first part of the lemma has
already been used to establish the FPP in Examples 2.13 and 2.14.

Lemma 2.23. Consider a step set X ⊆ N × Z. For k ∈ N define the sets
Yk = {y ∈ Z : (k, y) ∈ X}, Y +

k = Yk ∩ P and Y −
k = Yk ∩ (−P).

(i) If Y +
0 = ∅, and if Y +

k is finite for each k ∈ P, then X has the FPP.
(ii) If Y −

0 �= ∅, and if Y +
k is infinite for some k ∈ P, then X does not have

the BPP.

Proof. (i). For k ∈ N, let Xk = {k} × Yk be the set of all steps from X with
x-coordinate k. Let A = (a, b) ∈ AX be arbitrary. Fix some w ∈ ΠX(A),
and write w = A1 · · · Al, where each Ai = (xi, yi) belongs to X. For all i,
we have a = x1 + · · · + xl ≥ xi ≥ 0, so that each Ai belongs to the subset
Z = X0 ∪ X1 ∪ · · · ∪ Xa of X. This means that ΠX(A) = ΠZ(A). Let m =
max(Y +

1 ∪ · · · ∪ Y +
a ); this is well defined, by the finiteness assumption on the

Y +
k . Then the lines with equations y = (m+1)x and y = (m+2)x both witness

the LC for Z (see Fig. 9, which only pictures the line y = (m + 1)x); hence,
these lines together witness the CC for Z; it follows from Lemma 2.22(iii) that
Z has the FPP. Thus, πX(A) = πZ(A) < ∞, as required.

(ii). Let A = (0,−n) where −n ∈ Y −
0 with n ∈ P, and fix some k ∈ P such

that Y +
k is infinite. For each i ∈ {0, 1, . . . , n − 1}, let Y +

k,i

=
{
y ∈ Y +

k : y ≡ i (mod n)
}
. Since Y +

k is infinite, at least one of these sub-
sets must be infinite, say Y +

k,i. Write Y +
k,i = {i + b1n, i + b2n, . . .}, where

b1 < b2 < · · · . For each q ∈ N, let Bq = (k, i + bqn) ∈ X. Then for any
q ∈ N we have Bq + bqA = (k, i), meaning that BqA

bq ∈ ΠX(k, i). Since
�(BqA

bq ) = 1 + bq, and since b1 < b2 < · · · , this shows that X does not have
the BPP. �

Here is the main result of this section:
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Theorem 2.24. (i) For an arbitrary step set X ⊆ Z
2
×, we have:

CC SLC LC

FPP BPP ¬IPP⇒ ⇒

⇒ ⇒
⇓ ⇓ ⇓

(2.4)

(ii) For an arbitrary finite step set X ⊆ Z
2
×, all of the implications in (2.4)

are reversible; that is, we have:

CC SLC LC

FPP BPP ¬IPP⇔ ⇔

⇔ ⇔
� � �

(iii) In general, none of the implications in (2.4) are reversible.

Proof. (i). These implications were proved in Lemmas 2.6, 2.8 and 2.22.

(ii). Let X ⊆ Z
2
× be a finite step set. In light of the previous part, it

suffices to show that ¬IPP ⇒ CC; in fact, by Lemma 2.8(iii), it is enough
to show that ¬IPP ⇒ LC. With this in mind, suppose X does not have the
IPP. We must show that X satisfies the LC. This is obvious if X is empty, so
suppose otherwise.

Pick an arbitrary point A ∈ X, and let L1 be the line through O and A;
note that O splits L1 into two open half-lines, L ′

1 and L ′′
1 say, where A ∈ L ′

1.
Since X does not have the IPP, Theorem 2.19 gives X ∩ L ′′

1 = ∅. If X is

Figure 9. Schematic diagram of the proof of Lemma 2.23(i).
The (closed) blue region contains Z, and the line y = (m+1)x
is indicated in red (color figure online)
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Figure 10. The points A,B,C,D and lines L1,L2,L3,L
constructed during the proof of Theorem 2.24(ii)

contained in L1, then X is contained in L ′
1 and so clearly X satisfies the LC.

Thus, for the remainder of the proof we assume X is not contained in L1,
and we fix some B ∈ X \ L1. Let L2 be the line through O and B, and let
L ′

2 and L ′′
2 be the half-lines split by O, with B ∈ L ′

2, and note again that
X ∩ L ′′

2 = ∅. All this is shown in Fig. 10 (left).
The lines L1 and L2 define four (open) cones, which we label Ci (i =

1, 2, 3, 4) as also indicated in Fig. 10 (left). If X ∩C3 �= ∅, say with C ∈ X ∩C3,
then we would have O ∈ Conv{A,B,C} ⊆ Conv(X), contradicting Theorem
2.19, so we have X ∩ C3 = ∅.

If X ∩ C2 and X ∩ C4 are both empty, then clearly X satisfies the LC, so
suppose this is not the case. By symmetry, we assume that X ∩ C2 �= ∅. Let
C ∈ X ∩ C2 be such that ∠BOC is maximal among all points from X ∩ C2.
Let L3 be the line through O and C, again split into two half-lines L ′

3 and L ′′
3

by O, with C ∈ L ′
3. Again we have X ∩L ′′

3 = ∅. The line L3 splits C2 and C4

into (open) cones C′
2, C′′

2 and C′
4, C′′

4 as shown in Fig. 10 (middle).
By the maximality of ∠BOC, we have X ∩ C′′

2 = ∅. If X ∩ C′′
4 �= ∅, say

with D ∈ X ∩ C′′
4 , then we would have O ∈ Conv{B,C,D} ⊆ Conv(X), again

contradicting Theorem 2.19, so we have X ∩ C′′
4 = ∅. If also X ∩ C′

4 = ∅, then
clearly X satisfies the LC, so suppose this is not the case. Let D ∈ X ∩ C′

4 be
such that ∠AOD is maximal among all points from X ∩ C′

4. Then the line L

bisecting L ′′
3 and

−−→
OD witnesses the LC; see Fig. 10 (right).

(iii). The step set considered in Example 2.13 satisfies the SLC but not
the CC; this shows that SLC �⇒ CC in general. Similarly, Example 2.17 shows
that LC �⇒ SLC and also that ¬IPP �⇒ BPP, while Example 2.3 shows that
BPP �⇒ FPP. This takes care of the “horizontal” implications in (2.4). The
“vertical” implications may be treated all at once by noting that the step set
from Example 2.14 has the FPP (as follows from Lemma 2.23(i)) but does not
satisfy the LC. �

The following simple consequence of Theorem 2.24(ii) seems worth sin-
gling out; it gives a natural dichotomy for finite step sets.

Corollary 2.25. If X ⊆ Z
2
× is an arbitrary finite step set, then X has either

the FPP or the IPP. �
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2.8. Groups

Theorem 2.19 shows (among other things) that for a step set X ⊆ Z
2
×, the

monoid AX contains non-trivial units if and only if the origin O is contained in
Conv(X), the convex hull of X. In the current section we consider the situation
of when AX is a group (i.e., all elements of AX are units). Note that AX can
contain non-trivial units without being a group; for instance, if X is the step
set from Example 2.2(ii), then AX = N×Z has group of units {0}×Z (cf. Fig.
2 (right)), but note that O is on the boundary of Conv(X) in this example.
This suggests that there might be a subtle topological condition at play, and
indeed Theorem 2.30 below demonstrates that this is the case. But first we
prove Theorem 2.27, which has a more geometrical flavour, and involves a
Weak Line Condition, defined below.

In what follows, for an arbitrary subset U of R2, we write U and Rel-Int(U)
for the closure and relative interior of U , respectively. The latter is the (or-
dinary) interior of U relative to the smallest affine subspace of R2 containing
U ; when |U | ≥ 2, this subspace is either R

2 or a line. We use the relative
interior, because we wish to speak of sets such as Rel-Int(Conv(A,B)) for dis-
tinct points A,B ∈ R

2, which consists of all points on the line segment strictly
between A and B, whereas the interior of Conv(A,B) is empty.

Lemma 2.26. Let X ⊆ Z
2
× be an arbitrary step set, and let A ∈ X. If there exist

(not necessarily distinct) points B,C ∈ X such that O ∈ Rel-Int(Conv(A,B,C)),
then A is a unit of AX .

Proof. First we consider the case that B = C. Since O ∈ Rel-Int(Conv(A,B)),
we have ∠AOB = π. By Proposition 2.11(iii), the submonoid of AX generated
by {A,B} is a group; in particular, A is invertible in this submonoid, and
hence in AX itself.

From now on, we assume that B �= C. Following the proof of Theorem
2.19, we have O = xA + yB + zC where x, y, z ∈ N are not all zero. If x �= 0,
then it immediately follows that A is invertible (with inverse
(x − 1)A + yB + zC). If x = 0, then O ∈ Rel-Int(Conv(B,C)), and so B
and C must be on a line L through O, with O in between; in this case, since
O ∈ Rel-Int(Conv(A,B,C)), A must also lie on L (or else O would be on the
boundary of Conv(A,B,C)). But then O belongs either to Rel-Int(Conv(A,B))
or to Rel-Int(Conv(A,C)). As in the first paragraph it follows that A is a
unit. �

For the next statement, and for later use, we say a step set X ⊆ Z
2
×

satisfies the Weak Line Condition (WLC) if it is contained in the closure of
a half-plane determined by a line through the origin. Clearly the LC implies
the WLC, but the converse does not hold in general; cf. Example 2.2(ii).

Theorem 2.27. Let X ⊆ Z
2
× be an arbitrary step set.

(i) If X is empty, then AX is a trivial group.
(ii) If X is non-empty, and is contained in a line L through the origin, then

AX is a group if and only if X contains points from L on both sides of
the origin; in this case, AX is isomorphic to (Z,+).
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(iii) If X is not contained in any line through the origin, then AX is a group
if and only if X does not satisfy the WLC; in this case, AX is isomorphic
to (Z2,+).

Proof. By standard algebraic facts, any subgroup G of (Z2,+) is isomorphic
to (Zd,+), where d is the dimension of the vector space spanned by G. Thus,
with (i) being clear, it suffices to prove the “if and only if” statements in (ii)
and (iii).

(ii). Suppose X �= ∅ is contained in a line L through O, which splits L
into two open half-lines L ′ and L ′′.

If X is contained in L ′ say, then X clearly satisfies the LC, and hence
does not have the IPP, by Theorem 2.24(i); but then Theorem 2.19 says that
AX has no non-trivial units; since X �= ∅, it follows that AX is not a group.

To prove the other implication, suppose X contains points from both
L ′ and L ′′. To prove AX is a group, it suffices to show that all elements of
X are invertible. So let A ∈ X be arbitrary. Renaming if necessary, we may
assume that A ∈ L ′. By assumption, there exists B ∈ X ∩ L ′′. But then
O ∈ Rel-Int(Conv(A,B)), and hence A is a unit by Lemma 2.26.

(iii). Suppose X is not contained in any line through the origin.
First suppose X satisfies the WLC, as witnessed by a line L through the

origin. Let u be a vector perpendicular to L , pointing towards the half-plane
containing points from X (exactly one such half-plane does contain points
from X, as X is not contained in L ). The WLC says that u · −→

OA ≥ 0 for all
A ∈ X; by linearity, it follows that u · −→

OA ≥ 0 for all A ∈ AX . Since X is not
contained in L , there exists B ∈ X such that u · −−→

OB > 0. But then for any
A ∈ AX , we have u · (−→

OA+
−−→
OB) ≥ u · −−→OB > 0, so that A+B �= O; this shows

that B is not invertible, and hence AX is not a group.
Conversely, suppose X does not satisfy the WLC. To show that AX is

a group, it suffices to show that each element of X is a unit. With this in
mind, fix some A ∈ X. Let L be the line through O and A, split by O into
two open half-lines L ′ and L ′′ with A ∈ L ′. If X ∩ L ′′ �= ∅, then again
O ∈ Rel-Int(Conv(A,B)) for any B ∈ X ∩ L ′′, and Lemma 2.26 says that A
is invertible. From now on we assume that X ∩ L ′′ = ∅.

Let the two (open) half-planes bounded by L be H1 and H2, as shown
in Fig. 11 (left). Since X does not satisfy the WLC, X ∩ H1 and X ∩ H2 are
both non-empty. Let

β = sup{∠AOB : B ∈ X ∩ H1} and γ = sup{∠AOC : C ∈ X ∩ H2}.

Here ∠AOB and ∠AOC denote non-reflex angles, and we note that β, γ are
well defined since the relevant sets are bounded above by π; this also guarantees
that 0 < β, γ ≤ π. Either there exists B ∈ X∩H1 such that ∠AOB = β or else
there is a sequence of points B1, B2, . . . ∈ X∩H1 such that limn→∞ ∠AOBn =
β; if β = π, then the latter must be the case. A similar statement holds for γ.

Fix arbitrary points P ∈ H1∪L ′′ and Q ∈ H2∪L ′′ such that ∠AOP = β
and ∠AOQ = γ. (Note that P and Q need not belong to X, or even to Z

2.
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Figure 11. The points A,B,C, P,Q and lines L ,L1,L2

constructed during the proof of Theorem 2.27(iii)

Note also that we would need P ∈ L ′′ if β = π, with a similar statement
for Q.) Let L1 be the line through O and P , split by O into open half-lines
L ′

1 and L ′′
1 with P ∈ L ′

1. Let L2 be the line through O and Q, split by
O into open half-lines L ′

2 and L ′′
2 with Q ∈ L ′

2. This is all shown in Fig.
11 (middle). The half-lines L ′,L ′

1,L
′
2 bound three open regions, which we

denote by R1, R2, R3 as also indicated in Fig. 11 (middle). (These regions are
either cones or half-planes, depending on whether β and/or γ equals π; note
that R3 = ∅ if β = γ = π.)

By construction, X is contained in R
2\R3. Thus, since X does not satisfy

the WLC, we must have β+γ > π. For convenience, let δ = (β+γ)−π, so δ > 0.
As noted above, there exist points B ∈ X ∩ (R1 ∪L ′

1) and C ∈ X ∩ (R2 ∪L ′
2)

such that ∠AOB > β − δ
2 and ∠AOC > γ − δ

2 ; write β′ = ∠AOB and
γ′ = ∠AOC. This is all pictured in Fig. 11 (right). Then β′+γ′ > β+γ−δ = π.
Together with β′ < π and γ′ < π (which follow from B ∈ H1 and C ∈ H2),
it follows that O ∈ Rel-Int(Conv(A,B,C)), and so A is a unit by Lemma
2.26. �

Remark 2.28. For an arbitrary step set X, the implications from Theorem
2.24(i) may be extended as follows:

CC SLC LC

FPP BPP ¬IPP⇒ ⇒

⇒ ⇒
⇓ ⇓ ⇓

WLC

AX �∼= (Z2,+)⇒

⇒
�

Indeed:

(i) LC ⇒ WLC has already been mentioned and is obvious.
(ii) ¬IPP ⇒ AX �∼= (Z2,+) follows from Theorem 2.19.
(iii) WLC ⇒ AX �∼= (Z2,+) follows from all three parts of Theorem 2.27: if X

satisfies the WLC, then either X is empty, or is non-empty but contained
in a line through O, or is not contained in any such line; in these cases,
AX is either a trivial group, a group isomorphic to (Z,+), or not a group
at all.



822 J. East and N. Ham

(iv) ¬WLC ⇒ AX
∼= (Z2,+) holds, since if X does not satisfy the WLC,

then certainly X is not contained in any line through O, in which case
Theorem 2.27(iii) says that AX

∼= (Z2,+).

The implications (i) and (ii) are not reversible in general, even for finite X;
cf. Example 2.2(ii).

Remark 2.29. If a step set X satisfies the WLC but not the LC, and is not
contained in a line through O, then the structure of AX could be simple
or complicated. For example, if X = {N,E, S} as in Example 2.2(ii), then
AX = N×Z. But if U ⊆ P is arbitrary, then with X = {N,S}∪{(u, 0) : u ∈ U}
we have AX = M × Z where M = Mon〈U〉 is the submonoid of N generated
by U ; we have already noted that the study of such monoids is a considerable
topic [2,18]. It is not hard to devise more complicated examples.

Here is an alternative characterisation of step sets X for which AX is a
group. In the proof, we write Int(U) for the (ordinary) interior of a subset U
of R2. It is a basic fact that U1 ⊆ U2 implies Int(U1) ⊆ Int(U2), although the
analogous implication does not hold for relative interiors.

Theorem 2.30. Let X ⊆ Z
2
× be an arbitrary non-empty step set. Then AX is

a group if and only if O ∈ Rel-Int(Conv(X)).

Proof. We split the proof up into three cases.

Case 1. Suppose first that X is contained in some line L through O.
Then by Theorem 2.27(ii), AX is a group if and only if X contains points from
L on both sides of O; since X ⊆ L , this latter condition is clearly equivalent
to O ∈ Rel-Int(Conv(X)).

Case 2. Next suppose X is contained in some line L not through O. Then
the line through O parallel to L witnesses the LC. It follows from Theorem
2.24(i) that X does not have the IPP, and then from Theorem 2.19 that AX

contains no non-trivial units; since X is non-empty we deduce that AX is
not a group. Since X does not have the IPP, Theorem 2.19 also tells us that
O �∈ Conv(X), so certainly O �∈ Rel-Int(Conv(X)).

Case 3. Finally, suppose X is not contained in any line. This means that
X is two-dimensional, and so too therefore is Conv(X); consequently, we have
Rel-Int(Conv(X)) = Int(Conv(X)).

Suppose first that AX is not a group. Then by Theorem 2.27(iii), X
satisfies the WLC, so that X ⊆ H for some (open) half-plane H bounded by
a line through O. But then

Rel-Int(Conv(X)) = Int(Conv(X)) ⊆ Int(Conv(H)) = Int(H) = H.

Since O �∈ H, it follows that O �∈ Rel-Int(Conv(X)).
Conversely, suppose AX is a group. Then by Theorem 2.27(iii), X does

not satisfy the WLC. Let A ∈ X be arbitrary, and let L be the line through
O and A, split into L ′ and L ′′ by O, with A ∈ L ′. If X ∩ L ′′ = ∅, then as
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Figure 12. The points A,D,E, F and line L constructed
during the proof of Theorem 2.30

in the proof of Theorem 2.27(iii), O is in the interior of the (non-degenerate)
triangle ABC = Conv(A,B,C) for some B,C ∈ X, and so

O ∈ Int(Conv(A,B,C)) ⊆ Int(Conv(X)) = Rel-Int(Conv(X)).

Suppose now that X∩L ′′ �= ∅, say with D ∈ X∩L ′′; see Fig. 12. Let the half-
planes bounded by L be H1 and H2. Since X does not satisfy the WLC, there
exist E ∈ X ∩ H1 and F ∈ X ∩ H2. But then the (non-degenerate) triangles
ADE = Conv(A,D,E) and ADF = Conv(A,D,F ) are both contained in
Conv(A,D,E, F ). Since O is on the common side of these two triangles, we
have

O ∈ Int(Conv(A,D,E, F )) ⊆ Int(Conv(X)) = Rel-Int(Conv(X)). �

Remark 2.31. One may compare Theorems 2.27 and 2.30 with the various
examples considered in Sects. 2.1 and 2.5. In particular, for the step set X
from Example 2.2(ii), O belongs to Conv(X) but not to Rel-Int(Conv(X));
the monoid AX has non-trivial units but is not a group, and X satisfies the
WLC.

2.9. Possible Combinations of Finiteness Properties and Geometric Condi-
tions

Theorem 2.24(i) describes a hierarchy among the various geometric conditions
(CC, SLC, LC) and finiteness properties (FPP, BPP, ¬IPP) associated to step
sets. Specifically, the implications in (2.4) restrict the possible combinations
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of these conditions/properties that a given step set could have. For a step set
X ⊆ Z

2
×, consider the 2 × 3 matrix of Y’s and N’s indicating whether X has

each of these conditions/properties:
[

CC? SLC? LC?
FPP? BPP? ¬IPP?

]
(2.5)

Ostensibly, by Theorem 2.24(i), there are ten possibilities, and these are all
enumerated in Table 1. Of course (I) and (X) are the only combinations that
can actually occur for finite step sets, by Theorem 2.24(ii). Intriguingly, it
turns out that for infinite X, all but one of combinations (I)–(X) can occur.
We show in Proposition 2.36 below that combination (VIII) never occurs. The
remaining combinations are exemplified in various step sets, as listed in the
final column of Table 1.

Combination (V) provided the greatest challenge, and for a long time,
we were unable to determine whether or not a step set could actually have
this combination. We were able to show that the existence of such step sets
was equivalent to the existence of certain sequences of real numbers, but were
unable to determine whether such sequences could exist either. In Appendix
A, we present an ingenious construction due to Stewart Wilcox showing that
such sequences, and hence such step sets, do indeed exist.

Here is a step set with combination (IX):

Example 2.32. It is easy to check that the step set X = {(0,−1)} ∪ ({1} ×N)
does not satisfy the LC. By Lemma 2.23(ii) X does not have the BPP, and by
Theorem 2.19 it does not have the IPP.

Here is a step set with combination (IV):

Example 2.33. For p ∈ N, let Lp and L ′
p be the lines with equations y =√

2(x − √
2p) and y = −√

2p, respectively. (Any irrational number greater
than 1 could be used in place of

√
2.) For p ∈ N, let Rp be the open region

bounded by the lines Lp and Lp+1. For p, q ∈ N, let Rp,q be the open region
bounded by the lines Lp, Lp+1, L ′

q and L ′
q+1. So the sets Rp,q, p, q ∈ N, are

congruent (open) rhombuses, and they each contain at least one lattice point
(as their height and base-length are both greater than 1); for each p, q ∈ N we
fix one such point Ap,q ∈ Z

2 ∩ Rp,q. We now define the step set

X = X1 ∪ X2 where X1 = R0 ∩ P
2 and X2 = {Ap,p2 : p ∈ N}.

This is all shown in Fig. 13, which is drawn to scale. We claim that:
(i) X satisfies the LC,
(ii) X does not satisfy the SLC,
(iii) X has the FPP.
Clearly L0 witnesses the LC, so (i) is true. For (ii), first note that the line
x = 0 obviously does not witness the LC (note that A2,4 = (−1,−6) is to the
left of x = 0; cf. Fig. 13). Now consider the line L with equation y = αx, where
α is any real number other than

√
2. If α >

√
2, then all of X1 is to the right

of L , and infinitely many points from X2 are to the left (as the points from X2
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Table 1. The combinations of finiteness properties and geo-
metric conditions on step sets that are ostensibly possible after
taking Theorem 2.24(i) into account; cf. (2.5)

Label Combination Occurs? Reference

(I)
[
Y Y Y
Y Y Y

]
Yes Example 2.1

(II)
[
N Y Y
Y Y Y

]
Yes Example 2.13

(III)
[
N Y Y
N Y Y

]
Yes Example 2.3

(IV)
[
N N Y
Y Y Y

]
Yes Example 2.33

(V)
[
N N Y
N Y Y

]
Yes Example A.5

(VI)
[
N N Y
N N Y

]
Yes Example 2.17

(VII)
[
N N N
Y Y Y

]
Yes Example 2.14

(VIII)
[
N N N
N Y Y

]
No Proposition 2.36

(IX)
[
N N N
N N Y

]
Yes Example 2.32

(X)
[
N N N
N N N

]
Yes Example 2.2

approximately trace a kind of “skew parabola”). If 0 ≤ α <
√

2, then all of X2

is below L , and infinitely many points from X1 are above (cf. Lemma 2.15 and
Remark 2.16). If α < 0, then all of X1 is above L , and infinitely many points
from X2 are below. It follows that L0 is the only line witnessing the LC. Since
X1 contains points arbitrarily close to L0 (again, cf. Lemma 2.15 and Remark
2.16) no line parallel to L0 witnesses the SLC. Together with Lemma 2.9(ii),
it therefore follows that X does not satisfy the SLC, completing the proof of
(ii).

To prove (iii), we first introduce some more notation. Let u be a vector
perpendicular to L0, pointing into the half-plane containing X (see Fig. 13).
Since u · −→

OA > 0 for all A ∈ X, this is also true of all A ∈ AX \ {O}. For
p ∈ N, let λp = u · −→

OAp,p2 . By construction (cf. Fig. 13) we have

0 < λ0 < λ1 < λ2 < · · · and lim
p→∞ λp = ∞. (2.6)
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Now let A ∈ AX be arbitrary. We must show that πX(A) < ∞. Because
X satisfies the LC, we have πX(O) = 1 (cf. Theorem 2.24(i) and Lemma
2.5), so we will assume that A �= O. Define λ = u · −→

OA > 0, and let
q = max{p ∈ N : λp ≤ λ}; this is well defined because of (2.6). Fix some
w ∈ ΠX(A), and write w = B1 · · · Bk, where B1, . . . , Bk ∈ X. Also write
Bi = (xi, yi) for each i. Let I = {i ∈ {1, . . . , k} : Bi ∈ X1} and J =
{j ∈ {1, . . . , k} : Bj ∈ X2}, and write I = {i1, . . . , il} and J = {j1, . . . , jm}
where i1 < · · · < il and j1 < · · · < jm. Define the words

s = Bi1 · · · Bil and t = Bj1 · · · Bjm .

We will show that:
(iv) there are only finitely many possibilities for t, and
(v) given some such t, there are only finitely many possibilities for s.

Since w is obtained by “shuffling” s and t together, and since there are only
finitely many ways to do this, it will follow that there are only finitely many
possibilities for w: i.e., that πX(A) is finite. That is, the proof of (iii) above
will be complete if we can prove (iv) and (v).

We begin with (iv). For each j ∈ J , let pj ∈ N be such that Bj = Apj ,p2
j
.

Now,

λ = u · −→
OA.0 = u · (

−−→
OB1 + · · · +

−−→
OBk)

≥ u · (
−−→
OBj1 + · · · +

−−→
OBjm) = λpj1

+ · · · + λpjm
≥ mλ0,

so that �(t) = m ≤ λ
λ0

. But also for any j ∈ J , we have

λ ≥ λpj1
+ · · · + λpjm

≥ λpj
,

so that pj ≤ q for all j ∈ J (q was defined just after (2.6)). The previ-
ous two conclusions show that t has length at most λ

λ0
, and is a word over

{A0,0, A1,1, . . . , Aq,q2}. Since λ, λ0 and q depend only on A (and X), this
completes the proof of item (iv).

To prove (v), first define the points

S = αX(s) = Bi1 + · · · + Bil and T = αX(t) = Bj1 + · · · + Bjm ,

noting that A = S + T . Write A = (a, b), S = (c, d) and T = (e, f). Now, d =
yi1 + · · ·+yil ≥ l, as the y-coordinate of each element from X1 is at least 1. Let
r be the minimum y-coordinate of all the points from {A0,0, A1,1, . . . , Aq,q2};
since q depends only on A, so too does r. Then since each Bj (j ∈ J) belongs to
{A0,0, A1,1, . . . , Aq,q2}, we have f = yj1 + · · · + yjm ≥ mr. Together with d ≥ l
and b = d + f , it follows that

l ≤ d = b − f ≤ b − mr.

Since b depends only on the point A, and m and r only on the word t, it
follows that the length of s is bounded above by a constant depending only on
A and t. Also, since (a − e, b − f) = A − T = S = Bi1 + · · · + Bil , and since
yi ≥ 1 for each i ∈ I (as Bi ∈ X1), it follows that b − f = yi1 + · · · + yil ≥ yi

for each i ∈ I. Since there are only finitely many elements of X1 with y-
coordinate at most b − f , it follows that t is a word over the finite subset
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Figure 13. The step set X = X1 ∪ X2 from Example 2.33
(drawn to scale). Points from X1 and X2 are in the regions
shaded red and blue, respectively

{B ∈ X1 : the y-coordinate of B is at most b − f}. Since we have already shown
that the length of t is bounded above by b − mr, this completes the proof of
(v), and indeed (as noted above) of (iii).

With combination (V) being dealt with in Appendix A, our final task
for this section is to show that combination (VIII) is impossible. This will be
achieved in Proposition 2.36 below, where we show that any step set X ⊆ Z

2
×

with the BPP but not the LC must also have the FPP; we first demonstrate
this in the special case that X contains no steps to the left of the y-axis.

Lemma 2.34. If a step set X ⊆ N × Z does not satisfy the LC but does have
the BPP, then X has the FPP.

Proof. Suppose X ⊆ N × Z does not satisfy the LC but does have the BPP.
Define the sets Yk, Y +

k and Y −
k , for each k ∈ N, as in Lemma 2.23. Since X

does not satisfy the LC, X must contain at least one point from the y-axis;
by symmetry, we assume this point is on the negative part of the y-axis. If X
also contained a point from the positive part of the y-axis, then X would have
the IPP by Theorem 2.19, so this must not be the case (as BPP ⇒ ¬IPP, by
Theorem 2.24(i)). So far we have shown that Y −

0 �= ∅ and Y +
0 = ∅. If Y +

k was
infinite for some k ∈ P, then X would not have the BPP, by Lemma 2.23(ii),
a contradiction; so it follows that Y +

k is finite for all k ∈ P. But then Lemma
2.23(i) now tells us that X has the FPP. �
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To extend Lemma 2.34 to arbitrary step sets (in Proposition 2.36), we
need the next lemma, which characterises the lines with a given rational slope
and containing lattice points. In the proof, and later, we use the well-known
fact that the (perpendicular) distance of a point (u, v) to the line with equation
ax + by + c = 0 is equal to

|au + bv + c|√
a2 + b2

. (2.7)

Lemma 2.35. Let L be the line with equation ax + by = 0, where a, b ∈ Z are
not both zero and gcd(a, b) = 1. Then the lines parallel to L containing lattice
points are precisely the lines parallel to L whose (perpendicular) distance from
L is an integer multiple of 1√

a2+b2
.

Proof. Throughout the proof, we write δ = 1√
a2+b2

. First suppose L ′ is parallel
to L and contains some lattice point (u, v) ∈ Z

2. By (2.7), the distance from
(u, v) to L (and hence the distance from L ′ to L ) is equal to |au+bv|√

a2+b2
, which

is an integer multiple of δ.
Conversely, let k ∈ P be arbitrary; there are two lines parallel to L a

distance of kδ from L ; to show these both contain lattice points, it suffices to
show that there are lattice points on both sides of L a distance of kδ from L .
Since gcd(a, b) = 1, there exist integers u, v ∈ Z such that au + bv = 1. Using
(2.7) again, we see that the points ±(ku, kv) are both a distance of kδ from
L , as required. �

Here is the promised result showing that combination (VIII) is impossible;
cf. Table 1.

Proposition 2.36. If a step set X ⊆ Z
2
× does not satisfy the LC but does have

the BPP, then X has the FPP.

Proof. Suppose X ⊆ Z
2
× does not satisfy the LC but does have the BPP.

Because of the BPP, Theorem 2.24(i) says that X does not have the IPP.
First note that X satisfies the WLC, as defined in Section 2.8; indeed, if it

did not, then as in Remark 2.28, AX would be a group isomorphic to (Z2,+),
in which case AX would contain non-trivial units, and so X would satisfy the
IPP by Theorem 2.19, a contradiction. So let L0 be a line witnessing the WLC,
and let H be the half-plane bounded by L0 such that X ⊆ H. Since X does
not satisfy the LC, we must have X ∩L0 �= ∅. See Fig. 14, which displays this,
and all the coming information about X.

Since L0 also contains the origin, it has rational (or vertical) slope, so we
may assume its equation is ax + by = 0, where a, b ∈ Z are not both zero and
gcd(a, b) = 1. Put δ = 1√

a2+b2
. Let u be a vector of length δ perpendicular to

L0 and pointing into H. For p ∈ P, let Lp be the line defined by Lp = pu+L0;
so Lp is parallel to L , is contained in H, and is a distance of pδ from L0. By
Lemma 2.35, and since X ⊆ H ∩ Z

2, every element of X is contained in one
of the lines Lp (p ∈ N).

Let L ′
0 be the line through O perpendicular to L0; so L ′

0 has equation
bx − ay = 0. Let v be a vector of length δ and perpendicular to L ′

0 (pointing
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Figure 14. Schematic diagram of the proof of Proposition
2.36

in either of the two possible directions). For q ∈ Z, let L ′
q be the line defined

by L ′
q = L ′

0 + qv. Again, by Lemma 2.35, each element of X lies on one of
the lines L ′

q (q ∈ Z).
So far we have seen that every step from X is on the intersection of Lp

and L ′
q for some p ∈ N and q ∈ Z; this point is pU + qV , where U, V ∈ R

2

are such that u =
−−→
OU and v =

−−→
OV . (The points U and V do not necessarily

belong to X, or even to Z
2.) Write

Y =
{
(p, q) ∈ N × Z : pU + qV ∈ X

}
,

and define the linear transformation φ : R
2 → R

2 by φ(U) = (1, 0) and
φ(V ) = (0, 1). Note that φ acts geometrically on R

2 by first rotating L0 and
L ′

0 onto the y- and x-axes, respectively, and then scaling down by a factor
of δ (and then possibly reflecting in the x-axis, depending on the direction
chosen for v). Also, φ maps X bijectively onto Y , and AX isomorphically onto
AY ; further, it is clear that the induced isomorphism FX → FY maps ΠX(A)
bijectively onto ΠY (φ(A)) for all A ∈ AX ; it follows that Y has the BPP (since
X does), and that X has the FPP if and only if Y does. Moreover, given the
above geometric interpretation of φ, it is clear that if a line L witnessed the
LC for Y , then the line φ−1(L ) would witness the LC for X; since X does
not satisfy the LC, it follows that Y does not either. Thus, since Y ⊆ N×Z, it
follows from Lemma 2.34 that Y has the FPP; as noted above, it follows that
X too has the FPP. �
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3. Constrained Walks

3.1. Definitions and Basic Examples

Suppose now that we have a step set X ⊆ Z
2
×, and that we wish to enumerate

X-walks that stay within a certain region of the plane. For any word w =
A1 · · · Ak ∈ FX , and for any 0 ≤ m ≤ k, we write σm(w) = A1 · · · Am for the
initial subword consisting of the first m letters of w. Note that σ0(w) = ε and
σ�(w)(w) = w for any word w. Considering the letters A1, . . . , Ak as steps in a
walk from O to αX(w) = A1 + · · · + Ak, we see that the points visited during
the walk are
O = αX(σ0(w)) → αX(σ1(w)) → αX(σ2(w)) → · · · → αX(σk(w)) = αX(w).

(3.1)

(The surmorphism αX : FX → AX was defined in Sect. 2.1.)
Now fix a subset C of Z

2 with O ∈ C . Consider a word
w = A1 · · · Ak ∈ FX ; so w is an X-walk from O to αX(w), visiting the points
listed in (3.1). We are interested in the walks that are constrained in such a
way that all of these points belong to C ; we call such a walk an (X,C )-walk.
Accordingly, we define

FC
X =

{
w ∈ FX : αX(σm(w)) ∈ C for all 0 ≤ m ≤ �(w)

}

and A C
X = αX(FC

X ) = {αX(w) : w ∈ FC
X }.

So FC
X is the set of all (X,C )-walks, and A C

X is the set of all endpoints of
such walks. Note that A C

X ⊆ AX ∩ C , but that this inclusion may be strict;
consider X = {(1, 0)} and C = 2N×{0}. Note also that ε ∈ FC

X and O ∈ A C
X

for any X and C , but that neither FC
X nor A C

X need be monoids in gen-
eral; consider X = {(1, 0)} and C = {(0, 0), (1, 0)}. However, we do have the
following general result.

Lemma 3.1. If X ⊆ Z
2
× is a step set, and if C is a submonoid of Z2, then FC

X

and A C
X are submonoids of FX and AX , respectively.

Proof. Since A C
X = αX(FC

X ), and since αX is a homomorphism, it suffices to
prove the statement concerning FC

X . With this in mind, let u, v ∈ FC
X , and

write k = �(u) and l = �(v). We must show that αX(σm(uv)) ∈ C for all
0 ≤ m ≤ �(uv) = k + l. Now, if 0 ≤ m ≤ k, then αX(σm(uv)) = αX(σm(u)) ∈
C since u ∈ FC

X . If k ≤ m ≤ k + l, then

αX(σm(uv)) = αX(uσm−k(v)) = αX(u) + αX(σm−k(v)) ∈ C

since u, v ∈ FC
X and since C is a submonoid. �

Consider a step set X ⊆ Z
2
× and a subset C ⊆ Z

2 with O ∈ C . Analo-
gously to the case of unconstrained walks, for A ∈ Z

2, we define

ΠC
X(A) = {w ∈ FC

X : αX(w) = A} and πC
X(A) = |ΠC

X(A)|.
So ΠC

X(A) is the set of all (X,C )-walks from O to A, and πC
X(A) is the number

of such walks. Clearly πC
X(A) ≤ πX(A) for all A. If AX ⊆ C , then ΠC

X(A) =
ΠX(A) and πC

X(A) = πX(A) for all A; in particular, this occurs when C = Z
2,

in which case we are dealing with unconstrained walks; cf. Sect. 2.
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Figure 15. The graph ΓC
X , where C = {(a, b) ∈ N

2 : b ≤ a},
and (left to right): X = {(1, 0), (0, 1)}, X = {(±1, 0), (0,±1)}
and X = {1} × N; cf. Example 3.2(i)–(iii)

As in Sect. 2, the combinatorial data corresponding to the pair (X,C )
may be conveniently displayed in a bi-labelled digraph, ΓC

X , defined as follows:
• The vertex set of ΓC

X is A C
X ; a vertex A ∈ A C

X is drawn in the appropriate
position in the plane, and is labelled πC

X(A).
• If A ∈ A C

X and B ∈ X are such that A+B ∈ C , then ΓC
X has the labelled

edge A
B−−→ A + B.

We noted in Sect. 2.1 that ΓX is the Cayley graph of the monoid AX with
respect to the generating set X (with additional vertex labels showing the
numbers πX(A)). It is important to note, however, that even when A C

X is a
monoid, ΓC

X is generally not a Cayley graph of A C
X ; in fact, X is not even a

subset of A C
X in general, let alone a generating set.

At this point we consider some basic examples.

Example 3.2. (cf. Examples 2.1, 2.2 and 2.4) For the following examples, let
C = {(a, b) ∈ N

2 : b ≤ a}, and also define the points N = (0, 1), E = (1, 0),
S = (0,−1) and W = (−1, 0).

(i) For X = {N,E}, we have A C
X = C , and the numbers πC

X(A) form the
Catalan Triangle; see [1, A009766, A033184 or A053121]. Fig. 15 shows
the graph ΓC

X .
(ii) For X = {N,E, S,W}, we again have A C

X = C , but this time πC
X(A) = ∞

for all A ∈ C ; cf. Fig. 15.
(iii) For the infinite step set X = {1} × N, we still have A C

X = C , and the
numbers πC

X(A) produced are the same as for the finite step set {N,E}
considered above (the Catalan Triangle); cf. Fig 15.

(iv) Let X = {N,E, S,W,U}, where U = (1, 1). The graphs ΓC1
X , ΓC2

X and
ΓC3

X are pictured in Fig. 16, for the three submonoids

C1 = {(a, a) : a ∈ Z}, C2 = N
2, C3 = {O} ∪ P

2.

The pair (X,C1) shows that it is possible for AX and C both to be
groups, but A C

X not to be.

Remark 3.3. Consider a step set X ⊆ Z
2
× and a submonoid C of Z2. Above,

we have only spoken of (X,C )-walks from the origin O to a point A, but it

https://oeis.org/A009766
https://oeis.org/A033184
https://oeis.org/A053121
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Figure 16. The graphs ΓC1
X (left), ΓC2

X (middle) and ΓC3
X

(right), where X = {(±1, 0), (0,±1), (1, 1)}, C1 = {(a, a) :
a ∈ Z}, C2 = N

2 and C3 = {O} ∪ P
2; cf. Example 3.2(iv)

is possible to speak of (X,C )-walks from A to B for arbitrary A,B ∈ Z
2.

These would be X-walks w ∈ ΠX(A,B) such that A + αX(σm(w)) ∈ C for
all 0 ≤ m ≤ �(w); for such a walk to exist, it must of course be the case
that A,B ∈ C . Let ΠC

X(A,B) and πC
X(A,B) denote the set and number of

(X,C )-walks from A to B. Then one may easily show that

ΠC
X(A,B) ⊆ ΠC

X(A + C,B + C) and πC
X(A,B) ≤ πC

X(A + C,B + C)
for any C ∈ C ,

though these can be strict. (Indeed, if X and C are as in Example 3.2(i), then
with A = (0, 0), B = (1, 1) and C = (1, 0), we have NE ∈ ΠC

X(A+C,B +C)\
ΠC

X(A,B); cf. Fig. 15.) Thus, the (X,C )-walks from the origin alone do not
generally capture all information about (X,C )-walks between arbitrary points,
in contrast to the situation with unconstrained walks. It is possible to define
a structure that incorporates all such (X,C )-walks, namely the category with
object set C , and morphism sets Hom(A,B) = ΠC

X(A,B) for each A,B ∈ C .
We believe it would be interesting to study such categories, but it is beyond
the scope of the current work.

3.2. Geometric Conditions and Finiteness Properties for Constrained Walks

This section and the next concern constrained versions of the finiteness prop-
erties given in Sect. 2.2, and their relationships to the geometric conditions
introduced in Sect. 2.3.

Consider a step set X ⊆ Z
2
×, and a subset C of Z2 containing O.

• We say (X,C ) has the Finite Paths Property (FPP) if πC
X(A) < ∞ for

all A ∈ A C
X .

• We say (X,C ) has the Infinite Paths Property (IPP) if πC
X(A) = ∞ for

all A ∈ A C
X .

• We say (X,C ) has the Bounded Paths Property (BPP) if for all A ∈ A C
X ,

the set
{
�(w) : w ∈ ΠC

X(A)
}

has a maximum element (equivalently, this
set is finite).

The proof of Lemma 2.5 works essentially unchanged to show that for any step
set X, and for any submonoid C of Z2,

(X,C ) has the IPP ⇔ πC
X(O) = ∞ ⇔ πC

X(O) ≥ 2. (3.2)
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We also have the following constrained version of Theorem 2.24. To make the
statement clearer, we write P |= Q to mean “P satisfies Q”.

Theorem 3.4. (i) For an arbitrary step set X ⊆ Z
2
×, and for an arbitrary

submonoid C of Z2, we have:

X |= CC X |= SLC X |= LC

(X,C ) |= FPP (X,C ) |= BPP (X,C ) �|= IPP⇒ ⇒

⇒ ⇒

⇓ ⇓ ⇓

(3.3)

(ii) For finite X, some but not all of the implications in (3.3) are reversible;
these are indicated as follows:

X |= CC X |= SLC X |= LC

(X,C ) |= FPP (X,C ) |= BPP (X,C ) �|= IPP

⇔

⇔

⇔

⇒
⇓ ⇓ ⇓

(iii) In general, none of the implications in (3.3) are reversible.

Proof. (i). The top row of “horizontal” implications have already been proven
in Lemma 2.8. The “vertical” implications follow from Theorem 2.24(i) and
the obvious facts that

X |= FPP ⇒ (X,C ) |= FPP, X |= BPP ⇒ (X,C ) |= BPP,

X �|= IPP ⇒ (X,C ) �|= IPP.

The bottom row of “horizontal” implications are proved in analogous fashion
to Lemma 2.6.

(ii). Suppose X is finite. We begin with the non-reversible implications.
The pair (X,C3) from Example 3.2(iv) satisfies neither the IPP nor the BPP;
this shows that the implication (X,C ) |= BPP ⇒ (X,C ) �|= IPP is not
reversible in general (even for finite X). The pair (X,C1) from the same ex-
ample satisfies the FPP, but X does not satisfy the LC; this takes care of all
the “vertical” (non-)implications.

The two “horizontal” implications on the top row are reversible be-
cause of Lemma 2.8(iii). The only remaining implication to demonstrate is
(X,C ) |= BPP ⇒ (X,C ) |= FPP. So suppose (X,C ) satisfies the BPP. Let
A ∈ A C

X be arbitrary. Writing L = max
{
�(w) : w ∈ ΠC

X(A)
}
, we see that

ΠC
X(A) is contained in the set {w ∈ FX : �(w) ≤ L}; since the latter is finite

(as X is finite), so too is ΠC
X(A).

(iii). The proof of Theorem 2.24(iii) remains valid here, upon taking
C = Z

2. �

Remark 3.5. With different formatting, perhaps the implications in Theorem
3.4(ii) appear clearer as:

[
X |= CC ⇔ X |= SLC ⇔ X |= LC

]

⇒ [
(X,C ) |= FPP ⇔ (X,C ) |= BPP

] ⇒ (X,C ) |= IPP,
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for finite X.

There are also analogues of Theorems 2.19 and 2.30 for constrained walks,
although these are somewhat more subtle than the unconstrained versions. We
begin with a lemma that motivates the discussion to follow; it shows that the
conditions O ∈ Conv(X) and O ∈ Rel-Int(Conv(X)) considered in Theorems
2.19 and 2.30 are equivalent to ostensibly weaker conditions.

Lemma 3.6. Let X ⊆ Z
2
× be an arbitrary step set. Then

(i) O ∈ Conv(X) ⇔ O ∈ Conv(AX \ {O}),
(ii) O ∈ Rel-Int(Conv(X)) ⇔ O ∈ Rel-Int(Conv(AX \ {O})).

Proof. Write Y = AX \ {O}, noting that AY = AX . For part (i) we have

O ∈ Conv(X) ⇔ AX has non-trivial units by Theorem 2.19
⇔ AY has non-trivial units as AX = AY

⇔ O ∈ Conv(Y ) by Theorem 2.19 again.

Part (ii) is treated in similar fashion, using Theorem 2.30 instead of Theorem
2.19. �

In light of Theorem 2.19 and Lemma 3.6(i), we see that for any step set
X ⊆ Z

2
×,

X |= IPP ⇔ O ∈ Conv(X) ⇔ O ∈ Conv(AX \ {O})
⇔ AX has non-trivial units.

The next result considers the analogous conditions for pairs (X,C ).

Proposition 3.7. Let X ⊆ Z
2
× be an arbitrary step set, and let C be a sub-

monoid of Z2. Consider the following statements:
(i) (X,C ) has the IPP,
(ii) O ∈ Conv(X),
(iii) O ∈ Conv(A C

X \ {O}),
(iv) A C

X has non-trivial units.
Then the implications that hold among (i)–(iv) are precisely those inferrable
from the following:

(iii) ⇔ (iv) ⇒ (i) ⇒ (ii).

Proof. We begin with the stated implications.
(iii) ⇔ (iv). Put Y = A C

X \{O}. Since A C
X = AY , this equivalence follows

from Theorem 2.19.
(iv) ⇒ (i). Suppose O = A + B, where A,B ∈ A C

X \ {O}. Then by
definition, we have A = αX(u) and B = αX(v) for some u, v ∈ FC

X \ {ε}. It
quickly follows that uv ∈ ΠC

X(O) \ {ε}, and so πC
X(O) ≥ 2. But then (X,C )

has the IPP by (3.2).
(i) ⇒ (ii). This is exactly the same as the corresponding part of Theorem

2.19.

We now treat the non-implications. It suffices to show that (ii) �⇒ (i) and
(i) �⇒ (iv).
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(ii) �⇒ (i).The pair (X,C1) from Example 3.2(iv) satisfies (ii) but not (i).
(i) �⇒ (iv).The pair (X,C2) from Example 3.2(iv) satisfies (i) but not (iv).

�

In light of Theorem 2.30 and Lemma 3.6(ii), for any step set X ⊆ Z
2
×, the

monoid AX is a non-trivial group if and only if O ∈ Rel-Int(Conv(AX \{O})).
The next result is a direct analogue of this last statement for constrained walks,
and in fact follows quickly from the unconstrained version.

Proposition 3.8. Let X ⊆ Z
2
× be an arbitrary step set, and let C be a sub-

monoid of Z
2. Then A C

X is a non-trivial group if and only if
O ∈ Rel-Int(Conv(A C

X \ {O})).

Proof. Let Y = A C
X \ {O}, noting that AY = A C

X . Then by Theorem 2.30,

A C
X is a non-trivial group ⇔ AY is a non-trivial group

⇔ O ∈ Rel-Int(Conv(Y )). �

Remark 3.9. The condition O ∈ Rel-Int(Conv(X)) neither implies nor is im-
plied by A C

X being a (non-trivial) group. For example:
• If X = {(1, 0), (−1, 0), (0, 1)} and C = Z×{0}, then A C

X = C is a group,
yet O �∈ Rel-Int(Conv(X)).

• If (X,C1) is as in Example 3.2(iv), then O ∈ Rel-Int(Conv(X)), yet A C1
X

is not a group.
But of course A C

X being a non-trivial group implies O ∈ Conv(X) because of
Proposition 3.7.

3.3. Admissible Steps, and Constraint Sets Containing Lattice Cones

Consider a pair (X,C ), where X ⊆ Z
2
× is a step set, and C a submonoid of Z2.

We say a step A ∈ X is (X,C )-admissible if there exist words u, v ∈ FX such
that uAv ∈ FC

X . So the (X,C )-admissible steps are those that may actually
be used in (X,C )-walks. Since any initial subword of an (X,C )-walk is clearly
an (X,C )-walk (i.e., since FC

X is prefix-closed), A ∈ X is (X,C )-admissible if
and only if there exists a word u ∈ FX such that uA ∈ FC

X , and then we also
have u ∈ FC

X for any such u.
Note that if Y is the set of all (X,C )-admissible steps, then we have

A C
X = A C

Y , ΓC
X = ΓC

Y , and so on. In general, determining Y , given X and
C , is not always easy; however, it is easy in at least one special case we treat
below. This section gives a number of strengthenings of results from previous
sections based on admissible steps.

Theorem 3.10. Let X ⊆ Z
2
× be a step set, let C be a submonoid of Z2, and let

Y ⊆ X be the set of (X,C )-admissible steps. If Y is finite, then the following
are equivalent:

(i) (X,C ) has the FPP,
(ii) O �∈ Conv(Y ),
(iii) Y satisfies the LC.
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Proof. (i) ⇒ (ii). We prove the contrapositive (and we note that for this impli-
cation we do not need to assume Y is finite). Suppose O ∈ Conv(Y ). As in the
proof of Theorem 2.19, we have O = xA + yB + zC for some A,B,C ∈ Y and
x, y, z ∈ N with x, y, z not all zero. (At this point it is worth noting that, in con-
trast to the unconstrained case, we may not simply deduce that AxByCz be-
longs to ΠC

X(O).) Since A,B,C are (X,C )-admissible, there exist u, v, w ∈ FX

such that uA, vB,wC ∈ FC
X . As noted above, we also have u, v, w ∈ FC

X . For
convenience, we write U = αX(u), V = αX(v) and W = αX(w). For k ∈ N,
define the word

gk = uxvywz(AxByCz)k.

Let D = xU + yV + zW . The proof will be complete if we can show that
gk ∈ ΠC

X(D) for all k ∈ N, as then πC
X(D) = ∞. With this in mind, fix some

k ∈ N. Note that

αX(gk) = xU + yV + zW + k(xA + yB + zC) = D + kO = D,

so that gk ∈ ΠX(D), so it remains to show that gk ∈ FC
X . To do so, we must

show that αX(σi(gk)) ∈ C for all 0 ≤ i ≤ �(gk), so consider some such i. Note
that

�(gk) = λ + kμ, whereλ = x�(u) + y�(v) + z�(w) and μ = x + y + z.

If i ≤ λ, then σi(gk) = σi(uxvywz), and since uxvywz ∈ FC
X (as u, v, w belong

to the monoid FC
X ), it follows that αX(σi(gk)) ∈ C . So now suppose i > λ.

By the division algorithm, we may write i − λ = qμ + r, where q, r ∈ N and
0 ≤ r < μ. Then since xA + yB + zC = O, we have

αX(σi(gk)) = (xU + yV + zW ) + q(xA + yB + zC) + αX(σr(A
x
B

y
C

z
))

= (xU + yV + zW ) + αX(σr(A
x
B

y
C

z
))

=

⎧
⎪⎨

⎪⎩

(xU + yV + zW ) + rA if 0 ≤ r ≤ x

(xU + yV + zW ) + xA + (r − x)B if x ≤ r ≤ x + y

(xU + yV + zW ) + xA + yB + (r − x − y)C if x + y ≤ r < x + y + z

=

⎧
⎪⎨

⎪⎩

r(U + A) + (x − r)U + yV + zW if 0 ≤ r ≤ x

x(U + A) + (r − x)(V + B) + (x + y − r)V + zW if x ≤ r ≤ x + y

x(U + A) + y(V + B) + (r − x − y)(W + C) + (x + y + z − r)W if x + y ≤ r < x + y + z.

Since U , V , W , U + A, V + B and W + C all belong to the monoid C , so too
does αX(σi(gk)) in all of the above cases.

(ii) ⇒ (iii). Since Y is finite, Theorems 2.19 and 2.24(ii) give

O �∈ Conv(Y ) ⇒ Y �|= IPP ⇒ Y |= LC.

(iii) ⇒ (i). Here we have

Y |= LC ⇒ Y |= FPP ⇒ (Y,C ) |= FPP ⇒ (X,C ) |= FPP.

Indeed, the first implication follows from Theorem 2.24(ii), the second is ob-
vious, and the third follows from the fact that the (X,C )-walks are precisely
the (Y,C )-walks. �

Remark 3.11. In light of the finiteness assumption on Y in Theorem 3.10, sev-
eral more equivalent conditions could be listed; cf. Theorems 2.19 and 2.24(ii).
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Remark 3.12. In the notation of Theorem 3.10, we have
(X,C ) |= FPP ⇔ O �∈ Conv(Y ). While this certainly entails that (X,C ) |= IPP
⇒ O ∈ Conv(Y ), the converse does not hold in general (even for finite X),
as shown by the pair (X,C3) from Example 3.2(iv) (cf. Figure 16). Conse-
quently, we could not have listed “(X,C ) does not have the IPP” as one of
the equivalent conditions in Theorem 3.10. In particular, there is no FPP/IPP
dichotomy for constrained walks with finite step sets; cf. Corollary 2.25.

Many examples of constrained walks considered in the literature (and
throughout the current paper) involve a special kind of constraint set C that
is suitably “thick”, in the sense that C contains C ∩Z

2 where C is some (open)
cone with vertex O. It turns out that Theorem 3.10 may be strengthened in
certain such cases, as shown in Theorem 3.15 below. First we need the following
lemma.

Lemma 3.13. Let X ⊆ Z
2
× be an arbitrary step set, and let C be a submonoid

of Z
2. Suppose also that there is an (open) cone C with vertex O such that

C ∩ Z
2 ⊆ C and C ∩ A C

X �= ∅. Then every step from X is (X,C )-admissible.

Proof. Let A ∈ X be arbitrary. By assumption, there exists some point
B ∈ C ∩ A C

X . We note also that B is an interior point of C (as the latter
is an open set). It follows that there exists n ∈ N such that the circle of radius
|OA| centred at nB (including the boundary and interior) is contained in C.
But then we have nB + A ∈ C ∩ Z

2 ⊆ C . Thus, for any word w ∈ ΠC
X(B), we

have wnA ∈ FC
X , showing that A is indeed (X,C )-admissible. All of this is

shown in Figure 17. �
Remark 3.14. The assumption that C ∩ A C

X �= ∅ is crucial in proving Lemma
3.13. For example, consider X = {(1, 0), (0,−1)} and C = N

2, noting that
A C

X = N × {0}. Then C contains C ∩ Z
2, where C is the cone

{(x, y) ∈ R
2 : x

3 < y < x
2}, yet (0,−1) is not (X,C )-admissible. In fact, ev-

ery (open) cone C with vertex O satisfying C ∩Z
2 ⊆ C is contained in the first

quadrant, so for any such cone we have C ∩ A C
X = ∅.

Theorem 3.15. Let X ⊆ Z
2
× be an arbitrary finite step set, and let C be a

submonoid of Z2. Suppose also that there is an (open) cone C with vertex O
such that C ∩ Z

2 ⊆ C and C ∩ A C
X �= ∅. Then the following are equivalent:

(i) (X,C ) has the FPP,
(ii) O �∈ Conv(X),
(iii) X satisfies the LC.

Proof. This follows immediately from Theorem 3.10 and Lemma 3.13. �
Remark 3.16. As in Remark 3.12, we could not include “(X,C ) does not have
the IPP” among the listed conditions in Theorem 3.15. On the other hand,
any of the equivalent conditions from Theorem 2.24(ii) could have been added.
In particular, it seems noteworthy that (X,C ) |= FPP ⇔ X |= FPP for such
pairs (X,C ). The corresponding statement for the IPP is false, as shown by
(X,C3) from Example 3.2(iv).
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Figure 17. Verification that nB + A ∈ C , from the proof of
Lemma 3.13. Edges are coloured red (A) and blue (B). Note
that A ∈ X and B ∈ A C

X , so that a blue edge represents an
(X,C )-walk from O to B; such a walk might step outside of
the cone C (but not outside of the region C )

Remark 3.17. While the (X,C )-admissible steps have been useful in this sec-
tion for characterising the FPP in certain situations (Theorems 3.10 and 3.15),
we cannot use them to improve Propositions 3.7 or 3.8. For example, with
X ⊆ Z

2
× a step set, C a submonoid of Z2, and Y the set of (X,C )-admissible

steps, one might hope to prove that

• (X,C ) has the IPP if and only if O ∈ Conv(Y ), or
• A C

X is a non-trivial group if and only if O ∈ Rel-Int(Conv(Y )).

But neither of these are true, as again evidenced by the pair (X,C3) from
Example 3.2(iv). �
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A. Appendix (joint with Stewart Wilcox): Combination (V)

In Sect. 2.9 we used Theorem 2.24 to limit the ostensibly possible combinations
of finiteness conditions and geometric properties of step sets to just ten. One
combination was shown never to occur (cf. Proposition 2.36), and all but one
of the other combinations have been exemplified by various step sets whose
locations are listed in Table 1. The purpose of this appendix is to construct
a step set with the final combination (see Example A.5). The construction
relies crucially on the existence of very specific sequences of real numbers (see
Proposition A.2), and we turn to these first.

In all that follows, we fix a positive irrational number ξ, and we denote
by

M = {a + bξ : a, b ∈ Z, a + bξ ≥ 0}
the additive monoid consisting of all non-negative Z-linear combinations of 1
and ξ. Note that a or b might be negative in a+ bξ ∈ M , but we require a+ bξ
itself to be non-negative. So M is a submonoid of R≥0, and is dense in R≥0; see
the claim in the proof of Lemma 2.15. Since 1 and ξ are linearly independent
over Q, there is a well defined (and surjective) monoid homomorphism

φ : M → Z given by φ(a + bξ) = b.

For a, b ∈ R, we write [a, b] and (a, b) for the closed and open intervals of
all x ∈ R satisfying a ≤ x ≤ b or a < x < b, respectively; we also write [a, b)
and (a, b] for the half-open intervals, with the obvious meanings. If Σ ⊆ R,
we will also write [a, b]Σ = [a, b] ∩ Σ, with similar notation for other kinds of
intervals; for example, if a, b ∈ Z and a ≤ b, then [a, b]Z = {a, a + 1, . . . , b}. If
x is a real number, we will write ((x)) = x − �x� for the fractional part of x.

Lemma A.1. There is a mapping P → P : k �→ pk such that

φ−1
(
[p, p + pk]Z

) ∩ (α, α + 1
k ) �= ∅ for all p ∈ Z and α ∈ R≥0.

Proof. Fix some k ∈ P. By the claim in the proof of Lemma 2.15, there exists
l ∈ P and a ∈ Z such that 0 < lξ − a < 1

k . Let pk ∈ P be arbitrary so that

pk > l(1 + 1
lξ−a ).

Now suppose we are given p ∈ Z and α ∈ R≥0. Define

t = 1 +
⌊

((α − pξ))
lξ − a

⌋
.

Then

1 ≤ t ≤ 1 +
((α − pξ))

lξ − a
< 1 +

1
lξ − a

<
pk

l
. (A.1)

We also claim that
0 < t(lξ − a) − ((α − pξ)) <

1
k

. (A.2)

Indeed, for the inequality 0 < t(lξ − a) − ((α − pξ)), note that if we write
β = lξ − a and γ = ((α − pξ)), then we have

tβ − γ = (1 + � γ
β �)β − γ = β

(
1 − ( γ

β − � γ
β �)) = β

(
1 − (( γ

β ))
)

> β(1 − 1) = 0,
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while for the inequality t(lξ − a) − ((α − pξ)) ≤ lξ − a, we continue from above
to obtain

tβ − γ = β
(
1 − (( γ

β ))
) ≤ β = lξ − a <

1
k

.

Now that we have established (A.2), adding α throughout gives

α < t(lξ − a) + α − ((α − pξ)) < α +
1
k

.

Since α − ((α − pξ)) = α − (α − pξ) + �α − pξ� = pξ + �α − pξ�, it follows that

α < t(lξ − a) + pξ + �α − pξ� < α + 1
k .

That is,

α < b + cξ < α + 1
k where b = �α − pξ� − ta and c = tl + p.

So b + cξ ∈ (α, α + 1
k ), and also b + cξ ∈ φ−1

(
[p, p + pk]Z

)
since φ(b + cξ) =

c = tl + p clearly satisfies p ≤ c, while c ≤ p + pk follows from t < pk

l which is
itself part of (A.1). �

In what follows, we fix the mapping P → P : k �→ pk from Lemma
A.1. In fact, by suitably increasing each pk if necessary, we may assume that
p1 < p2 < · · · .

In what follows, for any subset Σ of R, we write
Sn(Σ) = {σ1 + · · · + σn : σ1, . . . , σn ∈ Σ} for the set of all sums of n elements
of Σ. Clearly if Σ is finite, then |Sn(Σ)| ≤ |Σ|n.

For each l ∈ P, we define

B(l) = φ−1
(
(−l, l)Z

) ∩ [0, l) ⊆ M and nl = l + l3 ∈ P.

Note that the “[0, l)” in the definition of B(l) is not “[0, l)Z”; in particular,
B(l) contains non-integers. We clearly have B(1) ⊆ B(2) ⊆ · · · , and we also
have M =

⋃
l∈P

B(l). Indeed, for the latter, if α ∈ M , then α ∈ B(l) for any l
greater than both α and |φ(α)|. We aim to prove the following:

Proposition A.2. There exist sequences αi, βi, γi (i ∈ P) of elements of M
satisfying:
(i) limi→∞ αi = 0,
(ii) limi→∞ γi = 1,
(iii) γi > 1 for all i ∈ P,
(iv) βi + γi = 4 for all i ∈ P, and
(v) Sn(Σ) ∩ B(l) = ∅ for all l ∈ P and n > nl, where Σ = {αi, βi, γi : i ∈ P}.

To prove the proposition, we will construct the αi series shortly, and after
that the βi, γi series inductively. We will write A = {αi : i ∈ P} and Ak =
{αi : i ∈ {1, . . . , k}} for each k ∈ P, and similarly define the sets B, C, Bk

and Ck. (Of course these sets are only well-defined once their elements have
been specified.)

For k ∈ P, define

Rk = (2k + pk + 1)

(

1 +
nk∑

n=0

nk(3k)n

)

∈ P,
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noting that R1 < R2 < · · · . For each k ∈ P, let αk ∈ M ∩ ( 1
k , 2

k ) be such that
φ(αk) > k(1 + Rk); such an element αk exists by Lemma A.1.

We will now inductively construct βk, γk (k ∈ P) satisfying βk + γk = 4,
γk ∈ (1, 1 + 1

k ] and

Sn(A ∪ Bk ∪ Ck) ∩ B(l) = ∅ for all l ∈ P and n > nl.

For the base of the induction, we set β1 = γ1 = 2. We must show the following:

Lemma A.3. With the above notation, we have Sn(A∪ {2}) ∩ B(l) = ∅ for all
l ∈ P and n > nl.

Proof. Suppose to the contrary that there exists ε ∈ Sn(A ∪ {2}) ∩ B(l) for
some l ∈ P and n > nl. Then there exist integers ci, d ∈ N (i ∈ P) such that

ε =
∑

i∈P

ciαi + 2d and
∑

i∈P

ci + d = n.

In particular, recalling the definition of B(l), we have l > ε > ciαi > ci
i for

each i ∈ P, so that ci < il for each i. Similarly l > 2d ≥ d. Again recalling the
definition of B(l), we also have

∑

i∈P

ciφ(αi) = φ(ε) < l.

But φ(αi) > i(1 + Ri) for all i, so it follows that φ(αi) ≥ 0 for all i ∈ P, and
that φ(αi) > l for i > l. This gives ci = 0 for all i > l. Putting all of the above
together, we have

l + l3 = nl < n =
∑

i≤l

ci + d < (l + 2l + · · · + l2) + l =
l2(l + 1)

2
+ l

≤ l2(l + l)
2

+ l = l3 + l,

a contradiction. �

Now suppose k > 1, and that we have defined the sequences βi, γi as
desired for all i < k. Let K > k be such that

RK > |φ(βi)|, |φ(γi)| for all i < k.

Define the sets

Ω =
nK⋃

n=0

nK⋃

t=1

φ
(
Sn(AK ∪ Bk−1 ∪ Ck−1)

)

t
and Γ = Ω ∪ (−Ω).

Note that

|Γ| ≤ 2|Ω| ≤ 2
nK∑

n=0

nK∑

t=1

∣
∣Sn(AK ∪ Bk−1 ∪ Ck−1)

∣
∣ ≤ 2

nK∑

n=0

nK(3K)n.

It quickly follows that
(|Γ| + 1

)
(2K + pk + 1) < 2RK , and so there exists an

integer p ∈ Z such that

[p, p + 2K + pk]Z ⊆ (−RK , RK)Z \ Γ. (A.3)
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By Lemma A.1, we may fix some

γk ∈ φ−1
(
[p + K, p + K + pk]Z

) ∩ (1, 1 + 1
k
) and we also put βk = 4 − γk.

Since φ(γk) ∈ [p+K, p+K +pk]Z ⊆ [p, p+2K +pk]Z ⊆ (−RK , RK)Z, we have
|φ(γk)| < RK ; since φ(βk) = −φ(γk), it follows that |φ(βk)| < RK as well. We
also claim that

|φ(γk) ± ω| > K for all ω ∈ Ω. (A.4)
Indeed, we have φ(γk) ∈ [p+K, p+K+pk]Z, so the set of all integers of distance
at most K from φ(γk) is contained in [p, p+2K +pk]Z, and by (A.3) the latter
interval is disjoint from Γ. Thus, for any ω ∈ Ω, since ∓ω ∈ Γ, it follows that
the distance from φ(γk) to ∓ω is greater than K: i.e., |φ(γk) − (∓ω)| > K,
completing the proof of (A.4).

Lemma A.4. With the above notation, we have Sn(A ∪ Bk ∪ Ck) ∩ B(l) = ∅
for all l ∈ P and n > nl.

Proof. Suppose to the contrary that there exists ε ∈ Sn(A ∪ Bk ∪ Ck) ∩ B(l)
for some l ∈ P and n > nl. Then there exist integers ci, di, ei ∈ N such that

ε =
∑

i∈P

ciαi +
k∑

i=1

(diβi + eiγi) ∈ B(l) and
∑

i∈P

ci +
k∑

i=1

(di + ei) = n.

Since βk +γk = β1 +γ1, we may assume without loss of generality that dk = 0
or ek = 0. But we note that dk and ek cannot both be zero, or else then
ε ∈ Sn(A ∪ Bk−1 ∪ Ck−1) ∩ B(l), contradicting the assumption that βi, γi

(i = 1, . . . , k − 1) have the desired properties. As in the proof of Lemma A.3,
we have ci < il for all i ∈ P.

Case 1. Suppose first that dk = 0, so that ek > 0 as just noted. Also, since
each βi, γi > 1 and each αi > 0, and since ε ∈ B(l), we have

∑k
i=1(di + ei) <

∑k
i=1(diβi + eiγi) ≤ ε < l. Next note that

l > φ(ε) =
∑

i∈P

ciφ(αi) +

k∑

i=1

(
diφ(βi) + eiφ(γi)

)

≥
∑

i∈P

ciφ(αi) −
k∑

i=1

(
di|φ(βi)| + ei|φ(γi)|

)
,

from which it follows that
∑

i∈P

ciφ(αi) < l +
k∑

i=1

(
di|φ(βi)| + ei|φ(γi)|

)

< l +
k∑

i=1

(diRK + eiRK) = l + RK

k∑

i=1

(di + ei) < l(1 + RK).(A.5)

We now consider two subcases.
Case 1.1. Suppose l ≥ K. Then (A.5) gives

l(1 + RK) >
∑

i≥K

ciφ(αi) ≥
∑

i≥K

cii(1 + Ri) ≥
∑

i≥K

ci(1 + RK) ⇒
∑

i≥K

ci < l.
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From this it follows that

l + l3 = nl < n =
∑

i<K

ci +
∑

i≥K

ci +
k∑

i=1

(di + ei)

< (l + 2l + · · · + (K − 1)l) + l + l = l
K(K − 1)

2
+ 2l ≤ l3

2
+ 2l.

But l + l3 < l3

2 + 2l implies l2 < 2, a contradiction since l ≥ K > 1.

Case 1.2. Now suppose l < K. For i ≥ K we have φ(αi) > i(1 + Ri) ≥
K(1 + RK). Together with (A.5), it follows that for any such i,

ciK(1 + RK) ≤ ciφ(αi) < l(1 + RK) < K(1 + RK)

so that ci = 0 for all i ≥ K.
Setting t = ek ≥ 1, we have

ε − tγk =
∑

i<K

ciαi +
∑

i<k

(diβi + eiγi) ∈ Sn−t(AK ∪ Bk−1 ∪ Ck−1).

But also

n − t < n =
∑

i<K

ci +
k∑

i=1

(di + ei) < (l + 2l + · · · + (K − 1)l) + l

= l
K(K − 1)

2
+ l <

K3

2
+ K < nK ,

and t = ek ≤ ∑
i∈P

ci +
∑k

i=1(di + ei) = n < nK . So it follows that
φ(ε) − tφ(γk) ∈ tΩ, say φ(ε) − tφ(γk) = tω. Then by (A.4),

|φ(ε)| = t|φ(γk) + ω| > tK ≥ K.

But also from ε ∈ B(l), we have |φ(ε)| < l < K, so we have arrived at a
contradiction again.

Case 2. The case in which ek = 0 and dk > 0 is almost identical, since
φ(βk) = −φ(γk). �

We are now ready to tie together the loose ends.

Proof of Proposition A.2. With respect to the sequences αi, βi, γi (i ∈ P) con-
structed above, conditions (i)–(iv) are immediate, while (v) follows from the
fact that

Sn(Σ) ∩ B(l) = Sn(A ∪ B ∪ C) ∩ B(l) =
⋃

k∈P

(
Sn(A ∪ Bk ∪ Ck) ∩ B(l)

)

for all n, l ∈ P. �

We now use Proposition A.2 to construct a step set X ⊆ Z
2
× with com-

bination (V); cf. Table 1.
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Example A.5. In all that follows, we keep the notation above: in particular,
the irrational number ξ > 0, the monoid M = {a + bξ : a, b ∈ Z, a + bξ ≥ 0}
and the sequences αi, βi, γi (i ∈ P). Also let

N =
{
(a, b) ∈ Z

2 : a + bξ ≥ 0
}

be the additive submonoid of Z
2 consisting of all lattice points on or above

the line L with equation x + ξy = 0. The map

ψ : N → M : (a, b) �→ a + bξ

is clearly a surjective monoid homomorphism. In fact, ψ is an isomorphism, as
injectivity follows quickly from the irrationality of ξ. For each i ∈ P, let

Ai = ψ−1(αi), Bi = ψ−1(βi), Ci = ψ−1(γi),

and put X = {Ai, Bi, Ci : i ∈ P}. Also let E = (1, 0) = ψ−1(1). We claim that:
(i) X does not satisfy the SLC,
(ii) X satisfies the LC,
(iii) X does not have the FPP,
(iv) X has the BPP.
First note that (ii) is clear, as L itself witnesses the LC (as ξ is irrational,
the only lattice point on L is O). Item (iii) follows quickly from the fact that
βi + γi = 4 for all i ∈ P; indeed, since ψ is an isomorphism, this implies that
Bi + Ci = ψ−1(4) = (4, 0) = 4E for all i, and hence πX(4E) = ∞.

To establish the remaining items, first define η =
√

1 + ξ2. For A =
(u, v) ∈ N write δ(A) for the (perpendicular) distance from A to L . Then
by (2.7), and since u + vξ ≥ 0 as A ∈ N , we have

δ(A) =
u + vξ

√
1 + ξ2

=
ψ(A)

η
.

Next, let L ′ and L ′′ be the lines obtained, respectively, by sliding L a dis-
tance of 1

η or 3
η units into the half-plane on the side of L containing X (or,

equivalently, by sliding L by 1 or 3 units to the right, since δ(E) = 1
η ). This

is all shown in Fig. 18. Now,

lim
i→∞

δ(Ai) = lim
i→∞

αi

η
= 0.

This shows that X contains points arbitrarily close to L , and consequently
that:
(v) no line parallel to L witnesses the SLC.

We also have

lim
i→∞

δ(Ci) = lim
i→∞

γi

η
=

1
η

and lim
i→∞

δ(Bi) = lim
i→∞

βi

η
= lim

i→∞
4 − γi

η
=

3
η
.

This means that the points C1, C2, . . . approach L ′ from the right, while
B1, B2, . . . approach L ′′ from the left. Since the points C1, C2, . . . are be-
tween the lines L ′ and L ′′, and since a bounded region of R2 contains only
finitely many lattice points, the y-coordinates of C1, C2, . . . are unbounded,
either above or below or both; it follows (since Bi = 4E − Ci for all i) that



Lattice Paths and Submonoids of Z
2 845

Figure 18. A subset of the step set from Example A.5 (not
to scale). Some X-walks of the form BjCj from ΠX(4E) are
shown in red (color figure online)

the y-coordinates of B1, B2, . . . are unbounded below or above or both, re-
spectively. Thus, X contains points between L ′ and L ′′ with arbitrarily large
positive and negative y-coordinates, and it quickly follows that:

(vi) L is the only line through O that witnesses the LC.

Items (v) and (vi), together with Lemma 2.9(ii), show that X does not sat-
isfy the SLC. Figure 18 depicts all the above, but only showing subsequences
Ai (i ∈ I), and Bj , Cj (j ∈ J) with monotone y-coordinates (with the y-
coordinates of Ai, Cj increasing, and those of Bj decreasing).
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Finally, the BPP follows quickly from the properties of the αi, βi, γi se-
quences. Indeed, let D ∈ AX be arbitrary, and fix some w ∈ ΠX(D). Write w =
F1 · · · Fk, where F1, . . . , Fk ∈ X, so that D = F1 + · · · + Fk. Now consider the
real number ψ(D) ∈ M , and let l ∈ P be such that ψ(D) ∈ B(l); the set B(l) ⊆
M was defined just before Proposition A.2. Now,
ψ(D) = ψ(F1) + · · · + ψ(Fk), and ψ(F1), . . . , ψ(Fk) all belong to
Σ = {αi, βi, γi : i ∈ P}. This means that ψ(D) ∈ Sk(Σ) ∩ B(l), and so
Proposition A.2 gives �(w) = k ≤ nl = l + l3. This shows that the set
{�(w) : w ∈ ΠX(D)} is contained in {1, . . . , nl}, and hence is finite. Since
D ∈ AX was arbitrary, the BPP has been established.
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