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Abstract. Ordering permutations by containment of inversion sets yields
a fascinating partial order on the symmetric group: the weak order. This
partial order is, among other things, a semidistributive lattice. As a con-
sequence, every permutation has a canonical representation as a join of
other permutations. Combinatorially, these canonical join representations
can be modeled in terms of arc diagrams. Moreover, these arc diagrams
also serve as a model to understand quotient lattices of the weak or-
der. A particularly well-behaved quotient lattice of the weak order is the
well-known Tamari lattice, which appears in many seemingly unrelated
areas of mathematics. The arc diagrams representing the members of the
Tamari lattices are better known as noncrossing partitions. Recently, the
Tamari lattices were generalized to parabolic quotients of the symmetric
group. In this article, we undertake a structural investigation of these
parabolic Tamari lattices, and explain how modified arc diagrams aid the
understanding of these lattices.
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1. Introduction

Given a permutation w of [n] def= {1, 2, . . . , n}, an inversion of w is a pair
of indices for which the corresponding values of w are out of order. In other
words, the number of inversions of w is a measure of disorder introduced by w.
A permutation is characterized by its inversion set, i.e. the set of pairs encoding
the locations of the inversions.
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Containment of inversion sets introduces a partial order on the set Sn of
all permutations of [n]; the weak order. This partial order has many remarkable
properties. For instance, it is a lattice [23,46]. The diagram of the weak order
is the graph on the vertex set Sn in which two permutations are related by an
edge if they differ by swapping a descent, i.e. an inversion whose corresponding
values are adjacent integers. By construction, this diagram is isomorphic to
the 1-skeleton of the permutohedron [19].

Perhaps, an even more remarkable property of the weak order on Sn is
the fact that it is a semidistributive lattice [16]. This means that every permu-
tation has a canonical representation as a join of permutations, thus effectively
solving the word problem for these lattices. The members of these canonical
join representations are join-irreducible permutations, i.e. permutations with
a unique descent.

In [12], a property stronger than semidistributivity was established for
the weak order on Sn. It was shown that weak order lattices are congru-
ence uniform, which ensures a bijective connection between join-irreducible
permutations and join-irreducible lattice congruences, i.e. certain equivalence
relations on Sn compatible with the lattice structure.

Reading gave a combinatorial description of the canonical join represen-
tations in the weak order in terms of noncrossing arc diagrams [37]. Each
join-irreducible permutation of Sn corresponds to a unique arc connecting
two distinct elements of [n], and a certain forcing order on these arcs can be
used to characterize quotient lattices of the weak order.

One of these quotient lattices is the Tamari lattice, first introduced in [42]
via a rotation transformation on binary trees. When considered as a quotient
lattice of the weak order on Sn, the Tamari lattice—denoted by Tam(n)—
arises as the subposet induced by 231-avoiding permutations, i.e. permutations
whose one-line notation does not contain a subword that normalizes to 231 [10,
34].

The Tamari lattices have an even richer structure than the weak or-
der on permutations [31]. The Tamari lattices inherit semidistributivity and
congruence-uniformity from the weak order, but they are also trim, i.e. extremal
and left modular [11,26]. The first property implies that their number of join-
irreducible elements is as small as possible, and the second property entails
some desirable topological properties.

The noncrossing arc diagrams representing the elements of Tam(n) are
precisely the noncrossing partitions of [n] introduced in [24]; see [37]. Then,
generalizing a geometric construction by N. Reading, there is a natural way to
reorder the elements of Tam(n) which turns out to agree with the refinement
order on noncrossing partitions [3,36].

Let us expand on this construction a little bit. Since the weak order is
congruence uniform, we may use a perspectivity relation to label the edges
in its diagram by join-irreducible permutations. With any permutation w, we
can associate a particular interval in the weak order by taking the meet of the
elements covered by w. The core label set of w is the set of labels appearing in
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this interval and the core label order orders Sn with respect to containment
of these core label sets.

Note that this construction is purely lattice-theoretic and depends only on
a (finite) lattice L and a labeling of the diagram of L. Under certain hypotheses
on this labeling, we can associate a core label order CLO(L) with any labeled
lattice. A study of this core label order for congruence-uniform lattices was
carried out in [29].

In this article, we study a recent generalization of Tam(n) which arise in
the study of parabolic quotients of Sn. Any integer composition α =
(α1, α2, . . . , αr) of n partitions the set [n] into α-regions, i.e. consecutive in-
tervals of lengths α1, α2, . . ., αr. We then consider the set Sα of permutations
whose one-line notation—when partitioned into α-regions—has only increasing
blocks. If α = (1, 1, . . . , 1), this construction recovers Sn.

The parabolic Tamari lattice is the restriction of the weak order to the
subset of Sα consisting of those permutations avoiding certain 231-patterns.
By [30, Theorem 1], the resulting partially ordered set, denoted by Tam(α), is
a quotient lattice of the weak order on Sα. We set out for a structural study of
these lattices and certain related structures. Our first main result establishes
that Tam(α) is congruence uniform and trim.

Theorem 1.1. For all n > 0 and every composition α of n, the lattice Tam(α)
is congruence uniform and trim.

Since Tam(α) is congruence uniform, we may consider its core label order.
Using a modification of Reading’s noncrossing arc diagrams, we may relate the
core label order of Tam(α) to the refinement order on certain set partitions
of [n]. Exploiting the fact that Tam(α) is a quotient lattice of the weak order
allows us to prove the following structural property of CLO

(
Tam(α)

)
.

Theorem 1.2. Let n > 0 and let α be a composition of n. The core label order
of Tam(α) is a meet-semilattice. It is a lattice if and only if α = (n) or α =
(1, 1, . . . , 1).

As a consequence of Theorem 1.1, Tam(α) is extremal and thus admits a
canonical representation as a lattice of set pairs defined on a certain directed
graph; the Galois graph [26,45]. We give a combinatorial characterization of
this graph in terms of join-irreducible permutations. We denote the (unique)
join-irreducible permutation of Tam(α), whose only descent is (a, b), by wa,b.

Theorem 1.3. Let n > 0 and let α be a composition of n. The Galois graph
of Tam(α) is isomorphic to the directed graph whose vertices are the join-
irreducible elements of Tam(α) and in which there exists a directed edge wa,b →
wa′,b′ if and only if wa,b �= wa′,b′ and

• either a and a′ belong to the same α-region and a ≤ a′ < b′ ≤ b,
• or a and a′ belong to different α-regions and a′ < a < b′ ≤ b, where a

and b′ belong to different α-regions, too.

Along the way, we characterize the subposet of Tam(α) consisting of the
join-irreducible permutations.
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Theorem 1.4. Let n > 0 and let α = (α1, α2, . . . , αr) be a composition of n.
The poset of join-irreducible elements of Tam(α) consists of r − 1 connected
components, where for j ∈ [r − 1], the jth component is isomorphic to the
direct product of an αj-chain and an (αj+1 + αj+2 + · · · + αr)-chain.

This article is organized as follows. In Sect. 2, we define the main ob-
jects considered here: (parabolic quotients of) the symmetric group, the weak
order and the (parabolic) Tamari lattices. To keep the combinatorial flow of
this article going, we have collected the necessary order- and lattice-theoretic
concepts in Appendix A. We recommend to read the combinatorial parts of
this article in order and refer to the appendix whenever unknown terminology
is encountered.

In Sect. 3, we prove that the parabolic Tamari lattices are congruence
uniform and study their associated core label order. We investigate the join-
irreducible elements in the parabolic Tamari lattices in Sect. 4 and prove our
main results. We conclude this article with an enumerative observation relating
the generating function of the Möbius function in the core label order of the
parabolic Tamari lattices and the generating function of antichains in certain
partially ordered sets in Sect. 5.

2. Preliminaries

2.1. The Symmetric Group and the Weak Order

For n > 0, the symmetric group Sn is the group of permutations of [n] def=
{1, 2, . . . , n} under composition. For w ∈ Sn and i ∈ [n], we write wi instead
of w(i). The one-line notation of w is the string w1 w2 . . . wn.

For i, j ∈ [n] with i < j, the permutation that exchanges i and j and
fixes everything else is a transposition, denoted by ti,j . If j = i + 1, then we
write si instead of ti,i+1.

The one-line notation of w ◦ ti,j is the same as the one-line notation of w
except that the ith and the jth entries are swapped. The one-line notation of
ti,j ◦ w is the same as the one-line notation of w except that the positions of
the values i and j are swapped.

A (right) inversion of w is a pair (i, j) with i < j and wi > wj . A (right)
descent of w is a pair (i, j) with i < j and wi = wj + 1. Let Inv(w) denote the
set of (right) inversions of w, and let Des(w) denote the set of (right) descents
of w.

Remark 2.1. We wish to emphasize that we consider “inversions” with respect
to positions, meaning that composing on the right with a transposition swaps
the entries in positions i and j.

It is much more common in Coxeter–Catalan theory to consider left in-
versions with respect to values. The reason for choosing this convention is the
fact that it is more convenient for us to spot membership in parabolic quotients
this way.

Ordering permutations of [n] with respect to containment of their (right)
inversion sets yields the (left) weak order , denoted by ≤L. For any subset
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Figure 1. Two lattices of permutations

X ⊆ Sn, we write Weak(X) def= (X,≤L) for the set X partially ordered by ≤L.
Figure 1a shows Weak(S4).

It follows from definition of the (left) weak order that two permutations
u, v satisfy u �L v if and only if Inv(v)\Inv(u) =

{
(i, j)

}
and vi = vj + 1. In

other words, u �L v if and only if v = sui
◦ u and v has more inversions than

u.

Theorem 2.2. [12,23,46] For all n > 0, Weak(Sn) is a congruence-uniform
lattice.

See Sect. A.2 for the definition of a congruence-uniform lattice. A con-
sequence of Theorem 2.2 is the existence of a least element (the identity
e

def= 1 2 . . . n) and a greatest element (the long element wo
def= n n−1 . . . 1)

in Weak(Sn).

2.2. 231-Avoiding Permutations and the Tamari Lattice

We now exhibit an important sub- and quotient lattice of Weak(Sn), the
Tamari lattice Tam(n).

A 231-pattern in a permutation w ∈ Sn is a triple (i, j, k) with i < j < k
and wk < wi < wj . Then, w is 231-avoiding if it does not have a 231-pattern.
Let Sn(231) denote the set of 231-avoiding permutations of [n].

The Tamari lattice is, as far as we are concerned, the poset

Tam(n) def= Weak
(
Sn(231)

)
.

This poset is named after Tamari, who introduced it in [42] via a partial order
on binary trees and proved its lattice property. The fact that Weak

(
Sn(231)

)

incarnates Tam(n) follows from [10, Theorem 9.6]. Figure 1b shows Tam(4).
The next theorem states some important, lattice-theoretic properties of

Tam(n). See Sects. A.2 and A.5 for the corresponding definitions.

Theorem 2.3. [10,11,22,26,34] For all n > 0, Tam(n) is a sublattice and a
quotient lattice of Weak(Sn). Moreover, Tam(n) is trim and congruence uni-
form.
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Figure 2. Two lattices of (1, 2, 1)-permutations

2.3. Parabolic Quotients of the Symmetric Group

Let α = (α1, α2, . . . , αr) be a composition of n, and define p0
def= 0 and pi

def=
α1 + α2 + · · · + αi for i ∈ [r]. We define the parabolic subgroup of Sn with
respect to α by:

Gα
def= Sα1 × Sα2 × · · · × Sαr

.

The symmetric group Sn is generated by its set {s1, s2, . . . , sn−1} of
adjacent transpositions, and therefore, any w ∈ Sn can be written as a product
of the si’s. The length of w is the minimal number of adjacent transpositions
needed to form w as such a product. It follows from [46, Proposition 2.1] that
the length of w equals its number of inversions.

Let Sα be the set of all minimal-length representatives of the left cosets
of Gα in Sn, i.e.

Sα
def=

{
w ∈ Sn | ∣

∣Inv(w)
∣
∣ <

∣
∣Inv(wsi)

∣
∣ for i /∈ {p1, p2, . . . , pr−1}

}

=
{

w ∈ Sn | wi < wi+1 for i /∈ {p1, p2, . . . , pr−1}
}

.

The elements of Sα are α-permutations.
For i ∈ [r], the set

{
pi−1+1, pi−1+2, . . . , pi

}
is the ith α-region. We

indicate α in the one-line notation of w ∈ Sn either by coloring every α-region
with a different color or by separating α-regions by a vertical bar. Figure 2a
highlights the elements of S(1,2,1) in Weak(S4).

The set Sα behaves quite well with respect to left weak order.

Theorem 2.4. [8] For all n > 0 and every composition α of n, Weak(Sα) is a
principal order ideal in Weak(Sn). Consequently, Weak(Sα) is a congruence-
uniform lattice.

A consequence of Theorem 2.4 is the existence of a greatest element in
Weak(Sα). This element is denoted by wo;α and its one-line notation is of the



Noncrossing Arc Diagrams, Tamari Lattices 313

following form:

n−p1+1, n−p1+2, . . . , n
︸ ︷︷ ︸

α1

| n−p2+1, n−p2+2, . . . , n−p1︸ ︷︷ ︸
α2

| . . . | 1, 2, . . . , n−pr−1︸ ︷︷ ︸
αr

.

The vertical bars have no impact on the one-line notation, and they shall only
help separating the α-regions.

Clearly, if α = (1, 1, . . . , 1) is a composition of n, then S(1,1,...,1) = Sn.

2.4. Parabolic 231-Avoiding Permutations and the Parabolic Tamari Lattice

Generalizing the constructions from Sect. 2.2, we now identify a particular
quotient lattice of Weak(Sα).

An (α, 231)-pattern in an α-permutation w ∈ Sα is a triple (i, j, k) with
i < j < k all in different α-regions, such that wk < wi < wj and wi =
wk + 1. Then, w is (α, 231)-avoiding if it does not have an (α, 231)-pattern.
Let Sα(231) denote the set of (α, 231)-avoiding permutations of [n].

The α-Tamari lattice is the poset Tam(α) def= Weak
(
Sα(231)

)
. This name

is justified by the following result.

Theorem 2.5. [30, Theorem 1] For all n > 0 and every composition α of n,
Tam(α) is a quotient lattice of Weak(Sα).

Figure 2b shows the (1, 2, 1)-Tamari lattice. We can witness in this ex-
ample that Tam(α) is in general not a sublattice of Weak(Sα), since the per-
mutations 4 | 1 3 | 2 and 3 | 2 4 | 1 have a different meet in Weak(S(1,2,1))
than in Tam

(
(1, 2, 1)

)
.

Since Tam(α) is a quotient lattice of Weak(Sα), there exists a surjective
lattice map π↓

α : Sα → Sα(231) which maps w ∈ Sα to the greatest (α, 231)-
avoiding permutation below w in weak order [30, Lemma 12].

Remark 2.6. In general, we need to distinguish cover relations in Tam(α) from
cover relations in Weak(Sα), and we do so using �α (resp. �L). The reason is
that for u, v ∈ Sα, u �α v does not necessarily imply u �L v; see Fig. 2. More
generally, we indicate poset- and lattice-theoretic notions in Tam(α) with a
subscript “α”, and in Weak(Sα) with a subscript “L”.

Again, if α = (1, 1, . . . , 1) is a composition of n, then it follows from [30,
Proposition 8] that Tam

(
(1, 1, . . . , 1)

)
= Tam(n). In the remainder of this arti-

cle, we study the α-Tamari lattices from a lattice-theoretic and combinatorial
perspective.

3. The α-Tamari Lattices are Congruence-Uniform

We start right away with the proof that Tam(α) is congruence uniform.

Proposition 3.1. For all n > 0 and every composition α of n, Tam(α) is con-
gruence uniform.
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Proof. By Theorem 2.2, Weak(Sn) is congruence uniform, and by Theorems 2.4
and 2.5, Tam(α) is a quotient lattice of an interval of Weak(Sn). By [15, The-
orem 4.3], congruence-uniformity is preserved under passing to sublattices and
quotient lattices. This proves the claim.

Corollary 3.2. For all n > 0 and every composition α of n, Tam(α) is semidis-
tributive.

Proof. This follows from Proposition 3.1 and Theorem A.8.

3.1. Noncrossing α-Partitions

Our next goal is a combinatorial description of the canonical join representa-
tions in Tam(α). In preparation, we introduce another combinatorial family
parametrized by α.

An α-arc is a pair (a, b), where 1 ≤ a < b ≤ n and a, b belong to different
α-regions. Two α-arcs (a1, b1) and (a2, b2) are compatible if a1 �= a2 or b1 �= b2,
and the following is satisfied:
NC1 if a1 < a2 < b1 < b2, then either a1 and a2 lie in the same α-region or b1

and a2 lie in the same α-region;
NC2 if a1 < a2 < b2 < b1, then a1 and a2 lie in different α-regions.

An α-partition is a set partition of [n], where no block intersects an α-
region in more than one element. Let Πα denote the set of α-partitions of
[n].

Let P ∈ Πα, and let B ∈ P be a block. If a, b ∈ B, then we write a ∼P b.
A bump of P is a pair (a, b), such that a, b ∈ B, and there is no c ∈ B with
a < c < b.

Clearly, any bump of P is an α-arc. An α-partition is noncrossing if its
bumps are pairwise compatible α-arcs. We denote the set of all noncrossing
α-partitions by Nonc(α). We use the term parabolic noncrossing partitions to
refer to noncrossing α-partitions for unspecific α.

Remark 3.3. If α = (1, 1, . . . , 1), then every α-region is a singleton, so that
(NC2) will always be satisfied and (NC1) can never be satisfied. Thus, the
noncrossing (1, 1, . . . , 1)-partitions are precisely the set partitions of [n] with-
out any two bumps (a1, b1) and (a2, b2) for a1 < a2 < b1 < b2. These ordinary
noncrossing partitions were introduced in [24] and have been a frequent object
of study ever since.

We graphically represent an α-arc (a, b) as follows. We draw n nodes on
a horizontal line, label them by 1, 2, . . . , n from left to right, and group them
together according to α-regions. Now, we draw a curve leaving the node labeled
a to the bottom, staying below the α-region containing a, moving up and over
the subsequent α-regions until it enters the node labeled b from above.

An α-partition is noncrossing if and only if its bumps can be drawn
in this manner, such that no two curves intersect in their interior. Likewise,
any collection of pairwise compatible α-arcs corresponds to a noncrossing α-
partition whose blocks are given by the connected components of the graphical
representation of the α-arcs. Figure 3a shows a graphical representation of a
noncrossing α-partition.
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Figure 3. An illustration of Theorem 3.4 for α =
(3, 4, 2, 1, 4, 2)

Theorem 3.4. [30, Theorem 4.1] For all n > 0 and every composition α of n,
the sets Sα(231) and Nonc(α) are in bijection. This bijection sends descents
to bumps.

Let Φα denote the bijection from Theorem 3.4. If w ∈ Sα(231), then
Des(w) is a collection of pairwise compatible α-arcs; and thus corresponds to
some Φα(w) ∈ Nonc(α). Conversely, if P ∈ Nonc(α), then we define an acyclic
binary relation �RP on the blocks of P by setting (B,B′) ∈ �RP if and only if
there exists an α-arc (a, b), such that a, b ∈ B and a < min B′ < b for a and
min B′ in different α-regions.

Let �OP denote the reflexive and transitive closure of �RP. Without loss
of generality, we may assume that B1 = {i1, i2, . . . , ik} ∈ P with 1 = i1 <

i2 < · · · < ik. Then, B1 is minimal in �OP. We construct a permutation w =
Φ−1

α (P) ∈ Sα(231) inductively by setting wij+1 = wij
− 1 for j ∈ [k − 1], and

w1 = |X|, where X is the union of the blocks in the order filter of �OP generated
by B1. The remaining values for w are determined by considering two smaller
parabolic noncrossing partitions P1 and P2, where P1 is the restriction of P
to X\B1, and where P2 is the restriction of P to [n]\X. Note that �OP1 and
�OP2 are induced subposets of �OP. See Fig. 3 for an illustration.

3.2. Canonical Join Representations in Tam(α)
We now explain how to use noncrossing α-partitions to describe canonical
join representations in Tam(α). Essentially, we are going to prove that, for
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w ∈ Sα(231), the set of bumps of Φα(w) determines the canonical join repre-
sentation of w in Tam(α).

Proposition 3.5. For all n > 0 and every composition α of n, the canonical
join representation of w ∈ Sα(231) in Tam(α) is

{
wa,b | (a, b) ∈ Des(w)

}
.

We now gather some ingredients required for the proof of Proposition 3.5.

Lemma 3.6. For w ∈ Sα(231), the number of descents of w equals the number
of elements of Tam(α) covered by w.

Proof. Let w ∈ Sα(231), and let nL (resp. nα) denote the number of elements
of Weak(Sα) (resp. Tam(α)) covered by w.

By definition of the weak order, nL =
∣
∣Des(w)

∣
∣. Since Weak(Sα) is con-

gruence uniform, nL equals the number of canonical joinands of w in Weak(Sα)
by Corollary A.11. If w ∈ Sα(231), then π↓

α(w) = w and Proposition A.12 im-
plies that nL is the number of canonical joinands of w in Tam(α), which is also
nα.

Corollary 3.7. The set of α-arcs is in bijection with the set JoinIrr
(
Tam(α)

)
of

join-irreducible elements of Tam(α).

Proof. An element w ∈ Tam(α) is join irreducible if and only if it covers a
unique element. By Lemma 3.6, w is join irreducible if and only if it has a
unique descent. By Theorem 3.4, Φα(w) is a noncrossing α-partition with a
unique bump, and thus corresponds to an α-arc. Since Φα is a bijection, the
claim follows.

Corollary 3.8. Let (a, b) be an α-arc, where a belongs to the jth α-region. The
corresponding join-irreducible element of Tam(α) is wa,b ∈ Sα(231) given by:

wa,b(i) =

⎧
⎪⎨

⎪⎩

i, if i < a or i > b,

a + b − pj + k, if i = a + k for 0 ≤ k ≤ pj − a,

a + k − 1, if i = pj + k for 1 ≤ k ≤ b − pj .

The inversion set of wa,b is:

Inv(wa,b) =
{
(k, l) | a ≤ k ≤ pj , pj + 1 ≤ l ≤ b

}
.

Corollary 3.8 implies that the inversion set of wa,b can be read off easily
from Φ(wa,b). In fact, the first components of an inversion of wa,b are the nodes
that lie weakly to the right of a and weakly above the arc connecting nodes
a and b, and the second components are the nodes that lie weakly below this
arc. This is illustrated in the following example in the case n = 8, a = 2, b = 6;
see also Fig. 4.

Example 3.9. Let α = (3, 2, 1, 2). The join-irreducible permutation w2,6 ∈
Sα(231) is given by the one-line notation 1 5 6 | 2 3 | 4 | 7 8. Its inversion set
is:

Inv(w2,6) =
{
(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)

}
.
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Figure 4. Illustrating the inversion set of a join-irreducible
(α, 231)-avoiding permutation

Lemma 3.10. Let u, v ∈ Sα(231) with u �α v. There exists a unique (a, b) ∈
Des(v), such that (a, b) /∈ Inv(u).

Proof. Let v ∈ Sα(231). By Lemma 3.6, the number of permutations u ∈
Sα(231) with u �α v equals

∣
∣Des(v)

∣
∣. Thus, for every (a, b) ∈ Des(v), there is

a unique u ∈ Sα(231) with u �α v. It remains to show that (a, b) /∈ Inv(u).
The permutation u1 = sua

◦ v ∈ Sα—in whose one-line notation the
entries in positions a and b are swapped—satisfies u1 �L v, and it follows
(a, b) /∈ Inv(u1). Now, consider u = π↓

α(u1) ∈ Sα(231). By construction, u ≤L

u1, which means Inv(u) ⊆ Inv(u1). Thus, (a, b) /∈ Inv(u).

Recall the definition of perspective cover relations from Sect. A.2.

Proposition 3.11. Let u, v ∈ Sα(231) with u �α v, and let (a, b) ∈ Des(v) with
(a, b) /∈ Inv(u). Then, u �α v and wa,b∗ �α wa,b are perspective cover relations
in Tam(α).

Proof. Let v ∈ Sα(231) and let (a, b) ∈ Des(v). By Lemma 3.10, there is a
unique u ∈ Sα(231) with the desired properties.

Suppose that a is in the jth α-region. Since v ∈ Sα(231), vc ≤ vb for
all c ∈ {pj+1, pj+2, . . . , b}. By Corollary 3.8, Inv(wa,b) ⊆ Inv(v), and thus,
wa,b ≤L v.

Let u1 = sua
◦ v ∈ Sα. Then, u1 �L v and u = π↓

α(u1). Then, Inv(u1) =
Inv(v)\{(a, b)

}
and Inv(wa,b∗) = Inv(wa,b)\

{
(a, b)

}
. In particular, wa,b∗ ∈

Sα(231), and since π↓
α is a lattice map, we conclude:

u ∧α wa,b = π↓
α(u1) ∧α π↓

α(wa,b) = π↓
α(u1 ∧L wa,b) = π↓

α(wa,b∗) = wa,b∗,

u ∨α wa,b = π↓
α(u1) ∨α π↓

α(wa,b) = π↓
α(u1 ∨L wa,b) = π↓

α(v) = v.

By definition, (wa,b∗, wa,b) � (u, v) in Tam(α).

Proof of Proposition 3.5. This follows from Proposition 3.11 using Lemma A.2
and Theorem A.10.

For α = (1, 1, . . . , 1), Proposition 3.5 was previously found in [35, Exam-
ple 6.3]. In fact, since Theorem 2.5 states that Tam(α) is a quotient lattice
of Weak(Sα), Proposition 3.5 follows immediately from Proposition A.12 in
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conjunction with [39, Theorem 8.1]. However, because we need an explicit de-
scription of the join-irreducible (α, 231)-avoiding permutations later, we have
decided to add some more details.

Moreover, for α = (1, 1, . . . , 1), the canonical join complex of Tam(α) (see
Sect. A.4) was studied in [5]. In particular, it was shown in [5, Theorem 1.3]
that this complex is vertex decomposable, a strong topological property in-
troduced in [33] which implies that this complex is homotopic to a wedge of
spheres, shellable, and Cohen–Macaulay. We plan to investigate the canonical
join complex of Tam(α) for arbitrary α in a follow-up article. For the time
being, we pose the following conjecture.

Conjecture 3.12. For all n > 0 and every composition α of n, the canonical
join complex of Tam(α) is vertex decomposable.

3.3. The Core Label Order of Tam(α)
In this section, we study the core label order of Tam(α), see Sect. A.3. By
Proposition 3.1, Tam(α) is congruence uniform, and thus admits an edge-
labeling with join-irreducible (α, 231)-avoiding permutations, which is deter-
mined by the perspectivity relation; see Lemma A.2 and Proposition 3.11.

The core label order of Tam(α) orders the elements of Sα(231) with
respect to this labeling. By Corollary 3.7, the elements of JoinIrr

(
Tam(α)

)

correspond bijectively to α-arcs. Therefore, we may identify the core label set
of w ∈ Sα(231) with a collection of α-arcs.

Example 3.13. Let α = (1, 2, 1). Figures 5a and 5c show the lattices Weak(Sα)
and Tam(α), where the edges are labeled by (6). In Fig. 5c, the nodes are
additionally labeled by noncrossing α-partitions. Figure 5b and 5d shows the
corresponding core label orders.

Since both Weak(Sα) and Tam(α) are congruence-uniform lattices, it
makes sense to distinguish the corresponding core label sets. For u ∈ Sα(231),
we write ΨL(u) for the core label set in Weak(Sα), and Ψα(u) for the core
label set in Tam(α).

We now show that for u ∈ Sα(231), the core label set Ψα(u) induces a
noncrossing α-partition. To that end, we define

X(u) def=
{
wa,b | a ∼Φα(u) b

}
.

Proposition 3.14. Let α be a composition of n > 0. For all u ∈ Sα(231),
Ψα(u) ⊆ X(u).

Proof. By Theorem 2.5, Tam(α) is a quotient lattice of Weak(Sα) by a lattice
congruence Θα.

[41, Theorem 2.10.5]
Let u ∈ Sα(231). If Ψα(u) = ∅, then there is nothing to show. Otherwise,

Theorem A.10 implies that Des(u) =
{
(a1, b1), (a2, b2), . . . , (at, bt)

} �= ∅. We
denote by G the subgroup of Sα generated by the transpositions corresponding
to these descents.

Since Ψα(u) �= ∅, we may pick any wa,b ∈ Ψα(u). By Lemma A.6, wa,b ∈
ΨL(u). Since Weak(Sα) is a principal order ideal in Weak(Sn) and Sn is a
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Figure 5. Two lattices of (1, 2, 1)-permutations and their
core label orders
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Coxeter group, [41, Theorem 2.10.5] thus implies that wa,b ∈ G and Inv(wa,b) ⊆
Inv(u). Since wa,b ∈ G, we may write the transposition swapping a and b as
a product of the generators of G. This implies a ∼Φα(u) b, and therefore,
wa,b ∈ X(u).

Example 3.15. Let α = (1, 2, 1) and consider u = 3 | 2 4 | 1 ∈ Sα. Then,
Φ(u) =

{{1, 2, 4}, {3}}, and therefore, X(u) =
{
w1,2, w1,4, w2,4

}
. The sub-

group G from the proof of Proposition 3.14 is generated by w1,2 and w2,4. It
follows that X(u) ⊆ G.

We immediately see that Inv(u) =
{
(1, 2), (1, 4), (2, 4), (3, 4)

}
. Moreover,

we obtain from Corollary 3.8 that:

Inv(w1,2) =
{
(1, 2)

}
,

Inv(w1,4) =
{
(1, 2), (1, 3), (1, 4)

}
,

Inv(w2,4) =
{
(2, 4), (3, 4)

}
.

Thus, Inv(w1,2) ⊆ Inv(u) and Inv(w2,4) ⊆ Inv(u), but Inv(w1,4) �⊆ Inv(u). Now,
since wa,b ∈ ΨL(u) if and only if wa,b ∈ G and Inv(wa,b) ⊆ Inv(u) we conclude
that w1,4 /∈ ΨL(u). By Lemma A.6, w1,4 /∈ Ψα(u).

By inspection of Fig. 5a, we observe that ΨL(u) contains the irreducible
permutations j1 = 3 | 1 4 | 2 and j2 = 2 | 3 4 | 1, both of which contain an
(α, 231)-pattern in positions (1, 3, 4).

The next proposition characterizes the compositions for which equality
holds in Proposition 3.14.

Proposition 3.16. Let α be a composition of n > 0. Then, Ψα(u) = X(u) for
all u ∈ Sα(231) if and only if either α = (n) or α = (p, 1, 1, . . . , 1, q) for some
integers p, q > 0.

Proof. If α = (n), then Sα(231) = {e} and Ψα(e) = ∅ = X(e). Now, suppose
that α = (p, 1, 1, . . . , 1, q) for some integers p, q > 0. Let u ∈ Sα(231) with
Des(u) =

{
(a1, b1), (a2, b2), . . . , (at, bt)

}
.

By Proposition 3.14, Ψα(u) ⊆ X(u). To show the reverse inclusion, we
pick wa,b ∈ X(u) and prove that wa,b ∈ Ψα(u). Using [41, Theorem 2.10.5] as
in the proof of Proposition 3.14, it is enough to show that Inv(wa,b) ⊆ Inv(u).

By definition, there exists a sequence of integers k0, k1, . . . , kt, such that
a = k0 and b = kt and (ki−1, ki) is a bump of Φα(u) for all i ∈ [t]. In particular,
all the ki lie in different α-regions. By Theorem 3.4, (ki−1, ki) ∈ Des(u) for all
i ∈ [t]. Thus, (a, b) ∈ Inv(u).

If t = 1, then (a, b) ∈ Des(u). By Proposition 3.5, wa,b is a canonical
joinand of u, which implies wa,b ∈ Ψα(u).

If t > 1, then we consider two cases. If a > p, then

Inv(wa,b) =
{
(a, a+1), (a, a+2), . . . , (a, b)

}

by Corollary 3.8 and our assumption on the shape of α. Choose
d ∈ {a+1, a+2, . . . , b}. By construction, there exists (ki−1, ki) ∈ Des(u), such
that ki−1 < d ≤ ki. Since u avoids any (α, 231)-pattern, it follows that
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ud < uki−1 < uki−2 < · · · < uk0 = ua. Thus, (a, d) ∈ Inv(u). It follows
that Inv(wa,b) ⊆ Inv(u) as desired.

If p ≤ a, then Corollary 3.8 implies

Inv(wa,b) =
{
(a′, b′) | a′ ∈ {a, a+1, . . . , p}, b′ ∈ {p+1, p+2, . . . , b}}.

As before we may show that (a, d) ∈ Inv(u) for any d ∈ {p+1, p+2, . . . , b}.
Since u ∈ Sα, we have ua < ua′ for any a′ ∈ {a+1, a+2, . . . , p}. This implies
Inv(wa,b) ⊆ Inv(u).

We conclude that wa,b ∈ ΨL(u). Since, by construction, wa,b ∈ Sα(231),
it follows that wa,b ∈ Ψα(u).

Now, suppose that α = (α1, α2, . . . , αr) is a composition of n which
is not of the form α = (p, 1, 1, . . . , q). Then, r ≥ 3, and there exists k ∈
{2, 3, . . . , r − 1}, such that pk > pk−1 + 1.

Let a = pk−1 and consider P ∈ Nonc(α) whose only non-singleton blocks
are {a, a+1} and {a+1, n}, and let u = Φ−1

α (P). Then, u has one-line notation:

1, 2, . . . , a−1, n−αk+1
︸ ︷︷ ︸

pk−1

| n−αk, n−αk+2, . . . , n
︸ ︷︷ ︸

αk

| a, a+1, . . . , n−αk−1
︸ ︷︷ ︸

n−pk

.

By construction, the join-irreducible permutation wa,n ∈ Sα(231) is con-
tained in X(u). By Corollary 3.8:

Inv(wa,n) =
{
(a, a+1), (a, a+2), . . . , (a, n)

}
;

in particular (a, pk) ∈ Inv(wa,n). However, we notice in the one-line notation of
u that (a, pk) /∈ Inv(u), because αk = pk −pk−1 > 1. It follows that Inv(wa,n) �⊆
Inv(u), and therefore, wa,n /∈ Ψα(u).

We now relate the core label order of Tam(α) to the refinement order on
Nonc(α). Given two partitions P1,P2 ∈ Πα, we say that P1 refines P2 if every
block of P1 is contained in some block of P2; we write P1 ≤ref P2 in that case.

Lemma 3.17. For u, v ∈ Sα(231), Φα(u) ≤ref Φα(v) if and only if X(u) ⊆
X(v).

Proof. Suppose that Φα(u) ≤ref Φα(v) and pick wa,b ∈ X(u). By definition,
a ∼Φα(u) b, and thus, a ∼Φα(v) b. Hence, wa,b ∈ X(v).

Conversely, suppose that X(u) ⊆ X(v) and pick a, b ∈ [n] with a ∼Φα(u)

b. By definition, wa,b ∈ X(u) ⊆ X(v), and thus, a ∼Φα(v) b. This implies
Φ(u) ≤ref Φα(v).

Theorem 3.18. Let α be a composition of n. The core label order of Tam(α) is
isomorphic to

(
Nonc(α),≤ref

)
if and only if α = (n) or α = (p, 1, 1, . . . , q) for

some integers p, q > 0.

Proof. Let u, v ∈ Sα(231). By Lemma 3.17, Φα(u) ≤ref Φα(v) if and only if
X(u) ⊆ X(v). By definition of the core label order (see Sect. A.3), u 
 v if
and only if Ψα(u) ⊆ Ψα(v). Now, Proposition 3.16 states that X(u) = Ψα(u)
and X(v) = Ψα(v) if and only if α = (n) or α = (p, 1, 1, . . . , 1, q) for some
integers p, q > 0.
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Figure 6. The lattice Tam
(
(2, 1, 2)

)

Figures 6 shows Tam
(
(2, 1, 2)

)
, and 7 shows CLO

(
Tam

(
(2, 1, 2)

))
. This

illustrates Theorem 3.18, since we can verify directly that CLO
(
Tam

(
(2, 1, 2)

))
)

is indeed isomorphic to
(
Nonc

(
(2, 1, 2)

)
,≤ref

)
.

In contrast, Fig. 5d shows CLO
(
Tam

(
(1, 2, 1)

))
and this poset is not iso-

morphic to
(
Nonc

(
(1, 2, 1)

)
,≤ref

)
. If u = 4 | 1 2 | 3 and v = 3 | 2 4 | 1, then

Φ(1,2,1)(u) ≤ref Φ(1,2,1)(v), but u �
 v; see also Example 3.15.
We conclude this section with the observation that the core label order of

Tam(α) is always a meet-semilattice. Recall the definition of the intersection
property from Sect. A.3.

Theorem 3.19. For all n > 0 and every composition α of n, Tam(α) has the
intersection property.

Proof. Let w ∈ Sα. If we denote the core label set of w in Weak(Sn) by ΨL;n

and the core label set of w in Weak(Sα) by ΨL;α, then ΨL;n(w) = ΨL;α(w),
because Weak(Sα) is principal order ideal of Weak(Sn) by Theorem 2.4.

For j ∈ JoinIrr
(
Weak(Sn)

)
, if j ∈ ΨL;α(w), then j ≤L w by Corollary A.3.

This means that j ∈ JoinIrr
(
Weak(Sα)

)
. Thus, CLO

(
Weak(Sα)

)
is an order

ideal of CLO
(
Weak(Sn)

)
.
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Figure 7. The core label order of Tam
(
(2, 1, 2)

)
. This is also

the poset
(
Nonc

(
(2, 1, 2)

)
,≤ref

)

By [36, Proposition 5.1] (see also [3, Section 4]), CLO
(
Weak(Sn)

)
is a

lattice, which means that CLO
(
Weak(Sα)

)
is a meet-semilattice. Thus, by

Theorem A.5, Weak(Sα) has the intersection property. Now, Proposition A.7
implies that any quotient lattice of Weak(Sα) has the intersection property.
By Theorem 2.5, this is the case for Tam(α).

In a preliminary draft of this article, we claimed that the poset(
Nonc(α),≤ref

)
is a meet-semilattice. A referee has provided the following

counterexample.

Example 3.20. Let α = (2, 4, 3, 1), and consider

P1 =
{{1, 3, 8, 10}, {2, 6, 9}, {4}, {5}, {7}},

P2 =
{{1, 4, 7, 10}, {2, 5, 9}, {3}, {6}, {8}}.

Then, P1,P2 ∈ Nonc(α), but their intersection is:

P =
{{1, 10}, {2, 9}, {3}, {4}, {5}, {6}, {7}, {8}} /∈ Nonc(α).

Let Q1 = Φα(w1,10) and Q2 = Φα(w2,9). Then, Q1,Q2 ∈ Nonc(α) and Qi ≤ref

Pj for i, j ∈ {1, 2}. Thus,
(
Nonc

(
(2, 4, 3, 1)

)
,≤ref

)
is not a meet-semilattice.

At the moment, we do not have anything meaningful to say about the
posets

(
Nonc(α),≤ref

)
, except for the cases in which they coincide with

CLO
(
Tam(α)

)
.

4. The α-Tamari Lattices are Trim

In this section, we prove that Tam(α) is trim for every composition α of n > 0.
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Figure 8. Two posets of join-irreducible permutations

Proposition 4.1. For all n > 0 and every composition α of n, the lattice
Tam(α) is trim.

We first study the join-irreducible elements of Tam(α) in greater detail.

4.1. The Poset of Irreducibles of Tam(α)
Recall from Corollary 3.7 that the join-irreducible elements of Tam(α) are in
bijection with the α-arcs. Moreover, Corollary 3.8 describes one-line notation
and inversion sets of the join-irreducibles, and immediately implies the next
result.

Corollary 4.2. Let wa,b, wa′,b′ ∈ JoinIrr
(
Tam(α)

)
. Then, wa,b ≤L wa′,b′ if and

only if a and a′ belong to the same α-region and a′ ≤ a < b ≤ b′.

We may now describe the restriction of the weak order to the set
JoinIrr

(
Tam(α)

)
. See Fig. 8 for an illustration.

Proof of Theorem 1.4. By Corollary 4.2, we conclude that for wa,b ≤L wa′,b′ to
hold, it is necessary that a and a′ belong to the same α-region. This accounts
for the r − 1 connected components of Weak

(
JoinIrr

(
Tam(α)

))
, because a can

be chosen from any but the last α-region and there is a total of r α-regions.
Now, suppose that a lies in the jth α-region, which means that a takes any

of the values {pj−1+1, pj−1+2, . . . , pj}. For any choice of a, we can pick some
b ∈ {pj+1, pj+2, . . . , n} to obtain a join-irreducible element wa,b. Observe
that whenever a �= pj−1+1, then wa,b ≤L wa−1,b, and we always have wa,b ≤L

wa,b+1 when b < n. This implies that the jth component of
Weak

(
JoinIrr

(
Tam(α)

))
is isomorphic to the direct product of an αj-chain and

an (αj+1+αj+2+ · · · +αr)-chain.

If α = (1, 1, . . . , 1), then Theorem 1.4 states that the poset of irreducibles
of the ordinary Tamari lattice is a union of n−1 chains of lengths 1, 2, . . . , n−1,
respectively. This result was previously found in [7, Theorem 11].

Corollary 4.3. Let α = (α1, α2, . . . , αr) be a composition of n > 0. Then
∣
∣
∣JoinIrr

(
Tam(α)

)∣∣
∣ =

r−1∑

j=1

αj · (
αj+1+αj+2+ · · · +αr

)
.
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We now show that Tam(α) is trim for every composition α. See Sect. A.5
for the necessary definitions.

Proposition 4.4. For all n > 0 and every composition α of n, the lattice
Tam(α) is extremal.

Proof. Let

f(α) def=
r−1∑

j=1

αj · (
αj+1+αj+2+ · · · +αr

)
. (1)

By Corollary 3.2, Tam(α) is semidistributive, which implies
∣
∣JoinIrr

(
Tam(α)

)∣∣ =∣
∣MeetIrr

(
Tam(α)

)∣∣ by Lemma A.13. By Corollary 4.3,
∣
∣JoinIrr

(
Tam(α)

)∣∣ =
f(α). By (8), it remains to exhibit a chain in Tam(α) consisting of f(α) + 1
elements.

Let α = (α1, α2, . . . , αr). We apply induction on r. If r = 1, then α = (n)
and Sα(231) = {e}. Thus, Tam(α) is the singleton lattice which is trivially
trim.

Now, assume that the claim is true for all compositions of n with at most
r − 1 parts, and recall that pj = α1 + α2 + · · · + αj for j ∈ [r].

We set v(0,0) = e, and for k ∈ [n−p1], we define v(0,k) = sp1+k−1◦v(0,k−1).
This means that if the value of v(0,k−1) in position p1 is a, then we move to
v(0,k) by swapping the values a and a+1. Since we do this in order from left to
right, v(0,k−1)

�Lv(0,k) and v(0,k) ∈ Sα(231) for all k ∈ [n−p1]. Then, v(0,n−p1)

has the one-line notation:

1, 2, . . . , p1−1, n | p1, p1+2, . . . , n−1.

(The vertical bar indicates the end of the first α-region.)
Now, for i ∈ [p1−1], we set v(i,1) = sp1−i ◦ v(i−1,n−p1) (which means

that we swap the values p1−i and p1−i+1), and for k ∈ {2, 3, . . . , n−p1}, we
set v(i,k) = sp1−i+k−1 ◦ v(i,k−1). As before, each of these elements is (α, 231)-
avoiding. Then, v(p1−1,n−p1) has the one-line notation:

n−p1+1, n−p1+2, . . . , n | 1, 2, . . . , n − p1.

This constitutes a chain of length p1 · (n − p1) from e to v(p1−1,n−p1) in
Tam(α). The interval

[
v(p1−1,n−p1), wo;α

]
in Tam(α) is isomorphic to Tam

(
(α2,

. . . , αr)
)
, which by induction has length f

(
(α2, . . . , αr)

)
. It follows that:

�
(
Tam(α)

)
= p1 · (n − p1) +

r−1∑

j=2

αj · (αj+1 + αj+2 + · · · + αr)

= α1 · (α2 + α3 + · · · + αr) +
r−1∑

j=2

αj · (αj+1 + αj+2 + · · · + αr)

=
r−1∑

j=1

αj · (αj+1 + αj+2 + · · · + αr)

= f(α).

Hence, Tam(α) is extremal.
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For α = (2, 1, 2), the maximal chain constructed in the proof of Proposi-
tion 4.4 is highlighted in Fig. 6. We may now conclude the proof of Proposi-
tion 4.1.

Proof of Proposition 4.1. By Corollary 3.2, Tam(α) is semidistributive, and by
Proposition 4.4, Tam(α) is extremal. Then, Theorem A.15 implies that Tam(α)
is trim.

Corollary 4.5. Let C be the maximal chain constructed in the proof of Propo-
sition 4.4, and let λ be the labeling from (6). The labels appearing on C are
pairwise distinct and they induce a total order on JoinIrr

(
Tam(α)

)
given by the

following cover relations:

wa,b ≺

⎧
⎪⎨

⎪⎩

wa,b+1, if pj + 1 ≤ b < n,

wa−1,pj+1, if a �= pj−1 + 1 and b = n,

wpj+1,pj+1+1, if a = pj−1 + 1 and b = n,

if a belongs to the jth α-region.

Proof. With the notation from the proof of Proposition 4.4, the first p1 ·(n−p1)
cover relations along C are:

e = v(0,0)
�α v(0,1)

�α · · · �α v(0,n−p1)
�α v(1,1)

�α · · ·
�αv(1,n−p1)

�α · · · �α v(2,1)
�α · · · �α v(p1−1,n−p1).

By construction, C is also a maximal chain in Weak(Sα) and it follows that:

λ
(
v(i,k), v(i,k+1)

)
=

⎧
⎪⎨

⎪⎩

wp1,p1+1, if i = k = 0,

wp1−i−1,p1+1, if 0 ≤ i < p1 − 1, k = n − p1,

wp1−i,p1+k if 0 ≤ i ≤ p1 − 1, 0 < k < n − p1.

(If k = n − p1, then we set k + 1 = 1.) The claim follows by induction.

Example 4.6. Let α = (2, 1, 2). The chain constructed in the proof of Propo-
sition 4.4 is highlighted in Fig. 6. The total order of the join-irreducibles of
Tam

(
(2, 1, 2)

)
is:

w2,3 ≺ w2,4 ≺ w2,5 ≺ w1,3 ≺ w1,4 ≺ w1,5 ≺ w3,4 ≺ w3,5.

Remark 4.7. If α = (1, 1, . . . , 1) is a composition of n, then the join-irreducibles
of Tam

(
(1, 1, . . . , 1)

)
= Tam(n) correspond to all transpositions (a, b) for 1 ≤

a < b ≤ n. The total order defined in Corollary 4.5 corresponds to the lexico-
graphic order on these transpositions.

This order corresponds to the so-called inversion order of the longest
element wo ∈ Sn with respect to the linear Coxeter element. It seems that
this correspondence works in general; i.e. the order defined in Corollary 4.5
recovers the inversion order of the parabolic longest element wo;α ∈ Sα with
respect to the linear Coxeter element.

We conclude this section with the proof of Theorem 1.1.

Proof of Theorem 1.1. Tam(α) is congruence uniform by Proposition 3.1 and
trim by Proposition 4.1.
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4.2. The Galois Graph of Tam(α)
By Proposition 4.4, Tam(α) is an extremal lattice. Any extremal lattice can
be described in terms of a directed graph; its Galois graph, see Sect. A.6.

In this section, we give an explicit description of the Galois graph of
Tam(α). We exploit the fact from Proposition 3.1 that Tam(α) is also congru-
ence uniform.

Let us recall the following useful characterization of inversion sets of joins
in the weak order.

Lemma 4.8. [27, Theorem 1(b)] Let u, v ∈ Sn. The inversion set Inv(u ∨L v)
is the transitive closure of Inv(u) ∪ Inv(v), i.e. if (a, b), (b, c) ∈ Inv(u) ∪ Inv(v),
then (a, c) ∈ Inv(u ∨ v).

Proof of Theorem 1.3. By definition, the vertex set of Galois
(
Tam(α)

)
is [K],

where

K =
∣
∣JoinIrr

(
Tam(α)

)∣∣ = f(α)

and f(α) is defined in (1). There exists a directed edge s → t in Galois
(
Tam(α)

)

if s �= t and js �≤ mt, where the join- and meet-irreducible elements of Tam(α)
are ordered as in (9). By Proposition 3.1, Tam(α) is also congruence uniform,
so that Corollary A.18(ii) implies s → t if and only if s �= t and jt ≤ jt∗ ∨
js. We may thus view Galois

(
Tam(α)

)
as a directed graph on the vertex set

JoinIrr
(
Tam(α)

)
.

Now, pick wa,b, wa′,b′ ∈ JoinIrr
(
Tam(α)

)
, such that wa,b �= wa′,b′ and a

belongs to the ith α-region and a′ belongs to the i′th α-region. We need to
characterize when

wa′,b′ ≤ wa′,b′ ∗ ∨α wa,b. (2)

For simplicity, let us write w = wa,b, w′ = wa′,b′ and w′
∗ = wa′,b′ ∗. Let

z = w′
∗ ∨α w. By definition, Inv(w′

∗) ∪ Inv(w) ⊆ Inv(z). By Corollary 3.8,
Inv(w′

∗) = Inv(w′)\{
(a′, b′)

}
. Then, (2) is satisfied if and only if (a′, b′) ∈

Inv(z), which by Lemma 4.8 is the case if (a′, b′) ∈ Inv(w) or there exists
c ∈ {a′+1, a′+2, . . . , b′−1}, such that (a′, c) ∈ Inv(w′

∗) and (c, b′) ∈ Inv(w) or
vice versa.

Let us first consider the case where a and a′ belong to the same α-region,
i.e. i = i′. There are two cases.

(i) Let a ≤ a′. If b′ ≤ b, then Corollary 4.2 implies w′ ≤L w and (2) holds.
If b < b′, then by Corollary 3.8, (a′, b′) /∈ Inv(w). In fact, (c, b′) /∈ Inv(w) for any
c ∈ [n], and if (a′, c) ∈ Inv(w), then pi+1 ≤ c ≤ b. However, if (c, b′) ∈ Inv(w′

∗),
then a′ + 1 ≤ c ≤ pi. Thus, (a′, b′) /∈ Inv(z), so that (2) is not satisfied.

(ii) Let a > a′. If b ≤ b′, then Corollary 4.2 implies w <L w′, so that
(2) does not hold. If b > b′, then by Corollary 3.8, (a′, b′) /∈ Inv(w). Again,
(a′, c) /∈ Inv(w) for any c ∈ [n], and if (c, b′) ∈ Inv(w), then a ≤ c ≤ pi.
However, if (a′, c) ∈ Inv(w′

∗), then pi + 1 ≤ c < b′. Thus, (a′, b′) /∈ Inv(z), so
that (2) is not satisfied.

Let us now consider the case where a and a′ belong to different α-regions,
i.e. i �= i′. By Corollary 3.8, (a′, b′) /∈ Inv(w). As before, we may actually
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Figure 9. Galois graphs of two parabolic Tamari lattices

conclude (a′, c) /∈ Inv(w) for all c ∈ [n], and if (c, b′) ∈ Inv(w), then a ≤ c ≤ pi

and pi < b′ ≤ b. If (a′, c) ∈ Inv(w′
∗), then pi′ + 1 ≤ c < b′.

(i) If i < i′, then pi < pi′ + 1. Thus, (a′, b′) /∈ Inv(z), so that (2) is not
satisfied.

(ii) If i > i′, then a′ < a. If b′ ≤ pi, then (c, b′) /∈ Inv(w) for any c ∈ [n]
and (2) cannot be satisfied. If pi < b′, then we may choose c = a to see that
(a′, b′) ∈ Inv(z) which implies (2).

Figure 9 shows Galois
(
Tam

(
(1, 2, 1)

))
and Galois

(
Tam

(
(2, 1, 2)

))
. In [45,

Theorem 5.5], it was shown that the complement of the undirected Galois
graph of an extremal semidistributive lattice is precisely the 1-skeleton of the
canonical join complex. By Proposition 3.5, the canonical join representations
in Tam(α) correspond to noncrossing α-partitions. We thus have the following
corollary (which may also be verified directly).

Corollary 4.9. If there exists a directed edge wa,b → wa′,b′ in Galois
(
Tam(α)

)
,

then the α-arcs (a, b) and (a′, b′) are not compatible.

4.3. The Topology of Tam(α)
We conclude our study of Tam(α) with a topological characterization. See
Sect. A.7 for the necessary definitions.

Theorem 4.10. Let n > 0 and let α be a composition of n. Then, Tam(α) is
spherical if and only if α = (n) or α = (1, 1, . . . , 1).

Proof. By Proposition 4.1, Tam(α) is trim and, therefore, left-modular. By
Theorem A.19, the order complex of the proper part of Tam(α) is a wedge of k
spheres, where k =

∣
∣μ

(
Tam(α)

)∣∣. By Corollary 3.2, Tam(α) is semidistributive,
so that by Proposition A.20, μ

(
Tam(α)

) ∈ {−1, 0, 1}.
If α = (n), then Sα(231) = {e}, and Tam(α) is thus the singleton lattice,

so that μ
(
Tam(α)

)
= 1. Otherwise, let α = (α1, α2, . . . , αr) with r > 1. Let

A denote the set of atoms of Tam(α), and let B denote the canonical join
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representation of wo;α. By construction

A =
{

wp1,p1+1, wp2,p2+1, . . . , wpr−1,pr−1+1

}
,

B =
{

w1,p2 , wp1+1,p3 , . . . , wpr−2+1,n

}
.

Then, μ
(
Tam(α)

)
= (−1)n if and only if the join of all atoms of Tam(α) is

wo;α if and only if A = B if and only if r = n, p1 = 1 and pi+1 = pi + 1 for
i ∈ [r−1] if and only if α = (1, 1, . . . , 1).

We conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 3.19, Tam(α) has the intersection prop-
erty, which—by Theorem A.5—implies that CLO

(
Tam(α)

)
is a meet-semilattice.

Clearly, a meet-semilattice is a lattice if and only if it has a greatest element.
By [29, Lemma 4.6], the core label order of a congruence-uniform lattice L has
a greatest element if and only if L is spherical. By Theorem 4.10, Tam(α) is
spherical if and only if α = (n) or α = (1, 1, . . . , 1).

5. Parabolic Chapoton Triangles

We end our study of the α-Tamari lattices with an enumerative observation.
Let us consider the Mα-triangle, i.e. the (bivariate) generating function of the
Möbius function of CLO

(
Tam(α)

)
with respect to the number of descents:

Mα(x, y) def=
∑

u,v∈Sα(231)

μCLO(Tam(α))(u, v)x|Des(u)|y|Des(v)|. (3)

Example 5.1. The core label orders of Tam
(
(1, 2, 1)

)
and Tam

(
(2, 1, 2)

)
are

shown in Figs. 5d and 7, respectively. We may compute the corresponding
Mα-triangles directly:

M(1,2,1)(x, y) = 4x2y2 − 9xy2 + 5y2 + 5xy − 5y + 1,

M(2,1,2)(x, y) = x3y3 − 4x2y3 + 5xy3 − 2y3 + 9x2y2 − 22xy2 + 13y2 + 8xy − 8y + 1.

The motivation for the consideration of the Mα-triangle comes from [13],
where the corresponding polynomial for α = (1, 1, . . . , 1) was introduced. More
precisely, F. Chapoton considered the generating function of the Möbius func-
tion of the noncrossing partition lattice with respect to the number of bumps.
In view of Theorems 3.4 and 3.18, Chapoton’s M -triangle agrees with our
M(1,1,...,1)-triangle.

One of Chapoton’s central observations in [13,14] is the fact that M(1,1,...,1)

(x, y) behaves extremely well under certain (invertible) variable substitutions.
If α = (α1, α2, . . . , αr), then we define the Hα- and the Fα-triangle as follows:

Hα(x, y) def=
(
x(y − 1) + 1

)r−1
Mα

(
y

y − 1
,

x(y − 1)
x(y − 1) + 1

)
, (4)

Fα(x, y) def= yr−1Mα

(
y + 1
y − x

,
y − x

y

)
. (5)
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Example 5.2. Continuing Example 5.1, we obtain:

H(1,2,1)(x, y) = x2y2 + 2x2y + x2 + 2xy + 3x + 1,

H(2,1,2)(x, y) =
x3y3 + x3y2 + 3x3y + 3x2y2 − 4x3 + 6x2y + 3xy + 5x + 1

x(y − 1) + 1
,

and

F(1,2,1)(x, y) = 5x2 + 4xy + y2 + 9x + 4y + 4,

F(2,1,2)(x, y) =
2x3 + 12x2y + 4xy2 + y3 + 5x2 + 20xy + 4y2 + 4x + 8y + 1

y
.

Computer experiments suggest the following conjecture.

Conjecture 5.3. Let n > 0 and let α be a composition of n into r parts. The
rational functions Hα(x, y) and Fα(x, y) are polynomials with nonnegative in-
teger coefficients if and only if α has at most one part exceeding 1.

If we replace the exponent r−1 in the definition of Hα(x, y) and Fα(x, y)
by:

d = max
w∈Sα(231)

∣
∣Des(w)

∣
∣,

then we can verify directly that (4) and (5) produce polynomials with integer
coefficients; however, these coefficients need not all be nonnegative, as can be
witnessed in the example α = (2, 1, 2).

If α has at most one part exceeding 1, then Conjecture 5.3 implies the
existence of combinatorial families AH;α and AF ;α, and combinatorial statistics
σ1, σ2, τ1, τ2, such that

Hα(x, y) =
∑

a∈AH;α

xσ1(a)yσ2(a),

Fα(x, y) =
∑

a∈AF ;α

xτ1(a)yτ2(a).

We close by suggesting candidates for AH;α and σ1, σ2. For n > 0, we
define:

Sn
def=

{
(i, i + 1) | 1 ≤ i < n

}
,

Tn
def=

{
(i, j) | 1 ≤ i < j ≤ n

}
,

and we set (i1, j1) � (i2, j2) if and only if i1 ≥ i2 and j1 ≤ j2.
Let α = (α1, α2, . . . , αr) be a composition of n, and recall that pi =

α1 + α2 + · · · + αi for i ∈ [r]. We now define:

Sα
def=

{
(pi, pi + 1) | i ∈ [r − 1]

}
,

Tα
def=

{
t ∈ Tn | s � t for some s ∈ Sα}.

In other words, Tα is the order filter generated by Sα in the poset (Tn,�). Let

Nonn(α) def=
{
A ⊆ Tα | A is an antichain in (Tα,�)

}
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Figure 10. The poset
(
T(3,2,1,2,2),�

)
with a nonnesting

(3, 2, 1, 2, 2)-partition highlighted

be the set of nonnesting α-partitions. Figure 10 shows a nonnesting (3, 2, 1, 2, 2)-
partition.

Conjecture 5.4. Let n > 0, let α be a composition of n, and define:

H̃α(x, y) def=
∑

A∈Nonn(α)

x|A|y|A∩Sα|.

Then, Hα(x, y) = H̃α(x, y) if and only if α has at most one part exceeding 1.

For α = (1, 1, . . . , 1), Conjecture 5.4 follows from [43, Theorem 2] and [2,
Theorem 1.1].

Example 5.5. We continue Examples 5.1 and 5.2. Figures 11 and 12 show
the nonnesting α-partitions for α = (1, 2, 1) and α = (2, 1, 2), respectively.
Whenever minimal elements are involved in an antichain, they are marked in
red. We obtain:

H̃(1,2,1)(x, y) = x2y2 + 2x2y + x2 + 2xy + 3x + 1,

H̃(2,1,2)(x, y) = x2y2 + x3 + 2x2y + 6x2 + 2xy + 6x + 1,

which supports Conjecture 5.4.

Remark 5.6. Apart from [13,14], analogues of the polynomials defined in (3)–
(5) have appeared (in different contexts) in [1, Section 5.3] and [20, Section 6].
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A. Posets and Lattices

A.1. Basic Notions

Let P = (P,≤) be a partially ordered set, or poset for short. The dual poset
of P is Pd def= (P,≥). In the remainder, we only consider finite posets.

Given a, b ∈ P with a ≤ b, the set [a, b] def= {c ∈ P | a ≤ c ≤ b} is an
interval of P. Two elements a, b ∈ P form a cover relation if a < b and [a, b]
consists of two elements. In that case, we usually write a � b, and we say that
a is covered by b and that b covers a. The set of cover relations of P is denoted
by E(P).

An element a ∈ P is minimal (resp. maximal) in P if b ≤ a (resp. a ≤ b)
implies b = a for all b ∈ P . If P has a unique minimal element (usually denoted
by 0̂) and a unique maximal element (usually denoted by 1̂), then P is bounded .
In a bounded poset, any element covering 0̂ (resp. covered by 1̂) is an atom
(resp. coatom).

A chain (resp. antichain) of P is a subset of P in which every two distinct
elements are comparable (resp. incomparable). A chain consisting of k elements
is also called a k-chain. A chain is saturated if it can be written as a sequence
of cover relations, and it is maximal if it is saturated and contains a minimal
and a maximal element.

When M is a set, then a map f : E(P) → M is an edge-labeling of P. If
C : a0 � a1 � · · · � as is a saturated chain, then we write:

f(C) def=
(
f(a0, a1), f(a1, a2), . . . , f(as−1, as)

)
.

An order ideal (resp. order filter) of P is a subset I ⊆ P , such that for
all a ∈ I if b ≤ a (resp. a ≤ b), then b ∈ I. An order ideal (resp. order filter)
is principal if it has a unique maximal (resp. minimal) element.

If, for all a, b ∈ P , there exists a least upper bound a∨ b (resp. a greatest
lower bound a ∧ b), then P is a join-semilattice (resp. meet-semilattice). If it
exists, then a ∨ b (resp. a ∧ b) is the join (resp. the meet) of a and b. A poset
that is both a join- and a meet-semilattice is a lattice. Every finite lattice is a
bounded poset.

A.2. Congruence-Uniform Lattices

Let L = (L,≤) be a finite lattice. A lattice congruence is an equivalence
relation Θ on L, such that for all a, b, c, d ∈ L if [a]Θ = [c]Θ and [b]Θ = [d]Θ,
then [a ∨ b]Θ = [c ∨ d]Θ and [a ∧ b]Θ = [c ∧ d]Θ. The set Con(L) of all lattice

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Figure 13. The green edges indicate a pair of perspective
cover relations in the hexagon lattice

congruences on L forms a distributive lattice under refinement [18]. If a � b
in L, then we denote by cg(a, b) the finest lattice congruence on L in which a
and b are equivalent.

An element j ∈ L\{0̂} is join irreducible if whenever j = a ∨ b, then
j ∈ {a, b}. Meet-irreducible elements can be defined dually. Let JoinIrr(L)
(resp. MeetIrr(L)) denote the set of join-irreducible (resp. meet-irreducible)
elements of L. If L is finite and j ∈ JoinIrr(L) (resp. m ∈ MeetIrr(L)), then
there exists a unique element j∗ ∈ L (resp. m∗ ∈ L), such that j∗ � j (resp.
m � m∗). If j ∈ JoinIrr(L), then cg(j) def= cg(j∗, j).

Theorem A.1. [17, Theorem 2.30] Let L be a finite lattice and let Θ ∈ Con(L).
The following are equivalent.

(i) Θ is join-irreducible in Con(L).
(ii) Θ = cg(a, b) for some (a, b) ∈ E(L).
(iii) Θ = cg(j) for some j ∈ JoinIrr(L).

A consequence of Theorem A.1 is the existence of a surjective map:

cg∗ : JoinIrr(L) → JoinIrr
(
Con(L)

)
, j �→ cg(j).

A finite lattice is congruence uniform if cg∗ is a bijection for both L and Ld.
In that case, Theorem A.1 implies the existence of an edge-labeling:

λ : E(L) → JoinIrr(L), (a, b) �→ j, (6)

where j is the unique join-irreducible element of L with cg(j) = cg(a, b).
The cover relations in a congruence-uniform lattice with the same label

under λ can be characterized as follows. Two cover relations (a, b), (c, d) ∈ E(L)
are perspective if either a ∨ d = b and a ∧ d = c or b ∨ c = d and b ∧ c = a. In
that case, we write (a, b) � (c, d). See Fig. 13 for an illustration.

Lemma A.2. [21, Lemma 2.6] Let L be a congruence uniform lattice with la-
beling λ. For (a, b) ∈ E(L) and j ∈ JoinIrr(L), λ(a, b) = j if and only if
(a, b) � (j∗, j).

This lemma has the following consequences.

Corollary A.3. Let L be congruence-uniform and (a, b) ∈ E(L) and j ∈ JoinIrr(L).
If λ(a, b) = j, then j ≤ b.



Noncrossing Arc Diagrams, Tamari Lattices 335

Figure 14. The core label order of a congruence-uniform
lattice

Proof. By Lemma A.2, (a, b)� (j∗, j), which implies that either b ≤ j or j ≤ b.
If b < j, then b ∨ j∗ = j, which implies that b �≤ j∗. This means that there is
a saturated chain from b to j which does not contain j∗; in particular j has at
least two lower covers. This contradicts j ∈ JoinIrr(L).

Corollary A.4. For any saturated chain C of a congruence-uniform lattice L,
the sequence λ(C) does not contain duplicate entries.

Proof. Let C : a0 � a1 � · · · � as be a saturated chain of L, and pick some
index i ∈ [s], such that λ(ai−1, ai) = k ∈ JoinIrr(L). By Corollary A.3, k ≤ ai.
Thus, for any j ≥ i, it follows that k ≤ aj , and thus, k ∨ aj = aj � aj+1.
Hence, (k∗, k) and (aj , aj+1) are not perspective, and thus, λ(aj , aj+1) �= k by
Lemma A.2.

A.3. The Core Label Order of a Congruence-Uniform Lattice

The labeling (6) of a congruence-uniform lattice L = (L,≤) gives rise to an
alternate way of ordering L. This order was first considered by N. Reading in
connection with posets of regions of simplicial hyperplane arrangements under
the name shard intersection order ; see [38, Section 9-7.4].

For a ∈ L, we define its nucleus by:

a↓
def=

∧

b∈L : b�a

b,

and we define the core label set of a by:

ΨL(a) def=
{

λ(b, c) | a↓ ≤ b � c ≤ a
}

. (7)

If no confusion can arise, we drop the subscript “L” from the core label set.
The core label order of L is the poset CLO(L) def=

(
L,
)

, where a 
 b if and
only if Ψ(a) ⊆ Ψ(b). See Fig. 14 for an illustration.

Moreover, L has the intersection property if for all a, b ∈ L, there exists
c ∈ L, such that Ψ(a) ∩ Ψ(b) = Ψ(c).

Theorem A.5. [29, Theorem 4.8] A finite, congruence-uniform lattice L has
the intersection property if and only if CLO(L) is a meet-semilattice.
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If Θ is a lattice congruence on L, then a join-irreducible element j ∈
JoinIrr(L) is contracted by Θ if [j∗]Θ = [j]Θ.

Lemma A.6. [29, Lemma 4.9] Let L = (L,≤) be a finite, congruence-uniform
lattice and let Θ ∈ Con(L). Let Σ be the set of join-irreducible elements of L
contracted by Θ. For a ∈ L, the core label set ΨL/Θ

(
[a]Θ

)
is in bijection with

ΨL(a)\Σ.

Moreover, a lattice congruence Θ on L induces a canonical projection
map:

π↓
Θ : L → L, a �→ min[a]Θ,

which identifies the quotient lattice L/Θ of L by Θ with the restriction of L to
the minimal elements in the congruence classes of Θ. Then, Lemma A.6 can
be rephrased as:

ΨL/Θ

(
π↓

Θ(a)
)

= ΨL(a)\Σ.

Proposition A.7. [29, Proposition 4.11] The intersection property is inherited
by quotient lattices.

A.4. Semidistributive Lattices

A finite lattice L = (L,≤) is join semidistributive if for all a, b, c ∈ L with a ∨
b = a∨c follows a∨(b∧c) = a∨b. We may define meet-semidistributive lattices
dually. A lattice is semidistributive if it is both join and meet semidistributive.

Theorem A.8. [15, Theorem 4.2] Every congruence-uniform lattice is semidis-
tributive.

The converse of Theorem A.8 is not true, see, for instance, [32, Section 3].
Join-semidistributive lattices have another characteristic property: every ele-
ment can be represented canonically as the join of a particular set of join-
irreducible elements.

More precisely, a subset A ⊆ L is a join representation of a ∈ L if
a =

∨
A. A join representation is irredundant if there is no proper subset of

A that joins to a. For two irredundant join representations A1 and A2 of a,
we say that A1 refines A2 if, for every a1 ∈ A1, there exists some a2 ∈ A2

with a1 ≤ a2. In other words, the order ideal generated by A1 is contained
in the order ideal generated by A2. A join representation of a is canonical if
it is irredundant and refines every other irredundant join representation of a.
If a canonical join representation of a exists, then it is an antichain of join-
irreducible elements; the canonical joinands of a.

Theorem A.9. [17, Theorem 2.24] A finite lattice is join semidistributive if and
only if every element admits a canonical join representation.

Figure 15 shows a lattice that is not join semidistributive, because the
top element does not have a canonical join representation. Indeed, there are
two irredundant join representations of the top element: the three atoms and
the two highlighted elements, but none of these sets refines the other.
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Figure 15. A lattice that is not join semidistributive

Proposition 2.2 in [37] states that in any finite lattice L, every subset of
a canonical join representation is again a canonical join representation. Thus,
the set of canonical join representations of L forms a simplicial complex; the
canonical join complex of L. If L is join semidistributive, then the faces of this
complex are indexed by the elements of L. See [4] for more information on the
canonical join complex.

If L is congruence uniform, then we can use the labeling from (6) to
compute canonical join representations in L.

Theorem A.10. [21, Proposition 2.9] Let L = (L,≤) be a finite, congruence-
uniform lattice. The canonical join representation of a ∈ L is

{
λ(b, a) | b�a

}
.

Corollary A.11. Let L = (L,≤) be a finite, congruence-uniform lattice. The
number of canonical joinands of a ∈ L equals the number of elements covered
by a in L.

Proof. Let a ∈ L. Let b1, b2 ∈ L be such that b1 �= b2 and λ(b1, a) = k =
λ(b2, a). By Corollary A.3, k ≤ a, and by Lemma A.2, k ∧ b1 = k∗ = k ∧ b2.
Since L is semidistributive, it follows that k∗ = k ∧ (b1 ∨ b2) = k ∧ a = k, a
contradiction.

The claim now follows from Theorem A.10.

Proposition A.12. [6, Proposition 4.11] Let L be a finite, join-semidistributive
lattice and let Θ be a lattice congruence on L. If j is a canonical joinand of
a ∈ L, such that j is not contracted by Θ, then j is a canonical joinand of
π↓

Θ(a) in L. Moreover, if π↓
Θ(a) = a, then none of the canonical joinands of a

is contracted by Θ.

Let j ∈ JoinIrr(L). If the set {a ∈ L | j∗ ≤ a, j �≤ a} has a greatest ele-
ment, then we denote it by κ(j). Whenever κ(j) exists, it must be meet irre-
ducible. We recall two facts about the partial map κ : JoinIrr(L) → MeetIrr(L).

Lemma A.13. [17, Corollary 2.55] If L is finite and semidistributive, then κ is
a bijection. Thus

∣
∣JoinIrr(L)

∣
∣ =

∣
∣MeetIrr(L)

∣
∣.

Lemma A.14. [17, Lemma 2.57] Let L = (L,≤) be a finite lattice, and let
j ∈ JoinIrr(L) be such that κ(j) exists. For every a ∈ L, we have a ≤ κ(j) if
and only if j �≤ j∗ ∨ a.



338 H. Mühle

A.5. Trim Lattices

Let L = (L,≤) be a finite lattice. The length of a chain of L is one less than
its cardinality. Let �(L) denote the maximum length of a maximal chain of L.
For every finite lattice, the following holds:

�(L) ≤ min
{∣

∣JoinIrr(L)
∣
∣,

∣
∣MeetIrr(L)

∣
∣
}

. (8)

If these three quantities are the same, i.e. if
∣
∣JoinIrr(L)

∣
∣ = �(L) =

∣
∣MeetIrr(L)

∣
∣,

then L is extremal [26]. It follows from [26, Theorem 14(ii)] that any finite
lattice can be embedded as an interval into an extremal lattice. Consequently,
extremality is not inherited by intervals.

In [44], a strengthening of extremality was introduced which does have
this hereditary property. An element a ∈ L is left modular if for all b, c ∈ L
with b < c, it holds that:

(b ∨ a) ∧ c = b ∨ (a ∧ c).

If L has a maximal chain of length �(L) consisting entirely of left-modular
elements, then L is left modular . An extremal, left-modular lattice is trim [44].

It was recently shown that any extremal, semidistributive lattice is al-
ready trim.

Theorem A.15. [45, Theorem 1.4] Every extremal semidistributive lattice is
trim.

Figure 15 shows the smallest extremal lattice that is not left modular. It
has only one chain of maximum length, but the non-atom marked in green is
not left modular.

A.6. The Galois Graph of an Extremal Lattice

Extremal lattices can be compactly represented in terms of a directed graph—
the Galois graph—which encodes the incomparability relation between join-
and meet-irreducible elements [26, Theorem 11].

Let L = (L,≤) be extremal with �(L) = n, and fix a maximal chain
C : 0̂ = a0 � a1 � · · · � an = 1̂. Then,

∣
∣JoinIrr(L)

∣
∣ = n =

∣
∣MeetIrr(L)

∣
∣. We can

label the join-irreducible elements by j1, j2, . . . , jn and the meet-irreducible
elements by m1,m2, . . . ,mn, such that

j1 ∨ j2 ∨ · · · ∨ js = as = ms+1 ∧ ms+2 ∧ · · · ∧ mn (9)

for all s. We can always order some of the irreducibles in such a way; the
extremality guarantees that this is an ordering of all irreducibles.

Using this order, we define the Galois graph of L following [26, Theo-
rem 2(b)] (see also [45, Section 2.3]). This is the directed graph Galois(L) with
vertex set [n], where s → t if and only if s �= t and js �≤ mt. Figure 16b shows
the Galois graph of the extremal lattice in Fig. 16a.

The Galois graph of an extremal lattice L uniquely determines L as we
will briefly outline next. In general, let G =

(
[n], E

)
be a directed simple

graph. An orthogonal pair of G is a pair (A,B) with A,B ⊆ [n], A ∩ B = ∅
and there is no (s, t) ∈ E with s ∈ A, t ∈ B. An orthogonal pair is maximal if
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Figure 16. The Galois graph of an extremal lattice that is
not congruence uniform

Figure 17. Two lattices of maximal orthogonal pairs

both sets A and B are (cardinality-wise) maximal with that property. We may
define a partial order on the set of maximal orthogonal pairs of G by setting
(A1, B1) 
 (A2, B2) if and only if A1 ⊆ A2 (or equivalently B2 ⊆ B1). The set
of maximal orthogonal pairs of G with respect to this partial order is a lattice.
Extremal lattices may now be characterized via this construction; see also [45,
Section 2.3].

Theorem A.16. [26, Theorem 11] Every finite extremal lattice is isomorphic to
the lattice of maximal orthogonal pairs of its Galois graph. Conversely, given
any directed graph G =

(
[n], E

)
, such that (s, t) ∈ E only if s > t, the lattice

of maximal orthogonal pairs is extremal.

Figure 17 shows two lattices of maximal orthogonal pairs. Constructing
the Galois graph of an extremal lattice requires to understand the incompa-
rability relation between join- and meet-irreducible elements. If an extremal
lattice is additionally congruence uniform, we may simplify this construction
by only taking the join-irreducible elements into account.

If L is both extremal and congruence uniform, then we may define an-
other ordering of the join-irreducible elements using the labeling λ from (6).
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In particular, we pick a maximal chain of maximum length, and we order the
join-irreducible elements according to the order in which they appear in λ(C).
This is a total order of all join-irreducible elements of L by Corollary A.4 and
the assumption that L is extremal.

Lemma A.17. Let L be a finite, extremal and congruence-uniform lattice, and
fix a maximal chain C of maximum length. The ordering of JoinIrr(L) coming
from (9) agrees with the order in which the join-irreducible elements appear in
λ(C).

Proof. Let �(L) = n, and pick a maximal chain C : 0̂ = a0 � a1 � · · · � an = 1̂.
Suppose that—with respect to C—the order of the join-irreducible elements
of L from (9) is j1, j2, . . . , jn.

It follows that a1 = j1, and therefore, λ(a0, a1) = j1. Now, let t ∈ [n]
and suppose that λ(as−1, as) = js for all s ≤ t. Let λ(at, at+1) = j. By
Corollary A.4, j ∈ JoinIrr(L)\{j1, j2, . . . , jt}. By (9), at+1 = at ∨ jt+1, and by
Lemma A.2 and Corollary A.3, at+1 = at ∨ j.

Since (9) determines a linear order on JoinIrr(L), it follows that j = jt.
The claim follows by induction.

Corollary A.18. Let L be a finite, extremal and congruence-uniform lattice, in
which JoinIrr(L) and MeetIrr(L) are ordered as in (9) with respect to some
maximal chain of length n = �(L).

(i) For s ∈ [n], ms = κ(js).
(ii) For s, t ∈ [n], js �≤ mt if and only if s �= t and jt ≤ jt∗ ∨ js.
(iii) If jt ≤ js, then there is a directed edge from s to t in Galois(L).

Proof. (i) Let �(L) = n, and let s ∈ [n]. By Lemma A.13, there exists m =
κ(js). By definition of κ, js∗ ≤ m and js �≤ m and m is maximal with this
property. Thus, js ∧ m = js∗ and js ∨ m = m∗. Thus, (js∗, js) � (m,m∗), and
Lemma A.2 implies λ(js∗, js) = λ(m,m∗).

Let C : 0̂ = a0 � a1 � · · · � an = 1̂. By Lemma A.17, λ(as−1, as) =
λ(js∗, js) = λ(m,m∗), and applying Lemma A.2 once more yields (as−1, as) �
(m,m∗). Since m is meet irreducible, we conclude—by the dual statement of
Corollary A.3—that as−1 = m ∧ as. By (9), m = ms.

(ii) This follows from Lemma A.14 and (i).
(iii) This follows from (ii) and the definition of Galois(L).

If L is extremal and congruence uniform, then Corollary A.18 implies that
we may view Galois(L) as a directed graph with vertex set JoinIrr(L) where
we have a directed edge js → jt if and only if s �= t and jt ≤ jt∗ ∨ js. For
extremal lattices that are not congruence uniform, this construction normally
yields a directed graph that is not isomorphic to Galois(L). This is illustrated in
Fig. 16. Figure 16c shows the directed graph with vertex set [4] and a directed
edge s → t if and only if s �= t and jt ≤ jt∗ ∨ js holds in the extremal lattice
in Fig. 16a.
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A.7. Poset Topology

The order complex Δ(P) of a finite poset P = (P,≤) is the simplicial com-
plex whose faces are the chains of P. If P has a least or a greatest ele-
ment, then Δ(P) is always contractible. If P is bounded, then we denote by
P def=

(
P\{0̂, 1̂},≤) the proper part of P.

The Möbius function of P is the map μP : P ×P → Z, inductively defined
by μP(a, a) def= 1 for all a ∈ P and by

μP(a, b) def= −
∑

c∈P : a≤c<b

μP(a, c),

for all a, b ∈ P with a �= b. If P is bounded, then the Möbius number of P is
μ(P) def= μP(0̂, 1̂).

It follows from a result of P. Hall that the Möbius number of P equals
the reduced Euler characteristic of Δ(P ); see [40, Proposition 3.8.5].

Let us recall two results concerning the Möbius number of certain kinds
of lattices. The first one follows from [25] (see also [28, Theorem 8]) and [9,
Theorem 5.9].

Theorem A.19. Let L be a finite, left-modular lattice. The order complex Δ(L)
is homotopic to a wedge of

∣
∣μ(L)

∣
∣-many spheres.

Consequently, if L is left modular with μ(L) ∈ {−1, 1}, then Δ(L) is a
sphere, and we call L spherical .

Proposition A.20. [29, Proposition 2.13] Let L be a finite, meet-semidistributive
lattice with n atoms. If the join of all atoms of L is 1̂, then μ(L) = (−1)n.
Otherwise, μ(L) = 0.
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Birkhäuser, Cham, 2016, 399–487.

[39] Nathan Reading and David E. Speyer, Sortable elements in infinite Coxeter
groups, Transactions of the American Mathematical Society 363 (2011), 699–
761.

[40] Richard P. Stanley, Enumerative Combinatorics, Vol. 1, 2nd ed., Cambridge
University Press, Cambridge, 2011.



344 H. Mühle

[41] Christian Stump, Hugh Thomas and Nathan Williams, Cataland: Why the
Fuss?, 2018, arXiv:1503.00710.
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