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Non-crossing Trees, Quadrangular
Dissections, Ternary Trees, and
Duality-Preserving Bijections

Nikos Apostolakis

Abstract. Using the theory of Properly Embedded Graphs developed in
an earlier work we define an involutory duality on the set of labeled non-
crossing trees that lifts the obvious duality in the set of unlabeled non-
crossing trees. The set of non-crossing trees is a free ternary magma with
one generator and this duality is an instance of a duality that is defined
in any such magma. Any two free ternary magmas with one generator are
isomorphic via a unique isomorphism that we call the structural bijection.
Besides the set of non-crossing trees we also consider as free ternary mag-
mas with one generator the set of ternary trees, the set of quadrangular
dissections, and the set of flagged Perfectly Chain Decomposed Ditrees,
and we give topological and/or combinatorial interpretations of the struc-
tural bijections between them. In particular the bijection from the set of
quadrangular dissections to the set of non-crossing trees seems to be new.
Further we give explicit formulas for the number of self-dual labeled and
unlabeled non-crossing trees and the set of quadrangular dissections up
to rotations and up to rotations and reflections.

1. Introduction

This paper follows [1] as the second in a planned series that explore the theory
and applications of Properly Embedded Graphs (pegs) and their duality. The
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Figure 1. An unlabeled non-crossing tree and its dual

main motivation is to understand duality of non-crossing trees and in par-
ticular to enumerate the set of self-dual objects. This leads to a more broad
investigation of duality in Fuss–Catalan objects for p = 3.1

Non-crossing trees are well studied in the literature, see for example [8],
and [22]. A non-crossing tree is a tree with vertices on a circle, typically at
the vertices of a regular polygon, and edges mutually non-intersecting chords.
Usually the vertices are labeled 1, . . . , n, where n is the number of vertices, and
if this is not the case we will talk of unlabeled non-crossing trees. There is a
topologically obvious way to define the dual of an unlabeled non-crossing tree
t: removing the tree breaks the circle into arcs and the interior of the circle
into simply connected regions, and there is exactly one arc in the boundary
of each region. The dual t∗ is defined by putting a vertex in each arc and
connecting two of these vertices by an edge if and only if the corresponding
regions share an edge. Clearly t∗ is non-crossing and (t∗)∗ = t; for an example
of this construction see Fig. 1. We call this duality nc-duality.

Lifting nc-duality to an involutory duality at the level of labeled non-
crossing trees is not straightforward, and it involves clarifying some subtle
issues that have to do with the orientation of the circle. For example a “duality”
for labeled non-crossing trees was defined in [15] by labeling the dual vertex
that follows i in the standard (counterclockwise) orientation of the circle by
i, as in Fig. 2. Clearly this operation is not involutory, rather it has order
2n where n is the number of vertices of the tree. For this reason we call the
resulting tree the complement, rather than the dual, of t and denote it by κ(t),
since as we will see in Sect. 2.5.2 it is induced by the Kreweras complement in
the lattice of non-crossing partitions.

From the point of view of [1]2, non-crossing trees are trees properly embed-
ded in the disk, and nc-duality in the unlabeled case is simply the mind-body
duality3. One could then use mind-body duality for labeled pegs to lift nc-
duality to labeled non-crossing trees. This approach however, has the drawback
that the mind-body dual t∗ of a peg is embedded in the oppositely oriented

1See for example [16] for the basic definitions of Fuss–Catalan numbers, called generalized
Catalan numbers there.
2All the relevant notions and terminology are reviewed in Sect. 2.5.
3For an explanation of the term mind-body see Section 2.3 of [1].
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Figure 2. The complement defined in [15]

surface, so that we get a duality N → N ᵀ, where N stands for the set of trees
pegged in the standard disk with the counterclockwise orientation, and N ᵀ for
the set of trees pegged in the disk with the clockwise orientation.

As observed in Section 5 of [1] this drawback can be rectified using mind-
body duality at the level of rooted edge-labeled trees. The upshot is that one
can define an involutory duality ∗ : N → N lifting the duality of unlabeled
trees by

t∗ = s(κ(t)), (1.1)

where s : N → N stands for the map induced by reflection of the circle across
the diameter that passes through the vertex labeled 1. We emphasize that
we consider reflections and rotations to act on the edges of non-crossing trees
leaving the vertices fixed, so t∗ is still pegged on the standard disk endowed
with the counterclockwise orientation. More concretely, the nc-dual t∗ of a non-
crossing tree t is obtained by labeling the dual vertices in a clockwise order
starting with the dual vertex that immediately follows the vertex of t labeled
1, and then transferring the dual tree to the counterclockwise oriented circle.
For example, see Fig. 3 for the dual of the non-crossing tree of Fig. 2.
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Figure 3. The dual of a non-crossing tree
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We note that there is a price to be paid for getting the dual of a non-
crossing tree to be pegged in the same oriented disk, namely the natural corre-
spondence between the edges of two dual trees is lost. In the case of mind-body
duality each edge of t crosses once only one edge of t∗ and so every edge e of t
has a dual edge e∗ in t∗ with a natural topological relation. No such topologi-
cally obvious correspondence exists between the edges of two nc-dual labeled
non-crossing trees.

This duality for non-crossing trees and the necessary background material
about pegs are developed in Sect. 2.5.

The set of non-crossing trees N =
⊔

m≥0 Nm, where Nm is the set of
non-crossing trees with m edges is an example of a (p = 3) Fuss–Catalan
family. Fuss–Catalan families have been extensively studied in the literature
from various points of view, see for example [4], [16], and [23]. It turns out
that nc-duality is an instance of a duality that exists in all such families.

Inspired by [4] we consider (p = 3) Fuss–Catalan families as instances
of the free ternary magma with one generator, that is a set with a ternary
operation satisfying the usual universal property of “freeness”, we give the
details in Sect. 2.1, including a standard construction of the ternary magma
freely generated by a set X as a set of words. There is a natural notion of rank
for elements of a free ternary magma M namely the number of occurrences of
the ternary operator and we denote by Mm the set of elements of M that have
rank m.

Among the many instances of Fuss–Catalan families (or ternary magmas
freely generated by one element λ) we consider in Sect. 2

• The “standard” ternary magma freely generated by one element:

A =
⊔

m≥0

Am

where Am is the set of elements of rank m, and is usually thought of as
ways of parenthesizing m applications of a ternary operation. The basic
theory of free ternary magmas is developed in Sect. 2.1.

• The set of (full) ternary trees, where a ternary tree is an ordered tree
with the out-degree of every vertex 0 or 3:

T =
⊔

m≥0

Tm.

The rank is the number of internal vertices and the generator λ is the
ternary tree with one vertex and no edges. For details see Sect. 2.3.

• The set of labeled non-crossing trees

N =
⊔

m≥0

Nm.

The rank is given by the number of edges and the generator λ is the
non-crossing tree with one vertex and no edges. The ternary structure of
N is exposed in Sect. 2.7.
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• The set of flagged Perfectly Chain Decomposed Ditrees (PCDDs)

P =
⊔

m≥0

Pm.

This set arises from the application of the concept of medial digraph
(developed in Section 2.2 of [1]) in our case. A ditree is a digraph with
underlying graph a tree, and a medial ditree is a ditree with the in and out
degrees of every vertex at most 2. A Perfectly Chain Decomposed Ditree
(PCDD) is a medial ditree endowed with a Perfect Chain Decomposition
(PCD), that is, a decomposition of its edges into chains with the prop-
erty that each vertex belongs to exactly two chains. A flagged Perfectly
Chain Decomposed Ditree is a PCDD with a distinguished chain called
its flag. The rank of an element of P is the number of its vertices, and
the generator is the degenerated empty PCDD. For details, see Sect. 2.6.

• The set of quadrangular dissections of polygons

Q =
⊔

m≥0

Qm.

By a quadrangular dissection of a (convex) polygon we mean a dissection
of the polygon into quadrangular cells via a set of non-crossing diagonals.
It is easy to see that only polygons with an even number of vertices admit
quadrangular dissections.
To understand the ternary structure it is more convenient to think of
elements of Q as 4-clusters, that is 2-complexes obtained by gluing quad-
rangular cells along edges in such a way that no 1-cycles are created, see
Sect. 2.4 for details. The rank is given by the number of 2-cells and the
generator λ is the (trivial) 4-cluster consisting of a single edge and no
2-cells.

The number of rank m elements of a ternary magma freely generated by
one element is given by the (p = 3) Fuss–Catalan numbers

νm :=
1

2m + 1

(
3m

m

)

. (1.2)

There are many proofs of this result, and in Theorem 2.2 we generalize the
proof in [4] to prove that the number of k-tuples of rank m is the Raney
number R(3, k,m). To our knowledge this is the only elementary (without use
of generating functions) proof of that result.

Any two ternary magmas freely generated by one element are isomorphic
via a unique isomorphism and we call any such isomorphism a structural bijec-
tion. Uniqueness implies that any diagram of structural bijections commutes
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and in particular Diagram (1.3) commutes.

(1.3)

Interchanging the first and third argument in any occurrence of the
ternary operator while leaving the second argument fixed defines a duality
in A, that satisfies, and is determined by, a fundamental equation namely
Eq. (2.2). This duality is transferred via the structural bijection to a duality
in any ternary magma freely generated by one element. In the magmas we
consider these turn out to be quite natural and/or known:

• In T it transfers to interchanging the left and right subtree of every
internal vertex. This duality was considered in [6].

• In N it transfers to nc-duality.
• In P it transfers to “mind-body” duality. A PCD is determined by a

binary choice at every vertex: choosing which incoming edge to connect
to which outgoing one. Mind-body duality consists of making the opposite
choice at every vertex. See Section 2.2 of [1] for details.

• In Q it transfers to reflection across the perpendicular bisector of an edge.

For brevity we will refer to a ternary magma freely generated by one
element and endowed with the above duality as a free ∗-magma. One of the
original motivations for the present work was to understand self-duality for
(labeled and unlabeled) non-crossing trees. We achieve that for the labeled
case in Theorem 2.8 where we provide an explicit formula for the number of
self-dual elements with given rank of a free ∗-magma. This formula was proven
in [6] in the case of ternary trees using a generating function argument. We
prove it by giving, in Theorem 2.7, bijections from the set of self-dual elements
of rank m, to the set of elements of rank m/2 for m even, and to the set of
pairs of elements or total rank (m − 1)/2 for m odd. Since we have given, in
Theorem 2.2, an elementary proof for the counting formulae of these sets, our
proof of Theorem 2.8 is completely elementary.

The structural bijections in Diagram (1.3) have interesting combinatorial
and/or topological interpretations which we explain in Sect. 3.

The interpretation of ψ : Q → T was given in [16]. We give an exposition
of that interpretation in Sect. 3.1.
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We give an interpretation of φ : Qm → Nm in Sect. 3.3. Consider a quad-
rangular dissection q. The dissected polygon has an even number of vertices
and it is easy to see that the dissecting diagonals connect vertices with labels
of opposite parities and therefore one of the diagonals of a cell of q connects
vertices with odd labels while the other one vertices with even labels. The
non-crossing tree φ(q) is then obtained by the “odd” diagonals of all the cells.
This interpretation is, to our knowledge, new. There is however a close connec-
tion between φ and the Schaeffer bijection between rooted quadrangulations
of the sphere and well labeled trees given in [29] (see also [3])4. To explain this
connection, in Sect. 3.3.1, we define (in Sect. 2.5.1) the set BOm of bipartisan
trees with m edges, and exhibit a bijection Nm → BOm. A bipartisan tree is
an ordered tree where the children of each non-root vertex are divided into two
sets the left children and the right children, in such a way that all the right
children are less than the left ones.

Actually φ preserves more structure, it is equivariant with respect to two
actions of the dihedral group D2(m+1) with 4(m + 1) elements. The action on
Qm is induced by the defining action on a regular polygon, and the action on
Nm is generated by κ and s (see the Eq. (1.1)). Furthermore the action of the
subgroup generated by κ2 and s is the standard action of Dm+1 on Nm. This
observation allows us to achieve our goal of enumerating self-dual unlabeled
non-crossing trees in Sect. 4.

A rank preserving bijection N → T has been given in [8] modulo an
arbitrary choice when m = 2, and it turns out that with the appropriate
choice that bijection is exactly the structural bijection, see Sect. 3.2. Since by
the commutativity of Diagram (1.3), σ = ψ ◦φ−1 we have an interpretation of
σ as well.

In Sect. 4, we examine the dihedral action on Qm and in Theorem 4.1
we count its fixed points. This allows us to use Burnside’s Lemma to deduce
explicit formulae for the numbers of quadrangular dissections of a 2(m + 1)-
gon up to rotations, and up to rotations and reflections. These formulae do
not appear to be previously known. As a corollary we also reprove the formula
for the number of unlabeled non-crossing trees in [22].

Additionally, Theorem 4.1 in combination with the “Counting Lemma”
of Robinson (Lemma 4.5, see [26]) allows us to get explicit formulae for the
number of unlabeled self-dual (oriented or not) non-crossing trees, one of the
original motivations of this work.

We conclude with some future directions and open questions in Sect. 5.

1.1. Conventions, Notation, Terminology

Throughout the paper we use standard notation and terminology, with a few
exceptions that we explain now.

We use the notation [n] := {1, . . . , n}. For a finite set X we denote its
cardinality by |X|. For a set X, a subset of X with k elements (respectively,

4Thanks to the anonymous referee of a previous version for pointing this out.
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an ordered k-tuple of distinct elements of X) is called a k-combination (re-
spectively, a k-permutation) of elements of X.

For a graph its order is the number of its vertices, and its size is the
number of its edges. We typically denote by n the order of a graph and by
m its size, and since we are typically dealing with trees, very often we have
n = m + 1. We call the set of all edges incident to a given vertex v the star of
v.

We also use the abbreviations, v-graph (respectively e-graph) for a graph
with vertices (respectively, edges) labeled by the elements of [n] (respectively
[m]). An e-v-graph is a graph with vertices labeled by [n] and edges labeled
by [m].

A ditree is a directed tree, that is, a digraph with underlying undirected
graph a tree. A dag is a Directed Acyclic Graph, that is a digraph with no
oriented cycles. A topological sort of a dag is a linear order of its vertices that
extends the corresponding partial order.

Our rooted trees grow upwards and, consistently with the standard ori-
entation of the plane, the children of a vertex of an ordered tree increase from
right to left.

Rotations of the disk are assumed to be counterclockwise unless explicitly
specified otherwise.

For a set X, we denote the symmetric group of X by SX and when
X = [n] we just use the symbol Sn. We multiply permutations from left to
right so that (1 2)(1 3) = (1 2 3).

Finally, we use left and right exponential notation for conjugation in a
group, i.e. gh := h−1gh and hg := hgh−1.

2. Ternary Magmas

2.1. Basic Theory

By a ternary magma we mean a set M endowed with a ternary operation
Υ: M3 → M , which we call fusion. As expected, a homomorphism of ternary
magmas is a map that preserves the ternary operation and a homomorphism
that has an inverse is called an isomorphism.

If M is a ternary magma and X ⊂ M we say that M is freely generated
by X if for every ternary magma N and any function f : X → N , there exists
a unique ternary homomorphism φ : M → N extending f , i.e. so that the
following diagram commutes:

where the top arrow stands for the inclusion of X into M .
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Let X = {λ1, . . . , λn} be a set with n elements. One particular realization
of the ternary magma freely generated by X is as the set of words M(X) on
the alphabet {λ1, . . . , λn,Υ, (, )} defined recursively by the rules:

• λi ∈ M(X), for i = 1, . . . , n,
• if wl, wm, wr ∈ M(X) then Υ(wl, wm, wr) ∈ M(X),

with the tautological ternary operator (wl, wm, wr) �→ Υ(wl, wm, wr).
Clearly for any element x ∈ M(X) that is not a generator there are

uniquely determined elements xl, xm, and xr such that x = Υ(xl, xm, xr).

Definition 2.1. The rank, rk(w), of an element w ∈ M(X) is the number of
occurrences of the letter “Υ” (or equivalently the number of matching pairs of
parentheses “(, )”) in w. For a free ternary magma M we will denote the set
of elements of rank m by Mm.

More generally, for a free ternary magma, we define the rank of an element
ā = (a1, . . . , ak) ∈ Mk as the sum of the ranks of its coordinates, i.e.

rk(ā) = rk(a1) + · · · + rk(ak)

and we denote the set of elements of Mk of rank m by
(
Mk

)
m

. The rank of a
k-combination of elements of M is defined similarly.

An easy inductive argument shows that an element of
(
Mk

)
m

has 2m+k
occurrences of λis.

By standard abstract nonsense we have that any bijection between X
and Y extends to an isomorphism between M(X) and M(Y ), and so, up to
isomorphism, it makes sense to talk about the free ternary magma with n
generators. When the generators are not important we will just use M(n) to
denote the free ternary magma with n generators.

Our main interest is in the special case that the generating set contains
only one element λ. In that case for any ternary magma N the choice of
one element n0 ∈ N determines a unique homomorphism f : M → N with
f(λ) = n0. In particular any two ternary magmas freely generated by a single
element are isomorphic via a unique isomorphism. So it makes sense to talk
about the ternary magma freely generated by one element. We will denote the
ternary magma freely generated by one element by A, so that we have the
following recursive definition:

A =
⋃

m≥0

Am

where
• A0 = {λ},
• Am+1 = {Υ(al, am, ar) : al ∈ Ai, am ∈ Aj , ar ∈ Ak, i + j + k = m}.

We will refer to the unique isomorphism between two ternary magmas freely
generated by one element as the structural bijection.

It is well known that Am is counted by the (p = 3) Fuss–Catalan numbers

|Am| = νm :=
1

2m + 1

(
3m

m

)

. (2.1)
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We present a proof of Eq. (2.1) next. In fact, using a slight generalization
of the method of [4], we prove the following more general theorem.

Theorem 2.2. The number of rank m elements of Ak is given by
∣
∣
(
Ak

)
m

∣
∣ =

k

2m + k

(
3m + k − 1

m

)

.

Definition 2.3. An element of M(n)k, or a combination of elements of M(n),
is called repetition-free if no generator repeats, that is the arguments of all
occurrences of Υ are pairwise distinct.

Notice that there are repetition-free elements of rank m in M(n)k

if and only if n ≥ 2m + k.

Lemma 2.4. The number of repetition-free k-combinations of elements of
M(2m + k) of rank m is

(3m + k − 1)!
m!(k − 1)!

.

Proof. Let C be the set of such combinations. We will construct a bijection
f : C → W , where W is the set of m-combinations of words of length 3 from
the alphabet [3m+k−1] with the property that all the symbols that occur are
distinct. In other words an element of W is a set {a11 a12 a13, . . . , am1 am2 am3}
obtained by splitting a 3m-permutation of [3m+k −1] into m words of length
3. Such a set of words is obtained by first choosing k−1 symbols to be omitted
from [3m+k−1], and then a permutation of the remaining 3m symbols. Since
the order of the words is not important, every element of W is obtained by m!
such choices. So:

|W | =
(

3m + k − 1
k − 1

)
(3m)!
m!

=
(3m + k − 1)!

m!(k − 1)!
.

Let p̄ = {p1, . . . , pk} be an element of C. Call an occurrence of Υ in p̄
innermost if all three arguments are λis.

In what follows, we will just use i to stand for λi.
To find f(p̄), the word that corresponds to p̄, we start by ordering all

innermost occurrences of Υ with respect to increasing largest argument and
call the smaller such innermost occurrence 2m + k + 1. One of our 3-letter
words will be formed by the three arguments of that occurrence. Replacing
that occurrence with 2m + k + 1 gives us a k-combination of elements of a
ternary magma freely generated by 2(m − 1) + k elements.

Proceeding inductively we replace the smallest inner occurrence of Υ in
this combination with 2m+k +2 and let its arguments form our second word,
and so on until we obtain a set of m words each of length 3.

Conversely, let w = {w1, w2, . . . , wm} be an element of W . To find
f−1(w), we order the words with respect to increasing largest element and
call them 2m + k + 1, . . . , 3m + k in that order.
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Notice that all the symbols that occur in the word named 2m + k + i are
less than 2m + k + i, for i = 1, . . . , m. Indeed, for each i there are m − i words
larger than 2m + k + i, and so there need to be at least m − i elements of
[3m + k − 1] larger than the largest element of that word that have not been
used before.

Let r1, . . . , rk−1, 3m+k be the k symbols from [3m+k] that do not occur
in any of the wis. If ri > 2m+k, i.e. it is not a generator of M(2k+2), replace
the corresponding word, say xl xm xr with Υ (xl, xm, xr). Proceed recursively
to get a set of k elements of total rank m. �

We give two examples to illustrate the proof. As in the body of the proof
we use i to stand for λi.

Example 1. Consider m = 6 and the following triple of elements of M(15):

3, Υ (4,Υ (6, 8, 5) , 9) , Υ (Υ (12, 2, 7) , 13,Υ (10,Υ (11, 15, 1) , 14)) .

Inductively, we get the sequence:

16 = 6 8 5
17 = 12 2 7
18 = 11 15 1
19 = 4 16 9
20 = 10 18 14
21 = 17 13 20

Thus this triple corresponds to the following set of words:

{6 8 5, 12 2 7, 11 15 1, 4 16 9, 10 18 14, 17 13 20} .

Example 2. Conversely, for m = 6 and k = 3 let us take the set of words from
Example 1:

{6 8 5, 12 2 7, 11 15 1, 4 16 9, 10 18 14, 17 13 20} .

To find the corresponding pair of elements we start by observing that the
omitted symbols are 3, 19, 21. Label the words as:

16 = 6 8 5
17 = 12 2 7
18 = 11 15 1
19 = 4 16 9
20 = 10 18 14
21 = 17 13 20

and expanding successively we get the triple:

T = 3, 19, 21

= 3, Υ (4, 16, 9) , Υ (17, 13, 20)

= 3, Υ (4,Υ (6, 8, 5) , 9) , Υ (Υ (12, 2, 7) , 13,Υ (10, 18, 14))

= 3, Υ (4,Υ (6, 8, 5) , 9) , Υ (Υ (12, 2, 7) , 13,Υ (10,Υ (11, 15, 1) , 14)) .
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Now we can prove Theorem 2.2.

Proof of Theorem 2.2. By Lemma 2.4 we have that the number of k-tuples of
repetition-free elements of M(2m + k) of rank m is

k!
(3m + k − 1)!

m!(k − 1)!
= k

(3m + k − 1)!
m!

.

Now there is a (2m + k)! : 1 map from the set of such tuples to
(
Ak

)
m

given
by replacing all generators λi by the single generator λ. It follows that

∣
∣
(
Ak

)
m

∣
∣ =

k

(2m + k)!
(3m + k − 1)!

m!

=
k

2m + k

(
3m + k − 1

m

)

.

�

Remark 2.5. The proof of Theorem 2.2 given above for k = 1 appears in [4] in
the more general context of p-ary magmas. We chose to expose only the case
p = 3, but the proof, mutatis mutandis, easily works in the general case. One
gets that the number of k-tuples of rank m of elements of the p-ary magma
freely generated by one element is given by the Raney number R(p, k,m), that
is,

R(p, k,m) =
k

(p − 1)m + k

(
pm + k − 1

m

)

.

An equivalent formula appears in page 201 of [12], see also [17]. As far
as we know the above is the only elementary (without the use of generating
functions) proof of this result.

2.2. Duality in A
There is a natural duality in A defined by recursively interchanging the left
and right argument of any instance of Υ while leaving the middle argument
fixed5. Formally, the duality is recursively defined by

λ∗ = λ

Υ (al, am, ar)
∗ = Υ (a∗

r , a
∗
m, a∗

l )
(2.2)

and it is clearly rank preserving.
This duality is transferred via the structural bijection to a duality in any

free ternary magma with one generator. In what follows we will refer to a
free ternary magma with one generator endowed with that duality as a free ∗-
magma. In the following subsections we will see that many well known dualities
are simply manifestations of the fact that the underlying set is a free ∗-magma.

Definition 2.6. An element of A is called self-dual if a∗ = a. We let S :=
{a ∈ A : a∗ = a} and we denote by Sm the set of rank m elements of S.

5This definition was given for ternary trees in [6]. See also Remark 2.9.
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Theorem 2.7. For even m, Sm is in bijection with Am
2
, while for m odd Sm is

in bijection with
(
A2

)
m−1

2
.

Proof. By Eq. (2.2), we have that if a ∈ S then
1. ar = a∗

l ,
2. am ∈ S, and therefore
3. rk(a) = 2rk(al) + rk(am) + 1.

For each m we will recursively define a bijection βm that sends a self-dual
element a of rank m to an element of Am

2
when m is even and an element of

(
A2

)
m−1

2
when m is odd. For m = 0, 1 all relevant sets have one element so

βm is defined. Assume then that such a bijection βk has been defined for all
values k < m and let a ∈ Sm.

If m is even the third item above implies that am is a self dual element
of odd rank, so βrk(am) is a pair of elements of A. We can then define βm(a) =
Υ

(
al, βrk(am)(am)

)
.

If m is odd then am has even rank and βrk(am)(am) is an element of
A rk(am)

2
. We can then define βm(a) = (al, βrk(am)(am)).

To simplify notation we use β without subscripts. To see that β is indeed
a bijection notice that if b ∈ Ak then β−1(b) = Υ

(
bl, β

−1(bm, br), b∗
l

)
, while if

(a, b) ∈
(
A2

)
k

then β−1(a, b) = Υ
(
a, β−1(b), a∗). �

So as a corollary, using the cases k = 1 and k = 2 of Theorem 2.2 we
have the following explicit formula for sm the number of self-dual elements of
A of rank m.

Theorem 2.8. The number of self-dual elements of Am is

sm =

⎧
⎪⎪⎨

⎪⎪⎩

1
2k + 1

(
3k

k

)

if m = 2k

1
k + 1

(
3k + 1

k

)

if m = 2k + 1.

Remark 2.9. Equation (2.2) was used in [6] to deduce the formula of Theo-
rem 2.8 using a generating function argument. In that paper the authors prove
that sm is the number of self-dual ternary trees6 with m internal vertices.

Remark 2.10. If M is any ternary magma then Am acts on M2m+1 in an
“operadic way”. Namely consider an element a ∈ Am and x̄ ∈ M2m+1, and
think of the occurrences of λ in a as placeholders, the action a · x̄ is then
given by substituting xi, the ith coordinate of x̄ for the ith occurrence of
λ and evaluating the resulting expression in M . The basic property of this
“action” is the following operadic property: let a = Υ (al, am, ar) with rk(al) =
m1, rk(am) = m2, and rk(ar) = m3, and let x̄ ∈ M2m+1. Write x̄ as the
concatenation of x̄l, x̄m, and x̄r, where x̄l ∈ M2m1+1, x̄m ∈ M2m2+1, and
x̄r ∈ M2m3+1. Then we have

Υ (al, am, ar) · (x̄l, x̄m, x̄r) = Υ(al · x̄l, am · x̄m, ar · x̄r).

6Called “symmetric ternary trees” there.
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This interpretation of A as operators is well known to computer scientists
especially with the realization of A as the set of ternary trees.

Remark 2.11. The motivation of this work was to understand duality of nc-
trees and so the focus has been in ternary operations. However, the results of
this section can be carried over, almost verbatim, to p-ary operations for any
natural number p, see also Remark 2.5.

The free p-magma with one generator Ap (defined in a manner entirely
analogous to the ternary case) admits a duality given by permuting the argu-
ments of every occurrence of the p-ary operation via the involution i �→ p+1−1.
Letting Ak

p;m (respectively Sp;m) stand for the set of k-tuples of elements of
Ap (respectively self-dual elements of Ap) of rank m, we have the following
result generalizing Theorem 2.7.

Theorem 2.12. If p = 2k is even then

• The generator λ is a self-dual element of rank 0. There are no other
self-dual elements of even rank.

• Sp;m is in bijection with Ak
p;m−1

2
for m odd.

If p = 2k − 1 is odd then

• Sp;m is in bijection with Ap;m2
for m even.

• Sp;m is in bijection with Ak
p;m−1

2
for m odd.

2.3. Ternary Trees

Perhaps the most well-known example of a free ∗-magma is the set of (full)
ternary trees T . A ternary tree is an ordered tree where every internal vertex
has exactly three children. The standard recursive definition of ternary trees7

exhibits T as a ternary magma freely generated by λ, the ternary tree con-
sisting of a single vertex, the root, and no edges. If tl, tm, and tr are three
ternary trees, then their fusion Υ (tl, tm, tr) is defined by adding a new vertex
v0 declaring it to be the root, and adding edges from v0 to the roots of tl, tm,
and tr, see Fig. 4 for an example.

The leaves of a ternary tree, from left to right correspond to occurrences
of λ while the internal vertices to occurrences of Υ, so that Tm consists of all
ternary trees with m internal vertices and therefore, 2m + 1 leaves. An inner-
most occurrence of Υ (see the proof of Lemma 2.4) corresponds to extremal
inner vertices, that is inner vertices with only leaves as children. The action of
A on a ternary magma M described in Remark 2.10 has the following graphical
interpretation: Let x̄ = (x1, . . . , x2m+1) ∈ M2m+1 and t ∈ Tm corresponding
to a ∈ Am under the structural bijection. To find a · x̄ label the leaves of t
with the coordinates of x̄ as you encounter them from left to right. Label every
extremal internal vertex with children labeled xl, xm, xr by Υ (xl, xm, xr), and
proceed to label each vertex that has all its children labeled by the fusion of
its children. Then a · x̄ is the label of the root.

7See for example [27, sections 5.3 and 11.1], or any “Discrete Mathematics” textbook.
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tl tm
tr

Υ(tl, tm, tr)

Figure 4. Fusion of ternary trees
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Figure 5. The forest of ternary trees corresponding to Ex-
amples 1 and 2

t t∗

Figure 6. A ternary tree and its dual

The proof of Lemma 2.4 admits also a graphical interpretation that we
leave to the so inclined reader. The triple of elements in Examples 1 and 2
corresponds to the forest of three ternary trees in Fig. 5.

For a ternary tree t its dual t∗ is obtained by interchanging the left and
right subtrees of every internal vertex. “Geometrically” the duality ∗ can be
interpreted as “reflection” across the middle for all subtrees, see Fig. 6 for an
example.
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Figure 7. A quadrangular dissection of a decagon and the
associated 4-cluster

2.4. Quadrangular Dissections of a Polygon

By a quadrangular dissection q of a vertex-labeled polygon P we mean a sub-
division of P into quadrangular cells by means of non-intersecting diagonals.
An example of a quadrangular dissection of a decagon is shown on the left side
of Fig. 7, the middle of the same figure shows the same dissection with the
labels of the polygon suppressed, instead we have chosen a root edge which
stands for the edge 1 2; clearly the labels of the polygon can be deduced from
the root edge and the standard (counterclockwise) orientation of the plane. In
what follows we will routinely identify quadrangular dissections of a labeled
polygon with rooted dissections of an unlabeled polygon, and refer to the cell
containing the root edge as the root cell, and to the starting vertex of the root
edge as the root vertex.

Let Q =
⋃

m≥0 Qm, where Qm denotes the set of quadrangular dissections
with m cells. In the spirit of [14], we can consider quadrangular dissections as 4-
clusters, that is as 2-complexes defined recursively as follows: the only element
of Q1 is the standard square with root edge the bottom one oriented from left
to right. If q ∈ Qm is a 4-cluster with m cells, then the 2-complex obtained
by gluing a new square p to q by identifying, via an orientation reversing
homeomorphism, the root edge of p with a non-root boundary edge of q, is a
4-cluster with m + 1 cells and root edge the root of q. The right side of Fig. 7
shows the quadrangular dissection in the left side as a 4-cluster.

We can easily check, for example using the fact that the Euler charac-
teristic of the disk is 1, that a 4-cluster with m cells has 2m + 2 vertices and
3m + 1 edges, m − 1 of which are diagonals of the polygon.

Remark 2.13. We emphasize that despite the term “4-cluster” and the some-
what similar pictures (see e.g. [21]) there is no direct connection with the
subject of cluster algebras.

To exhibit Q as a free ∗-magma we define λ to be the degenerate quad-
rangular dissection with 0 cells consisting of a single root edge 1 2, and set
Q0 = {λ}. For ql, qm, qr ∈ Q, Υ(ql, qm, qr) is the quadrangular dissection ob-
tained by identifying the root edge of ql (qm or qr, respectively) to the left
(middle or right, respectively) edge of the standard square by an orienta-
tion reversing homeomorphism, in particular Υ(λ, λ, λ) is the standard square.
Clearly every quadrangulation is Υ(ql, qm, qr) for some uniquely defined ql, qm,
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Figure 9. A quadrangular dissection of a dodecagon and its dual

and qr. Indeed if 2 k is the leftmost edge of the root cell of q and 1 l the right-
most, then ql (qm or qr, respectively) is the 4-subcluster of q spanned by the
vertices l, . . . , 1 (k, . . . , l or 2, . . . , k, respectively), see Fig. 8. Therefore, Q is
a ternary magma freely generated by λ.

From the description of the fusion of quadrangular dissections it is clear
that for q ∈ Q its dual q∗ is obtained by reflecting across the perpendicular
bisector of the root edge 1 2; see Fig. 9 for an example.

2.5. Non-crossing Trees as Properly Embedded Graphs

A non-crossing tree is a tree properly embedded (pegged) in a disk. The concept
of graphs properly embedded in an oriented surface with boundary, and their
duality, was developed in [1]. We review the basic definitions with an eye
to the application of the general theory to the case of trees, so that all our
examples will in fact be related to non-crossing trees. Most of the concepts are
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analogous to concepts in the standard theory of cellularly embedded graphs in
closed surfaces, the reader may consult [1] for details.

A Properly Embedded Graph (peg for short) is a graph embedded in a
compact oriented surface with boundary in such a way that:

• the vertices of the graph lie on the boundary of the surface and the
interior of the edges in the interior of the surface,

• removing the graph breaks the surface into simply connected regions and
its boundary into arcs,

• each region contains exactly one arc in its boundary.
We will refer to a proper embedding as pegging, and the graph will be said
to be pegged into the surface. For example in Fig. 1 we see a tree (in green)
pegged into a disk.

We are really interested in pegs up to homeomorphisms of the surface
and we will abuse the language and use peg to refer to an equivalence class of
properly embedded graphs where two pegs are equivalent if they differ by a
homeomorphism. By an oriented peg we mean an equivalence class of properly
embedded graphs where two pegs are equivalent when they differ by an orien-
tation preserving homeomorphism of the surface. When we want to emphasize
that whether the homeomorphism is orientation preserving or not is irrelevant
we will talk about unoriented pegs.

A labeled peg is a peg with vertices labeled by [n], where n is the order of
the graph and homeomorphisms between labeled pegs are required to preserve
labels.

Remark 2.14. It is a consequence of the definition that if a graph is pegged in a
surface then the surface homotopically retracts to the graph, and in particular
its Euler characteristic is equal to the Euler characteristic of the graph. Since
the disk is the only oriented surface with Euler characteristic 1 it follows that
a graph pegged in a disk is a tree, and if a tree is pegged in a surface then the
surface is a disk.

Definition 2.15. A non-crossing tree (nc-tree for short) is a labeled tree pegged
in an disk. For concreteness (unless specified otherwise) we assume that all nc-
trees are pegged in the standard disk i.e. the unit disk in C, their vertices
form a regular polygon, and their labels are increasing in the counterclockwise
direction. We denote the set of nc-trees with m edges by Nm, and let N =⋃

m≥0 Nm.
An unlabeled nc-tree is an unlabeled tree pegged in a disk and we denote

by Ñm the set of unlabeled nc-trees with m edges and let Ñ =
⋃

m≥0 Ñm.
An oriented nc-tree is an (unlabeled) oriented peg whose underlying

graph is a tree, we denote by N ′
m the set of oriented nc-trees with m edges

and let N ′ =
⋃

m≥0 N ′
m.

Remark 2.16. The symmetry group of the regular n-gon is Dn = 〈s, c〉, the
dihedral group with 2n elements, where s stands for the reflection across the
diameter of the circumscribed circle of the polygon that passes through the
vertex 1, and c is counterclockwise rotation by 2π/n radians. If n = m + 1
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then Dn acts on Nm, by rotating and reflecting the edges: for g ∈ Dn, g(t)
has an edge (g(i), g(j)) if and only if t has an edge (i, j). Then Ñm is the set
of orbits of this action,while N ′

m is the set of orbits of the action of the cyclic
subgroup 〈c〉.

In what follows, we will occasionally use the notation t̄ to stand for s(t).

Given a peg Γ, the orientation of the surface induces a cyclic order on
the set of vertices that lie on a given connected component of the boundary,
and this determines an element of μ (Γ) ∈ SV called the monodromy of the
peg. Of course, if Γ is a labeled peg of order n, then μ (Γ) can be considered
an element of Sn. Since the disk has only one boundary component, for an
nc-tree t we have that μ(t) is an n-cycle ζ, and our convention for the labels
means that ζ = (1 2 . . . n).

The mind-body dual peg of a graph Γ pegged in a surface F is the peg Γ∗

pegged in F ᵀ, that is, F endowed with the opposite orientation, and defined
as follows:

• The vertices of Γ∗ are in one-to-one correspondence with the regions of
Γ; when we draw Γ∗ we place its vertices on the arcs of the corresponding
regions.

• The edges of Γ∗ are in one-to-one correspondence with the edges of Γ,
the edge e∗ that corresponds to the edge e connects the vertices of Γ∗

that correspond to the two regions of Γ that e lies in the boundary of.

Clearly (Γ∗)∗ = Γ. An example of the mind-body dual for an unlabeled
nc-tree is shown in Fig. 1.

There is a natural correspondence e �→ e∗ between the edges of Γ and Γ∗

but no such natural correspondence exists between their vertices, so to define
the dual of a labeled peg as a labeled peg we have to chose a correspondence
v �→ v∗ between the vertices of Γ and those of Γ∗. There are two canonical
such choices: each vertex of Γ lies in the boundary of two arcs8, one preceding
it and one following it in the cyclic order induced by the orientation, and each
of these arcs contains exactly one vertex of Γ∗. Our definition of Γ∗ is obtained
by making the first choice, that is v∗ is the vertex of Γ∗ that lies in the arc
following v. When need arises we will denote the dual obtained by making
the second choice by Γ∗̄. See Fig. 10 for an example, for one labeling of the
unlabeled nc-tree t of Fig. 1. We emphasize that the nc-trees on the right
hand side are pegged in the disk with the opposite (clockwise) orientation; in
particular their labelings do not follow the conventions of Definition 2.15 since
their vertices are decreasing if we go around the boundary circle according to
the orientation. This fact is essential to ensuring that (t∗)∗ = t and (t∗̄)∗̄ = t.

A peg defines two dual structures on its underlying graph: a Local Edge
Order (leo for short) and a Perfect Trail Double Cover (PTDC for short), that
are analogous to a rotation scheme and a Cycle Double Cover for cellularly

8For general pegs these two arcs could be the same, but this cannot happen for nc-trees,
except in the degenerate case of the tree with no edges.
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Figure 10. The two mind-body duals of a labeled tree
pegged in a disk

embedded graphs, respectively (see [13] or [18] for basic facts and definitions
for cellularly embedded graphs).

A leo is simply an assignment of a linear order to the star of each vertex
of Γ, while a PTDC is a collection of positive length trails T such that

• each edge of Γ belongs to exactly two trails of T ,
• each vertex is the endpoint of exactly two trails of T , and we can orient

the trails of T in such a way that each oriented edge of Γ belongs to
exactly one trail,

• each vertex v is the beginning of exactly one trail −→v and the end of
exactly one trail ←−v .

• Finally, we require that unless v is a leaf the first edge of −→v is different
than the last edge of ←−v .

Given a peg its leo is determined by the orientation of the surface: for
every vertex v start slightly ahead of v in the boundary of the surface and
then traverse a positively oriented loop around the vertex in the interior of
the surface and order the edges incident to v in the order you encounter them.
The PTDC is the collection of paths that lead from a vertex v to the next:
since each region contains exactly one arc in its boundary there is a path in Γ
that leads from v to the next vertex, and we define −→v to be that path.

The two structures are dual in the following sense: both a leo and a
PTDC can be thought of as an assignment of a list of edges to each vertex.
Indeed, the ordering of the star of each vertex can be given by listing the edges
in order, while the trail starting at each vertex can be described as a list of
edges. Mind-body duality transforms the lists coming from the leo of Γ to the
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1 : 1 2, 1 3, 1 4
2 : 2 1
3 : 3 1
4 : 4 6, 4 8, 4 1
5 : 5 6
6 : 6 7, 6 4, 6 5
7 : 7 6
8 : 8 4

The PTDC:

− →1 = 1 2 = ←−2
− →2 = 2 1, 1 3 = ←−3
− →3 = 3 1, 1 4 = ←−4
− →4 = 4 6, 6 5 = ←−5
− →5 = 5 6 = ←−6
− →6 = 6 7 = ←−7
− →7 = 7 6, 6 4, 4 8 = ←−8
− →8 = 8 4, 4 1 = ←−1
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The LEO:

1 : 1 2
2 : 2 1, 2 3
3 : 3 2, 3 8
4 : 4 7, 4 5
5 : 5 4
6 : 6 7
7 : 7 6, 7 4, 7 8
8 : 8 7, 8 3

The PTDC:

− →1 = 1 2, 2 3, 3 8 = ←−8
− →2 = 2 1 = ←−1
− →3 = 3 2 = ←−2
− →4 = 4 7, 7 8, 8 3 = ←−3
− →5 = 5 4 = ←−4
− →6 = 6 7, 7 4, 4 5 = ←−5
− →7 = 7 6 = ←−6
− →8 = 8 7 = ←−7

Figure 11. Leos, PTDCs, and duality

lists coming from the PTDC of Γ∗, and vice versa. This can be seen in Fig. 11,
the edges that constitute the trail starting at a given vertex are exactly the
duals of the edges that are incident to that vertex.

Conversely, the peg can be recovered given the leo or the PTDC of the
graph by gluing 2-cells to the graph in a procedure analogous to the way that
one obtains a cellular embedding in a closed surface given a rotation scheme
or a Cycle Double Cover. For example we can see in Fig. 11, that there is a
half-disk attached to the tree along each trail of the PTDC. For details see [1,
Section 4].

Pegs and their duality are closely related to factorizations of permuta-
tions into products of transpositions, indeed there is an obvious bijective cor-
respondence9 between factorizations of permutations of Sn into a product of m
transpositions and edge-labeled graphs of size m with vertex set [n], where as
usual n = m + 1. Indeed such a factorization ρ can be viewed as a sequence of

9First observed by Dénes in [5].
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Figure 12. The e-v-tree (left) and the rooted e-tree (right)
that corresponds to the factorization of our running example

m transpositions ρ = (τ1, . . . , τm), and the corresponding graph has an edge la-
beled i connecting k and l if and only if τi = (k l). For example the e-v-tree that
corresponds to the factorization ρ = (6 7), (4 6), (5 6), (4 8), (1 2), (1 3), (1 4) of
the 8-cycle (1 2 . . . 8) is shown in left side of Fig. 12. It is useful to consider
factorizations up to conjugation (that is we consider factorizations (τi) and
(τπ

i ) the same for any permutation π) and these correspond to e-graphs.
In fact, a factorization (or e-v-graph) determines a labeled peg, and an

e-graph determines an unlabeled peg. Indeed the edge-labels induce a linear
order of the edges which restricts to a linear order at the star of each vertex;
equivalently the trajectories of the vertices determining a PTDC10. The mind-
body duality then can be transferred to factorizations to define ρ∗ and ρ∗̄, and
we have the following explicit formulas:11

ρ∗ = τ1,
τ1τ2, . . . ,

τ1...τm−1τm (2.3)

ρ∗̄ = τ τ2τ3...τm
1 , τ τ3...τm

2 , . . . , τ τm
m−1, τm. (2.4)

For the factorization of our example, we have ρ∗ = (6 7), (4 7), (4 5), (7 8), (1 2),
(2 3), (3 8) and ρ∗̄ = (7 8), (5 8), (5 6), (1 8), (2 3), (3 4), (1 4), and we emphasize
that these are factorizations of the inverse cycle (8 7 . . . 1).

These formulas are best understood via the Hurwitz action of the braid
group on factorizations. Recall that Bm, the braid group with m strands, is
the group generated by m−1 generators σ1, . . . , σm−1 subject to the relations
σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , m − 2 and σiσj = σjσi if |i − j| ≥ 2.
One of the basic incarnations of Bm is as a group of automorphisms of Fm the
free group with m generators: if x1, . . . , xm are the generators of Fm then the
action of the generator σi is given by σi xj = xj for j �= i, i + 1, while σi xi =
xixi+1 and σi xi+1 = xi. It follows that Bm acts on the right on the set of

10Alternatively we can obtain the peg as the total space of a branched covering of the disk,
see [1, Section 4.4].
11Recall that we use left and right exponential notation for conjugation. Since transpositions
are involutions the distinction is mute in the current context; however, it is useful in more
general contexts.
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homomorphisms Fm → G, for any group G and in particular for G a symmetric
group. A factorization ρ is a sequence of elements in a symmetric group, and
therefore can be construed as a representation of Fm to that group. So we have
a right action of Bm on the set of all factorizations in any symmetric group,
this action is called the Hurwitz action. If ρ = τ1, . . . , τm is a factorization, then
for the ith generator of Bm we have that ρσi = τ ′

1, . . . , τ
′
m, where τ ′

i = τiτ i+1,
τ ′
i+1 = τi, and τ ′

j = τj for j �= i, i + 1.
The braid Δm = σ1 . . . σmσ1 . . . σm−1 . . . σ1σ2σ1 ∈ Bm is called the Gar-

side element of Bm and it plays an important role in the theory of Braid
Groups, for example it is a square root of the generator of the center of Bm.
Its importance for the present work is that formulas (2.3) and (2.4) can be
written as

ρ∗ = (ρΔm)ᵀ (2.5)

ρ∗̄ =
(
ρΔ−1

m

)ᵀ
, (2.6)

where for a factorization ρ, ρᵀ stands for the factorization read backwards: if
ρ = (τ1, . . . , τm) then ρᵀ = (τm, . . . , τ1).

Using the bijection between factorizations in Sn and e-graphs on [n] we
can transfer this to a Bm-action on the set of e-labeled graphs on [n] with m
edges. It is easily seen that if Γ is an e-v-graph then Γσi is obtained from Γ
by interchanging the labels of the ith and (i + 1)st edge and then “sliding”
the (i + 1)st edge along the ith, while Γσ−1

i is obtained by interchanging the
ith and (i + 1)st labels and then sliding the ith edge along the (i + 1)st. We
interpret a slide of an edge along a non-adjacent edge to have no effect. This
action on e-v-labeled graphs, which we also call the Hurwitz action, is shown
in Fig. 13, where only the edges labeled i and i + 1 are shown since the other
edges are not affected.

Notice that this action descends at the level of e-labeled graphs (just
forget the v-labels in Fig. 13). We will still call it the Hurwitz action since
no confusion is likely to arise, and we use formulas (2.5) and (2.6) to define
mind-body duality for labeled graphs.

For a fixed n-cycle ζ (say ζ = (1 2 . . . n)) denote by Fm the set of min-
imal transitive factorizations of ζ, or equivalently the set of e-v-trees with
monodromy ζ, and by Em the set of e-trees of size m. There is a commutative
diagram of projections:

(2.7)

where the vertical arrows are given by forgetting the v-labels and the horizontal
by forgetting the e-labels and remembering only the leos they induce.
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Figure 13. The Hurwitz action on e-v-graphs

The following theorem was proven in [19] and [9] independently. See the
remarks about the proof of Proposition 2.24, for a proof using the theory of
pegs.

Theorem 2.17. Two factorizations belong to the same fiber of p if and only
if they differ by a sequence of interchanges of consecutive commuting factors.
In particular, the set of minimal transitive factorizations of an n-cycle, up to
commutation of adjacent factors, is in bijection with Nm, and is, therefore,
counted by the (p = 3) Fuss–Catalan numbers νm (see Eq. (1.2)).

A single such interchange of, say, the ith and (i + 1)st factor, can be
effected by the action of a braid generator σi, and since Δmσi = σm−iΔm it
follows that the action of Δm on Fm (respectively, Em) descends to a map
κ : Nm → Nm, (respectively κ̃ : Ñm → Ñm), and this map is the “dual” for
nc-trees defined in [15]. It was proved in [1] that Δ2

m, the central element of Bm,
acts on an e-v-graph Γ by relabeling its vertices according to its monodromy
μ (Γ), and trivially on an e-graph. Since the monodromy of an e-v-tree is a
cycle we have that κ2 is a rotation by 2π/n radians,12 while κ̃2 = id. We will
call κ(t) the complement of t. The mind-body dualities ∗, ∗̄ descend to maps
Nm → N ᵀ

m and as a consequence of Eq. (2.5) we have that κ(t) = (t∗)ᵀ and
κ−1(t) = (t∗̄)ᵀ.

We want to define (involutory) dualities

∗, ∗̄ : Nm → Nm

12What we called c in Remark 2.16.
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that lift the mind-body duality for unlabeled trees, and as indicated in Sec-
tion 5.2 of [1] this can be done by projecting the (pullback) of mind-body
duality for rooted e-trees rather than for factorizations. We explain that next.

For any n-cycle ζ ∈ Sn there is a bijection13

fζ : Fζ → E∗
m

from minimal factorizations of ζ to rooted e-trees with m edges. For a factoriza-
tion ρ, fζ(ρ) is the rooted e-tree obtained from the corresponding e-v-tree by
declaring the vertex labeled 1 to be the root and forgetting the vertex labels.
Conversely given a rooted e-tree t its monodromy is a full cycle in SV and once
we label the root of t by 1 there is a unique way to label the rest of the vertices
so that μ(t) becomes ζ. For example the rooted e-tree that corresponds to our
example factorization of (1 2 . . . 8) is shown in the right side of Fig. 12.

We can extend the braid action to rooted e-graphs by just letting the
root stay the same, and so we can define mind-body dualities ∗, ∗̄ : E∗

m → E∗
m,

by Eqs. (2.5) and (2.6). It can be easily checked that the following diagram
commutes:

(2.8)
Using f−1

ζ instead of f−1
ζ−1 in the bottom row of this commutative diagram

we obtain involutory dualities Fζ → Fζ , and we can then project those to Nm

to get involutory dualities that lift the duality of unlabeled nc-trees.

Definition 2.18. The nc-dualities ∗, ∗̄ : Nm → Nm are defined via the following
commutative diagram:

(2.9)

where the horizontal arrows are p ◦ f−1
ζ . From now on, unless explicitly men-

tioned, the term duality, in the context of nc-trees, will refer to these involutory
dualities.

It is easy to see that t∗ = κ(t), i.e. the nc-tree obtained by reflecting κ(t)
across the diameter that passes through the vertex labeled 1. For example the

13Essentially due to Moszowski [20].
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nc-dual of the nc-tree on the left side of Fig. 2 is shown in the right side of
Fig. 3. Since κ has order 2n we have:

Proposition 2.19. Let r, s, κ : Nm → Nm stand for nc-duality, reflection across
the diameter that passes through 1, and the complement, respectively. Then

r = s ◦ κ

and therefore the group generated by the involutions r, s is isomorphic to D2n

the dihedral group with 4n elements.

It turns out that N is a free ∗-magma, generated by the nc-tree λ consist-
ing of a single vertex labeled 1 and no edges. This will be exposed in Sect. 2.7
after we have introduced in Sect. 2.6 the set P of flagged Perfectly Chain
Decomposed Ditrees.

We end this subsection by introducing a bijection analogous to fζ between
labeled nc-trees and a class of ordered trees in the next section, and explaining
the connection of κ with the Kreweras complement in Sect. 2.5.2.

2.5.1. The Set of Bipartisan Trees. Recall that an ordered tree is a rooted tree
where the children of every vertex have been given a linear order.

Definition 2.20. Let v be a non-root vertex in a rooted tree. The trunk of v is
the last edge ev in the unique path from the root to v.

A bipartisan tree is an ordered tree, where the children of every vertex
are partitioned into two classes, the left children and the right children, in such
a way that every left child is less than every right child.

The set of bipartisan trees with m edges is denoted by BOm.

Proposition 2.21. There is a bijection f : Nm → BOm.

Proof. Projecting Moszkowski’s fζ gives a bijection from the set Nm to the
set of rooted trees with leos. Now given a rooted tree with a leo, for a vertex v
with trunk ev let l1 < · · · < lk < ev < r1 < · · · < rs be the edges incident to v
ordered according to the leo at v. Call l1, . . . , lk the left children and r1, . . . , rs

the right children and put them in the order r1, . . . , rs, l1, . . . , lk to obtain a
bipartisan tree f(t).

Conversely, given a bipartisan tree t we obtain the leo of a non-root
vertex by listing first the trunks of the left children according to the order
of the ordered tree, followed by the trunk of v, and finally listing the trunks
of the right children again in the order given by the ordered tree. The edges
incident to the root are ordered according to the order of their endpoints. �

See Fig. 14 as an example where the bipartisan tree corresponding to the
nc-tree of Fig. 1 is shown, and the leo structure at every vertex is indicated
by oriented arcs around that vertex.
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Figure 14. The bipartisan tree representing the nc-tree of Fig. 1

2.5.2. The Kreweras Complement on the Lattice of Non-crossing Partitions.
The lattice of non-crossing partitions is well studied and we refer the reader
to [2] for the basic definitions and the extensive bibliography. In this subsection
we show that the map κ : Nm → Nm induced by the action of the Garside
element on the set of rooted e-trees, has an interpretation in terms of the
Kreweras complement on the lattice NCn of non-crossing partitions of a set of
n elements, where as usual n = m + 1.

Let G = Cay(Sn, T ) be the Cayley graph of the symmetric group with
respect to the generating set T of all transpositions. Define π1 ≤ π2 if there
is a geodesic path (with respect to the word length metric) in G from the
identity to π2 that passes through π1. This gives a partial order in Sn called
the absolute order. The lattice of non-crossing partitions NCn is (isomorphic
to) the interval [id, ζ] ⊂ Sn in the absolute order. This is a complemented
lattice and one of its complements, the so called Kreweras complement, is
given by the formula14

K(π) = ζπ−1.

There is a bijection between C, the set of maximal chains in NCn and
Fm the set of minimal transitive factorizations of ζ. Indeed they both de-
termine a geodesic path (i.e. a path of minimal distance) in G from id to
ζ, and the labels of the vertices of that path give a maximal chain c =
(id = π0 < π1 < . . . < πm = ζ), while the labels of the edges give a factoriza-
tion ρ = τ1, . . . , τm. More precisely, we have two inverse bijections:

∂ : C → Fm, c �→ π−1
0 π1, π

−1
1 π2, . . . , π

−1
m−1πm

∫

: Fm → C, ρ �→ id, τ1, τ1τ2, . . . , τ1τ2 . . . τm.

Since K is an anti-isomorphism of NCn it maps maximal increasing chains to
maximal decreasing chains and we can define a map

κ : C → C, κ(c) = K(πm),K(πm−1), . . . ,K(π1),K(π0).

14This is different than the formula in [2]. The inconsistency is due to different conventions on
how to multiply transpositions and how exactly the braid group acts. With our conventions
Armstrong’s formula would give K−1 that corresponds to the action of Δ−1

m . Of course,
K−1 is also a complement in the lattice.
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It turns out that the action of the Garside element Δm is given by κ
interpreted as a map between factorizations.

Proposition 2.22. For a factorization ρ we have

ρΔ = ∂κ

(∫

ρ

)

.

Proof. If
∫

ρ = π0, π1, . . . , πm, then (see Eq. (2.5)) we have that

ρΔ = πm−1τm, πm−2τm−1, . . . ,
π1τ2,

πoτ1

and so since πj = πj−1τj for j = 1, . . . ,m we see that
∫

ρΔ = id, πm−1τm,
πm−2(τm−1τm), . . . , π1(τ2 . . . τm), π0(τ1 . . . τm) = πm.

Now since ζ = πm = τ1 . . . τm we have that

K(πj) = τ1 . . . τmτj . . . τ1 = πj (τj+1 . . . τm).

Thus
∫

ρΔ = κ

(∫

ρ

)

as we needed. �

2.6. Perfectly Chain Decomposed Ditrees

The medial digraph of a peg Γ is the analogue of medial graphs in the theory of
cellularly embedded graphs. Essentially the medial digraph of Γ is the digraph
M (Γ) obtained by putting together the Hasse diagrams of all the local edge
orderings: its vertices are the edges of Γ and there is an edge from e1 to e2 if
and only if e1 ≤ e2 in the leo of a vertex of Γ. Each edge of Γ is incident to two
vertices and is preceded (or followed) by at most one edge at the leo of each
of those vertices. It follows that the in and out degrees at every vertex of the
medial digraph are at most 2. Conversely, every digraph that satisfies these de-
gree restrictions is the medial digraph of a peg, see Item 2 in Proposition 2.24.
For example in the top of Fig. 15 we see the medial digraphs of the pair of
dual pegs of Fig. 11. Notice that the two medial digraphs are isomorphic and
this is true in general: the map e �→ e∗ defines an isomorphism between the
medial digraphs of dual pegs. The local linear order at the star of each vertex
gives a chain in the medial digraph, and in Fig. 15 the chains that come from
different vertices are indicated by different colors. We remark that the peg can
be reconstructed from its medial digraph once this decomposition into chains
is known. This observation is important for what follows so we develop it in
some detail.

Definition 2.23. A medial digraph is a digraph with the in and out degrees of
all vertices at most two. A Perfect Chain Decomposition (PCD for short) of a
medial digraph is a decomposition C of its edges into chains with the property
that every vertex belongs to exactly two chains. We emphasize that chains of
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length zero consisting of a single vertex are allowed15. For a chain c ∈ C we
use the notation α(c) (resp. ω(c)) to stand for the first (resp. last) vertex of c.

A vertex of a medial digraph is called internal if both its in and out
degree are at least 1. Notice that constructing a PCD on a medial digraph
d involves a binary choice at every internal vertex, namely which incoming
edge to connect to which outgoing edge. The dual C∗ of a PCD C is the PCD
obtained from C when the opposite choice of such connections is made at every
internal vertex.

The following summarizes the main results for PCDs on medial digraphs
from [1]:

Proposition 2.24. We have:
1. The Euler characteristic of M (Γ) equals the Euler characteristic of Γ.

In particular for a non-crossing tree t we have that the underlying graph
of M(t) is a tree.

2. The leo of a peg Γ induces a PCD on its medial digraph M (Γ), and the
peg can be reconstructed from that PCD.

3. Mind-body dual pegs have isomorphic medial digraphs and they induce
dual PCDs.

4. A peg Γ comes from a factorization if and only if its medial digraph
is a dag.16 In particular, by Item 1, any leo on a tree comes from a
factorization.

Remarks on the proof. For detailed proofs consult [1]. Regarding Item 2, the
peg that corresponds to a PCD C on a medial digraph d has a vertex vc for
any chain c ∈ C and each vertex w of d gives an edge ew connecting vc1 and
vc2 where c1 and c2 are the two chains that w belongs to. Clearly an edge ew

belongs to the star of a vertex vc if and only if w is contained in c, and so
the order of the vertices of c gives a linear order at the star of each vertex
endowing the resulting graph with a leo.

In the bottom half of Fig. 15 we see the PCDs on the medial ditrees17 of
the pair of mind-body dual nc-trees of Fig. 11. When drawing medial ditrees
we omit arrows and use the convention that all edges are directed upwards,
and we follow the same convention when we draw the chains of a PCD.

Regarding Item 4, notice that the edges of a peg that comes from a fac-
torization are totally ordered by their labels, and that order gives a topological
sort in its medial digraph18. Actually the set of all possible factorizations (up
to conjugation) that give that peg is in bijection with the set of topological
sorts of its medial digraph. We remark that it is relatively easy to prove (see
for example [28]) that any two topological sorts of a dag differ by a sequence
of adjacent transpositions, and this can be used to prove Theorem 2.17. �

15Actually when Γ is a tree they are required!
16Directed Acyclic Graph. This observation is essentially due to [8]. The definition of medial
digraphs was inspired in part from that paper.
17Recall that a ditree is a digraph whose underlying graph is a tree.
18That is a linear extension of the poset whose Hasse diagram is the dag.
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Figure 15. The PCDDs of the non-crossing trees of Fig. 11

By Proposition 2.24 we can encode unlabeled nc-trees and their duality
with medial ditrees endowed with a PCD. This encoding can be extended to
labeled nc-trees by encoding one additional piece of information: which chain
of the PCD corresponds to the vertex labeled 1.

Definition 2.25. A Perfectly Chain Decomposed Ditree (PCDD for short) is a
medial ditree endowed with a PCD and a Flagged Perfectly Chain Decomposed
Ditree is a PCDD endowed with a distinguished chain called its flag.

We will use the same symbol (typically d) to denote the PCDD and its
underlying medial ditree, and in that case the flag will be denoted by f(d).
For a chain c ∈ C we use the notation α(c) (resp. ω(c)) to stand for the first
(resp. last) vertex of c, and for a flagged PCDD d we use the notation α(d)
and ω(d) to stand for α (f(d)) and ω (f(d)) respectively.

The set of flagged PCDDs with m vertices will be denoted by Pm and the
set of (unflagged) PCDDs with m vertices by P̃m and we let P =

⋃
m≥0 Pm,

and P̃ =
⋃

m≥0 P̃m.
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∗ ∗

∗ ∗ ∗

Figure 16. The flag of the dual of a flagged PCD

The reverse d̄ of a PCDD d is the PCDD whose underlying ditree is the
reverse ditree, its chains are the reverses of the chains of d, and its flag is the
reverse of the flag of d.

For a flagged PCDD d, d∗ is also flagged and its flag f∗ is defined as
follows: α(f∗) = α(f) and if f is the only chain that starts at α(f) then f∗

is the only chain of d∗ that starts at α(f), otherwise the first edge of f∗ is
the outgoing edge incident at α(f) that does not belong to f , if no such edge
exist then f∗ is a trivial chain. All possible local configurations are shown in
Fig. 16, the flags of the relevant PCDs are shown in red.

We extend the definition of PCDD to include the following two degener-
ate19 cases that correspond to the nc-trees with 0 and 1 edges:

• The empty PCDD λ is the triple (∅, {∅} , ∅) consisting of the empty ditree,
the perfect chain decomposition consisting of the empty chain, and the
empty chain as flag. The functions α and ω are not defined for the empty
flag, and therefore not for λ either.

• The point PCDD p is the triple (p, {p, p} , p), consisting of a ditree with
one vertex and no edges, a chain decomposition consisting of two identical
trivial chains, and the unique chain as a flag.

We summarize the above discussion in the following theorem, for more
details see Section 5 of [1].

Theorem 2.26. The function

M : Nm → Pm

that assigns to an nc-tree t its medial ditree endowed with the PCD induced
by the leo of t and having as flag the chain that corresponds to the leo of the
vertex labeled 1 is a duality-preserving bijection.

We now exhibit P as a free ∗-magma. In what follows PCDD will always
mean a flagged PCDD.

Definition 2.27. Let dl, dm, dr be PCDDs. Their fusion is defined to be the
PCDD Υ(dl, dm, dr) where:

19The first one may even be called pointless.
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dm

dl dr

Υ (dl, dm, dr)

Figure 17. An example of the fusion of PCDDs

• The underlying ditree has as vertices the (disjoint) union of the vertices of
dl, dm, dr, plus a new vertex v0. The edges are the edges of dl, dm, dr plus,
provided that the corresponding flags are not empty, edges connecting v0
to α(dl) and α(dr) and an edge connecting ω(d̄m) to v0.

• The chains are the non-flag chains of dl, dm and dr, and two additional
chains: f(dm) → v0 → f(dr), and v0 → f(dl).

• The flag is v0 → f (dl).

Notice that with this definition Υ(λ, λ, λ) = p. A less trivial example
of the fusion of three PCDDS is shown in Fig. 17, the flag of each PCDD is
indicated in red.

Theorem 2.28. With the above definitions P is a free ∗-magma.

Proof. Starting with a non-empty PCDD d and removing α(d) we obtain three
PCDDs: dl induced by those vertices of d that are above α(d) and were con-
nected to α(d) by the first edge of f , dm the inverse of the PCDD induced by
the vertices of d that are below α(d), and dr induced by the remaining vertices.
Clearly d = Υ(dl, dm, dr), and since d is finite it is clear that by recursively
continuing this process we will eventually find an expression for d that consists
of applications of Υ and λ, and that such an expression is unique. So P is a
ternary magma freely generated by λ.

To follow the proof that Eq. (2.2) is satisfied the reader may want to
consult Fig. 18, where the dual of Υ(dl, dm, dr) of Fig. 17 is shown as the
fusion of d∗

l , d∗
m, and d∗

r . We first note that the underlying ditrees of both
sides of the equation are equal. We need to prove that at every vertex the
same choice of connections is made, and this is clear for vertices different than
v0, α(dl), α(dm), and α(dr) since switching the connections can be done either
before or after fusing the PCDDs. Switching the connections of Υ(dl, dm, dr) at
α(dm) means that we connect f(dm

∗
) to v0 and by switching at v0 the resulting

chain continues by connecting v0 to f(d∗
l ). By definition the same choices of

connections are made in the construction of Υ(d∗
r , d

∗
m, d∗

l ). Similarly, one can
easily see that the flags of the two sides also agree. �
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Figure 18. The dual of Fig. 17

2.7. N as a Free ∗-Magma

We use the bijection M of Theorem 2.26 to endow N with the structure of
a free ternary magma generated by the nc-tree with one vertex λ, i.e. so that
M is the structural bijection. Since M is duality-preserving this exhibits N
endowed with nc-duality as a free ∗-magma.

Given an nc-tree t let 1 k be the rightmost edge incident to 1. Removing
that edge gives a forest of two nc-trees the one attached to k and the one
attached to 1, tl is the latter, tm is the tree to the left of (1, k) and tr the one
to the right, see Fig. 22.

Conversely given three nc-trees tl, tm, and tr of orders n1, n2, and n3

respectively, their fusion Υ (tl, tm, tr) is obtained by relabeling the vertex 1 of
tr as n3 + 1, relabeling tm by i �→ i + n3, and finally tl by i �→ i + n2 + n3 − 1
except that we keep the label of 1. Notice that the roots of tm and tr receive
the same label n3 + 1 so we identify them. Finally we add an edge connecting
1 and n3 + 1.

As an example, the nc-trees that correspond to the PCDDs of the example
in Fig. 17, and their fusion are shown in Fig. 19.

3. The Structural Bijections

In this section, we give combinatorial/topological interpretations of the struc-
tural bijections in Diagram (1.3).

3.1. The Structural Bijection ψ : Q → T
A nice topological/combinatorial description of ψ : Qm → Tm has been given
in [16]. For a quadrangular dissection q, ψ(q) is a sort of dual of q viewed as a
graph embedded in the disk with all its vertices mapped on the boundary circle:
the disk is divided into n − 1 quadrangular cells (the cells of the dissection
q) and 2n bigons formed by the edges of the polygons and the arcs of the
boundary circle. Let T be the 4-valent plane tree that has a vertex for each of
these regions, and an edge between two vertices if the corresponding regions
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Figure 19. The nc-trees corresponding to the PCDDs of Fig. 17
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Figure 20. The construction of ψ : Qm → Tm

share an edge. See Fig. 20, where, in the middle, a vertex that corresponds to
a cell is drawn in the interior of that cell, and a vertex that corresponds to a
bigon is drawn in the boundary arc of that bigon. Clearly bigons give leaves
of T and cells give internal vertices. The ternary tree ψ(t) is obtained from T
by removing the leaf that comes from the bigon that contains the root edge
1 2, declaring the vertex it was attached to the root of the remaining tree, and
using the orientation of the disk to order the children of any internal vertex.
See Fig. 20 for an example of this construction.

Clearly this process of obtaining ψ(q) can be reversed: starting with a
ternary tree t with m internal vertices construct an 4-valent plane tree T
with n := m + 1 vertices by attaching a new leaf labeled 1 2 below the root.
Then list the leaves of T in the order induced by the counterclockwise orien-
tation (starting at 1 2) and label them by the edges of the 2n-gon in the order
1 2, 2 3, . . . , 2n 1, and label the corresponding pendant edges by the same la-
bel. Since t has 2n+1 leaves and only n−1 internal vertices there is at least one
internal vertex with all its children being leaves; if such a vertex has children
labeled (from right to left) i i+1, i+1 i+2, i+2 i+3, label it i i+1 i+2 i+3
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Figure 21. The construction of ψ−1 : Tm → Qm

and the the edge connecting it to its parent i i + 3. Proceeding recursively we
can label all internal vertices of T with the vertices of a quadrangular cell, and
all non-pendant edges of T with a diagonal of the 2n-gon. From this decorated
tree we can reconstruct the n-cluster that corresponds to the polygonal dis-
section, for an example see Fig. 21, where we show ψ−1(t) for the ternary tree
at the bottom right of Fig. 20.

Note that the above description of ψ−1(t) can be expressed in terms of the
operation that t induces on ternary magmas described in Remark 2.10. Indeed,
the label of an internal vertex of the intermediate tree T is obtained by applying
the ternary operator S3

n → Sn : (a, b, c) �→ abc to its children viewed as trans-
positions. If we instead apply the ternary operator S3

n → Sn : (a, b, c) �→ cba,
and then push the label of every vertex to its trunk we obtain the labels of
the edges.

3.2. The Structural Bijection σ : N → T
The structural bijection σ : N → T is, modulo some choices, the bijection
defined in Lemme 3.11 of [8]. Indeed the authors there define a bijection re-
cursively by making an arbitrary choice of one of the six bijections N2 → T2

and then for t ∈ Nm with m > 2 they recursively define the image of t to be
Υ (tl, tm, tr), where tl, tm, and tr are defined, taking into account the difference
in conventions, as in the second paragraph of Sect. 2.7, see Fig. 22. It follows
that if we choose the structural bijection when m = 2 their bijection is exactly
σ.

Since σ = ψ ◦ φ−1 this work provides a combinatorial/topological inter-
pretation of their bijection.
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Figure 22. Expressing an nc-tree as Υ (tl, tm, tr)

3.3. The Structural Bijection φ : Q → N
Let q be a quadrangular dissection with m cells, then the polygon has 2n
vertices where n = m + 1 and there are m − 1 diagonals. Since there are 2n
vertices and n−1 cells, there is at least one cell with boundary containing three
edges of the polygon. By inductively removing such extremal cells one can see
that each dissecting diagonal connects two vertices of opposite parity, and so
each cell has a diagonal that connects two odd vertices and a diagonal that
connects two even vertices. The non-crossing tree φ(q) is the tree obtained
by taking the “odd” diagonals of the cells, deleting the even vertices, and
relabeling the odd vertices via 2i − 1 �→ i. Since each edge of φ(q) is contained
in a cell of the quadrangulation this is indeed an nc-tree.

To obtain φ−1(t), for a non-crossing tree t, start by pegging t on the disk
with vertices labeled 1, 3, . . . , 2n − 1, and construct κ(t) with vertices labeled
2, 4, . . . , 2n. An edge e of t intersects only its dual edge e∗ in κ(t) and so we
can construct a quadrangular cell by connecting their endpoints, if e = i j with
i < j and e∗ = k l with k < l we get the quadrangular cell i k j l of φ−1(t). See
Fig. 23, for an example of this construction.

To see that the above construction does indeed give the structural bijec-
tion Q → N , notice that this is obviously true for m = 0, 1 and, as shown in
Fig. 22, the ternary operations agree.

It turns out that φ is not only duality-preserving but also equivariant
with respect to the respective dihedral group actions (see Proposition 2.19 for
the action of the dihedral group D2n on Nm).

Indeed, notice that the analogous construction using even diagonals will
give κ(φ(q)), thus showing that κ is the pushforward of rotation by π/n. Notice
also that r1 2, the reflection across the perpendicular bisector of the root edge
1 2, interchanges “even” and “odd” diagonals, and maps the vertex labeled i
to the vertex labeled 2n + 3 − i (mod 2n), so that 2i − 1 (the label of the ith
vertex of t) is mapped to 2(n + 2 − 1) (the label of the i∗th label of t∗). Thus
r is the pushforward of r1 2. So we have:

Theorem 3.1. The bijection φ is D2n-equivariant.

3.3.1. Relation of φ to Schaeffer’s Bijection. The bijection φ is closely related
to a bijection between rooted quadrangulations of the plane with m faces
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Figure 23. The construction of φ : Qm → Nm (top) and its
inverse (bottom)

and well-labeled trees with m edges defined in [29] (see also [3]). A rooted
quadrangulation is a map of the sphere Q where every face has degree 4,
together with a distinguished oriented edge on the boundary of the unbounded
face called the root edge. The starting vertex of the root edge of Q is called the
root. A well-labeled tree is an ordered tree with its vertices labeled by positive
integers in such a way that the labels of two adjacent vertices differ at most
by one and the root is labeled 1.

The Schaeffer bijection S is defined as follows: let Q be a rooted quadran-
gulation. Start by labeling the vertices of Q with their distance from the root
vertex v0. Around every face of Q there is at least one pair of opposite vertices
with the same label. Call a face simple if only one pair of opposite vertices
has the same labels, and confluent otherwise. The image of Q is obtained by
taking the diagonal connecting the two vertices with the maximum degree for
confluent faces, while for a simple face f we select the edge incident to the
vertex with maximal label that is leaving f on its left. The root of S(Q) is the
first edge incident to the endpoint of the root of Q, counterclockwise starting
from the root of Q.

To express φ in terms of S we construct a rooted quadrangulation of the
plane associated with a rooted quadrangular dissection q of a 2n-gon by adding
an extra vertex at a point in the exterior of the polygon and connecting it by
an edge to all the even vertices. When we compute the distances from the new
vertex, the even vertices are at distance 1 and the odd vertices at distance 2.
So all the cells of q are confluent faces, and all the new faces simple. Therefore
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Figure 24. φ in terms of Schaeffer’s bijection

each cell of q contributes its odd diagonal to the resulting wel-labeled tree,
while each of the new faces contributes the leftmost of the sides of the polygon
in its boundary. The result is a well-labeled tree where all internal vertices
have label 2, all leaves have label 1 and each internal vertex is adjacent to
exactly one leaf. Such trees are in bijection with bipartisan trees, just delete
all leaves and use their position as a marker where the right children of every
non-root internal vertex end, and where the left children begin. In Fig. 24 we
carry out this construction for the quadrangular dissection of Fig. 9, the odd
nc-tree is shown in red, and the contributions of the new faces in magenta.
Clearly the nc-tree that corresponds to the bipartisan tree obtained this way
is φ(q).

I would like to thank the anonymous referee of a previous version of
this paper for bringing this connection to my attention and providing the
construction from quadrangular dissections of a polygon to quadrangulations
of the plane.

4. Enumerations

Next we take a closer look at the action of the dihedral group D2n on Qm,
where as usual n = m + 1. If κ stands for the rotation by π

n radians, and r for
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the reflection across the bisector of the root edge 1 2 then

D2n =
{
κi rj : i = 0, . . . , 2n − 1, j = 0, 1

}

and the elements with j = 0 and i �= 0 are (counterclockwise) rotations, those
with j = 1 are reflections, while, of course, i = j = 0 gives the identity. In
particular s = κ r is a reflection with axis that passes through the vertex
labeled 1. Since 2n is even there are two conjugacy classes of reflections: those
whose axis passes through two diametrically opposite vertices, and those whose
axis passes through the midpoints of two diametrically opposite edges. The first
class is represented by s and the second by r.

Notice that the subgroup
〈
κ2, s

〉
is isomorphic to Dn, and the restriction

of the D2n-action on Qm on that subgroup is carried by the structural bijection
φ to the standard action of Dn on Nm, where κ2 is rotation by 2π

n radians and s
is the reflection across the diameter that passes through 1, see Proposition 2.19
and Theorem 3.1.

The basic result of this section expresses the number of fixed points of
elements of D2n in terms of the number of self-dual elements of A of rank m
(see Theorem 2.8), and thus, ultimately, in terms of Raney numbers.

Theorem 4.1. Every reflection in D2n fixes sm elements of Qm. Rotation by
π radians has (m + 1)sm fixed points if m is even, and (m+1)sm

2 if m is odd.
When m ≡ 1 (mod 4), rotations by ±π

2 have m+1
2 sm−1

2
fixed points. No other

rotation has fixed points.

Proof. The basic observation is that the center of the polygon is fixed by all
rotations and reflections, and for a quadrangular dissection q of a 2n-gon fixed
by an element of D2n we have two cases: the center is in the interior of a cell
or it is the midpoint of a dissecting diagonal (which then has to be a diameter
of the circumscribed circle) of q, and that cell or dissecting diagonal then has
to be invariant.

We first examine rotations. If the center is on a dissecting diameter,
then since all dissecting diagonals connect vertices of opposite parity, this can
happen if and only if m is even. This diameter has to be invariant under the
rotation and it follows that the rotation is by π radians. Then q consists of two
dissections (one a rotation by π of the other) of the (n+1)-gon, glued together
along an edge. See Fig. 25 for an example of a rotation invariant dissection of
an octadecagon: the diameter 1 10 is a dissecting diagonal, and q consists of a
dissection of a decagon, glued along an edge to its rotation.

There are n = m + 1 diameters that could be dissecting diagonals, and
there are νk = sm dissections of the (n+1)-gon, where m = 2k. It follows that
the central rotation by π has (m + 1)sm fixed points, and no other rotation
has fixed points.

If on the other hand the center belongs to an invariant cell, then the two
diagonals of the cell are diameters and the rotation either fixes them or rotates
one into the other. In the first case we have rotation by π and in the second by
π
2 . The number of cells that are to the south or east of the invariant cell equals
the number of cells to the west or north, and thus there is an odd number of
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Figure 25. A rotation invariant quadrangular dissection of
the octadecagon

1

2

3

4

5

6

7
89

10

11

12

13

14

15

16 1

2

3

4

5

6

7
89

10

11

12

13

14

15

16

Figure 26. Quadrangular dissections of the hexadecagon in-
variant under rotation

total cells. It follows that this case occurs only when m is odd. For a dissection
invariant under rotation by π radians one can see that it consists of a pair of
smaller dissections (not necessarily both non-empty), one to the south which
rotates to the one in the north, and one to the east that rotates to the one on
the west. See Fig. 26 for two examples in the case m = 7.

It follows that for a given invariant cell, there are as many invariant
dissections as pairs of dissections with total number of cells equal to m−1

2 ,
which is counted by sm. Now an invariant cell is determined by a pair of
invariant diagonals (the two dual edges of the pair of dual non-crossing trees)
and there are m+1

2 such pairs of dual edges.

Thus rotation by π has (m+1)sm

2 fixed points.
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Figure 27. A quadrangular dissection of the icosagon invari-
ant under rotation by π
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Figure 28. The three dissections of the decagon invariant
under under reflection across 1 6

Notice that if m = 2k−1 with k odd, those pairs that consist of two equal
dissections, are also invariant under rotation by ±π

2 , see for example Fig. 27
for a dissection of a dodecagon invariant under rotation by π

2 .
The analysis for dissections invariant under a reflection is analogous.

There are two conjugacy classes of reflections in D2n: those whose axis passes
through two diametrically opposite vertices, and those whose axis passes through
the midpoints of two diametrically opposite edges. The second conjugacy class
is represented by r and has been dealt with in Theorem 2.8.

For a reflection whose axis passes through two diametrically opposite
vertices, we observe that if m is even, there can be no invariant cell (because
there is an even number of them) and so the axis of reflection is a dissecting
diagonal. The whole dissection then consists of a dissection of an (m + 2)-
gon glued to its reflection along an edge. So there are νm

2
= sm invariant

dissections, for each of the m + 1 diameters. For example, Fig. 28 displays the
three dissections of a decagon that are invariant under reflection across the
axis 1 6.
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If m is odd, because we have an odd number of cells, the axis of symmetry
cannot be one of the dissecting diagonals, and there has to be an invariant cell,
one of whose diagonals is the axis of symmetry. That means that at one of the
fixed vertices (say 1) we have two (reflections of each other) dissecting chords,
and the invariant cell is completed by another pair of reflected dissecting chords
meeting at the other vertex. An invariant dissection is then determined by an
ordered pair of dissections with a total number of m−1

2 cells, one to the left
of the chord 1 j and the other to the left of the chord j n + 1. So there are
sm such invariant dissections of each of the m + 1 axes that pass through
vertices. For example Fig. 29 shows all the invariant quadrangular dissections
of a dodecagon invariant under reflection across the axis 1 7. �

Remark 4.2. The formula for the number of dissections invariant under a ro-
tation has appeared independently in [31]20 as a special case of a more general
result about rotation invariant p-angular dissections (see also the paragraph
about Sieving Phenomena in Sect. 5). We remark that one can extend the
observations in the proof of Theorem 4.1 to the case of p-angular dissections
for any p ≥ 3. This and Theorem 2.12, allow one to obtain the number of
p-angular dissections invariant under rotations and reflections for all p.

Let Q′
m be the set of unlabeled oriented quadrangular dissections of the

2(m+2)-gon, that is quadrangular dissections with m cells up to rotation, and
Q̃m the set of unlabeled unoriented quadrangular dissections that is, quadran-
gular dissections up to rotations and reflections. The number of such dissec-
tions q′

m (q̃m respectively), is sequence A005034 (A005036 respectively) in the
Online Encyclopedia of Integer Sequences [30]. Using Theorem 4.1 and Burn-
side’s lemma we obtain the following explicit formulas:

Theorem 4.3. The number of quadrangular dissections of a 2(m + 1)-gon up
to rotations is

q
′
m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νm

2(m + 1)
+

sm

2
if m ≡ 0 (mod 2)

νm

2(m + 1)
+

sm

4
+

sm−1
2

2
if m ≡ 1 (mod 4)

νm

2(m + 1)
+

sm

4
if m ≡ 3 (mod 4)

The number of quadrangular dissections of a 2(m+1)-gon up to rotations and
reflections is

q̃m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

νm

4(m + 1)
+

3sm

4
if m ≡ 0 (mod 2)

νm

4(m + 1)
+

5sm

8
+

sm−1
2

4
if m ≡ 1 (mod 4)

νm

4(m + 1)
+

5sm

8
if m ≡ 3 (mod 4).

20Thanks to the anonymous referee that brought this work to my attention.
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Figure 29. Dissections of the dodecagon invariant under re-
flection across 1 7

Recall that N ′
m stands for the set of oriented unlabeled non-crossing

trees with m edges, in other words an element of N ′
n is an orbit of the action

of
〈
κ2

〉 ∼= Z/n, and Ñn stands for the set of unoriented unlabeled non-crossing
trees, in other words an element of Ñn is an orbit of the action of the dihedral
group Dn =

〈
κ2, s

〉
. So Theorem 4.1 allows us to calculate the number of

unlabeled oriented and unoriented non-crossing trees as well.
Note that the central element of D2n (rotation by π) belongs to Dn only

when m is odd, while its square roots (rotations by ±π
2 ) belong to Dn only

when m ≡ 3 (mod 4). It follows that for even m there are no rotation invariant
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non-crossing trees, while for odd m only rotation by π has fixed points. So we
have the following theorem, proved in [22].21

Theorem 4.4. (Noy) The number of non-crossing trees with n vertices up to
rotations is

ν
′
m =

⎧
⎨

⎩

νm

m + 1
if m is even

νm

m + 1
+

sm

2
if m is odd.

The number of unlabeled non-crossing trees with n vertices is

ν̃m =

⎧
⎪⎨

⎪⎩

νm

2(m + 1)
+

sm

2
if m is even

νm

2(m + 1)
+

3sm

4
if m is odd.

Finally, we can use a generalization of Burnside’s Lemma, the “Count-
ing Lemma” of [26], to count the number of self-dual unlabeled oriented or
unoriented trees.

Lemma 4.5. (Robinson’s Counting Lemma) Let G be a group acting on a set
X endowed with a permutation r such that rG = Gr, so that r is well defined
in the orbits of G. Then N(G, r) the number of orbits fixed by r is given by:

N(G, r) =
1

|G|
∑

g∈G

|{x ∈ G : grx = x}| .

Applying this theorem in our case with G =
〈
κ2

〉 ∼= Z/n or G =
〈
κ2, s

〉 ∼=
Dn and r the nc-duality, we have

Theorem 4.6. The number of self-dual unlabeled oriented non-crossing trees
with m edges is

s
′
m = sm.

The number of self-dual unlabeled unoriented non-crossing trees with m edges
is

s̃m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sm if m ≡ 0 (mod 2)
sm + sm−1

2

2
if m ≡ 1 (mod 4)

sm

2
if m ≡ 3 (mod 4).

Proof. For the case of oriented non-crossing trees we need to look at the fixed
points of κ2ir for i = 0, . . . , n−1. Each of these elements is a reflection in D2n

and so by Theorem 4.1 has sn fixed elements.
For the case of unoriented unlabeled non-crossing trees, we need in addi-

tion to take into account the fixed points of κ2is r for i = 0, . . . , n − 1. Since
s r = κ−1 this means that we have to take into account all the fixed points of
odd powers of κ, so the result follows from Theorem 4.1. �

21The enumeration of oriented unlabeled trees is not explicitly stated there but a formula
can be deduced from the calculations.
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It is also of interest to consider anti-self-dual non-crossing trees, that is
non-crossing-trees t ∈ N ′

m that satisfy t∗ = t̄. Since rs = κ an anti-self-dual
non-crossing tree is fixed by κi for some odd power i. So we have
Theorem 4.7. The number of anti-self-dual non-crossing trees with m vertices
is

am =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sm if m ≡ 0 (mod 2)
1 if m = 1
sm−3

2
if m �= 1 and m ≡ 1 (mod 4)

0 if m ≡ 3 (mod 4).

5. Future Directions

5.1. Quadrangular Dissections of Surfaces with Boundary

A bijection φ can be defined more generally between appropriately defined
quadrangular dissections of any surface with boundary and graphs pegged in
that surface. Of particular interest is the case where the surface is the annulus,
in which case by a simple Euler characteristic argument one sees that the
graphs have to be unicyclic, and we plan to explore that direction in a future
project.

5.2. Further Connections with Non-crossing Partitions

The p = 3 Fuss–Catalan numbers appear in the theory of non-crossing parti-
tions not only as the number of maximal chains “up to commutation” but also
as the number of 2-multichains, that is they count the number of pairs π1 ≤ π2

of non-crossing partitions. More generally, p Fuss–Catalan numbers count the
number of p-multichains, that is p-tuples π1 ≤ π2 ≤ · · · ≤ πp (see [2]). We
plan to explore the relation between mind-body duality and the Kreweras
complement in that connection.

A further interesting line of future research in connection with non-
crossing partitions is to generalize the results of the current work to all finite
Coxeter groups.

5.3. Sieving Phenomena

After the research for this project was completed it was brought to my atten-
tion that the action of the cyclic group C2(m+2) on the set of quadrangular
dissections with m cells Qm exhibits an instance of the Cyclic Sieving Phe-
nomenon (CSP) (see [25]). Namely, as was proven in [10], if we define the
q-analogue of the p = 3 Fuss–Catalan numbers by

νm;q :=
1

(2m + 1)q

(
3m

m

)

q

,

where (n)q = 1+q+· · ·+qn−1,
(
n
k

)
q

= (n)q !
(k)q!(n−k)q!

, and (n)q! = (1)q(2)q . . . (n)q,
then the triple

(
Qm, νq,C2(m+1)

)
is an instance of CSP22. In other words, the

22It follows that so is the triple (Nm, νq , Cm+1).
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permutation representation C[Qm] of C2(m+1) can be expressed in the represen-
tation ring of C2(m+1) as νm;q(ω), where ω is a one-dimensional representation
that sends the generator of C2(m+1) to a primitive 2(m+1)-root of unity. This
means that the formulas for the numbers of fixed points of rotations can be
obtained by evaluating νm;q at roots of unity in C.

Furthermore, it was proven in [31] that for p and m odd there is a cer-
tain q, t-analogue of Fuss–Catalan numbers, Cat(p−2)m+1,m(q, t), so that the
set Xp,m of p-angular dissections of a polygon with m cells exhibits an in-
stance of Dihedral Sieving Phenomenon for the natural action of D(p−2)m+2

(see also [24]).
Proving instances of dihedral sieving for actions of dihedral groups of

even order with some “naturally defined” polynomials seems to be more com-
plicated. The action of D2(m+1) on Qm seems like a natural place to look for
such an instance.

5.4. Self-Dual Maps of the Sphere

Finally, using the connected sum of pegs defined in Section 4.2 of [1], one can
“glue” a non-crossing tree and its dual along their common boundary to obtain
a self-dual map on the sphere. Not all self-dual maps are obtained with that
construction since the resulting graph will have no loops or pendant edges.
Furthermore, since the first factors of a pair of dual factorizations agree the
resulting graph has at least one bigon. One can rectify that by contracting that
bigon into an edge and deleting its dual degree 2 vertex to obtain a rooted self-
dual map of the sphere that does not necessarily contain bigons. The following
question then seems interesting and open:

Question 5.1. Do all rooted self-dual maps of the sphere without loops arise
from gluing together a pair of dual non-crossing trees? If not, characterize
those that do.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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[6] E. Deutsch, S. Feretić, and M. Noy. Diagonally convex directed polyominoes and
even trees: a bijection and related issues. Discrete Math., 256(3):645–654, 2002.
LaCIM 2000 Conference on Combinatorics, Computer Science and Applications
(Montreal, QC).

[7] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 8.0), 2017. http://www.sagemath.org.

[8] S. Dulucq and J.G. Penaud. Cordes, arbres et permutations. Discrete Math.,
117(1-3):89–105, 1993.

[9] J. A. Eidswick. Short factorizations of permutations into transpositions. Discrete
Math., 73(3):239–243, 1989.

[10] S.P Eu and T.S. Fu. The cyclic sieving phenomenon for faces of generalized
cluster complexes. Adv. in Appl. Math., 40(3):350–376, 2008.

[11] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.8,
2015.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. Addison-
Wesley Publishing Company, Reading, MA, second edition, 1994. A foundation
for computer science.

[13] J. L. Gross and T. W. Tucker. Topological Graph Theory. Dover Books on Math-
ematics Series. Dover Publications, 1987.

[14] F. Harary, E. M. Palmer, and R. C. Read. On the cell-growth problem for
arbitrary polygons. Discrete Math., 11:371–389, 1975.

[15] M. C. Herando. Complejidad de Estructuras Geométricas y Combinatorias. PhD
thesis, Universitat Politècnica de Catalunya, 1999.
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