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Abstract. We study f -vectors, which are the maximal degree vectors of
F -polynomials in cluster algebra theory. For a cluster algebra of finite
type, we find that positive f -vectors correspond with d-vectors, which are
exponent vectors of denominators of cluster variables. Furthermore, using
this correspondence and properties of d-vectors, we prove that cluster
variables in a cluster are uniquely determined by their f -vectors when
the cluster algebra is of finite type or rank 2.
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1. Introduction and Main Theorems

Cluster algebras are commutative subalgebras of the rational function fields.
They are generated by cluster variables in clusters, and cluster variables are
obtained by applying mutations repeatedly starting from the initial cluster.
They are defined by [12] to study the canonical basis or total positivity. To-
day, we know that they are related to many mathematical subjects. For ex-
ample, by regarding a mutation as quiver transformation or triangulation of a
marked surface, a structure of cluster algebras appears in representation the-
ory of quivers [1,2] or higher Teichmüller theory [6,11]. Also, by considering
a mutation of the Markov quiver, a new combinatorial approach to solve the
Unicity Conjecture about Markov numbers was given in number theory [5,25].

Cluster algebras of finite type and rank 2 are important classes in clus-
ter algebra theory. Cluster algebras of finite type have finitely many cluster
variables. They are introduced by [12] and are classified completely by [13].
They have connections with Dynkin diagrams or (real) root systems in Lie
algebras, and they are applied to the logarithm identities, T, Y -systems and
so on [17–19,22].
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Cluster algebras of rank 2 have two cluster variables in every cluster.
Since they have the simplest structures in cluster algebras with infinitely many
cluster variables, they are studied to understand other classes [20,21,27].

The main topic of this paper is a relation between f -vectors and d-vectors
in cluster algebras of finite type. Here, f -vectors are introduced in [10] as the
maximal degree vectors of F -polynomials, and F -polynomials was introduced
in [14]. On the other hand, d-vectors are exponent vectors of monomials of
denominators of cluster variables. They are introduced by [13,14]. Though
definitions of these two vectors are independent of each other, previous works
[8,14,26] suggested that they have some similar properties in cluster algebras
of finite type or rank 2. In this paper, we give the following simple relation
between f -vectors and d-vectors (Theorem 1.8):

fi;t = [di;t]+.

This relation means that they are the same vectors in almost every situation.
By this identification, we can study properties of f -vectors, which are not well
known yet, by properties of d-vectors. In this paper, we give a partial solution
of the Uniqueness Conjecture [16, Conjecture 4.4], that is, cluster variables
in a cluster are uniquely determined by their f -vectors in cluster algebras of
finite type or rank 2.

The organization of the paper is as follows: in the rest of this section, we
define mutations, cluster algebras, d-vectors and f -vectors. After that, we de-
scribe the main theorem (Theorem 1.8) in the paper, that is, a simple relation
between d-vectors and f -vectors in cluster algebras of finite type. Furthermore,
we describe an application of the main theorem to the Uniqueness Conjecture
(Theorem 1.11). In Sect. 2, we give a proof of Theorem 1.8. In Sect. 3, we
give a proof of Theorem 1.11 (1) using Theorem 1.8 and some properties of
d-vectors. In Sect. 4, we give a proof of Theorem 1.11 (2) using a description
of entries of d-vectors. In Sect. 5, we generalize the cluster expansion formula
given by [20] to the principal coefficients version along [21], and we give the
restoration formula of the F -polynomials from the f -vectors.

1.1. Seed Mutations and Cluster Algebras

We start by recalling definitions of seed mutations and cluster patterns accord-
ing to [14]. A semifield P is an abelian multiplicative group equipped with an
addition ⊕ which is distributive over the multiplication. We particularly make
use of the following two semifields.

Let Qsf(u1, . . . , u�) be the set of rational functions in u1, . . . , u� which
have subtraction-free expressions. Then, Qsf(u1, . . . , u�) is a semifield by the
usual multiplication and addition. We call it the universal semifield of u1, . . . , u�

[14, Definition 2.1].
Let Trop(u1, . . . , u�) be the abelian multiplicative group freely generated

by the elements u1, . . . , u�. Then, Trop(u1,
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. . . , u�) is a semifield by the following addition:

�∏

j=1

u
aj

j ⊕
�∏

j=1

u
bj
j =

�∏

j=1

u
min(aj ,bj)
j . (1.1)

We call it the tropical semifield of u1, . . . , u� [14, Definition 2.2]. For any semi-
field P and p1, . . . , p� ∈ P, there exists a unique semifield homomorphism π
such that

π : Qsf(y1, . . . , y�) −→ P

yi �−→ pi. (1.2)

For F (y1, . . . , y�) ∈ Qsf(y1, . . . , y�), we denote

F |P(p1, . . . , p�):=π(F (y1, . . . , y�)). (1.3)

and we call it the evaluation of F at p1, . . . , p�. We fix a positive integer n and
a semifield P. Let ZP be the group ring of P as a multiplicative group. Since
ZP is a domain [12, Section 5], its total quotient ring is a field Q(P). Let F
be the field of the rational functions in n indeterminates with coefficients in
Q(P).

A labeled seed with coefficients in P is a triplet (x,y, B), where

• x = (x1, . . . , xn) is an n-tuple of elements of F forming a free generating
set of F .

• y = (y1, . . . , yn) is an n-tuple of elements of P.
• B = (bij) is an n × n integer matrix which is skew-symmetrizable, that

is, there exists a positive integer diagonal matrix S such that SB is skew-
symmetric. Also, we call S a skew-symmetrizer of B.

We say that x is a cluster and refer to xi, yi and B as the cluster variables,
the coefficients and the exchange matrix, respectively.

Throughout the paper, for an integer b, we use the notation [b]+ =
max(b, 0). We note that

b = [b]+ − [−b]+. (1.4)

Let (x,y, B) be a labeled seed with coefficients in P, and let k ∈ {1, . . . , n}.
The seed mutation μk in direction k transforms (x,y, B) into another labeled
seed μk(x,y, B) = (x′,y′, B′) defined as follows:

• The entries of B′ = (b′
ij) are given by

b′
ij =

{
−bij if i = k or j = k,

bij + [bik]+ bkj + bik [−bkj ]+ otherwise.
(1.5)

• The coefficients y′ = (y′
1, . . . , y

′
n) are given by

y′
j =

{
y−1

k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj otherwise.

(1.6)
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• The cluster variables x′ = (x′
1, . . . , x

′
n) are given by

x′
j =

⎧
⎪⎪⎨

⎪⎪⎩

yk

n∏
i=1

x
[bik]+
i +

n∏
i=1

x
[−bik]+
i

(yk ⊕ 1)xk
if j = k,

xj otherwise.

(1.7)

Let Tn be the n-regular tree whose edges are labeled by the numbers
1, . . . , n such that the n edges emanating from each vertex have different labels.

We write t t′
k

to indicate that vertices t, t′ ∈ Tn are joined by an edge
labeled by k. We fix a vertex t0 ∈ Tn, which is called the rooted vertex. A
cluster pattern with coefficients in P is an assignment of every labeled seed
Σt = (xt,yt, Bt) with coefficients in P to every vertex t ∈ Tn such that the

labeled seeds Σt and Σt′ assigned to the endpoints of any edge t t′
k

are
obtained from each other by a seed mutation in direction k. Elements of Σt

are denoted as follows:

xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (bij;t). (1.8)

In particular, at t0, we denote

x = xt0 = (x1, . . . , xn), y = yt0 = (y1, . . . , yn),

B = Bt0 = (bij). (1.9)

When we want to emphasize that the initial matrix is B, we denote by
ΣB

t a labeled seed associated with a vertex t. For seeds Σt and Σs in a cluster
pattern, if there exists mutation sequence μ such that Σs = μ(Σt), then we
say that Σt is mutation equivalent to Σs.

Definition 1.1. A cluster algebra A associated with a cluster pattern v �→ Σv

is the ZP-subalgebra of F generated by {xi;t}1≤i≤n,t∈Tn
.

The degree n of the regular tree Tn is called the rank of A, and F is the
ambient field of A.

We also denote by A(x, y, B) a cluster algebra with the initial seed
(x, y, B).

Example 1.2. We give an example of cluster algebras. This example is based
on [14, Example 2.10] (but it is different from [14] with respect to the way of
labeling edges). Let n = 2, and we consider a tree T2 whose edges are labeled
as follows:

. . . t0 t1 t2 t3 t4 t5 . . .2 1 2 1 2 1 2
. (1.10)

Let B =
[

0 1
−1 0

]
be the initial exchange matrix at t0. Then coefficients and

cluster variables are given by Table 1.
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Therefore, we have

A(x, y, B)

= ZP

[
x1, x2,

x2 + y1

(y1 ⊕ 1)x1
,

x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2
,

x1y2 + 1

(y2 ⊕ 1)x2

]
.

Next, to define classes of cluster algebras which we deal with in this paper,
we define non-labeled seeds according to [14]. For a cluster pattern v �→ Σv,
we introduce the following equivalence relations of labeled seeds: we say that

Σt = (xt, yt, Bt), xt = (x1;t, . . . , xn;t),

yt = (y1;t, . . . , yn;t), Bt = (bij;t)

and

Σs = (xs, ys, Bs), xs = (x1;s, . . . , xn;s),

ys = (y1;s, . . . , yn;s), Bs = (bij;s)

are equivalent if there exists a permutation σ of indices 1,
. . . , n such that

xi;s = xσ(i);t, yj;s = yσ(j);t,

bij;s = bσ(i),σ(j);t

for all i and j. We denote by [Σ] the equivalent classes represented by a labeled
seed Σ and call it non-labeled seed. Also, We define a (non-labeled) clusters
[x] as the set ignored the order of a labeled cluster. Abusing notation, we
abbreviate [x] to x.

Definition 1.3. The exchange graph of a cluster algebra is the regular con-
nected graph whose vertices are non-labeled seeds of the cluster pattern and
whose edges connect non-labeled seeds related by a single mutation.

Using the exchange graph, we define cluster algebras of finite type.

Definition 1.4. A cluster algebra A is of finite type if the exchange graph of A
is a finite graph.

We say that B is bipartite if there is a function ε : {1, . . . , n} → {1,−1}
such that for all i and j,

b′
ij > 0 ⇒

{
ε(i) = 1,
ε(j) = −1.

(1.11)

.
For an exchange matrix B, we define A(B) = (aij) as

aij =

{
2 if i = j;
−|b′

ij | if i �= j.

If A(B) is a Cartan matrix, then we say that B is of finite Cartan type.
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Remark 1.5. If A = A(x, y, B) is of finite type, then the initial matrix B is
mutation equivalent to a bipartite matrix B′. Furthermore, by permuting their
indices appropriately, we can choose B′ as one of finite Cartan type (see [13,
Theorem 1.8,Theorem 7.1]). If the initial matrix B of A is mutation equivalent
to B′ which is finite Cartan Xn type, then there exists a bijection between
almost positive roots of Xn type and cluster variables of A (see [13, Theorem
1.9]).

1.2. d-Vectors and f -Vectors

In this section, we define d-vectors and f -vectors. First, we define d-vectors
according to [13,14].

Let A be a cluster algebra. By the Laurent phenomenon [14, Theorem
3.5], every cluster variable xi;t ∈ A can be uniquely written as

xi;t =
Ni;t(x1, . . . , xn)

x
d1i;t
1 · · · xdni;t

n

, dki;t ∈ Z, (1.12)

where Ni;t(x1, . . . , xn) is a polynomial with coefficients in ZP which is not
divisible by any initial cluster variable xi ∈ x. We define the d-vector dj;t as
the degree vector of xj;t, that is,

dB;t0
i;t = di;t =

⎡

⎢⎣
d1i;t

...
dni;t

⎤

⎥⎦ . (1.13)

We define a D-matrix DB;t0
t as

DB;t0
t :=(d1;t, . . . ,dn;t). (1.14)

We remark that di;t is independent of the choice of P (see [14, Section 7]).
Therefore, in a cluster algebra A, if xi;t = xj;s, then we have di;t = dj;s.
Moreover, d-vectors are also given by the following recursion: for any i ∈
{1, . . . , n},

di;t0 = −ei,

and for any t t′
k

,

di;t′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

di;t if i �= k;

−dk;t +max

(
n∑

j=1

[bjk;t]+dj;t,

+
n∑

j=1

[−bjk;t]+dj;t

)
if i = k,

(1.15)

where ei is a standard basis element and the operation max on vectors are
performed component-wise. By this way of definition, since d-vectors depend
only on exchange matrices, we can regard d-vectors as vectors associated with
vertices of Tn.

Next, we define f -vectors according to [8]. We will give some preparations.
We say that a cluster pattern v �→ Σv (or a cluster algebra A) has the

principal coefficients at the initial vertex t0 if P = Trop(y1, . . . , yn) and yt0 =
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(y1, . . . , yn). In this case, we denote A = A•(B). For any A•(B) whose rank
is n, any t ∈ Tn and i ∈ {1, . . . , n}, we define the F -polynomial FB;t0

i;t (y) as

FB;t0
i;t (y) = xi;t(x1, . . . , xn)|x1=···=xn=1, (1.16)

where xi;t(x1, . . . , xn) means the expression of xi;t by x1, . . . , xn.
Using F -polynomials, we define f -vectors. Let A•(B) be a cluster algebra

with principal coefficients at t0. We denote by fij;t the maximal degree of yi

in FB;t0
j;t (y). Then we define the f -vector fi;t as

fB;t0
i;t = fi;t =

⎡

⎢⎣
f1i;t

...
fni;t

⎤

⎥⎦ . (1.17)

We define the F -matrix FB;t0
t as

FB;t0
t :=(f1;t, . . . , fn;t). (1.18)

Remark 1.6. For b =

⎡

⎢⎣
b1
...

bn

⎤

⎥⎦, we denote [b]+ =

⎡

⎢⎣
[b1]+

...
[bn]+

⎤

⎥⎦. By [8, Proposition

2.7], f -vectors are the same as those defined by the following recursion: for
any i ∈ {1, . . . , n},

fi;t0 = 0,

and for any t t′
k

,

fi;t′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fi;t if i �= k;

−fk;t + max

(
[ck;t]+ +

n∑
j=1

[bjk;t]+fj;t,

[−ck;t]+ +
n∑

j=1

[−bjk;t]+fj;t

)
if i = k,

(1.19)

where ci;t is a c-vector, which is defined by the following recursion: for any
i ∈ {1, . . . , n}

ci;t0 = ei,

and for any t t′
k

,

ci;t′ =

{
−ci;t if i �= k;
ci;t + [bki;t]+ ck;t + bki;t[−ck;t]+ if i = k.

By this way of definition, since f -vectors depend only on exchange ma-
trices, we can regard f -vectors as vectors associated with vertices of Tn. In
this case, we remark that f -vectors are independent of the choice of coefficient
system. So do F -matrices. Furthermore, when we define f -vectors as these re-
cursions, we have the following property: in a cluster algebra A, if xi;t = xj;s,
then we have fi;t = fj;s. It follows from [3, Proposition 3 (i)] immediately.
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Since we know that d-vectors and f -vectors depend only on B by above
discussion, we abbreviate a cluster algebra A(x, y, B) to A(B) when we discuss
properties of d-vectors or f -vectors.

Example 1.7. Let A(B) be a cluster algebra given in Example 1.2. Then F -
polynomials, F -matrices, and D-matrices are given by Table 2.

We are ready to describe the main results in this paper.

1.3. Main Results

The main result of this paper is the following theorem:

Theorem 1.8. In a cluster algebra A(B) of finite type, for any i ∈ {1, . . . , n}
and t ∈ Tn, we have the following relation:

fi;t = [di;t]+. (1.20)

It is known that Theorem 1.8 holds under the condition that the initial
matrix B is bipartite by combining Corollary 10.10 and Proposition 11.1 (1)
in [14]. When B is a skew-symmetric matrix, Theorem 1.8 has already proved
using 2-Calabi–Yau categories (see [10, Proposition 6.6]). We remove these
conditions.

Remark 1.9. In the case that A(B) is of rank 2, we have (1.20) by combining
Corollary 10.10 and Proposition 11.1 (1) in [14]. If A is of neither finite type
nor rank 2, Theorem 1.8 does not hold generally. A counterexample is given
by [10, Section 6.4] .

We give an application of Theorem 1.8. Let us introduce the Uniqueness
Conjecture in [16]:

Conjecture 1.10. [16, Conjecture 4.4] In a cluster algebra A(B), for t, s ∈ Tn,
FB;t0

t = FB;t0
s implies that xt and xs are the same non-labeled cluster.

This conjecture is also studied in viewpoint of representation theory of
algebras. An f -vectors are a dimension vector of the corresponding indecom-
posable τ -rigid module over an appropriate 2-Calabi–Yau tilted algebras in ad-
ditive categorification by 2-Calabi–Yau categories. Using the correspondences,
Conjecture 1.10 is equivalent to the following problem: support τ -tilting mod-
ules are uniquely determined by the set of dimension vectors of these inde-
composable direct summands. This problem was solved in the case of skew-
symmetric cluster algebras of finite type [15,24], skew-symmetric cluster alge-
bras of affine type [7], and cluster algebras of Cn Dynkin type [9].

In the case that A is of (skew-symmetrizable) finite type or rank 2, we
prove Conjecture 1.10 by showing the following statement:

Theorem 1.11. 1. In a cluster algebra of finite type of rank n, for any t, s ∈
Tn, if (f1;t, . . . , fn;t) coincides with (f1;s, . . . , fn;s) up to order, then xt and
xs are the same non-labeled cluster.

2. In a cluster algebra of rank 2, for t, s ∈ T2, if (f1;t, f2;t) coincides with
(f1;s, f2;s) up to order, then xt and xs are the same non-labeled cluster.
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Theorem 1.11 is a theorem of slightly stronger form than Conjecture 1.10.
In Conjecture 1.10, the order of the f-vectors is fixed, but in Theorem 1.11, it
is not.

Remark 1.12. In the case of cluster algebras of An or Dn type, Theorem 1.11
has already been proved using marked surfaces [16, Corollary 4.8].

2. Proof of Theorem 1.8

In this section, we will prove Theorem 1.8. We start with proving the special
case. For any cluster pattern v �→ Σv, we fix a seed Σs such that Bs is bipartite.
We define the source mutation μ+ and the sink mutation μ− as

μ+ =
∏

ε(k)=1

μk, μ− =
∏

ε(k)=−1

μk, (2.1)

where ε is the sign induced by the bipartite matrix Bs (see (1.11)). The bipartite
belt induced by Σs consists of seeds Σt satisfying the following condition: there
exists a mutation sequence μ consisting of μ+ and μ− such that Σt = μ(Σs).

Remark 2.1. Definition of a bipartite belt in this paper is a generalised version
of [14, Definition 8.2]. We do not assume that the initial exchange matrix B is
bipartite. A bipartite belt in [14] corresponds with that induced by the initial
bipartite seed Σt0 in this paper.

Lemma 2.2. [14, Corollary 10.10] In any cluster algebra, if the initial matrix
B is bipartite and Σt belongs to the bipartite belt induced by Σt0 , then we have
(1.20).

By Remark 1.5, if A is of finite type, then A has a seed whose exchange
matrix is bipartite. We prove the case that the initial matrix B is bipartite.

Lemma 2.3. [14, Proposition 11.1 (1)] In a cluster algebra of finite type, for a
bipartite seed Σs, every cluster variable belongs to a seed lying on the bipartite
belt induced by Σs.

Proposition 2.4. We fix a cluster algebra of finite type whose initial matrix B
is bipartite. For any i ∈ {1, . . . , n} and t ∈ Tn, we have (1.20).

Proof. It follows from Lemmas 2.2 and 2.3. �

Let us generalize Proposition 2.4 to the case that the initial matrix B is
non-bipartite. The next lemma is a generalization of Lemma 2.3.

Lemma 2.5. In a cluster algebra of finite type, for a seed Σs, every cluster
variable belongs to seeds lying on the bipartite belt induced by Σs.

Proof. Let ΣB
t be a seed and ΣB′

s a bipartite seed. By regarding a change of
the initial seed from ΣB

t to ΣB′
s as a change from the expression of cluster

variables and coefficients by ΣB
t to that by ΣB′

s , the general cases follows from
the bipartite cases. �
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We introduce a key lemma.

Lemma 2.6. [26, Theorem 2.2], [8, Theorem 3.10]
1. In a cluster algebra A(B) of finite type, for t ∈ Tn, we have

DB;t0
t = (DBT

t ;t
t0 )T . (2.2)

2. In any cluster algebra A(B), for t ∈ Tn, we have

FB;t0
t = (FBT

t ;t
t0 )T . (2.3)

Remark 2.7. In [26, Theorem 2.2], the duality for D-matrices is given by

DB;t0
t = (D−BT

t ;t
t0 )T . (2.4)

The Eq. (2.2) derives from (2.4). In fact, by symmetry of the recursion (1.15)

of d-vectors, we have D
−BT

t ;t
t0 = D

BT
t ;t

t0 .

We are ready to prove the main theorem in this paper.

Proof of Theorem 1.8. We fix a bipartite seed Σ in A(B). Note that A(B) is
of finite type if and only if A(BT ) is also. Moreover, BT

t is bipartite if and
only if Bt is bipartite. Therefore, A(BT ) is of finite type, and for any t in a
bipartite belt induced by Σ, BT

t is bipartite. Thus, we have

F
BT

t ;t
t0 =

[
D

BT
t ;t

t0

]

+
, (2.5)

by Proposition 2.4 (the operation [ ]+ on matrices are performed component-
wise). Therefore, we have

FB;t0
t =

[
DB;t0

t

]

+
, (2.6)

by Proposition 2.6. By Lemma 2.5, for a cluster variable xj;s, there exist i ∈
{1, . . . , n} and a vertex t of the bipartite belt induced by a seed Σ such that
xj;s = xi;t. Thus, fj;s = fi;t = di;t = dj;s by (2.6), and we have (1.20) for any
initial vertex t0.

3. Proof of Theorem 1.11 (1)

In this section, we prove Theorem 1.11 (1). We fix any A(B) of finite type.
Through this section, unless otherwise noted, we assume that seeds, cluster
variables, clusters, f -vectors, d-vectors, F -matrices, and D-matrices are those
of A(B). We start with proving the special case. We say that a vector b is
positive (resp. negative) if b �= 0 and all entries of b is non-negative (resp.
non-positive). Due to Theorem 1.8, we can use the properties of d-vectors to
prove Theorem 1.11 (1).

Lemma 3.1. [4, Corollary 3.5] A cluster variable xi;t is not in the initial cluster
if and only if di;t is positive.

By this lemma, we have the following corollary:
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Corollary 3.2. An f-vector fi;t is the zero-vector if and only if xi;t is in the
initial cluster.

Proof. The “if” part is clear. We prove the “only if” part. By Theorem 1.8,
fi;t = 0 implies that di;t is negative or 0. By Lemma 3.1, xi;t is in the initial
cluster. �

The following propositions and corollary are essential for proving Theo-
rem 1.11:

Proposition 3.3. [14, Theorem 11.1 (2)]) We fix a cluster algebra A(B) of finite
type such that B is bipartite and Cartan finite Xn type. The d-vectors establish
a bijection between cluster variables and the set of all almost positive roots
Φ≥−1 = Φ+ ∪ −Δ of Xn Dynkin type, where Φ+ is the set of all positive roots
and −Δ is the set of negative simple roots.

Let D(B) be the set of all d-vectors in A(B).

Proposition 3.4. [23, Theorem 1.3.3] We fix a cluster algebra A(B) of finite
type. Then the cardinality |D(B)| depends only on the Dynkin type Xn of A(B).

Corollary 3.5. If di;t = dj;s holds, then we have xi;t = xj;s.

Proof. Let B′ be a bipartite matrix of finite Cartan Xn type which is mutation
equivalent to B. Then by Propositions 3.3 and 3.4, we have

|D(B)| = |D(B′)| = |Φ≥−1|. (3.1)

Let X (B) be the set of all cluster variables of A(B). By Remark 1.5 and
Proposition 3.3, we have

|X (B)| = |X (B′)| = |Φ≥−1|. (3.2)

Therefore, we have

|D(B)| = |X (B)|. (3.3)

If there exist d-vectors di;t and dj;s such that di;t = dj;s and xi;t �= xj;s, then
we have |D(B)| < |X (B)|. This conflicts with (3.3). �

By Corollaries 3.2 and 3.5, we have the following proposition:

Proposition 3.6. If fi;t = fj;s �= 0, then we have xi;t = xj;s.

Proof. Let f be an f -vector which is not equal to 0. We assume that f = fi;t =
fj;s. Since all entries of f are non-negative, and the f -vector is not equal to 0,
we have f = di;t = dj;s by Theorem 1.8 and Lemma 3.1. By Proposition 3.5,
we have xi;t = xj;s. �

While d-vectors can distinguish the initial clusters, f -vectors cannot.
Thus, we cannot detect the initial cluster variables contained in a cluster by
their f -vectors directly. However, using the property of d-vectors, we can detect
them.

Proposition 3.7. For a D-matrix DB;t0
t , negative column vectors of DB;t0

t are
uniquely determined by positive column vectors of DB;t0

t .
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Proof. By (2.2), the transposition of a D-matrix in a cluster algebra of finite
type is another D-matrix in a cluster algebra of finite type because A(B) is of
finite type if and only if A(BT

t ) is of finite type. Since negative d-vectors have
the form of −ei, if the (i, j) entry of DB;t0

t is −1, then entries of the ith row
and the jth column of DB;t0

t are all 0 except for the (i, j)-entry. Since DB;t0
t

do not have the zero column vector by Lemma 3.1, if a D-matrix has just m
positive columns, then we have just n − m indices i1, . . . , in−m such that the
ik(k ∈ {1, . . . , n − m})th entry of all positive d-vectors is 0, and DB;t0

t has
column vectors −eik(k ∈ {1, . . . , n − m}). This finishes the proof. �

We are ready to prove Theorem 1.11 (1).

Proof of Theorem 1.11 (1). If fi;t = fj;s �= 0, then we have xi;t = xj;s by
Proposition 3.6. We assume that there are m zero-vectors in (f1;t, . . . , fn;t) (or
(f1;s, . . . , fn;s)). By regarding positive f -vectors as d-vectors by Theorem 1.8,
we detect the rest of d-vectors in xt and xs by Proposition 3.7. Since positive
d-vectors in xt corresponds with that of xs, we have xt = xs by Corollary 3.5.

4. Proof of Theorem 1.11 (2)

We prove Theorem 1.11 (2). The strategy of this proof is almost the same
as Theorem 1.11 (1), but we sometimes use the special properties of cluster
algebras of rank 2.

For a cluster algebra of rank 2, we may assume that the initial matrix B
has the following form without loss of generality:

B =
[

0 b
−c 0

]
, b, c ∈ Z≥0, bc ≥ 4, (4.1)

because when bc ≤ 3, this cluster algebra is of finite type. We name vertices
of T2 by the rule of (1.10) and consider a cluster pattern tn �→ (xtn , ytn , Btn).
We abbreviate xtn (resp., ytn , Btn ,Σtn) to xn (resp., yn, Bn, Σn). We also
abbreviate d-vectors, D-matrices, f -vectors, and F -matrices in the same way.

We consider a description of D-matrices in the case n ≥ 0. First, we have

DB;t0
0 =

[−1 0
0 −1

]
, DB;t0

1 =
[
1 0
0 −1

]
(4.2)

by direct calculation. By [20, (1.13)], if n > 0 is even, then we can denote

DB;t0
n =

[
Sn−2

2
(u) + Sn−4

2
(u) bSn−2

2
(u)

cSn−4
2

(u) Sn−2
2

(u) + Sn−4
2

(u)

]
, (4.3)

and if n > 1 is odd, then we can denote

DB;t0
n =

[
Sn−1

2
(u) + Sn−3

2
(u) bSn−3

2
(u)

cSn−3
2

(u) Sn−3
2

(u) + Sn−5
2

(u)

]
, (4.4)
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where u = bc − 2 and Sp(u) is a (normalized) Chebyshev polynomial of the
second kind, that is,

S−1(u) = 0, S0(u) = 1, Sp(u) = uSp−1(t)

− Sp−2(u) (p ∈ N). (4.5)

When n < 0, DB;t0
n is the following matrix:

DB;t0
n =

[
d−BT

22;−n d−BT

21;−n

d−BT

12;−n d−BT

11;−n

]
, (4.6)

where d−BT

ij;−n is the (i, j) entry of D−BT ;t0
−n .

We fix any A(B) of rank 2. Through the rest of this section, unless
otherwise noted, we assume that seeds, cluster variables, clusters, f -vectors,
d-vectors, F -matrices, and D-matrices are those of A(B). Using the above
descriptions, we prove some properties for d-vectors.

Lemma 4.1. The initial cluster variables belong to Σ0 or Σ±1. Furthermore,
xi;t is not in the initial cluster if and only if di;t is positive.

Proof. We prove it in the case n > 0. It suffices to show that for any u ≥ 2
and p ≥ −1, Sp(u) ≥ 0 holds and Sp(u) = 0 if and only if p = −1. The general
term of Sp(u) is

Sp(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + 1 if u = 2;

1√
u2 − 4

⎛

⎝
(

u +
√

u2 − 4
2

)p+1

−
(

u − √
u2 − 4
2

)p+1
⎞

⎠ if u �= 2.

(4.7)

By direct calculation, we have Sp(u) ≥ 0. Also, Sp(u) = 0 holds if and only if
p = −1 holds. In the case n < 0, we can use the result of the case n > 0 by
(4.6). �

The following corollary is analogous to Corollary 3.2:

Corollary 4.2. An f-vector fi;t is the zero-vector if and only if xi;t is in the
initial cluster.

Proof. We can prove it in the same way as Corollary 3.2: we use Lemma 4.1
instead of Lemma 3.1. �

The following lemma is analogous to Corollary 3.5:

Lemma 4.3. If di;t = dj;s, then we have xi;t = xj;s.

Proof. When P = {1}, using [20, (1.15)] (cf. Sect. 5), we have the expressions
of cluster variables induced by d-vectors. For the general case, the use of [3,
Proposition 3 (i)] leads to the case where P = {1}. �

The following proposition is analogous to Corollary 3.6:
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Proposition 4.4. If fi;t = fj;s �= 0, then we have xi;t = xj;s.

Proof. We can prove it in the same way as Corollary 3.6: we use Corollary 4.2
and Lemma 4.3 instead of Corollaries 3.2 and 3.5 respectively. �

The following proposition is analogous to Proposition 3.7. Unlike Propo-
sition 3.7, we do not need to use the duality for D-matrices.

Proposition 4.5. For a D-matrix DB;t0
n , negative column vectors of DB;t0

n are
uniquely determined by positive column vectors of DB;t0

n .

Proof. When both d-vectors in DB;t0
n are negative vectors, it is clear. Therefore,

we can assume that only one d-vector is negative. By Lemma 4.1, the initial
cluster variables only appear in Σ0 or Σ±1. Therefore, if d1;0 = d1;−1 = −e1 is
contained in two d-vectors associated with a cluster, then the other is always
d2:−1. Similarly, if d2;0 = d2;1 = −e2 is contained in two d-vectors, then the
other is always d1:1. By this observation, it suffices to show d2;−1 �= d1;1. We

have d2;−1 =
[
0
1

]
, and d1;1 =

[
1
0

]
by direct calculation. This finishes the proof.

�

We are ready to prove Theorem 1.11 (2).

Proof of Theorem 1.11 (2). We can prove it in the same way as Theorem 1.11
(1): we use Lemma 4.3, Propositions 4.4, and 4.5 instead of Corollary 3.5,
Propositions 3.6, and 3.7 respectively.

5. Restoration Formula of Cluster Algebras of Rank 2

We proved that cluster variables are uniquely determined by their f -vectors for
cluster algebras of rank 2 in the previous section. In this section, we describe
these cluster variables explicitly in the case that coefficients are the principal
ones. By this description, we establish a way to restore F -polynomials from
f -vectors. Throughout this section, we assume that A(B) has the following
initial matrix:

B =
[

0 b
−c 0

]
, b, c ∈ Z≥0. (5.1)

We do not assume bc ≥ 4, thus cluster algebras of finite type and rank 2
(A2, B2, G2 Dynkin types) are contained. Unless otherwise noted, we assume
that seeds, cluster variables, clusters, f -vectors, d-vectors, F -matrices, and
D-matrices are those of A(B).

A previous work [20] has given a cluster expansions formula in the case
that P = {1}. This formula restores the expressions of cluster variables by the
initial ones from their d-vectors. We start with an explanation of this formula.

We define Dyck Paths and some notations along [20, Section 1]. Let
(a1, a2) be a pair of non-negative integers. A Dyck path of type a1 × a2 is
a lattice path from (0, 0) to (a1, a2) and it does not go above the diagonal
combining (0, 0) with (a1, a2). For the Dyck paths of a1 × a2 type, there is the
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maximal one Da1×a2 . It is defined by the following property: for any lattice
point A on D, there is no lattice points between A and the crosspoint of a
vertical line including A and the diagonal combining (0, 0) with (a1, a2).

For D = Da1×a2 , let D1 = {u1, . . . , ua1} be the set of horizontal edges
of D indexed from left to right, and D2 = {v1, . . . , va2} be the set of vertical
edges of D indexed from bottom to top.

For any A and B on D, let AB be the subpath of D starting from A
and going in the upper right direction along D until it reaches B. If we reach
(a1, a2) before reaching B, we restart from (0, 0). If A and B are the same
lattice point, then AA is the subpath which starts from A, then passes (a1, a2)
and ends at A. Here (0, 0) and (a1, a2) are regarded as the same point, thus if
A = (a1, a2), then AA corresponds with the maximal Dyck path. We denote
by (AB)1 the set of horizontal edges in AB, and by (AB)2 the set of vertical
edges in AB. Let AB◦ be the set of lattice points on the subpath AB except
for the endpoints A and B.

Example 5.1. We fix (a1, a2) = (5, 3), and let A = (2, 1), B = (4, 2). Then

(AB)1 = {u3, u4}, (AB)2 = {v2},

(BA)1 = {u5, u1, u2}, (BA)2 = {v3, v1},

and the subpath AA has length 8 (see Fig. 1).

Next, we define the compatibility in D:

Definition 5.2. [20, Definition 1.10] For S1 ⊆ D1, S2 ⊆ D2, we say that the
pair (S1, S2) is compatible if for every u ∈ S1 and v ∈ S2, denoting by E the
left endpoint of u and F the upper endpoint of v, there exists a lattice point
A ∈ EF ◦ such that

|(AF )1| = b|(AF )2 ∩ S2| or |(EA)2| = c|(EA)1 ∩ S1|.
(5.2)

We are ready to describe a cluster expansion formula for cluster algebras
of rank 2.

u1 u2

u3 u4

u5

v3

v2

v1

A

B

Figure 1. A maximal Dyck path ((a1, a2) = (5, 3))
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Theorem 5.3. [20, Theorem 1.11] For every d-vector d =
[
d1
d2

]
, the cluster

variable xd corresponding to d is given by the following equation:

xd = x−d1
1 x−d2

2

∑

(S1,S2)

x
b|S2|
1 x

c|S1|
2 , (5.3)

where the sum is over all compatible pairs (S1, S2) in D[d1]+×[d2]+ .

Remark 5.4. In [20, Theorem 1.11], (5.3) is defined for any (a1, a2) ∈ Z
2 and

is called a greedy element.

We generalize this formula to the principal coefficients version in a way
which is analogous to [21]. First, we define the g-vectors according to [14]. Clus-
ter variables with the principal coefficients are homogeneous by the following
Z

n-grading: for any i ∈ {1, . . . , n},

deg(xi) = ei, deg(yi) = −bi, (5.4)

where bi is the ith column vector of B (see [14, Proposition 6.1]). We define

the g-vector gi;t =

⎡

⎢⎣
g1i;t

...
gni;t

⎤

⎥⎦ as the degree vector of a cluster variable xi;t. Like

f -vectors, they are independent of the choice of P by defining them in the
following way: for any i ∈ {1, . . . , n},

gi;t0 = ei, (5.5)

and for any t t′
k

,

gij;t′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gij;t if j �= k;

−gik;t +
n∑

�=1

gi�;t[b�k;t]+

−
n∑

�=1

bi�[c�k;t]+ if j = k,

(5.6)

where c�k;t is the �th entry of ck;t (cf. Remark 1.6).
When a cluster algebra is of rank 2, g-vectors are obtained by d-vectors:

Theorem 5.5. For a g-vector g =
[
g1
g2

]
and a d-vector d =

[
d1
d2

]
of a cluster

variable, we have the following equation:
[
g1
g2

]
=

[ −d1
cd1 − d2

]
. (5.7)

Proof. This is the spacial case of [14, Theorem 10.12]. �

Using g-vectors, we have the following generalization of Theorem 5.3:
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Theorem 5.6. For a d-vector d =
[
d1
d2

]
, the cluster variable xd with the prin-

cipal coefficients corresponding to d is given by the following equation:

xd = x−d1
1 x−d2

2

∑

(S1,S2)

y
[d1]+−|S1|
1 y

|S2|
2 x

b|S2|
1 x

c|S1|
2 , (5.8)

where the sum is over all compatible pairs (S1, S2) in D[d1]+×[d2]+ .

Proof. When a d-vector is the negative, we have (5.8) by direct calculation. We
assume that a d-vector is positive. For any compatible pair (S1, S2) ∈ Dd1×d2 ,
let a1(S1, S2) and a2(S1, S2) be integers satisfying

xd = x−d1
1 x−d2

2

∑

(S1,S2)

y
a1(S1,S2)
1 y

a2(S1,S2)
2 x

b|S2|
1 x

c|S1|
2 . (5.9)

Since xd is homogeneous by the grading (5.4), and its degree is g =
[
g1
g2

]
=

[ −d1
cd1 − d2

]
by Theorem 5.5, the following equation holds for any compatible

pair (S1, S2):
[ −d1
cd1 − d2

]
= −

[
d1
d2

]
+ a1(S1, S2)

[
0
c

]

+ a2(S1, S2)
[−b

0

]
+

[
b|S2|
c|S1|

]
. (5.10)

By solving the equation, we have

a1(S1, S2) = d1 − |S1|, a2(S1, S2) = |S2|. (5.11)

�

By Theorem 5.6, definition of the F -polynomials, and Remark 1.9, we
have the following restoration formula of F -polynomials from f -vectors:

Corollary 5.7. For a f-vector f =
[
f1
f2

]
, the F -polynomial Ff (y) whose maxi-

mal degree vector is f is given by the following formula:

Ff (y1, y2) =
∑

(S1,S2)

y
f1−|S1|
1 y

|S2|
2 , (5.12)

where the sum is over all compatible pairs (S1, S2) in Df1×f2 .

Example 5.8. Let B =
[

0 4
−1 0

]
and d = f =

[
3
2

]
. If (S1, S2) ∈ D3×2 is com-

patible, then at least one of the sets S1 and S2 is empty, or (S1, S2) is one of
pairs in the following list:

({u1}, {v2}), ({u2}, {v2}), ({u3}, {v1}). (5.13)
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Then we have an expression of the cluster variable xd corresponding to d-vector
d in A•(B) as follows:

xd =
x8
1y

3
1y

2
2 + 2x4

1y
3
1y2 + y31 + 3x4

1x2y21y2 + 3x2y21 + 3x2
2y1 + x3

2

x3
1x

2
2

. (5.14)

Also we have the F -polynomial Ff (y) corresponding to the f -vector f as
follows:

Ff (y) = y3
1y

2
2 + 2y3

1y2 + y3
1 + 3y2

1y2 + 3y2
1 + 3y1 + 1. (5.15)
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