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Abstract. The monopole-dimer model introduced recently is an exactly
solvable signed generalisation of the dimer model. We show that the par-
tition function of the monopole-dimer model on a graph invariant under
a fixed-point free involution is a perfect square. We give a combinatorial
interpretation of the square root of the partition function for such graphs
in terms of a monopole-dimer model on a new kind of graph with two
types of edges which we call a dicot. The partition function of the latter
can be written as a determinant, this time of a complex adjacency matrix.
This formulation generalises Wu’s assignment of imaginary orientation for
the grid graph to planar dicots. As an application, we compute the par-
tition function for a family of non-planar dicots with positive weights.
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1. Introduction

The dimer model (also known as perfect matchings or 1-factors) for planar
graphs is a well-studied exactly solvable statistical–mechanical model whose
partition function can be evaluated as a Pfaffian [7]. A generalisation to the
monomer-dimer model with boundary monomers has been recently obtained
by Giuliani–Jauslin–Lieb [4]. In another direction, the monopole-dimer model
was introduced recently [2] as a generalisation of the double-dimer model.
The partition function of the monopole-dimer model was shown to be given
by a determinant for planar graphs. Further, it was found that the partition
function of the model on some planar graphs such as the cycle graph C4n and
the 2m × 2n grid graph could be expressed as a perfect square.

In this work, we give a combinatorial explanation for the squareness phe-
nomenon for the monopole-dimer model in a general setting using a symmetry
argument in the spirit of Jockusch [6] and Ciucu [3] for the dimer model. To
that end, we will define a generalisation of graphs with two kinds of edges
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(solid and dashed), which we will call dicots1 in Sect. 2. We will define the
monopole-dimer model for dicots and show that the partition function of the
model can be written as a determinant in Sect. 2. When the dicot is planar, we
will show that there exists a generalisation of the Kasteleyn orientation that
makes it possible to assign a natural combinatorial weight to the model.

We note that this formulation also generalises Wu’s choice of orientation
of ι =

√−1 for vertical edges [10] for two-dimensional grid graphs. This trick
has proved useful in analysing the dimer model on subgraphs of Z2; see, for
example, [8].

We will consider graphs with a special automorphism in Sect. 3 and prove
that the monopole-dimer partition function is a square.

In Sect. 4, we will provide exact results for the partition functions for
certain families of dicots and use those results to calculate the free energy
in each case. In Sects. 4.1 and 4.2, we will explain the squareness for cycles
and rectangular grids observed in [2]. We will then consider dicots on the
rectangular grid with additional vertical dashed edges in Sect. 4.3. In Sect. 4.4,
we will consider a family of non-planar dicots for which the monopole-dimer
model is manifestly positive.

2. Monopole-Dimer Model on Dicots

In this section, we will define dicots, the monopole-dimer model on dicots and
prove the result about the partition function of the latter. We then consider the
special case of planar dicots, define the Kasteleyn orientation for such dicots
and prove the analogous result for the monopole-dimer model there.
Remark on Notation: We will always use unaccented symbols for objects asso-
ciated with graphs and calligraphic symbols for those associated with dicots.

Dicots are generalisations of graphs with two sets of edges. We will denote
the two sets of edges on V by A and B. Edges belonging to A will be denoted
by solid lines, and those belonging to B, by dashed lines. We will also inter-
changeably use the term solid (resp. dashed) edges to mean A-type (resp.
B-type) edges.

Definition 2.1. We say that G = [V,A,B] is a dicot if G satisfies the following
conditions.
(1) [V,A ∪ B] is a bipartite graph.
(2) The subgraphs [V,A] and [V,B] are simple, i.e. have no loops or multiple

edges.

In other words, there can be at most two edges between any two vertices
in G, and if there are two edges, then both must be of different type. An
oriented dicot is one where each solid edge is assigned a direction. We will
denote vertex weights by x(v) for v ∈ V and edge weights as a(v, v′) ≡ a(v′, v)
whenever (v, v′) ∈ A and b(v, v′) ≡ b(v′, v) whenever (v, v′) ∈ B. Dicots with
no B-type edges are thus bipartite graphs.

1Short for dicotyledons, a plant whose embryo contains two leaves.
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Throughout the paper, graphs and dicots will be undirected, both vertex-
and edge-weighted. For the purpose of enumeration, we will prescribe an orien-
tation just as for the original dimer model. Graphs will be simple (i.e. without
loops or multiple edges). The weights are positive real numbers. Unweighted
versions are taken care of by setting the weights to be 1.

Remark 2.2. Throughout the article, unless stated explicitly, graphs and dicots
with n vertices will have vertex set V = {1, . . . , n} and the orientation for
graphs (resp. dicots) associated with edges (resp. solid edges) will point from
smaller to larger label.

Definition 2.3. The complete dicot, denoted Da,b, is the dicot on a + b vertices
where the separate underlying graphs [V,A] and [V,B] with solid and dashed
edges, respectively, form the complete bipartite graph Ka,b.

We now generalise the monopole-dimer model for graphs [2] to dicots.
Recall that monopole-dimer configurations for graphs consisting of directed
loops of even length including doubled edges with the property that every
vertex belongs to either zero or two edges.

Definition 2.4. A monopole-dimer configuration of G = [V,A,B] with orien-
tation O is a monopole-dimer configuration of the graph [V,A ∪ B] with the
additional proviso that every loop must contain an even number of dashed
edges. Let L(G) be the set of monopole-dimer configurations of G.

The weight of a monopole-dimer configuration C is given by a formula
similar to that of the usual monopole-dimer configuration. Let C ∈ L(G) be a
monopole-dimer configuration on G. Decompose C into loops (�1, . . . , �q) and
isolated vertices (w1, . . . , wr).

We first define the weight of a loop �. Let � = (v1, . . . , v2m) with edges
e1, . . . , e2m such that ej = (vj , vj+1) with v2m+1 ≡ v1. Then the weight of the
loop is given by

w(�) = −
2m∏

j=1

⎧
⎪⎨

⎪⎩

+a(vj , vj+1) if ej is solid and vj → vj+1 in O,

−a(vj , vj+1) if ej is solid and vj+1 → vj in O,

ι b(vj , vj+1) if ej is a dashed edge,
(2.1)

where we recall that ι =
√−1. Notice that the sign of the loop depends on the

relative orientations of the solid edges and the number of dashed edges. The
weight of the monopole-dimer configuration C is then given by

wt(C) =
q∏

j=1

w(�j)
r∏

j=1

x(wj). (2.2)

Definition 2.5. The monopole-dimer model on a dicot G with orientation O
is the collection L(G) of dicot monopole-dimer configurations on G with the
weight of each configuration given by (2.2).

The partition function of the monopole-dimer model on G is

Z(G) =
∑

C∈L(G)

wt(C). (2.3)
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We now define an adjacency matrix for a dicot G.

Definition 2.6. The complex adjacency matrix K ≡ K(G) associated to G is the
matrix indexed by the vertices of G whose entries are given by

Kv,v′ =

⎧
⎪⎨

⎪⎩

x(v) v′ = v

a(v, v′) + ι b(v, v′) if v → v′ in O,

−a(v, v′) + ι b(v, v′) if v′ → v in O.

(2.4)

We will treat a(v, v′) (resp. b(v, v′)) as 0 if v and v′ are not connected by a
solid (resp. dashed) edge.

Theorem 2.7. The partition function of the monopole-dimer model on G is
given by

Z(G) = det K(G). (2.5)

See [1] for a similar result about the determinant of such matrices.

Proof. Note that if we do not have any dashed edges, G reduces to a bipartite
graph and the proof is a special case of the partition function of the monopole-
dimer model on graphs [2, Theorem 2.5]. Our proof here follows the same
strategy.

It should be clear from Definition 2.1(1) and the complex adjacency
matrix in Definition 2.6 that terms in the Leibniz expansion of the determinant
of K(G) that are non-zero correspond to permutations with singletons and even
cycles. Since off-diagonal non-zero entries in K(G) consist of two terms, we also
expand the determinant in terms of monomials in these variables. We will first
show that these terms are equinumerous with configurations in L(G). We need
to show that the signs and weights of these configurations are counted by the
determinant.

We will work in the most general setting of the complete dicot Da,b (see
Definition 2.3) with generic vertex- and edge-weights. The result for a generic
dicot will follow by setting some of these weights to zero or one. Let C ∈
L(Da,b) be given by C = (�1, . . . , �m; w1, . . . , w2p), where every vertex v ∈ V
is either one of the isolated vertices wj or belongs to exactly one loop �j . There
will be many configurations with the same isolated vertices and the same loop
structure which will also contribute because of various choices of solid and
dashed edges, as well as the direction of the loops. Since each of the loops �j

can be summed separately, it suffices to look at a single loop � = (v1, . . . , v2m)
with edge ej = (vj , vj+1). The entry corresponding to ej in K ≡ K(Da,b) is
then Kvj ,vj+1 = zj , a complex number. Then the entry corresponding to the
reversed edge (vj+1, vj) is Kvj+1,vj

= −z̄j , its negative complex conjugate. If
m = 1, the contribution of C is z1(−z̄1) = −|z1|2, which is real. If m ≥ 2, we
add the contribution of C to its reverse Ĉ in det K, we get

z1 . . . z2m + (−z̄1) . . . (−z̄2m) = 2 Re(z1 . . . z2m).

In both cases, we get a real number, which means that the only loops which
contribute are those with an even number of dashed edges, and they con-
tribute with factor two precisely when the loop is nontrivial (m ≥ 2). These
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Figure 1. The complete dicot D2,2 with generic vertex- and
edge-weights

are precisely the allowed terms in the monopole-dimer configuration; see Def-
inition 2.4.

We will now show that the signs match. For the loop � considered above,
let S be the set of solid edges with #S = 2p, and among these, S− be those
with opposite sign and #S− = s. Then the sign of the loop is given, according
to (2.1), sgn(�) = (−1)m−p+1+s. The corresponding term in the determinant is
the part in the expansion of Re(Kv1,v2 . . . Kv2m−1,v2mKv2m,v1) which is propor-
tional to a(e) for e ∈ S and b(e) for e /∈ S up to sign. The sign is then given by
i2m−2p(−1)s = (−1)m−p+s times the sign of the corresponding permutation.
Finally, it is well known that the sign of a permutation can be obtained by
assigning a negative sign to each even cycle. Thus, the sign from the determi-
nant matches that from (2.1). �

We illustrate Theorem 2.7 in the following example.

Example 2.8. Consider the complete dicot D2,2. The vertices are labeled
(1, 2, 3, 4), where {1, 3} and {2, 4} form the partitions, and the orientation
is the standard one (see Remark 2.2). Let the weight on vertex j be xj and
the edge weights be as shown in Fig. 1.

The complex adjacency matrix in the naturally ordered vertex basis is
given by

K(D2,2) =

⎛

⎜⎜⎝

x1 a12 + ι b12 0 a14 + ι b14
−a12 + ι b12 x2 a23 + ι b23 0

0 −a23 + ι b23 x3 a34 + ι b34
−a14 + ι b14 0 −a34 + ι b34 x4

⎞

⎟⎟⎠ ,
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and

Z(D2,2) = det K(D2,2)

= a2
12a

2
34+a2

12b
2
34+a2

34b
2
12 + a2

23a
2
14 + a2

23b
2
14 + b223b

2
14 + a2

14b
2
23 + b212b

2
34

+ 2a12a23a34a14 + 2a12a23b34b14 + 2a12a34b23b14 + 2a23a34b12b14

− 2a12a14b23b34 − 2a23a14b12b34 − 2a34a14b12b23 − 2b12b23b34b14

+ a2
12x3x4 + a2

23x1x4 + a2
34x1x2 + a2

14x2x3 + b212x3x4 + b223x1x4

+ b234x1x2 + b214x2x3 + x1x2x3x4.

For the remainder of this section, we will consider the special case of
dicots without multiple edges which can be embedded in a plane.

Definition 2.9. A dicot G = [V,A,B] is said to be pure if there is at most one
edge (either solid or dashed) between any pair of distinct vertices.

Note that complete dicots Da,b are never pure.

Definition 2.10. A dicot G = [V,A,B] is said to be planar if G is pure, [V,A∪B]
is a planar graph and every face has an even number of dashed edges.

In the interest of brevity, we will identify a dicot with its planar embed-
ding. We first define the generalisation of the Kasteleyn orientation of a graph
for planar dicots. We say that a face in a planar dicot is simple if it cannot be
decomposed into a union of smaller faces. Recall that in a dicot, orientations
are only assigned to solid edges. Note that the number of dashed edges in a
planar dicot is always even by Definition 2.10.

Definition 2.11. Let G be a planar dicot. Then a Kasteleyn orientation O for
G is one for which the number of clockwise-oriented solid edges plus half the
number of dashed edges is odd for every simple face.

By considering a spanning tree of the dual graph of planar dicots exactly
as for planar graphs, it is easy to see that the following holds.

Proposition 2.12. Let G be a planar dicot. Then there exists a Kasteleyn ori-
entation.

Proof. The proof proceeds similar to that for planar graphs. Consider the dual
graph Ĝ of G, where we include the outer (infinite) face and which can have
multiple edges. We consider every edge of G crossing a solid (resp. dashed)
edge of G to be solid (resp. dashed). Let T be a spanning forest of Ĝ consisting
of purely solid edges. This is always possible because of the assumptions on G.

We first orient the solid edges of G not intersecting with T in any way that
we like. We now claim that we can orient the solid edges of G intersecting with
T in a way that we obtain a Kasteleyn orientation according to Definition 2.11.
This is always possible to do inductively starting with the leaves of the trees
in T . In particular, if a simple face is bounded purely by dashed edges, the
spanning forest contains a tree which is a singleton vertex and nothing needs
to be done. �
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Figure 2. A 4 × 3 “grid dicot” with the vertices labelled so
that the canonical orientation (see Remark 2.2) is Kasteleyn

For planar dicots with a Kasteleyn orientation, we give an alternate com-
binatorial definition of the weight of a loop in the monopole-dimer model.

Corollary 2.13. Let G be a planar dicot with a Kasteleyn orientation. Then the
weight of a loop � = (v1, . . . , v2m) in the monopole-dimer model is given by

w(�) = (−1)
number of vertices in V

enclosed by � ×
2m∏

j=1

{
a(vj , vj+1) if ej is a solid edge,
b(vj , vj+1) if ej is a dashed edge.

Proof. We need to show that this definition of the weight is equivalent to that
in 2.1. The proof follows mutatis mutandis from [2, Theorem 3.3] by setting
of to be the number of clockwise-oriented solid edges plus half the number of
dashed edges for a face f . �

Such planar dicots naturally arise when considering subsets of the two-
dimensional grid graphs.

Remark 2.14. Consider the m × n grid graph and convert it into a dicot by
setting all vertical edges to be dashed and orienting the solid edges as those in
Fig. 2. This is then a Kasteleyn orientation for a planar dicot. Corollary 2.13
extends the observation of Wu [10] about assigning sign ι =

√−1 to vertical
edges in grid graphs to obtain a Kasteleyn orientation.

We will generalise the planar dicot model in Remark 2.14 to grids with
both solid and dashed vertical edges in Sect. 4.3.

A natural question is the following.

Question 2.15. Classify all dicots G with arbitrary weights such that Z(G) is
a positive polynomial, i.e. all monopole-dimer configurations contribute with a
positive sign.

We note that complete dicots do not satisfy this condition. For example,
no choice of orientation of the solid edges in Example 2.8 will make the parti-
tion function Z(D2,2) a positive polynomial. We will give a nontrivial example
of a family of such graphs which are nonplanar in Sect. 4.4.
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3. Squareness for the Monopole-Dimer Model

In this section, we will prove that the monopole-dimer model on graphs with
a fixed-point-free involution is a perfect square and give a combinatorial inter-
pretation of the square root in terms of a monopole-dimer model on a related
dicot.

The monopole-dimer model for graphs G has been defined in [2]. On
bipartite graphs, the monopole-dimer model can be read from Definition 2.5
on a dicot with no dashed, i.e. B-type, edges. In that case, b(v, v′) = 0 for
all v, v′ ∈ V and the signed adjacency matrix K(G) given by Definition 2.6
contains only real entries. This point will come in useful later.

Recall that an automorphism π of a weighted graph G = [V,E] is a
bijection from the V to itself which preserves the vertex-edge connectivity as
well as vertex- and edge-weights.

Definition 3.1. Let G = [V,E] be a connected graph and π be an automor-
phism of G such that π is a fixed-point free involution. We say that a partition
P = {P1, P2} of V with |P1| = |P2| is adapted to π if the following conditions
hold.
(1) v ∈ P1 if and only if π(v) ∈ P2,
(2) there is no edge between v and π(v) for all v ∈ P1,
(3) for each edge (v, v′) within P1, the orientation of the edge (v, v′) is the

same as that of (π(v), π(v′)), and
(4) for v, v′ ∈ P1, the edges (v, π(v′)) and (v′, π(v)) are either both oriented

from P1 to P2 or both oriented from P2 to P1.

Notice that the last condition in the above definition is consistent with
our choice of canonical orientation (see Remark 2.2) since we can choose to
label the vertices of P1 with {1, . . . , n} and those of P2 with {n + 1, . . . , 2n}.

Proposition 3.2. Let G = [V,E] be a connected graph and π be an automor-
phism of G which is a fixed-point free involution. If a partition adapted to π
exists, it is unique.

Proof. Suppose P = {P1, P2} and P ′ = {P ′
1, P

′
2} are two distinct partitions

adapted to π. Since G is connected, there must be edges connecting P1 to P2,
as well as P ′

1 to P ′
2. Let Pi,j = Pi ∩P ′

j for 1 ≤ i, j ≤ 2. We first claim that there
must exist vertices v ∈ P1,1 and w ∈ P1,2 which are connected by an edge. If
no such pair of vertices exist, then all the edges between P1 and P2 are those
between P1,1 and P2,2, and P1,2 and P2,1. But this makes G disconnected.

Thus, (v, w) is an edge. Hence, π(v) ∈ P2,2 and π(w) ∈ P2,1 are also
connected by an edge. Without loss of generality, assume that the (v, w) vertex
is oriented from v to w. By the adaptedness of P, the (π(v), π(w)) edge is
oriented from π(v) to π(w), but by the adaptedness of P ′, it is oriented the
other way, which is a contradiction. �

Definition 3.3. Let G = [V,E] be a connected graph, π be an automorphism
of G which is a fixed-point free involution and P be a partition adapted to π.
Then the quotient dicot corresponding to the pair (π,P) is D = G/π whose
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Figure 3. The graph G and the dicot quotient G̃ of Exam-
ple 3.5 with weights indicated. The vertices are labelled so
that the orientation is canonical (see Remark 2.2)

solid edges are given by the subgraph of G restricted to P1 (or equivalently
P2) and whose dashed edges are given by those edges (u, π(v)) ∈ G such that
u ∈ P1, v ∈ P2.

Figure 3 gives an illustration of a graph and its quotient dicot.

Theorem 3.4. Let G be a bipartite connected graph with an involution π pre-
serving G and a partition P = {P1, P2} of V adapted to π. Consider the
quotient dicot G̃ = G/π. If G̃ is also bipartite, then the partition function of
the monopole-dimer model on the graph G, Z(G), is given by

Z(G) = Z(G̃)2.

Proof. We first consider the signed adjacency matrix K(G) with the vertex
order (v1, . . . , vn, π(v1), . . . , π(vn)), where vj ∈ P1 and the order of the vertices
within P1 is arbitrary. It is natural to write K(G) in 2 × 2 block form. Since
P is adapted to π, the (1, 1) and (2, 2) blocks are identical. Moreover, by the
fourth condition in Definition 3.1, the (1, 2) block is a symmetric matrix. Thus,
the signed adjacency matrix can be written as

K(G) =

(
M B

−B M

)
.

We now use the identity
(

ι/2 · 1 −ι/2 · 1
1/2 · 1 1/2 · 1

)
·
(

M − ιB 0

0 M + ιB

)
·
(

−ι1 1

ι1 1

)

=

(
M B

−B M

)
,
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and take the determinant. The determinant of the first and last matrices on
the right are easily calculated since the block matrices commute, and we obtain
(i/2)n and (−2i)n, respectively. Thus,

det K(G) = det(M + ιB) det(M − ιB). (3.1)

Let K(G̃) be the complex adjacency matrix for G̃ in the same ordered basis
(v1, . . . , vn). We claim that K(G̃) = M + ιB. To see this, first note that as the
diagonal entries of B are zero by the second condition in Definition 3.1, the
monopole weights are as expected. Moreover, the dashed edges arise exactly
as given in Definition 3.3.

It, therefore, remains to show that det K(G̃) = det(M+iB) is real. But we
have explicitly shown that the determinant of the complex adjacency matrix
is always real during the proof of Theorem 2.7. Therefore,

det K(G) = det K(G̃)det K(G̃) = det K(G̃)2,

which proves the result. �

As an application, Theorem 3.4 will be used to justify the squareness
of the monopole-dimer model for cycles and rectangular grid proved in [2] in
Sects. 4.1 and 4.2. However, we first illustrate the theorem by considering an
example.

Example 3.5. Let G be the bipartite graph shown in Fig. 3 with edge-weights
as shown and vertex weights xj for 1 ≤ j ≤ 6 satisfying xj = xj+3 for 1 ≤ j ≤
3. The map π : j 
→ j +3 mod 6 on the vertex set of G then extends naturally
to an involution on G. The partition P = {{1, 2, 3}, {4, 5, 6}} is adapted to π.

The partition function of the monopole-dimer model on G is given by

Z(G) = det

⎛

⎜⎜⎜⎜⎜⎜⎝

x1 a12 0 0 b12 0
−a12 x2 a23 b12 0 b23

0 −a23 x3 0 b23 0
0 −b12 0 x1 a12 0

−b12 0 −b23 −a12 x2 a23

0 −b23 0 0 −a23 x3

⎞

⎟⎟⎟⎟⎟⎟⎠

=
(
x1x2x3 + a2

12x3 + a2
23x1 + b212x3 + b223x1

)2
.

The dicot G̃ = G/π is shown in Fig. 3 with vertex set {1, 2, 3}.

Z(G̃) = det

⎛

⎝
x1 a12 + ι b12 0

−a12 + ι b12 x2 a23 + ι b23
0 −a23 + ι b23 x3

⎞

⎠

= x1x2x3 + a2
12x3 + a2

23x1 + b212x3 + b223x1.

4. Special Families

We consider some families of dicots, calculate the partition function of the
monopole-dimer model on them and use the exact results to calculate the free
energy.
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Figure 4. The cycle graph C8 on the left and the cycle dicot
C4 on the right. In both, the orientations are canonical (see
Remark 2.2)

4.1. Cycle Dicots

Theorem 3.4 gives an explanation for the squareness of the monopole-dimer
model on the cycle graph C4n with vertex weights x and edge-weights a. It
was shown in [2, Example 3.4] that

Z(C4n) =
(
a2nL2n(x/a)

)2
,

where Ln(x) is the Lucas polynomial defined by the recurrence Ln(x) =
xLn−1(x) + Ln−2(x) with initial conditions L0(x) = 2, L1(x) = x.

Consider the cycle dicot C2n on vertices {1, . . . , 2n} where the edges (j, j+
1) are solid for 1 ≤ j ≤ 2n − 1 and the sole dashed edge is (1, 2n). See Fig. 4
for an illustration for the case n = 2. While this dicot seems to be planar, it
does not quite fit Definition 2.10. However, it is a family of graphs that does
belong to the classification in Question 2.15.

The partition function for the monopole-dimer model on this cycle dicot
is

Z(C2n) = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x a 0 · · · 0 ι a

−a
. . . . . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · 0
. . . . . . a

ι a 0 · · · 0 −a x

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By writing down a recurrence and using identities relating Lucas and Fibonacci
polynomials, one can show that the right-hand side is given by a2nL2n(x/a)
in agreement with Theorem 3.4.

It is well known (see, for example, [5]) that the Lucas polynomials can
be written as



248 A. Ayyer

Ln(x) =
n−1∏

j=0

(
x − 2ι cos

(2j + 1)π
2n

)
.

Using this expression, we can calculate the free energy

F (C) := lim
n→∞

1
2n

log a2nL2n

(x

a

)

= log a + lim
n→∞

1
2n

n−1∑

j=0

log
(

x2

a2
+ 4 cos2

(2j + 1)π
4n

)
.

Converting the last sum to a Riemann integral, we obtain

F (C) = log a +
1
2

∫ 1

0

log
(

x2

a2
+ 4 cos2

πt

2

)
dt,

which can be evaluated exactly, leaving us with the simple expression

F (C) = log

(
x +

√
x2 + 4a2

2

)
.

4.2. Rectangular Grid Graphs

Let Q2m,2n be the 2m × 2n rectangular grid graph with horizontal (resp. ver-
tical) edge-weights a (resp. b) and vertex-weights x. Q2m,2n inherits the fixed-
point free involution π which maps vertex (j, k) to (2m + 1 − j, 2n + 1 − k) for
1 ≤ j ≤ 2m, 1 ≤ k ≤ n.

We consider the orientation O on Q2m,2n given as follows: (j, k) → (j +
1, k) if k is even and the other way if k is odd, and (j, k) → (j, k + 1) if
k < n and the other way if k ≥ n. It is easy to see that O is a Kasteleyn
orientation [7].

For the monopole-dimer model on the 2m × 2n rectangular grid, the
partition function had an explicit form.

Theorem 4.1. ([2, Theorem 4.1]). The partition function of the monopole-
dimer model on the graph Q2m,2n is given by

m∏

j=1

n∏

k=1

(
x2 + 4a2 cos2

(
jπ

2m + 1

)
+ 4b2 cos2

(
kπ

2n + 1

))2

.

Then one can check from Definition 3.1 that P = {P1, P2} with

P1 = {(j, k) | 1 ≤ j ≤ 2m, 1 ≤ k ≤ n} and

P2 = {(j, k) | 1 ≤ j ≤ 2m,n + 1 ≤ k ≤ 2n}
is an adapted partition. Then define the quotient dicot Q̃2m,n = Q2m,2n/π by
Definition 3.3. The dicots Q̃2m,n are again not planar because they fail to be
pure (see Definition 2.9) at a single edge. An illustration of the dicot Q̃4,3 is
given in Fig. 5. We are now in a position to apply Theorem 3.4 and we thus
obtain the following corollary.
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1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

17 18 19 20

24 23 22 21

1 2 3 4

8 7 6 5

9 10 11 12

Figure 5. Illustration of Q4,6 on the left and Q̃4,3 on the
right. The vertices are labelled so that the orientation is
canonical (see Remark 2.2)

Corollary 4.2. The partition function of the monopole-dimer model on the
dicot Q̃2m,n is given by

m∏

j=1

n∏

k=1

(
x2 + 4a2 cos2

(
jπ

2m + 1

)
+ 4b2 cos2

(
kπ

2n + 1

))
.

The computation of the free energy F (Q̃) has already been performed in
[2, Section 5].

4.3. Rectangular Grid Dicots

We now consider the monopole-dimer model on the dicot Q(v)
m,n, which has the

same vertex set as and includes all the edges of Qm,n but has in addition a
dashed edge for every vertical solid edge. Horizontal edges are assigned weight
a, vertical solid edges, b1, vertical dashed edges, b2, and vertices x. Since Q(v)

m,n

are not pure by Definition 2.9, they are non-planar. Note that not all config-
urations have positive weight; see the example in Fig. 6. Set |b| =

√
b21 + b22.

Define the function

Ym(b, c;x) =
�m/2�∏

j=1

(
x2 + 4(b2 + c2) cos2

(
jπ

m + 1

))
.

Then we have the following result.

Theorem 4.3. The partition function of the monopole-dimer model on Q(v)
m,n is

given by
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1 2 3 4

8 7 6 5

9 10 11 12

1 2 3 4

8 7 6 5

9 10 11 12

Figure 6. Illustration of the dicot Q(v)
4,3 on the left and a par-

ticular monopole-dimer configuration on the right with weight
−a4 b41 b22 x2

Z(v)
m,n =

�m/2�∏

j=1

�n/2�∏

k=1

(
x2 + 4a2 cos2

(
jπ

m + 1

)
+ 4|b|2 cos2

(
kπ

n + 1

))2

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if m and n are even,

Ym(a, 0;x) if m is even and n is odd,
Yn(b1, b2;x) if m is odd and n is even,

xYm(a, 0;x)Yn(b1, b2;x) if m and n are odd.

(4.1)

Proof. The strategy of diagonalisation is very similar to that of [2, Theorem
4.1]. The sole difference is in the matrices involved in the diagonalisation pro-
cess. Consider the n × n tridiagonal Toeplitz matrix given by

Tn(c−1, c0, c1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 0 · · · 0 0

c−1
. . . . . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · 0
. . . . . . c1

0 0 · · · 0 c−1 c0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is well known (see, for example, [9]) that the eigenvalues of Tn(c−1, c0, c1)
are

λq = c0 + 2
√

c1c−1 cos
qπ

n + 1
, q = 1, . . . , n,

and the matrix of column eigenvectors is

un(c−1, c1)j,q =
(

c−1

c1

)(j−1)/2

sin
qjπ

n + 1
, j = 1, . . . , n,

respectively. Let Jm be the antidiagonal matrix of ones of size m. Follow-
ing Kasteleyn [7], the complex adjacency matrix with the standard ordering
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(explained in the beginning of Sect. 4.2) can be written using tensor notation
as

K(v)
m,n = 1n ⊗ Tm(−a, x, a) + Tn(−b1 + ι b2, 0, b1 + ι b2) ⊗ Jm.

Now we perform a similarity transformation using un(−b1 + ι b2, b1 + ι b2) ⊗
um(−a, a) leading to a block diagonal matrix whose k’th block is the cruciform
matrix (i.e. one whose nonzero entries lie only on the diagonal and antidiago-
nal)

⎛

⎜⎜⎜⎝

x + 2ι a cos π
m+1 (−1)m−12ιm |b| cos πk

n+1

. . . . . .

. . . . . .
(−1)02ιm |b| cos πk

n+1 x + 2ι a cos mπ
m+1

⎞

⎟⎟⎟⎠ .

The determinant of the block-diagonal matrix is thus easily computed. The
four cases where m and n are of different parities are handled exactly as in the
proof of [2, Theorem 4.1]. �

When we set b1 = 0, we obtain a planar dicot for which we can define a
Kasteleyn orientation using Proposition 2.12. This then matches the orienta-
tion defined by Wu [10] (see Remark 2.14).

The free energy of the monopole-dimer model on the infinite grid dicot
with vertical dashed edges limm,n→∞ Q(v)

m,n is then given by

F (Q(v)) = lim
m,n→∞

1
mn

log Z(v)
m,n

=
2
π2

∫ π/2

0

dθ

∫ π/2

0

dφ ln
(
x2 + 4a2 cos2 θ + 4|b|2 cos2 φ

)
,

and the results are analogous to that of the monopole-dimer model on the grid
graph described in [2, Section 5] with b there replaced by |b|.
4.4. Wheel Dicots

For n an odd integer, define the wheel dicot of order n, denoted Wn, to be a
dicot on the vertex set V = [2n] with solid edges such that the graph [V,A] is
the ordinary cycle graph C2n and dashed edges connecting antipodal vertices.
It is easy to see that Wn is indeed a dicot (see Definition 2.1). The underlying
graph [V,A∪B] of W3 is isomorphic to K3,3. Thus, for n ≥ 3, Wn is non-planar.

We now label the vertices of Wn as follows starting by labelling an arbi-
trary vertex 1. Proceeding clockwise, we label every alternate vertex with the
next integer until we assign label n. We now label the vertex antipodal to
1 by n + 1. Similarly, proceeding clockwise, we label every alternate vertex
with the next integer until we assign label 2n. At this point, we have labelled
every vertex. See Fig. 7 for the dicot W5 with its labelling. We then assign
the canonical orientation on solid edges (see Remark 2.2). Thus, each vertex
is oriented either outwards or inwards on both solid edges.

Consider the monopole-dimer model on Wn for odd n, where vertex-
weights are x, solid edge-weights are a and dashed edge-weights are b. Then
we have the following result.
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Figure 7. The wheel dicot W5 on the left and a particular
monopole-dimer model configuration on the right with weight
x2a4b4

Lemma 4.4. For odd n, every monopole-dimer configuration on Wn has a pos-
itive weight.

Proof. Since the weights of doubled edges and isolated vertices have positive
sign, it suffices to prove that every loop has positive weight. We will divide
the proof in two parts. We will first show that every nontrivial loop involving
dashed edges is 8-shaped with exactly two dashed edges. An 8-shaped loop is
one involving exactly two dashed edges. In the example monopole-dimer model
configuration in Fig. 7, (1, 6, 4, 9, 1) is an 8-shaped loop. In the second part,
we will show that all loops have positive weight.

The first statement follows from the fact that every loop contains an even
number of dashed edges. For example, suppose we have a loop in W5 of Fig. 7
starting with 6 − −4 − −9 − −2 − − · · · . To eventually get back to 6, we need
an even number of dashed edges to reach the same side of the 4–9 dashed edge
as 6. But this would imply that we have an odd number of total dashed edges.
Thus, a loop starting 6–4–9 has to extend as 6 − −4 − −9 − −1 − − · · · . It is
now easy to see that there has to be exactly one more dashed edge in the loop.

Recall the formula for the weight of a loop of length 2m, (2.1). First
consider (trivial) loops of length 2 with m = 1. Such loops have positive
weight in both solid and dashed cases. Next, consider loops without dashed
edges. The only such loops without dashed edges are the circumferences. In
this case, m = n, and there are n negative orientations, leading to a positive
weight.

Lastly, for 8-shaped loops of length 2m, we have a prefactor of −1 in
the definition of the weight in (2.1) and a factor of −1 from the two dashed
edges, leading to an overall factor of +1. We thus have to show that the sign
coming purely from orientations of solid edges is +1. First, note that will have
m − 1 solid edges on either side. If m is odd, then there are (m − 1)/2 edges
of opposite orientation on either side leading to a total sign of (−1)m−1 = +1.
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If m is even, we have either (m − 2)/2 or m/2 edges with opposite orientation
on one side. But because dashed edges connect vertices on different (bipartite)
parts, we will have the same number of edges with opposite orientation on the
other side too, leading to a total sign of either (−1)m−2 or (−1)m, which is
again +1. �

Theorem 4.5. The partition function of the monopole-dimer model on the
wheel dicot Wn for odd n is given by

Z(Wn) =
n−1∏

j=0

(
x2 + b2 + 4a2 cos2

πj

n

)

= (x2 + b2 + 4a2)
(n−1)/2∏

j=1

(
x2 + b2 + 4a2 cos2

πj

n

)2

.

Proof. We will use Theorem 2.7 to calculate Z(Wn). The complex adjacency
matrix K(Wn) using the natural order of the vertices is given by

K(Wn) =

(
x1 aA + ι b1

−aA + ι b1 x1

)
,

where A is an n×n symmetric (0, 1)-band matrix consisting of two consecutive
bands above and below the diagonal equidistant from both ends. Since both
the matrices in the top-blocks commute, the determinant of K(Wn) can be
written in a way analogous to a 2 × 2 matrix as

det K(Wn) = det(x1 · x1 − (aA + ι b1) · (−aA + ι b1))

= det((x2 + b2)1 + a2A2). (4.2)

It now suffices to calculate the eigenvalues of A2. But this is easily done since
A2 is of the form

A2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 · · · 0 1

1
. . . . . . 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · 0
. . . . . . 1

1 0 · · · 0 1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and hence is a circulant matrix. Thus, the eigenvalues of A2 are given by

λj = 2 + ωj + ωn−1
j , for j = 0, 1, . . . , n − 1,

where ωj = exp(2πι j/n) is the n’th root of unity. It is easy to see that

λj = 4 cos2
πj

n
.

Since the determinant of K(Wn) is the product of its eigenvalues, we use this
expression in (4.2) to complete the proof. �
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From Theorem 4.5, one can also calculate the free energy of the monopole-
dimer model for wheel dicots. Since the relevant parameter is the ratio of 4a2

and x2 + b2, we set the former to α and the latter to 1. The free energy is

F (W) := lim
n→∞

1
n

log Z(Wn),

= lim
n→∞

1
n

n−1∑

j=0

log
(

1 + α cos2
πj

n

)
.

We replace the right-hand side by the Riemann integral to obtain

F (W) =
∫ 1

0

log
(
1 + α cos2(πt)

)
dt,

which is essentially the same integral that we saw for the free energy of cycle
dicots in Sect. 4.1. Performing the integral, we obtain

F (W) = 2 log
(

1 +
√

1 + α

2

)
.
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