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A Refined Energy Bound for Distinct
Perpendicular Bisectors

Ben Lund

Abstract. Let P be a set of n points in the Euclidean plane. We prove
that, for any ε > 0, either a single line or circle contains n/2 points of P,
or the number of distinct perpendicular bisectors determined by pairs of
points in P is Ω(n52/35−ε), where the constant implied by the Ω notation
depends on ε. This is progress toward a conjecture of Lund, Sheffer, and
de Zeeuw, that either a single line or circle contains n/2 points of P,
or the number of distinct perpendicular bisectors is Ω(n2). The proof
relies bounding the size of a carefully selected subset of the quadruples
(a, b, c, d) ∈ P4 such that the perpendicular bisector of a and b is the
same as the perpendicular bisector of c and d.
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1. Introduction

Many classic problems in discrete geometry ask for the minimum number of
distinct equivalence classes of subsets of a fixed set of points under some ge-
ometrically defined equivalence relation. The seminal example is the Erdős
distinct distance problem [4]: How few distinct distances can be determined
by a set of n points in the Euclidean plane? Guth and Katz have nearly re-
solved the Erdős distinct distance question [6], but many questions of this type
remain wide open.

In this paper, we investigate the question: How few distinct perpendicular
bisectors can be determined by a set of n points in the Euclidean plane?
Distinct perpendicular bisectors were previously investigated by the author,
Sheffer, and de Zeeuw [9], and a finite field analog was studied by Hanson, the
author, and Roche-Newton [7].
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Without any additional assumption, it is not too hard to give a complete
answer to this question. The vertices of a regular n-gon determine n distinct
perpendicular bisectors. Each point of an arbitrary point set P of n points
determines n − 1 distinct bisectors with the remaining points of P, so the
only question is whether it is possible that n points determine only n − 1
bisectors. A set of two points determines only a single perpendicular bisector,
and in Sect. 2.1, we give a simple geometric argument showing that n points
determine at least n bisectors when n > 2.

Assume that P is a set of n points such that no circle or line contains
more than K points of P.

The author, Sheffer, and de Zeeuw [9] proved the following lower bound
on |B|, the number of distinct bisectors determined by P. For any ε > 0,

|B| = Ω
(
min

{
K−2/5n8/5−ε,K−1n2

})
, (1)

where the implied constant depends on ε. The same paper proposes the fol-
lowing conjecture.

Conjecture 1. For any δ > 0, there is a constant c > 0 depending on δ such
that either a single line or circle contains (1 − δ)n points of P , or |B| ≥ cn2.

In this paper, we prove the following.

Theorem 2. For any δ, ε > 0, there is a constant c > 0 depending on δ and
ε such that either a single circle or line contains (1 − δ)n points of P, or
|B| ≥ cn52/35−ε).

This improves on the earlier result (1) of the author, Sheffer, and de
Zeeuw in the case that some line or circle contains Ω(n2/7+ε) points of P and
gives the first non-trivial result on Conjecture 1 in the case that a single line
or circle contains a constant fraction of the points of P.

The proof (in [9]) of inequality (1) uses the, now standard, method of
bounding the “energy”1 of the quantity in question. Specifically, we write
B(a, b) for the perpendicular bisector of distinct points a, b, and define the
bisector energy to be the size of the set

Q = {(a, b, c, d) ∈ P4 : a �= b, c �= d,B(a, b) = B(c, d)}.

It is easy to see that |Q| ≤ n2(n−1), since each element of Q is determined by
(a, b, c). Taking P to be the vertices of a regular n-gon shows that this bound
is tight. In [9], it is shown that

|Q| = O
(
K2/5n12/5+ε + Kn2

)
, (2)

1The term additive energy, referring to the number of quadruples (a, b, c, d) in some under-
lying set of numbers such that a + b = c + d, was coined by Tao and Vu [8]. Starting with

the work of Elekes and Sharir [3], and Guth and Katz [6] on the distinct distance problem,
the strategy of using geometric incidence bounds to obtain upper bounds on analogously
defined energies has become indispensable in the study of questions about the number of
distinct equivalent subsets.
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where K is the largest number of points of P contained in any line or circle.
The same paper includes the conjecture that the strongest possible bound is
|Q| = O(Kn2). By the Cauchy–Schwarz inequality (see, for example, the proof
of Lemma 12),

|B| ≥ n2(n − 1)2/|Q|.
From here, a simple substitution gives (1).

Following this argument, even a tight bound of |Q| = O(Kn2) would only
give |B| ≥ Ω(n2K−1). This only meets the bound of Conjecture 1 when K is
a constant not depending on n, and does not give any non-trivial bound for
K = Ω(n). Hence, it initially seems hopeless to use an energy bound to make
substantial progress toward Conjecture 1 in the case that a single line or circle
contains many points of P.

The main new idea in this paper is to apply an energy bound to a refined
subset of the pairs of points of P. We show that there is a large set Π ⊂ P ×P
of pairs of points, such that

Q∗ = {(a, b, c, d) ∈ P4 : (a, b), (c, d) ∈ Π, B(a, b) = B(c, d)}
is small. In particular, we define Π to be the set of pairs of points of P that
are not contained in any circle or line that contains too many points of P. We
use a point–circle incidence bound, proved in [1,2,10], to show that Π must
be large. We use a slightly modified version of the argument used to bound Q
in [9] to show that Q∗ must be small. An application of the Cauchy–Schwarz
inequality then shows that there must be many distinct bisectors determined
by pairs of points in Π, which of course implies that there must be many
bisectors in total.

2. Proofs

Throughout this section, P is a set of n points in the plane, and B is the set
of distinct perpendicular bisectors determined by the pairs of points of P. For
any two distinct points a, b, we use B(a, b) to denote the perpendicular bisector
of a and b, and use |ab| to denote the distance between a and b.

We rely on the connection between perpendicular bisectors and reflec-
tions. This is that, for any two distinct points a, b in the plane, b is the reflection
of a over B(a, b).

2.1. There Are At Least n Bisectors

We give the best possible general lower bound on |B|.
Proposition 3. If n > 2, then |B| ≥ n.

Proof. Since any point a ∈ P determines n − 1 distinct bisectors with the
remaining points P \ {a}, it is sufficient to show that there are three points
a, b, c such that B(b, c) is distinct from B(a, x) for any x ∈ P.

Suppose that there is a line � containing at least three points of P. Order
the points along �, let the first two points of P ∩ � be b, c, and let a be any
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Figure 1. Since |ab| < |bc|, both a and b must lie on the
same side of B(b, c)

b
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Figure 2. If B(a, x) = B(b, c), and a and c are on opposite
sides of ax, then ∠abx < ∠abc

other point of P ∩ �. The point x such that B(a, x) = B(b, c) lies in � and
precedes b, c, and hence cannot be in P.

Now suppose that no three points are collinear. Let a, b ∈ P so that |ab|
is minimal, and let c ∈ P so that the angle ∠abc is minimal. If a is on the
same side of B(b, c) as c, then |ac| ≤ |ab|, which is a contradiction. If a is on
the line B(b, c), then there is no point x such that B(a, x) = B(b, c), and we
have accomplished our goal. Hence, we may suppose that a and b are on the
same side of B(b, c)—see Fig. 1.

Let x be the reflection of a over B(b, c). Since x is in the interior of the
cone defined by ∠abc, we have that ∠abx is less than ∠abc—see Fig. 2. Since
c was chosen so that ∠abc is minimal, x /∈ P, which completes the proof. �

2.2. Proof of Theorem 2

The proof of Theorem 2 has three main parts. First, we show that, for any ε >
0, if a single circle or line contains at least εn points of P, then Ω(n2) distinct
bisectors are determined, with the implied constant depending on ε. Second, we
show that, for suitably chosen constants c1, c2 > 0, if no circle or line contains
at least c2n points of P, then there is a set Π of Ω(n2) pairs of points such
that no pair of points in Π is contained in any circle that contains more than
M = c1n

2/7 log2/7 n points of P. Third, we apply an energy argument (as in
[9]) to show that, for any ε > 0, there are O(M2/5n12/5+ε + Mn2) quadruples
(a, b, c, d) of points in P such that B(a, b) = B(c, d) and (a, b), (c, d) ∈ Π, with
the implied constant depending on ε. From there, a straightforward application
of the Cauchy–Schwarz inequality finishes the proof.
Handling heavy circles. First, a geometric lemma.

Lemma 4. Let C be a circle or a line, and let p, q /∈ C with p �= q. Then,

|{(r, s) ∈ C × C : B(p, r) = B(q, s)}| ≤ 2.
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Figure 3. Illustration for Lemma 4. Both choices of r, s are
shown for the given p, q and C. The dashed circle is the re-
flection of C over the dashed line B(p, r) = B(q, s), and
the dotted circle is the reflection of C over the dotted line
B(p, r′) = B(q, s′)

Proof. If r, s ∈ C such that B(p, r) = B(q, s), then p, q is contained in the
reflection of C over B(p, r)—see Fig. 3. Since p �= q, there are at most two
reflections of C that contain (p, q) if C is a circle, and at most one such
reflection of C if C is a line. Since we can recover r, s uniquely given one of
these reflections, there are at most two choices for the pair (r, s). �

Combining Lemma 4 with a combinatorial argument gives the result.

Lemma 5. For any ε > 0, if a single line or circle contains exactly εn points
of P, then

|B| > min(ε/2, 1 − ε) · εn2/2.

Proof. Let C be a circle or line that contains εn points of P. Let P ′ ⊂ P be
a set of k = min(ε/2, 1 − ε)n points that are not in C. Let p1, p2, . . . pk be an
arbitrary ordering of the points of P ′. Then, by Lemma 4, pi determines a set
B(pi) of at least εn − 2(i − 1) distinct perpendicular bisectors with the points
of P ∩ C, such that no element of B(pi) is an element of B(pj) for any j < i.
Summing over i, we have

k∑
i=1

|B(pi)| ≥
k∑

i=1

(εn − 2(i − 1)) = εkn − k2 + k > εnk/2,

which proves the lemma. �

We will apply Lemma 5 for some ε < 2/3. In this range, the bound is
|B| > ε2n2/4.
Refining the pairs of points. Let c1, c2 > 0, with specific values to be fixed
in the proof of Lemma 7. Let Π ⊆ P × P be the set of ordered pairs of
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distinct points of P such that no pair in Π is contained in a line or a circle
that contains more than c1n

2/7 log2/7 n points of P. We use a point–circle
incidence bound to show that, under the assumption that no circle contains
c2n points, |Π| = Ω(n2).

Denote by sk the number of lines and circles that each contain at least k
points of P, denote by s=k the number of lines and circles that each contain
exactly k points of P.

The strongest known point–circle incidence bound is derived using a
combination of the papers by Agarwal, Nevo, Pach, Pinchasi, Sharir, and
Smorodinsky [1] and by Marcos and Tardos [10]. A slightly weaker bound
was proved earlier by Aronov and Sharir [2]. Combining the strongest known
point–circle incidence bound with the point–line incidence bound proved by
Szemerédi and Trotter [11] gives the following bound on sk.

Lemma 6.

sk = O(n3k−11/2 log n + n2k−3 + nk−1).

Recall that the definition of Π depends on c1, which we fix in the next
Lemma.

Lemma 7. There are constants c1, c2 > 0 such that either a single line or circle
contains c2n points of P, or |Π| = Ω(n2).

Proof. Let M = c1n
2/7 log2/7 n, and let U = c2n. Assume that no circle or

line contains U points of P, since otherwise we are done.
Let T be the number of triples (p, q, C) of two points p, q and a line or

circle C such that p, q ∈ C ∩ P and M ≤ |C ∩ P| ≤ U . Then,

T =
U∑

k=M

k2s=k =
U∑

k=M

k2(sk − sk+1) ≤
U∑

k=M+1

2ksk + M2sM .

We use Lemma 6 to bound sk. Since the term n3k−11/2 log n is dominant
for k = M , this gives

T ≤ O

⎛
⎝ ∑

k≥M

n3k−9/2 log n +
∑
k≥M

n2k−2 +
∑
k≤U

n + n3M−7/2 log n

⎞
⎠ .

If we take c1 to be sufficiently large depending on the implied constant
in Lemma 6, then the first and fourth terms will each be bounded by n2/10,
and the second term will be bounded by O(n9/7 log−5/7 n). If we take c2 to be
sufficiently small, again depending on the implied constant in Lemma 6, then
the third term will be bounded by n2/10. Adding these contributions together
shows that T < n2/2.

Since T counts each pair of points that is contained in a circle that
contains at least M points of P (possibly more than once), |Π| ≥ n(n−1)−T =
Ω(n2). �
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a b
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Figure 4. Since B(a, b) = B(c, d), the pair (b, d) is the re-
flection of (a, c) over the line B(a, b), and so |ac| = |bd|

Bounding the energy. Next, we bound a refinement of the bisector energy
depending on Π. Our argument is essentially identical to proof of the analogous
bound in [9], and in fact we refer to [9] for many of the key facts used.

Let P2∗ ⊂ P2 be the set of pairs of distinct points of P. For each pair
(a, b) ∈ P 2∗, let C(a, b) be the maximum number of points on any circle or
line that contains a, b. Let

ΠK = {(a, b) ∈ P 2 : a �= b, C(a, b) ≤ K},

QK = {(a, b, c, d) ∈ P 4 : (a, b), (c, d) ∈ ΠK , B(a, b) = B(c, d)}.

Our goal is to prove an upper bound on QK . Note that, if B(a, b) =
B(c, d), then

(a + b − c − d) · (a − b) = 0, (3)

(a + b − c − d) · (c − d) = 0. (4)

Indeed, (a+b−c−d) is parallel to the line through the midpoints of (a, b) and
(c, d), hence (3) requires that this line be perpendicular to the line through
a and b, and (4) that this line be perpendicular to the line through c and d.
Hence, any quadruple that contributes to Q satisfies (3) and (4). There are
some quadruples (a, b, c, d) that satisfy (3) and (4), but do not contribute to
Q. However, these cases only occur if a = b or c = d; see [9, Lemma 3.1].

For any pair (a, c) of distinct points, let Sac be the set of pairs (b, d)
satisfying (3) and (4). Let G be the incidence graph between varieties {Sac :
(a, c) ∈ P 2∗} and pairs of points (b, d) ∈ P 2∗. Let GK be the subgraph of G so
that an edge (Sac, (b, d)) ∈ G is in GK if and only if (a, b), (c, d) ∈ ΠK . Note
that the edges of GK correspond exactly to the elements of QK .

In [9], the authors used a geometric incidence argument to bound the
number of edges in G. We will use the same argument to bound the number
of edges in GK ; the only difficulty is in identifying the property of GK that
enables us to run the argument of [9].

We need a couple of geometric facts from [9]. First, if (Sac, (b, d)) ∈ G,
then |ac| = |bd|. This is easy to derive from Eqs. (3) and (4): expand the
products and subtract (4) from (3). Also see Fig. 4.

Next, we have the following lemma, which gives a constraint on pairs (b, d)
such that B(a, b) = B(c, d) and B(a′, b) = B(c′, d) for fixed points a, c, a′, c′.

Lemma 8 [9, Lemma 3.2]. Let a, c, a′, c′ ∈ R
2 such that (a, c) �= (a′, c′), and

|ac| = |a′c′| = δ �= 0. There exist curves C1, C2 ⊂ R
2 depending on a, c, a′, c′,
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which are either two concentric circles or two parallel lines, such that, if
B(a, b) = B(c, d) and B(a′, b) = B(c′, d), then a, a′, b ∈ C1 and c, c′, d ∈ C1.

Now, we can establish the property we need from GK .

Lemma 9. If Sac and Sa′c′ more than K + 2 common neighbors in G, then
they have no common neighbors in GK .

Proof. We first show that, if c �= c′, then Sac and Sac′ have no common neigh-
bors in GK . Let (b, d) ∈ Sac. If b �= a and d �= c, then a, b, c, d are the ver-
tices of an isosceles trapezoid. Hence, c is determined uniquely by a, b, d, and
(b, d) /∈ Sac′ If b = a, then (a, b) /∈ ΠK , so (Sac, (b, d)) /∈ GK , and similarly
for the case d = c. By the same reasoning, Sac and Sa′c have no common
neighbors in GK for a �= a′.

Assume that a �= a′ and c �= c′, and let (b, d) ∈ Sac ∩ Sa′c′ . By Lemma
8, if d �= c and d �= c′, then b is contained in a line or circle C1 depending on
a, a′, c, c′. If d = c, then the location of b is uniquely determined by a′, c′, c,
and similarly if d = c′. Hence, if Sac ∩ Sa′c′ > K + 2, then C1 contains more
than K points of P. In this case, none of the pairs (a, b) with a, b ∈ C1 are in
ΠK , so the corresponding edges are missing in GK . �

The following is the general incidence bound we use to control the size
of GK . It is a slight generalization of a bound in [9], which is in turn a gener-
alization of a bound in [5]. See [5] for definitions of the algebraic terms used.

Theorem 10. Let S be a set of n constant-degree varieties, and let P be a set
of m points, both in R

d, where d ≥ 2. Let s ≥ 2 be a constant, and t ≥ 2 be a
function of m,n. Let G be the incidence graph of P ×S. Let G′ ⊆ G such that,
if a set L of s left vertices has a common neighborhood of size t or more in G,
then no pair of vertices in L has a common neighbor in G′. Moreover, suppose
that P ⊂ V , where V is an irreducible constant-degree variety of dimension e.
Then, for any ε > 0,

|G′| = O
(
m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + tm + n

)
,

with the implied constant depending on ε.

The proof of Theorem 10 is nearly identical to the proof of [9, Theorem
2.5]. Instead of reproducing the full proof here, we briefly state how to modify
the proof of [9, Theorem 2.5] to obtain the more general Theorem 10; the re-
mainder of this paragraph refers to the notation from the proof of [9, Theorem
2.5]. We partition GK into I1, I2, and I3 as in the proof of [9, Theorem 2.5].
Bounding |I2| and |I3| requires no change at all; these bounds only depend on
the fact that GK is Ks,t-free. Any incidence in I1 occurs in some irreducible
component W of V ∩Z(f), where Z(f) is the zero set of our partitioning poly-
nomial, such that W is fully contained in some variety S ∈ S. In bounding I1,
we need to make use of the observation that if there are at least t varieties of S
that fully contain W , then, by Lemma 9, no pair of vertices corresponding to
the points contained in W has a common neighbor in GK among the varieties
that contain W .

We now have all of the tools in place to bound |QK |.
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Lemma 11. For any 2 ≤ K ≤ n and ε > 0,

|QK | = O
(
K2/5n12/5+ε + Kn2

)
,

with the implied constant depending on ε.

Proof. Let δ1, . . . , δD denote the distinct non-zero distances determined by
pairs of distinct points in P. Let

P2
i = {(b, d) ∈ P2∗ : |bd| = δi},

Si = {Sac ∈ S : |ac| = δi},

G′
i = {(Sac, (b, d)) ∈ GK : |ac| = |bd| = δi}.

Let

mi = |P2
i | = |Si|.

As observed above, each quadruple (a, b, c, d) ∈ Q satisfies |ac| = |bd|.
Hence, it suffices to study each G′

i separately. That is, we have

|QK | = |GK | =
D∑

i=1

|G′
i|.

For each i ∈ [D], we apply Theorem 10 with: m = n = mi, d = 4, S = Si,
P = P2

i , s = 2, t = K + 3, and V = {(a, b) : |ab| = δi}, and e = 3. This gives,
for any ε > 0,

|G′
i| = O(K2/5m

7/5+ε
i + Kmi), (5)

with the implied constant depending on ε.
Let J be the set of indexes 1 ≤ j ≤ D for which the bound in (5) is

dominated by the term K2/5m
7/5+ε
j . By recalling that

∑D
j=1 mj = n(n − 1),

we get
∑
j �∈J

|G′
j | = O

(
Kn2

)
.

Next, we consider
∑

j∈J |G′
j | =

∑
j∈J O(K2/5m

7/5+ε
j ). By Hölder’s inequality,

∑
j∈J

m
7/5
j =

∑
j∈J

m
3/5
j (m2

j )
2/5 ≤

⎛
⎝∑

j∈J

mj

⎞
⎠

3/5 ⎛
⎝∑

j∈J

m2
j

⎞
⎠

2/5

.

Guth and Katz [6, Proposition 2.2] proved a tight bound on
∑

m2
j :

∑
m2

j = O(n3 log n).

Combining these estimates, for any ε > 0,
∑
j∈J

|G′
j | = Oε(K2/5n12/5+ε).

�
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Finishing the Proof. Lemma 7 is that |ΠM | = Ω(n2), where M = c1n
2/7 log2/7 n.

The following standard application of the Cauchy–Schwarz inequality shows
that the upper bound QM given in Lemma 11 implies a lower bound on |B|.
Lemma 12.

|B| = Ω
(
n4|QM |−1

)
.

Proof. Let

BM = {B(a, b) : (a, b) ∈ ΠM}.

For a line �, denote by w(�) the number of pairs (a, b) ∈ Π such that B(a, b) = �.
By the Cauchy–Schwarz inequality,

|QM | =
∑

�∈BM

w(�)2 ≥
( ∑

�∈BM

w(�)

)2

|BM |−1 = |Π|2|BM |−1.

Hence,

|B| ≥ |BM | ≥ |Π|2|QM |−1 = Ω
(
n4|QM |−1

)
.

�

Lemma 11 gives

|QM | = O(n88/35+ε).

Combining this with Lemma 12, we have

|B| = Ω(n52/35−ε),

which is Theorem 2.
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[4] Paul Erdős. On sets of distances of n points. The American Mathematical
Monthly, 53(5):248–250, 1946.
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