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Abstract. We examine two truncated series derived from a classical theta
identity of Gauss. As a consequence, we obtain two infinite families of
inequalities for the overpartition function po(n) counting the number of
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tions of these results.
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1. Introduction

An overpartition of a positive integer n is a partition of n in which the first
occurrence of a part of each size may be overlined [10]. For example, there are
8 overpartitions of 3:

3, 3̄, 2 + 1, 2̄ + 1, 2 + 1̄, 2̄ + 1̄, 1 + 1 + 1 and 1̄ + 1 + 1.

Let p(n) be the number of overpartitions of n. Then the generating function
of p(n) is

∞∑

n=0

p(n)qn =
(−q; q)∞
(q; q)∞

.
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Here and throughout this paper, we use the following customary q-series no-
tation:

(a; q)n =

{
1, for n = 0,

(1 − a)(1 − aq) · · · (1 − aqn−1), for n > 0;

(a; q)∞ = lim
n→∞(a; q)n;

[
n
k

]
=

⎧
⎨

⎩

(q; q)n

(q; q)k(q; q)n−k
, if 0 ≤ k ≤ n,

0, otherwise.

Andrews and Merca [2] considered Euler’s pentagonal number theorem
and proved a truncated theorem on partitions. Subsequently, Guo and Zeng
[12] considered the following identity of Gauss

1 + 2
∞∑

n=1

(−1)nqn2
=

(q; q)∞
(−q; q)∞

, (1.1)

and they proved a new truncated theorem on overpartitions. Namely, for k ≥ 1,

(−q; q)∞
(q; q)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

= 1 + (−1)k
∞∑

n=k+1

(−q; q)k(−1; q)n−kq(k+1)n

(q; q)n

[
n − 1
k − 1

]
. (1.2)

As a consequence of this result, they derived the following inequality for p(n):

(−1)k

⎛

⎝p(n) + 2
k∑

j=1

(−1)jp(n − j2)

⎞

⎠ ≥ 0, (1.3)

with strict inequality if n ≥ (k + 1)2. Very recently, Andrews and Merca [3]
provided the following revision of (1.2):

(−q; q)∞
(q; q)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

= 1 + 2(−1)k (−q; q)k

(q; q)k

∞∑

j=0

q(k+1)(k+j+1)(−qk+j+2; q)∞
(1 − qk+j+1)(qk+j+2; q)∞

. (1.4)

From this identity, they immediately deduced an interpretation of the sum in
the inequality (1.3) considering Mk(n), the number of overpartitions of n in
which the first part larger than k appears at least k + 1 times:

(−1)k

⎛

⎝p(n) + 2
k∑

j=1

(−1)jp(n − j2)

⎞

⎠ = Mk(n), (1.5)

for n, k ≥ 1. Shortly after that, Ballantine et al. [4] gave a combinatorial proof
of this interpretation.
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Other recent investigations on the truncated theta series can be found
in several papers by Chan et al. [7], Chern [9], He et al. [13], Kolitsch [15],
Kolitsch and Burnette [16], Mao [18,19], Merca [20], Wang and Yee [22–24],
and Yee [25].

In this paper, we consider overpartitions into odd parts and shall prove
similar results. Let po(n) be the number of overpartitions into odd parts. Then
its generating function is

∞∑

n=0

po(n)qn =
(−q; q2)∞
(q; q2)∞

. (1.6)

This expression first appeared in the following series-product identity
∞∑

n=0

(−1; q)nqn(n+1)/2

(q; q)n
=

(−q; q2)∞
(q; q2)∞

,

which was given by Lebesgue [17] in 1840. More recently, the generating func-
tion of po(n) appeared in the works of Bessenrodt [5], Santos and Sills [21].
Various arithmetic properties of po(n) have been investigated later by Chen
[8], Hirschhorn and Sellers [14].

In analogy with the truncated identities in (1.2) and (1.4), we have two
symmetrical results on po(n).

Theorem 1.1. For a positive integer k,

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2(−q; q2)∞

∞∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1

and

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jq2j2

⎞

⎠

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2(−q; q2)2∞

∞∑

j=0

q2(2k+2j+3)j

(q4; q4)j(q2; q4)k+j+1
.

We can deduce the following results where δi,j is the Kronecker delta
function.

Corollary 1.2. Let k and n be positive integers.
(a) For n ≥ (k + 1)2,

(−1)k

(
po(n) + 2

k∑
j=1

(−1)jpo(n − j2) − (−1)
⌊√

n/2
⌋

· 2δ
n,2

⌊√
n/2

⌋2

)
≥ 2.

(b) For n < (k + 1)2,

po(n) + 2
k∑

j=1

(−1)jpo(n − j2) = (−1)
⌊√

n/2
⌋

· 2δ
n,2

⌊√
n/2

⌋2 .
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(c) For n ≥ 2(k + 1)2,

(−1)k

(
po(n) + 2

k∑
j=1

(−1)jpo(n − 2j2) − 2δ
n,�√

n�2

)
≥ 2.

(d) For n < 2(k + 1)2,

po(n) + 2
k∑

j=1

(−1)jpo(n − 2j2) = 2δ
n,�√

n�2 .

We remark that the last relation of this corollary provides an efficient
algorithm for computing the function po(n).

The rest of this paper is organized as follows. We will first prove Theo-
rem 1.1 in Sect. 2. In Sect. 3, we will provide a combinatorial interpretation
of the right-hand side of each identity in Theorem 1.1.

2. Proof of Theorem 1.1

To prove the theorem, we consider the Gauss hypergeometric series

2φ1

(
a, b
c

; q, z
)

=
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n
zn

and the second identity by Heine’s transformation of 2φ1 series [11, (III.2)],
namely

2φ1

(
a, b
c

; q, z
)

=
(c/b; q)∞(bz; q)∞

(c; q)∞(z; q)∞
2φ1

(
abz/c, b

bz
; q, c/b

)
. (2.1)

We first prove the first identity in Theorem 1.1. By Gauss’ identity (1.1),
we can write the left-hand side as follows:

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

=
(q2; q2)∞

(−q2; q2)∞
− 2

(−q; q2)∞
(q; q2)∞

∞∑

j=k+1

(−1)jqj2

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2 (−q; q2)∞

(q; q2)∞

∞∑

j=0

(−1)jqj2+2j(k+1)

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2 (−q; q2)∞

(q; q2)∞
lim
τ→0

2φ1

(
q2, q2k+3

τ
0

; q2, τ
)

= 1 + 2
∞∑

j=1

(−1)jq2j2

+ 2(−1)kq(k+1)2 (−q; q2)∞
(q; q2)∞

lim
τ→0

(q2k+3; q2)∞
(τ ; q2)∞

∞∑

j=0

(−1)jτ jqj2+j( q2k+3

τ ; q2)j

(q2; q2)j(q2k+3; q2)j
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= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2 (−q; q2)∞

(q; q2)k+1

∞∑

j=0

q2j2+(2k+3)j

(q2; q2)j(q2k+3; q2)j

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2(−q; q2)∞

∞∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1
,

where the fourth equality follows from (2.1).
The proof of the second identity is similar to the proof of the first one.

With q replaced by q2, the Gauss identity (1.1) becomes

1 + 2
k∑

n=1

(−1)nq2n2
=

(q2; q2)∞
(−q2; q2)∞

− 2
∞∑

n=k+1

(−1)nq2n2
.

Multiplying both sides of this identity by the generating function of po(n), we
get

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jq2j2

⎞

⎠

=
(−q;−q)∞
(q;−q)∞

− 2
(−q; q2)∞
(q; q2)∞

∞∑

j=k+1

(−1)jq2j2

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2 (−q; q2)∞

(q; q2)∞

∞∑

j=0

(−1)jq2j2+4j(k+1)

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2 (−q; q2)∞(q4k+6; q4)∞

(q; q2)∞

×
∞∑

j=0

q4j2+2(2k+3)j

(q4; q4)j(q4k+6; q4)j
by (2.1)

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2 (−q; q2)∞(−q2k+3; q2)∞

(q; q2)k+1

×
∞∑

j=0

q4j2+2(2k+3)j

(q4; q4)j(q4k+6; q4)j

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2(−q; q2)∞

×
∞∑

j=0

q4j2+2(2k+3)j(−q2k+2j+3; q2)∞
(q4; q4)j(q; q2)k+j+1

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2(−q; q2)2∞

∞∑

j=0

q2(2k+2j+3)j

(q4; q4)j(q2; q4)k+j+1
.
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Figure 1. The 2-modular Ferrers graph of 9 + 7 + 3 + 3

3. Partitions Arising from Theorem 1.1

In this section, we will explain what partitions are generated by the right-
hand sides of the identities in Theorem 1.1. We first recall some necessary
definitions.

For a partition λ, we denote the sum of all parts of λ by |λ|. The Ferrers
graph of a partition λ is a graphical representation of λ whose ith row has as
many boxes as the ith part λi. Such a graph is called a Ferrers graph of shape
λ.

For a positive integer k, any positive integer n can be uniquely written as
ka + s with a ≥ 0 and 1 � s � k. The k-modular partitions are a modification
of the Ferrers graph so that n is represented by a row of a boxes with k in
each of them and one box with s in it. This notion was first introduced by
MacMahon [1, p. 13]. For instance, Fig. 1 shows the 2-modular Ferrers graph
of the partition 9+7+3+3 with shape 5+4+2+2. Here, we put boxes with
1 in the first column for convenience.

Another combinatorial notion needed is m-Durfee rectangles. For a non-
negative integer m, define an m-rectangle to be a rectangle whose width minus
its height is m. For a Ferrers graph of shape λ, define the m-Durfee rectangle
to be the largest m-rectangle which fits in the graph [6]. When m = 0, the
m-Durfee rectangle becomes the Durfee square of a partition. In Fig. 1, the
2-Durfee rectangle of the partition is the rectangle of size 2 × 4.

For a fixed k ≥ 1 and any n ≥ 0, define Mo,k(n) to be the number of
partitions of n into odd parts such that all odd numbers less than or equal to
2k +1 occur as parts at least once and the parts below the (k +2)-Durfee rec-
tangle in the 2-modular graph are strictly less than the width of the rectangle.
For instance, let k = 2. Then the partition 11+11+7+7+5+3+1 is counted
by Mo,2(45). However, the partition 11+11+11+5+3+3+1 is not counted
by Mo,2(41), because its 4-Durfee rectangle is of size 2 × 6 and the third part
of length 11 that goes below the Durfee rectangle forms a row of length 6.

Theorem 3.1. For a fixed k ≥ 1,
∞∑

n=0

Mo,k(n)qn = q(k+1)2
∞∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1
.

Proof. For a partition counted by Mo,k(n), assume that its (k + 2)-Durfee
rectangle is of size j × (k + 2 + j). By the Durfee rectangle, the 2-modular
Ferrers graph can be divided into three parts, namely the Durfee rectangle,
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the parts below the rectangle and the parts to the right of the rectangle. Then,
the weight of the Durfee rectangle is j(2(k + j + 2) − 1). Also, it follows from
the definition of Mo,k(n), the parts below the rectangle and the parts to the
right of the rectangle are generated by q(k+1)2/(q; q2)k+j+1 and 1/(q2; q2)j ,
respectively. Here, q(k+1)2 accounts for all the odd numbers between 1 and
2k + 1. Therefore, we can see that the summand on the right-hand side in
the statement generates partitions counted by Mo,k(n) whose (k + 2)-Durfee
rectangle is of size j × (k + 2 + j). �

Corollary 3.2. For k ≥ 1 and n ≥ (k + 1)2,

(−1)k

⎛

⎝po(n) + 2
k∑

j=1

(−1)jpo(n − j2) − (−1)
⌊√

n/2
⌋

· 2δ
n,2

⌊√
n/2

⌋2

⎞

⎠

= 2Mo,k(n),

where Mo,k(n) counts overpartitions of n into odd parts in which the non-
overlined parts form a partition counted by Mo,k(n − a), a is the sum of over-
lined parts, and

(−1)k

⎛

⎝po(n) + 2
k∑

j=1

(−1)jpo(n − 2j2) − 2δ
n,�√

n�2

⎞

⎠ = 2No,k(n),

where No,k(n) counts triples (λ, μ, ν) such that λ and μ are partitions into
distinct odd parts and ν is a partition counted by Mo,k

(
(n − |λ| − |μ|)/2

)
.

Proof. The statements easily follow from Theorems 1.1 and 3.1, so we omit
the details. �
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