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Minimal Polygons with Fixed Lattice Width
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Abstract. We classify the unimodular equivalence classes of inclusion-
minimal polygons with a certain fixed lattice width. As a corollary, we
find a sharp upper bound on the number of lattice points of these minimal
polygons.
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1. Introduction and Definitions

Let Δ ⊂ R
2 be a non-empty lattice polygon, i.e., the convex hull of a finite

number of lattice points in Z
2, and consider a lattice direction v ∈ Z

2, i.e., a
non-zero primitive vector. The lattice width of Δ in the direction v is

lwv(Δ) = max
P∈Δ

〈P, v〉 − min
P∈Δ

〈P, v〉 .

The lattice width of Δ is defined as lw(Δ) = minv lwv(Δ). Throughout this
paper we will assume that Δ is two-dimensional, hence lw(Δ) > 0. A lattice
direction v that satisfies lwv(Δ) = lw(Δ) is called a lattice width direction
of Δ.

Two lattice polygons Δ and Δ′ are called (unimodularly) equivalent if
and only if there exists a unimodular transformation ϕ, i.e., a map of the form

ϕ : R
2 → R

2,

x �→ Ax + b, where A ∈ GL2(Z), b ∈ Z
2,

such that ϕ(Δ) = Δ′. Equivalent lattice polygons have the same lattice width.
The lattice width of a polygon is a classical notion with connections to

algebraic geometry, see for instance [8]. Its study goes back at least to 1974
[6], although the terminology is not uniform.

The lattice width of a polygon can be seen as a specific instance of the
more general notion of lattice size, which was introduced in [3].
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Definition 1.1. Let X ⊂ R
2 be a subset with positive Jordan measure. Then

the lattice size lsX(Δ) of a non-empty lattice polygon Δ is the smallest d ∈ Z≥0

for which there exists a unimodular transformation ϕ such that ϕ(Δ) ⊂ dX.

Note that lw(Δ) = lsX(Δ), where X = R × [0, 1].
This paper is concerned with polygons Δ that are minimal in the follow-

ing sense: lw(Δ′) < lw(Δ) for each lattice polygon Δ′
� Δ. Equivalently, a

two-dimensional polygon Δ is minimal if and only if for each vertex P of Δ,
we have that lw(ΔP ) < lw(Δ), where

ΔP := conv
((

Δ ∩ Z
2
)\{P}).

This means that removing any vertex and then taking the convex hull of the
remaining lattice points always produces a polygon of smaller lattice width.

Our main result is a complete classification of minimal polygons up to
unimodular equivalence, see Theorem 2.4. As a corollary, we provide a sharp
upper bound on the number of lattice points of these minimal polygons. First,
we show in Lemma 2.3 that each minimal polygon Δ satisfies ls�(Δ) = lw(Δ),
where

� = conv {(0, 0), (1, 0), (1, 1), (0, 1)} .

The latter can also be proven using results on lattice width directions of interior
lattice polygons (see [4, Lemma 5.3]), but we choose to keep the paper self-
contained and have provided a different proof. Moreover, we use the technical
Lemma 2.2 in the proofs of both Lemmas 2.3 and Theorem 2.4.

In the joint paper [4] with Castryck and Demeyer, we study the Betti
table of the toric surface Tor(Δ) ⊂ P

�(Δ∩Z
2)−1 for lattice polygons Δ. In

particular, we present a lower bound for the length of the linear strand of this
Betti table in terms of lw(Δ), which we conjecture to be sharp. To show this
conjecture for polygons of a fixed lattice width, it essentially suffices to prove
it for the minimal polygons (see [4, Corollary 5.2]). Hence, Theorem 2.4 allows
us to check the conjecture using a computer algebra system.

Remark 1.2. Of course, the question of classifying minimal polytopes can also
be asked in higher dimensions. For instance, it can be shown that each three-
dimensional minimal polytope Δ ⊂ R

3 with lw(Δ) = 1 is equivalent to a
tetrahedron of the form

conv {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, y, z)}
with 1 ≤ y ≤ z and gcd(y, z) = 1. These include the Reeve tetrahedrons (where
y = 1). For comparison, there is only one minimal polygon with lattice width
one up to equivalence, namely the standard simplex conv{(0, 0), (1, 0), (0, 1)}.

In all dimensions k ≥ 2, among the minimal polytopes, we find the so-
called empty lattice simplices Δ ⊂ R

k, i.e., convex hulls of k + 1 lattice points
without interior lattice points. If k ≥ 4, not all empty lattice simplices have
lattice width 1. For more information, see [1,7,9].
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2. The Classification of Minimal Polygons

We use the notation from Sect. 1. The following result appears already in [2,
Remark following Lemma 5.2], but can be proven in a shorter way.

Lemma 2.1. Let Δ ⊂ R
2 be a lattice polygon with lw(Δ) = d. If Δ has two

linearly independent lattice width directions v, w ∈ Z
2, then ls�(Δ) = d.

Proof. If v and w do not form a Z-basis of Z
2, we take a primitive vector

u ∈ conv{(0, 0), v, w} such that v and u form a Z-basis. Let Q,Q′ be lattice
points of Δ such that

〈Q′, u〉 − 〈Q,u〉 = lwu(Δ).

Write u = λv + μw with 0 < λ, μ and λ + μ ≤ 1. Now

d ≤ lwu(Δ) = 〈Q′, (λv + μw)〉 − 〈Q, (λv + μw)〉 ≤ λ lwv(Δ) + μ lww(Δ) ≤ d,

so lwu(Δ) = d. After applying a unimodular transformation, we may assume
that u = (0, 1) and v = (1, 0), and that Δ fits into d�, hence ls�(Δ) = d. �

Lemma 2.2. Let Δ be a lattice polygon with lw(Δ) = d > 0. Let P be a vertex of
Δ and v ∈ Z

2 be a primitive vector. If lwv(ΔP ) < d and lwv(ΔP ) < lwv(Δ)−1,
then Δ is equivalent to Υd−1 := conv{(0, 0), (1, d), (d, 1)}.
Proof. Since lwv(ΔP ) < lwv(Δ) − 1, we have that either

min
Q∈ΔP

〈v,Q〉 > 〈v, P 〉 + 1 or max
Q∈ΔP

〈v,Q〉 < 〈v, P 〉 − 1.

By replacing v by −v, we may assume that we are in the first case. Moreover,
we may choose v such that the difference minQ∈ΔP

〈v,Q〉 − 〈v, P 〉 is minimal
but greater than one, and such that lwv(ΔP ) < d.

We apply a unimodular transformation so that P = (0, 0) and v = (0, 1).
Let ym (resp. yM ) be the smallest (resp. greatest) y-coordinate occurring in
ΔP . Note that ym = minQ∈ΔP

〈v,Q〉 and yM = maxQ∈ΔP
〈v,Q〉, hence ym > 1

and yM − ym < d.
Define the cone

Ck := {λ(k, 1) + μ(k + 1, 1)|λ, μ ≥ 0}.

Since

Δ ⊂ (R × R>0) ∪ {P} = ∪k∈Z Ck

and ym > 1, the polygon Δ is contained in a cone Ck for some k ∈ Z. Using the
unimodular transformation (x, y) �→ (x − ky, y), we may assume that k = 0,
i.e.,

Δ ⊆ C0 = {λ(0, 1) + μ(1, 1)|λ, μ ≥ 0} .

In fact, we then have that

Δ ⊆ conv {(0, 0), (1, yM ), (yM − 1, yM )} .

If ym = 2, we have

yM = (yM − ym) + 2 ≤ d + 1.
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The strict inequality yM < d+1 is impossible as the horizontal width lw(1,0)(Δ)
would be less than d. So we have that yM = d + 1 and

Δ ⊆ Δ′ = conv {(0, 0), (1, d + 1), (d, d + 1)} .

Since lw((Δ′)Q) < d for

Q ∈ {(1, d + 1), (d, d + 1)} ,

we must have Δ = Δ′. This is equivalent to Υd−1 via (x, y) �→ (x, y − x).
From now on, assume that ym > 2. Then (1, 2) /∈ Δ which means that

either

Δ ⊆ {λ(0, 1) + μ(1, 2)|λ, μ ≥ 0} or Δ ⊆ {λ(1, 2) + μ(1, 1)|λ, μ ≥ 0}.

We can reduce to the latter case using the transformation (x, y) �→ (y − x, y).
In fact, we can keep subdividing this cone until we find a cone C containing Δ
that does not contain any lattice point with y-coordinate in {1, . . . , ym − 1}.
Let � ∈ Z be such that C passes in between (� − 1, ym − 1) and (�, ym − 1).
Then

ΔP ⊆ conv {(�, ym − 1), (�, yM ), (� + yM − ym + 1, yM )} .

If xm (resp. xM ) is the smallest (resp. greatest) x-coordinate occurring in a
lattice point of ΔP , then 2 ≤ � ≤ xm < ym and xM ≤ � + yM − ym, so
xM − xm ≤ yM − ym < d. But this means that lw(1,0)(ΔP ) < d and

1 < min
Q∈ΔP

〈(1, 0), Q〉 < ym = min
Q∈ΔP

〈v,Q〉 ,

contradicting the minimality of v. �

Lemma 2.3. If Δ ⊂ R
2 is a non-empty minimal lattice polygon with lw(Δ) =

d > 0, then ls�(Δ) = d.

Proof. By Lemma 2.1, we only have to show that there are two linearly inde-
pendent lattice width directions. Suppose that v is a lattice width direction
and that Q,Q′ ∈ Δ ∩ Z

2 such that 〈Q, v〉 − 〈Q′, v〉 = d. Now let P be a vertex
of Δ different from Q, Q′. By minimality of Δ, we have that lw(ΔP ) < d.
That means there exists a direction w such that lww(ΔP ) < d. Because Q and
Q′ are still in ΔP , w cannot be v or −v, so w must be linearly independent
of v. If lww(Δ) = d, we are done. If lww(Δ) > d, then by Lemma 2.2, Δ is
equivalent to Υd−1 ⊆ d�. �

Theorem 2.4. Let Δ ⊂ R
2 be a non-empty minimal lattice polygon with

lw(Δ) = d. Then Δ is equivalent to a minimal polygon of one of the following
forms:
(T1) conv{(0, 0), (d, y), (x, d)}, where x, y ∈ {0, . . . , d} satisfy x + y ≤ d;
(T2) conv{(x1, 0), (d, y2), (x2, d), (0, y1)}, where x1, x2, y1, y2 ∈ {1, . . . , d − 1}

satisfy max(x2, y2) ≥ min(x1, y1) and max(d−x2, y1) ≥ min(d−x1, y2);
(T3) conv{(0, 0), (�, 0), (d, y+d−�), (x+�, d), (z, z+d−�)} with � ∈ {2, . . . , d−

2}, x ∈ {1, . . . , d − � − 1}, y, z ∈ {1, . . . , � − 1};
(T4) conv{(0, 0), (z′ + �, z′), (d, y + d − �), (x + �, d), (z, z + d − �)} with � ∈

{2, . . . , d − 2}, y, z ∈ {1, . . . , � − 1}, x, z′ ∈ {1, . . . , d − � − 1};
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Figure 1. The five types in the classification

(T5) conv{(x1, 0), (z2 + �, z2), (d, d− �+y2), (x2 + �, d), (z1, z1 +d− �), (0, y1)}
with � ∈ {2, . . . , d−2}, x1, y2, z1 ∈ {1, . . . , �−1}, x2, y1, z2 ∈ {1, . . . , d−
� − 1}.

Remark 2.5. See Fig. 1 for a picture of the five types. The minimal polygons
appearing in the types (T3), (T4) and (T5) are inscribed in the hexagon

H� := conv {(0, 0), (�, 0), (d, d − �), (d, d), (�, d), (0, d − �)} .

This is also the case for the triangles of type (T1) with (x, y) ∈ {(d, 0), (0, d)}
(where we allow � ∈ {0, d}) and for the quadrangles of type (T2) with max(d−
x2, y1) = min(d − x1, y2).

Proof of Theroem 2.4. If d = 0, then Δ consists of a single point and it is of
shape (T1). So assume d ≥ 1. Because of Lemma 2.3, we may assume that
Δ ⊂ d� = [0, d] × [0, d]. Moreover, we may assume that Δ 
∼= Υd−1 since Υd−1

is of type (T1). Let P be any vertex of Δ. By Lemma 2.2, if lwv(ΔP ) < d
for some primitive vector v ∈ Z

2, then lwv(ΔP ) ≥ lwv(Δ) − 1, which together
with lwv(δ) ≥ d implies lwv(ΔP ) = d − 1 and lwv(Δ) = d, hence v is a lattice
width direction.

By minimality, we know that there always exists a lattice direction v
satisfying lwv(ΔP ) < d. We claim that we can always take

v ∈ {(0, 1), (1, 0), (1, 1), (1,−1)} .

Indeed, suppose that v = (vx, vy) ∈ Z
2 satisfies

{v,−v} ∩ {(0, 1), (1, 0), (1, 1), (1,−1)} = ∅ and lwv(ΔP ) < d.
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After a unimodular transformation, we may assume that 0 < vx < vy, hence
(1, 1) ∈ conv{(0, 0), (1, 0), v}. Using a similar trick as in Lemma 2.1, we get
that lw(1,1)(ΔP ) < d, which proves the claim.

Let V be the set consisting of vectors v ∈ {(1, 1), (1,−1)} for which there
exists a vertex P of Δ with lwv(ΔP ) < d. If V = {(1, 1), (1,−1)}, then Δ has
4 different lattice width directions, namely (1, 0), (0, 1), (1, 1) and (1,−1). By
[2, Lemma 5.2(v)] or [5], this means that

Δ ∼= conv {(d/2, 0), (0, d/2), (d/2, d), (d, d/2)}
for some even d, hence it is of type (T2). If V = ∅, we claim that Δ is of type
(T1) or (T2). Indeed, for every vertex P of Δ, we have that either lw(1,0)(ΔP )
or lw(0,1)(ΔP ) is smaller than d. In particular, this means that there has to be
a side of d� with P as its only point in Δ. One then easily checks the claim:
if Δ is a triangle, then it will be of type (T1); if it is a quadrangle, then it is
of type (T2).

From now on, suppose that V is not equal to ∅ or {(1, 1), (1,−1)}, hence
V = {(1, 1)} or V = {(1,−1)}. We can suppose that V = {(1,−1)} using
the transformation (x, y) �→ (x,−y) if necessary. Hence, for each vertex P
of Δ, there is a vector v ∈ {(1, 0), (0, 1), (1,−1)} with lwv(ΔP ) < d. Since
lw(1,−1)(Δ) = d, there exists an integer � ∈ {0, . . . , d} such that

〈Q, (1,−1)〉 ∈ [� − d, �]

for all Q ∈ Δ. If � ∈ {0, d}, then Δ is a triangle whose vertices are vertices of
d�, so it is of the form (T1). Now assume that � ∈ {1, . . . , d − 1}, hence Δ
is contained in the hexagon H� from Remark 2.5. Each side of H� contains at
least one lattice point of Δ, and if it contains more than one point, it is also an
edge of Δ. Otherwise, there would be a vertex P lying on exactly one side of
H�, while not being the only point of Δ on that side of H�. But then there is
no v ∈ {(0, 1), (1, 0), (1,−1)} with lwv(ΔP ) < d (as every side of H� contains
a point of ΔP ), a contradiction.

Denote by S the set of sides that Δ and H� have in common. Then S
cannot contain two adjacent sides S1, S2: otherwise for the vertex P = S1 ∩S2,
each side of H� would have a non-empty intersection with ΔP , contradicting
the fact that there is a v ∈ {(0, 1), (1, 0), (1,−1)} with lww(ΔP ) < d.

Assume that �S ≥ 2 and take S1 = [Q1, Q2] ∈ S. Its adjacent sides of H�

contain no points of Δ except from Q1 and Q2. This implies that S = {S1, S2},
where S1, S2 are opposite edges of H�, and that Δ is the convex hull of these
two edges. Hence Δ is equivalent to the quadrangle

conv {(�, 0), (d, d − �), (�, d), (0, d − �)} ⊂ H�,

which is of type (T2).
If S consists of a single side S, we may assume that S = [Q1, Q2] is the

bottom edge of H�. Let P1 (resp. P2) be the vertex of Δ on the upper left
diagonal side (resp. the right vertical edge) of H�. If P1 is also on the top edge
of H� (i.e., P1 = (�, d)), then Δ has only four vertices, namely Q1, Q2, P1,
P2. Applying the transformation (x, y) �→ (x,−x + y + �), we end up with a
quadrangle of type (T2). By a similar reasoning, if P2 is on the top edge of
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H� (i.e., P2 = (d, d)), we end up with type (T2). If neither P1 nor P2 is on the
top edge of H�, then there is a fifth vertex P3 on that top edge, and we are in
case (T3).

The only remaining case is when S = ∅, hence each edge of H� contains
only one point of Δ. If H� and Δ have no common vertex, then Δ is of type
(T5). If they share one vertex, we can reduce to type (T4) using a transfor-
mation if necessary. Note that two common vertices of H� and Δ can never
be connected by an edge of H� as that edge would be in S, so there are at
most three common vertices. If there are three shared vertices, then Δ is a
triangle of type (T1), again using a transformation if necessary. So assume H�

and Δ share two vertices. Together these two points occupy four edges of H�

and each of the other two edges of H� (call them A and B) contains exactly
one vertex of Δ. Take two pairs of opposite sides of H� (so four sides in total)
that together contain A and B, then they contain all vertices of Δ: since any
common vertex of H� and Δ lies on two sides of H�, they cannot lie both on
the sides we did not choose, as they are parallel. We can find a unimodular
transformation mapping these sides into the four sides of d�, hence Δ is of
type (T2). �
Remark 2.6. From the classification in Theorem 2.4, one can easily deduce the
following result from [6]: vol(Δ) ≥ 3

8 lw(Δ)2 for each lattice polygon Δ ⊂ R
2,

and equality holds for minimal polygons of type (T1) with d even and x = y =
d
2 . For odd d, this inequality can be sharpened to

vol(Δ) ≥ 3
8

lw(Δ)2 +
1
8
,

and equality holds for minimal polygons of type (T1) with x = d−1
2 and

y = d+1
2 .

Corollary 2.7. If Δ ⊂ R
2 is a non-empty minimal lattice polygon with lw(Δ) =

d > 1, then

�(Δ ∩ Z
2) ≤ max

(
(
d − 1

)2 + 4,
(
d + 1

)(
d + 2

)
/2

)
.

Moreover, this bound is sharp.

Note that from d = 6 onwards (d − 1)2 + 4 starts winning.

Proof of Corollary 2.7. Note that there exist minimal polygons attaining the
bound (see Fig. 2): the simplex conv{(0, 0), (d, 0), (0, d)} is of type (T1) and
has (d + 1)(d + 2)/2 lattice points, and the quadrangle conv{(1, 0), (d, 1), (d −
1, d), (0, d − 1)} is of type (T2) and has (d − 1)2 + 4 lattice points.

Now let us show that we indeed have an upper bound. If Δ is minimal
of type (T2), (T4) or (T5), then

�(Δ ∩ Z
2) ≤ (d − 1)2 + 4,

since there are at most 4 lattice points of Δ on the boundary of d� and all
the others are in

(d�)◦ ∩ Z
2 = {1, . . . , d − 1} × {1, . . . , d − 1}.
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Figure 2. Minimal polygons attaining the upper bound

This also holds for triangles of type (T1) with x and y non-zero. If Δ is of type
(T3), we obtain the same upper bound (d−1)2+4 after applying a unimodular
transformation that maps the bottom edge of Δ to the left upper diagonal edge
of H�. We are left with triangles of type (T1) with either x or y zero. Assume
that y = 0 (the case x = 0 is similar). Then Δ has the edge [(0, 0), (d, 0)] in
common with d� and its other vertex is (x, d). For each k ∈ {0, . . . , d}, the
intersection of Δ with the horizontal line on height k is a line segment of length
d − k, hence it contains at most d − k + 1 lattice points. So in total, Δ has at
most

d∑

k=0

(d − k + 1) = (d + 1)(d + 2)/2

lattice points. �
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