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A High Quartet Distance Construction
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Abstract. Given two binary trees on N labeled leaves, the quartet distance
between the trees is the number of disagreeing quartets. By permuting
the leaves at random, the expected quartet distance between the two trees
is 2

3

(
N
4

)
. However, no strongly explicit construction reaching this bound

asymptotically was known. We consider complete, balanced binary trees
on N = 2n leaves, labeled by n bits long sequences. Ordering the leaves in
one tree by the prefix order, and in the other tree by the suffix order, we
show that the resulting quartet distance is

(
2
3

+ o(1)
) (

N
4

)
, and it always

exceeds the 2
3

(
N
4

)
bound.
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1. Background

Given a set of taxa (a group of related biological species), the goal of phy-
logeny reconstruction is to build a tree which best represents the course of
evolution for this set over time. The leaves of the tree are labeled with the
given, extant taxa. Internal nodes correspond to hypothesized, extinct taxa.
There are numerous phylogeny reconstruction approaches [9]. One approach of
interest is building unrooted, resolved (or binary) trees from quartets, where
a quartet is an unrooted tree on four leaves. We note that for a given set
of four leaves there are three quartet topologies. The input is a set of (pos-
sibly weighted) quartets, and the goal is to build a tree which would agree
with the maximum number of input quartets (maximum weighted sum, corre-
spondingly) [4,5,10,12]. It is known that this problem is computationally hard
[11].

Various combinatorial problems related to quartets have also been studied
extensively. In this paper, we are especially interested in the quartet distance
problem [7]. Let T1, T2 be two resolved (binary) trees on the same set of N
labeled leaves. Every set of the same 4 leaves induces two quartets, one in T1

and the other in T2. The topologies of the two quartets could either agree or
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disagree. The quartet distance between T1, T2 is the number of disagreeing
quartets. Notice that the identity of a quartet in a given binary tree is well
defined, regardless of the placement of the root. Thus, the quartet distance
between T1, T2 is invariant under different rootings of T1, T2, and under mak-
ing one or both trees unrooted. We remark that there are efficient algorithms
to compute the quartet distance of two trees. The most efficient one, by Brodal,
Fagerberg, and Pedersen, runs in O(N log N) time [6].

Bandelt and Dress [3] conjectured that the maximum quartet distance
between any two resolved (binary) trees on N leaves is at most

(
2
3 + o(1)

)·(N
4

)
.

Taking two binary trees T1, T2 on the same set of N leaves, and assigning
labels to the leaves at random, the probability that any quartet will agree
equals exactly 1/3. This implies that the expected value of the quartet distance
is exactly 2

3 · (
N
4

)
. This simple probabilistic argument can be de-randomized

using standard de-randomization methods. We will further refer to the result
of such de-randomization in the context of our work in Sect. 6.

Alon et al. [2] showed that the random labeling method implies the
existence of trees with quartet distance strictly greater than 2

3 · (
N
4

)
. They

also proved a 9
10 · (

N
4

)
asymptotic upper bound on the quartet distance.

Finally, using the technique of flag algebra, Alon et al. [1] have obtained a
(0.69 + o(1)) · (

N
4

)
upper bound on the normalized quartet distance (for a

large enough number N of leaves).
No strongly explicit construction attaining the 2

3 · (
N
4

)
bound asymptot-

ically is known (the notions of explicit and strongly explicit constructions are
defined and discussed in Sect. 6). We consider the complete, balanced binary
trees on N = 2n leaves, labeled by n long bit sequences. Ordering the leaves
in one tree by the prefix (or lexicographic) order, and in the other tree by the
suffix (or co-lexicographic) order, we show that the resulting quartet distance
is

(
2
3 + o(1)

) · (
N
4

)
, and furthermore, the distance exceeds the 2

3 · (
N
4

)
bound

for all N . An important part of our proof is counting the number of binary
strings whose longest common prefixes (or suffixes) are of given lengths.

2. High Level View

Denote by Prefn the complete, balanced binary tree with leaves labeled by
{0, 1}n and ordered by prefix (or lexicographic) order, and by Suffn the
complete, balanced binary tree on the same set of leaves, ordered by suf-
fix (or co-lexicographic) order. Consider an ordered 4-tuple of distinct binary
sequences (x0, x1, x2, x3), xi ∈ {0, 1}n (these are the labels of leaves in our
two trees). For every pair of indices 0 ≤ i < j ≤ 3, let Pi, j(x0, x1, x2, x3)
be the event “the common prefix of xi, xj is not shorter than the other five
common prefixes”. Likewise, we define the event Si, j(x0, x1, x2, x3), refer-
ring to suffixes. For the sake of brevity, we will use Pi, j , Si, j to denote
Pi, j(x0, x1, x2, x3), Si, j(x0, x1, x2, x3), correspondingly (Fig. 1).

There are some obvious relations among the Pi, j or the Si, j . For example,
P0, 1, P0, 2, P0, 3 are mutually exclusive. More generally, any pair Pi1, j1 , Pi2, j2
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•

•

•

000 001

•

010 011

•

•

100 101

•

110 111

•

•

•

000 100

•

010 110

•

•

001 101

•

011 111

Figure 1. The complete, balanced binary trees for strings of
length n = 3, with labels in prefix (lexicographic) order on
the left, and suffix (co-lexicographic) order on the right

sharing exactly one subscript (i1 = i2 or j1 = j2) is mutually exclusive. Note,
however, e.g., P0, 1 and P2, 3 are not mutually exclusive. Clearly, the number
of ordered binary sequences satisfying Pi, j , Si, j is the same for all choices of
indices i < j.

To determine the quartet distance between our two trees, we will com-
pute the number of length n sequences satisfying various combinations of
these events, such as P0, 1 ∩ P2, 3, P0, 1 ∩ S0, 1, P0, 1 ∩ P2, 3 ∩ S0, 1, and
P0, 1∩P2, 3∩S0, 1∩S2, 3. These, in turn, will facilitate the derivation of the exact
and asymptotic quartet distance between the “suffix order” and the “prefix
order” binary sequences’ trees, using a simple inclusion–exclusion argument.

3. Sequence Counts of Specific Events

For each event we will count the number of four tuples of different ordered
sequences (x0, x1, x2, x3), using simple properties of prefixes and suffixes of n
bit long binary sequences. The lengths of common prefixes and suffixes of any
pair of binary sequences remain invariant by xoring the sequences to any one
sequence (namely, computing the bit-wise XOR of the sequences). By xoring
the four sequences to x0, we can thus assume, without loss of generality, that x0

is the all 0 sequence, while x1, x2, x3 are three uniformly distributed sequences
that are non-zero and distinct.

3.1. P0, 1 ∩ S2, 3

Let us denote the length of the longest common prefix of x0, x1 by �, (� ≤ n−1)
and the length of the longest common suffix of x2, x3 by k, (k ≤ n − 1). For
P0, 1, � ≥ 1 should hold, and for S2, 3, k ≥ 1 should hold. We treat separately
the following three cases:
(1) � + k + 2 ≤ n (the � long prefix plus one bit buffer zone and the k long

suffix plus one bit buffer zone do not overlap). Note that since 1 ≤ k, the
value � is bounded by � ≤ n − 3.

(2) � + k + 1 = n.
(3) � + k ≥ n.

We start by analyzing case (1). There is no overlap between the � +
1 long prefixes and the k + 1 long suffixes. This will enable us to analyze
the number of possible prefixes and possible suffixes for x1, x2, x3 separately,
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thereby facilitating the counting. Let us start with the prefixes. Given that
x0 = 0n, as the longest common prefix of x0, x1 is of length �, the � + 1 long
prefix of x1 must be 0�1. The � + 1 long prefix of x2 must differ from both
0�+1 and 0�1 for the event P0, 1 to hold. Thus, there are 2�+1 − 2 = 2(2� − 1)
possibilities for choosing the � + 1 long prefix of x2. By a similar argument,
there are 2�+1 − 3 possibilities for choosing the � + 1 long prefix of x3. Thus,
given that x0 = 0n, the number of possibilities for choosing the � + 1 long
prefixes of x1, x2, x3 is 2 · (2� − 1) · (2�+1 − 3) = 22�+2 − 5 · 2�+1 + 6.

Let us now turn to the suffixes. Let b0b1 · · · bk−1bk ∈ {0, 1}k denote the
k + 1 long suffix of x2. This determines uniquely the k + 1 long suffix of x3,
which equals b0b1 · · · bk−1bk ∈ {0, 1}k. For S2, 3 to hold, both should differ
from the k + 1 long suffix of x0, which equals 0k+1. In particular, the k + 1
long suffix of x2 must differ from both 0k+1 and 10k. This leaves 2k+1 − 2 =
2(2k −1) possibilities for choosing the k+1 long suffix of x2, and then 2k+1−3
possibilities for choosing the k + 1 long suffix of x1. Thus, given that x0 = 0n,
the number of possibilities for choosing the k + 1 long suffixes of x1, x2, x3 is
2 · (2k − 1) · (2k+1 − 3) = 22k+2 − 5 · 2k+1 + 6.

Finally, each of x1, x2, x3 has n − � − k − 2 “free bits” in the middle,
not overlapping neither the prefix nor the suffix. These can vary over all possi-
bilities, independently of each other. The total number of possibilities for the
free bits of the three sequences is thus 23n−3�−3k−6, and the total number of
possibilities for all of x1, x2, x3, given that x0 = 0n, is

23n−3�−3k−6 · (22�+2 − 5 · 2�+1 + 6) · (22k+2 − 5 · 2k+1 + 6)

= 23n−4 · (2−�+1 − 5 · 2−2� + 3 · 2−3�) · (2−k+1 − 5 · 2−2k + 3 · 2−3k).

Summing over � and k in the relevant range, we get

23n−4 ·
n−3∑

�=1

(2−�+1 − 5 · 2−2� + 3 · 2−3�) ·
n−�−2∑

k=1

(2−k+1 − 5 · 2−2k + 3 · 2−3k).

Employing a symbolic algebra package (specifically, Maple) to this sum, we
get

16
441

· 23n − n · 22n + 5 · 22n − 25
3

· n · 2n +
95
9

· 2n − 36
7

· n − 764
49

.

This is the number of ordered quartets with x0 = 0n, satisfying case (1) of
P0, 1 ∩ S2, 3.

Let us turn to case (2), where � + k + 1 = n, which means that the � bits
long prefix and the k bits long suffix do not overlap, and have one “buffer bit”,
which separates them. For the event S2, 3 to occur and the longest common
suffix of x2, x3 to be of length k, the k bits long suffix of x2 must differ from
the k bits long suffixes of both x0 and x1.

Given P0, 1, x0 = 0n, and � being the length of the longest common prefix
of x0, x1, the �+1 bits long prefix of x1 is 0�1. Since �+k +1 = n, the last bit
of the �+1 bits long prefix of x1 is also the first bit of its k +1 bits long suffix.
Thus, this suffix differs from the k + 1 bits long suffix of x0 (which equals
0k+1).
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There are 2k possible settings of the k rightmost bits of x1. We treat
separately the case (a) where these bits are 0k, and the case (b) where they
differ from 0k. In case (a), neither 10k nor 0k+1 can serve as the k + 1 bits
suffix of x2, but any other sequence can. There are 2k+1 − 2 such possibilities.
Given the k + 1 bits of x2, the k + 1 bits suffix of x3 is completely determined
(it differs from x2 in the buffer zone bit, and agrees with it in the other k bits).
The � bits long prefix of x2 and of x3 could be any two sequences, other than
0�. Thus, in case (a) the overall number of possibilities for x1, x2, x3 is

1 · (2k+1 − 2) · (2� − 1)2 = 2 · (2k − 1) · (2� − 1)2.

In case (b), there are 2k − 1 possibilities for the k bits long suffix of x1.
The k rightmost bits of x2 must differ from both the k rightmost bits of x1,
and from 0k. Thus, there are 2k −2 possibilities for the k bits long suffix of x2,
and 2 possibilities for the buffer zone bit of x2. Overall, this leaves 2 · (2k − 2)
possibilities for the k + 1 bits suffix of x2, which completely determine the
k + 1 bits suffix of x3. Like case (a), the � bits long prefix of x2 and of x3 have
2� − 1 possibilities each. Thus, in case (b) the overall number of possibilities
for x1, x2, x3, for a given value of k and �, is

2 · (2k − 1) · (2k − 2) · (2� − 1)2.

Summing the numbers in cases (a) and (b), we get

2 · (2k − 1) · (2� − 1)2 + 2 · (2k − 1) · (2k − 2) · (2� − 1)2

= (2k − 1) · (2� − 1)2 · (
2 + 2 · (2k − 2)

)

= 2 · (2k − 1)2 · (2� − 1)2.

In case (2), �+k+1 = n, so � = n−k−1. Furthermore, k, � ≥ 1, so k is in the
range 1 ≤ k ≤ n − 2. Summing over all values of k, we get that the number of
ordered quartets with x0 = 0n, satisfying case (2) of P0, 1 ∩ S2, 3, equals

n−2∑

k=1

2 · (2k − 1)2 · (2n−k−1 − 1)2

=
1
2

· n · 22n − 8
3

· 22n + 4 · n · 2n − 4 · 2n + 2 · n +
20
3

.

We will turn to case (3), where n ≤ �+k, so there is no buffer bit between
the � bits long prefix and the k bits long suffix, and if n < � + k, they even
overlap. Again, we assume that x0 = 0n, thus the � + 1 leftmost bits of x1 are
0�1. We then have 2n−�−1 ways to choose x1’s suffix. Since n − � − 1 < k, it is
guaranteed that even if x0 and x1 shared n − � − 1 suffix bits, their common
suffix would not be longer than k.

Now, given x0 and x1, we want to determine the number of possibilities
for x2 and x3. Note that the n − k − 1 bit of x2 and x3 must differ (otherwise,
the length of the common suffix would be greater than k).

Consider the (k + �)−n bits of x2, x3, where the � long prefix and k long
suffix overlap (if k + � = n, this overlap is empty). These bits are part of the k
long suffix, shared by x2 and x3. Let us consider the two following subcases:
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(i) The (k + �) − n bits of x2, x3 equal 0k+�−n.
In this case, the n − � rightmost bits of x2, x3 must differ from the n − �
rightmost bits of x0 (which are all 0) and of x1 (which are not all 0).
The number of possibilities is thus 2n−� − 2. Suppose, without loss of
generality, that the (n − k − 1)-th bit of x2 equals 0. The n − k − 1 long
prefix of x2 must differ from 0n−k−1 (otherwise it would share an � long
prefix with both x0 and x1). There are 2n−k−1 − 1 possibilities for this
prefix. There is no such restrictions on the n−k − 1 bit long prefix of x3,
so there are 2n−k−1 possibilities for it. Overall, the number of possible
sequences in case (i) is

2 · 2n−�−1 · (2n−� − 2) · (2n−k−1 − 1) · 2n−k−1,

where the leading 2 accounts for the cases where either the (n−k −1)-th
bit of x2 or that bit of x3 equals 0.

(ii) The (k + �) − n bits of x2, x3 differ from 0k+�−n.
There are 2(k+�)−n − 1 ways to determine these (k + �)−n bits of x2, x3.
And there are 2n−� ways to determine the n − � bit long suffix of x2, x3.
Suppose, without loss of generality, that the n − k−1 bit of x2 equals 0.
There are no additional restrictions on the n − k − 1 long prefix of x2,
so there are 2n−k−1 possibilities for this prefix. There are exactly many
possibilities for the n − k − 1 long prefix of x3. Overall, the number of
possible sequences in case (ii) is

2 · (2(k+�)−n − 1) · 2n−�−1 · 2n−� · 2n−k−1 · 2n−k−1,

where the leading 2 accounts for the cases where either the n − k − 1 bit
of x2 or that bit of x3 equals 0.

Summing up cases (i) and (ii), we get that the number of possibilities for
x1, x2, x3 equals

2 · 2n−�−1 · (2n−� − 2) · (2n−k−1 − 1) · 2n−k−1

+ 2 · (2(k+�)−n − 1) · 2n−�−1 · 2n−� · 2n−k−1 · 2n−k−1.

Summing over values of k and �, satisfying n ≤ k + �, we get

n−1∑

�=1

n−1∑

k=n−�

(2 · 2n−�−1 · (2n−� − 2) · (2n−k−1 − 1) · 2n−k−1

+ 2 · (2(k+�)−n − 1) · 2n−�−1 · 2n−� · 2n−k−1 · 2n−k−1)

=
1
2

· n · 22n − 7
3

· 22n + 2 · n · 2n + 2n +
4
3
.

Summing the contributions from cases (1) to (3), we conclude that the number
of ordered quartets with x0 = 0n in P0, 1 ∩ S2, 3 equals

16
441

· 23n − 7
3

· n · 2n +
68
9

· 2n − 22
7

· n − 372
49

.

Note that the θ(n · 22n), θ(22n) terms were cancelled.
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3.2. P0, 1 ∩ S0, 1

We denote the length of the longest common prefix of x0, x1 by � (� ≤ n − 1),
and the length of the longest common suffix of x0, x1 by k (k ≤ n − � − 1).
For P0, 1, � ≥ 1 should hold, and for S0, 1, k ≥ 1 should hold. Note that in
this case, the locations of the longest common suffix and the longest common
prefix cannot intersect. We treat separately the following two cases:

(1) � + k + 2 ≤ n (the � long prefix plus one bit buffer zone, and the k long
suffix plus one bit buffer zone, do not overlap). Since 1 ≤ k, � is bounded
by � ≤ n − 3.

(2) � + k + 1 = n.

Note that � + k < n must hold, for otherwise we would have x0 = x1. Given
that x0 is 0n, it is then clear that x1’s � + 1 long prefix is 0�1 and its k + 1
long suffix is 10k.

In case (1), � + k + 1 < n, and x1 has the form x1 = 0�1x10k where
x ∈ {0, 1}n−k−�−2. There are 2n−k−�−2 ways to choose x, and there are 2�+1 −2
ways to choose the � + 1 long prefix of x2 (it must differ from the � + 1 long
prefix of x0 and x1), and 2�+1 − 3 ways to choose the �+1 long prefix of x3 (it
must differ from the �+1 bits prefixes of x0, x1, and x2). In a similar manner,
there are 2k+1 −2 ways to choose the k+1 long suffix of x2, and 2k+1 −3 ways
to choose the k + 1 long suffix of x3. Finally, the remaining n − k − � − 2 bits
of the buffer zone in each of x2, x3 can be chosen freely. In total, the number
of possibilities of case (1) for given values of � and k is

23(n−k−�−2) · (2�+1 − 2) · (2�+1 − 3) · (2k+1 − 2) · (2k+1 − 3).

We remark that this expression is the same as the one derived for case (1) of
P0, 1 ∩ S2, 3.

In case (2), � + k + 1 = n, and x1 has the form x1 = 0�10k, so it is
completely determined. Unlike case (1), the � + 1 long prefix and k + 1 long
suffix overlap, which makes the treatment slightly more involved. We therefore
partition case (2) into two subcases: (i) x2 and x3’s common suffix length is
shorter than k, and (ii) x2 and x3’s common suffix length is exactly k. For
case (i) we can still choose x2 and x3’s prefixes as we have done in (1), namely
there are (2�+1 − 2) · (2�+1 − 3) ways to choose them. Given the � + 1 long
suffixes, both x2 and x3 still get n−�−1 = k bits that are not yet determined.
Since the length of their shared suffix is shorter than k, the two choices must
be different from each other, and from 0k. Thus, there are (2k − 1) · (2k − 2)
ways to choose the remaining k bits. In total, the number of possibilities in
subcase (i) is (2�+1 − 2) · (2�+1 − 3) · (2k − 1) · (2k − 2).

For subcase (ii), x2 and x3’s k long suffixes are the same, but the (k+1)st
bits (from the right) are different. The k+1 long suffixes must be different from
both 0k+1 and 10k. This leaves 2k+1 − 2 choices for x2’s k + 1 long suffix, and
determines x3’s k+1 long suffix. Now the � long prefixes of both can be chosen
freely, as long as they both are not 0�. Thus, there are (2� −1)2 ways to choose
the prefixes for x2 and x3. In subcase (2)(ii) there are (2� − 1)2 · (2k+1 − 2)
possibilities. Hence, the number of possibilities in case (2) for given values of
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� and k is

(2�+1 − 2) · (2�+1 − 3) · (2k − 1) · (2k − 2) + (2� − 1)2 · (2k+1 − 2).

Substituting k = n − � − 1, we get

(2�+1 − 2) · (2�+1 − 3) · (2n−�−1 − 1) · (2n−�−1 − 2) + (2� − 1)2 · (2n−� − 2).

We now sum over the relevant values of � and k. For case (1), we have
n−3∑

�=1

n−�−2∑

k=1

(2�+1 − 2) · (2�+1 − 3) · (2k+1 − 2) · (2k+1 − 3) · 23(n−�−k−2)

= 5 · 22n − 764
49

+
95
9

· 2n − 25
3

· n · 2n − n · 22n − 36
7

· n +
16
441

· 23n.

In case (2), the number of quartets is
n−2∑

�=1

((2�+1 − 2) · (2�+1 − 3) · (2n−�−1 − 1) · (2n−�−1 − 2) + (2� − 1)
2 · (2n−� − 2))

= 28 + 10 · n− 22 · 2n − 6 · 22n + n · 22n + 13 · n · 2n.

Summing up the expressions for (1) and (2), the number of ordered quartets
with x0 = 0n in P0, 1 ∩ S0, 1 is

16
441

· 23n − 22n +
14
3

· n · 2n − 103
9

· 2n +
34
7

· n +
608
49

.

Note that the θ(n · 22n) terms were again cancelled.

3.3. P0, 1 ∩ P2, 3 ∩ S0, 1

We denote the length of the longest common prefix of x0, x1 by � (� ≤ n − 1),
and the length of the longest common suffix of x0, x1 by k (k ≤ n − 1). For
P0, 1, � ≥ 1 should hold, and for S0, 1, k ≥ 1 should hold. Note that in this
case, the locations of the longest common suffix and the longest common prefix
cannot intersect . We treat separately the following two cases:
(1) � + k + 2 ≤ n (the � long prefix plus one bit buffer zone and the k long

suffixes plus one bit buffer zone do not overlap). Since 1 ≤ k, � is bounded
by � ≤ n − 3.

(2) � + k + 1 = n.
Note that � + k < n must hold, for otherwise we would have x0 = x1. For case
(1), by following an argument very similar to case (1) of P0, 1 ∩S0, 1, we obtain
that the number of ordered quartets is

23(n−k−�−2) · (2�+1 − 2) · (2k+1 − 2) · (2k+1 − 3).

Summing over all values of � and k, we get
n−3∑

�=1

n−l−2∑

k=1

(2�+1 − 2) · (2k+1 − 2) · (2k+1 − 3) · 23(n−�−k−2)

=
4

441
23n − 1

3
22n +

5
3

n2n − 37
9

2n +
12
7

n +
652
147

.
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For case (2), given that x0 is 0n, we have x1 = 0�10k. The � + 1 prefix
of x2 must differ from 0�+1 and from 0�1, thus there are 2�+1 − 2 possibilities.
Since the longest common prefix of x2, x3 is also of length �, the � + 1 long
prefix of x2 determines the � + 1 long prefix of x3. The k long suffix of x2 and
of x3 must differ from 0k. There are no further constraints, and in particular,
these two suffixes can be the same, as the next bit of x2 already differs from
that of x3. The number of possibilities for the k long suffix of x2 and of x3 is
thus (2k − 1)2. Substituting k = n − � − 1, the number of ordered quartets in
case (2) is

(2�+1 − 2) · (2k − 1)2 = (2�+1 − 2) · (2n−�−1 − 1)2.

Summing over all values of �, we get
n−2∑

�=1

(2�+1 − 2) · (2n−�−1 − 1)2

=
1
3

22n − 2 · n2n + 5 · 2n − 2 · n − 16
3

.

Adding the two expressions together, we conclude that number of ordered
quartets with x0 = 0n in P0, 1 ∩ P2, 3 ∩ S0, 1 equals

4
441

· 23n − 1
3

· n2n +
8
9

· 2n − 2
7

· n − 44
49

.

3.4. P0, 1 ∩ P2, 3 ∩ S0, 1 ∩ S2, 3

We denote the length of the longest common prefix of x0, x1 by � (� ≤ n − 1),
and the length of the longest common suffix of x0, x1 by k (k ≤ n − 1). As
before, k, � ≥ 1, and we treat separately the following two cases:
(1) � + k + 2 ≤ n (the � long prefix plus one bit buffer zone and the k long

suffix plus one bit buffer zone do not overlap). Since 1 ≤ k, � is bounded
by � ≤ n − 3.

(2) � + k + 1 = n.
In case (1), it is easy to see that the number of ordered quartets is

23(n−k−�−2) · (2�+1 − 2) · (2k+1 − 2).

Summing over all values of � and k, we get
n−3∑

�=1

n−l−2∑

k=1

(2�+1 − 2) · (2k+1 − 2) · 23(n−�−k−2)

=
1

441
23n − 1

3
n2n +

11
9

2n − 4
7

n − 60
49

.

While in case (2), the number of possibilities is

(2�+1 − 2) · (2k − 1) = (2�+1 − 2) · (2n−�−1 − 1).

Summing over all values of �, we get
n−2∑

�=1

(2�+1 − 2) · (2n−�−1 − 1) = n2n − 4 · 2n + 2 · n + 4.



60 B. Chor et al.

Summing the expressions for case (1) and case (2), we conclude that overall,
the number of ordered quartets with x0 = 0n satisfying P0, 1∩P2, 3∩S0, 1∩S2, 3

is
1

441
23n +

2
3

· n2n − 25
9

· 2n +
10
7

· n +
136
49

.

4. Putting Everything Together

Consider the event

A = (P0, 1 ∪ P2, 3) ∩ (S0, 1 ∪ S2, 3) .

A simple manipulation yields

A = (P0, 1 ∪ P2, 3) ∩ (S0, 1 ∪ S2, 3)

= (P0, 1 ∩ S0, 1) ∪ (P0, 1 ∩ S2, 3) ∪ (P2, 3 ∩ S0, 1) ∪ (P2, 3 ∩ S2, 3) .

By the inclusion–exclusion principle

|A| = |(P0, 1 ∩ S0, 1) ∪ (P0, 1 ∩ S2, 3) ∪ (P2, 3 ∩ S0, 1) ∪ (P2, 3 ∩ S2, 3)|
= |P0, 1 ∩ S0, 1| + |P0, 1 ∩ S2, 3| + |P2, 3 ∩ S0, 1| + |P2, 3 ∩ S2, 3|

− |P0, 1 ∩ S0, 1 ∩ S2, 3| − |P0, 1 ∩ S0, 1 ∩ P2, 3|
− 2 |P0, 1 ∩ S0, 1 ∩ P2, 3 ∩ S2, 3| − |P0, 1 ∩ S2, 3 ∩ P2, 3|
− |P2, 3 ∩ S0, 1 ∩ S2, 3| + 4 |P0, 1 ∩ S0, 1 ∩ P2, 3 ∩ S2, 3|
− |P0, 1 ∩ S0, 1 ∩ P2, 3 ∩ S2, 3|

= |P0, 1 ∩ S0, 1| + |P0, 1 ∩ S2, 3| + |P2, 3 ∩ S0, 1| + |P2, 3 ∩ S2, 3|
− |P0, 1 ∩ S0, 1 ∩ S2, 3| − |P0, 1 ∩ S0, 1 ∩ P2, 3|
− |P0, 1 ∩ S2, 3 ∩ P2, 3| − |P2, 3 ∩ S0, 1 ∩ S2, 3|
+ |P0, 1 ∩ S0, 1 ∩ P2, 3 ∩ S2, 3|

= 2 |P0, 1 ∩ S0, 1| + 2 |P0, 1 ∩ S2, 3| − 4 |P2, 3 ∩ S0, 1 ∩ S2, 3|
+ |P0, 1 ∩ S0, 1 ∩ P2, 3 ∩ S2, 3| .

Substituting the expressions we derived for the various subsets, we conclude
that the number of ordered quartets with x0 = 0n in A equals

1
9

23n − 2 · 22n +
20
3

n2n − 127
9

2n + 6n + 16.

Removing the x0 = 0n restriction, the number of ordered quartets in A equals
1
9

24n − 2 · 23n +
20
3

n22n − 127
9

22n + 6n2n + 16 · 2n .

We now introduce two related sets, B and C:

B = (P0, 2 ∪ P1, 3) ∩ (S0, 2 ∪ S1, 3) , C = (P0, 3 ∪ P1, 2) ∩ (S0, 3 ∪ S1, 2) .

Clearly, A, B, C are mutually exclusive and A, B, C have the same number
of ordered quartets. Therefore,

|A ∪ B ∪ C| =
1
3

24n − 6 · 23n + 20 · n22n − 127
3

22n + 18 · n2n + 48 · 2n.



A High Quartet Distance Construction 61

We observe that the union A ∪ B ∪ C contains exactly those ordered quartets
on x0, x1, x2, x3 that agree in both prefix and suffix trees.

5. Unordered Quartet and the Quartet Distance

So far, we counted ordered quartets. In the quartet distance problem, we are
interested in unordered quartets and not in ordered ones. There are 4! = 24
permutations over a set of four distinct elements, {x0, x1, x2, x3}. We will
show that for any set {x0, x1, x2, x3}, either the suffix and the prefix tree
agree for all the ordered 4-tuples corresponding to these 24 permutations,
(namely, the ordered event A∪B ∪C is satisfied), or there is no agreement for
any of the permutations. This statement implies that the number of unordered
quartets where the two trees agree is exactly this number for the ordered case,
divided by 24.

We will show that A is invariant under exactly 8 permutations of ordered
4-tuples. A different set of 8 permutations maps ordered 4-tuples that satisfy A
to different orders where the 4-tuple satisfies B, and yet another 8 permutations
map ordered 4-tuples that satisfy A to different orders satisfying C.

Suppose the ordered pair (x0, x1, x2, x3) satisfies A, namely,

(P0, 1(x0, x1, x2, x3) ∪ P2, 3(x0, x1, x2, x3)) ∩ (S0, 1(x0, x1, x2, x3)
∪S2, 3(x0, x1, x2, x3)).

Membership in A is invariant under each of the following 3 permutations and
their compositions: transposing x0, x1; transposing x2, x3; replacing x0, x1 by
x2, x3. These 3 permutations generate a subgroup of size 8.

Starting with an ordered quartet (x0, x1, x2, x3) in A, and transposing
x1 with x2, the new ordered quartet (x0, x2, x1, x3) is now in B. By first
applying one of the 8 permutations keeping (x0, x1, x2, x3) in A, and then this
transposition, we conclude that there is a coset of 8 permutations, moving an
ordered quartet from A to B. A similar argument holds regarding moving from
A to C, employing the transposition of x1 with x3. Clearly, the same argument
is applicable if we start with an ordered quartet that satisfies B or C.

We conclude that if the prefix and suffix trees agree on one ordered quar-
tet, then they will agree on all 24 permutations of it. Dividing the number
of ordered permutations on n-bit strings where this event occurs by 24, we
conclude that the number of unordered permutations that agree equals

(
1
3

24n − 6 · 23n + 20 · n22n − 127
3

22n + 18 · n2n + 48 · 2n

)/
24.

The number of unordered quartets equals

2n · (2n − 1) · (2n − 2) · (2n − 3)
24

=
24n − 6 · 23n + 11 · 22n − 6 · 2n

24
.

Thus, the quartet distance between the two trees equals
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24n−6 · 23n+11 · 22n−6 · 2n − ( 1
3 24n−6 · 23n+20 · n22n − 127

3 22n + 18 · n2n + 48 · 2n)

24

=
2
3 · 24n − 20 · n22n + 160

3 · 22n − 18 · n2n − 54 · 2n
24

.

The ratio, or normalized quartet distance for the suffix and prefix trees
on N = 2n leaves equals

2
3 · 24n − 20 · n22n + 160

3 · 22n − 18 · n2n − 54 · 2n

24n − 6 · 23n + 11 · 22n − 6 · 2n
.

It is easy to see that this ratio indeed converges to 2/3 as n → ∞. What
is not so obvious is that this ratio is a monotonically decreasing function of
n. For small values of n, we get the following distances and ratios. For these
values (and many others we tested numerically), the ratio indeed decreases
monotonically with growing values of n.

∣
∣
∣∣
∣
∣

n 3 4 5 6 7 8 9 10

distance 60 1452 26944 454224 7396416 119011264 1907486208 30535571712

ratio 0.857 0.797 0.749 0.714 0.693 0.680 0.674 0.670

To prove the above mentioned monotonicity, we show that the ratio for N = 2n

is larger than the ratio for N1 = 2n+1. The proof involves somewhat tedious
yet elementary arithmetic manipulations.

Let R(n) denote the ratio (the number of disagreeing unordered quartets,
divided by the total number of unordered quartets) for the prefix and suffix
trees with N = 2n leaves. Then

R(n) =
2
3 · 24n − 20 · n22n + 160

3 · 22n − 18 · n2n − 54 · 2n
24n − 6 · 23n + 11 · 22n − 6 · 2n ,

R(n+ 1) =
2
3 · 24(n+1)−20 · (n+ 1)22(n+1)+ 160

3 · 22(n+1)−18 · (n+ 1)2n+1−54 · 2n+1

24(n+1) − 6 · 23(n+1)+11 · 22(n+1)−6 · 2n+1
.

To show that R(n) > R(n + 1), we first compute

numerator(R(n)) · denominator(R(n + 1))

− numerator(R(n + 1)) · denominator(R(n)),

and then take the derivative of this expression with respect to the (real) vari-
able n. The result (obtained using Maple) equals

− 3792 · 24n ln (2) + 1440 · 24n · n · ln (2) + 360 · 24n − 240 · ln (2) 25n

− 342 · 23n − 1026 · 23n · n · ln (2) + 10908 · 23n ln (2)

− 1944 · 22n · n · ln (2) − 972 · 22n − 7824 · 22n ln (2)

+ 954 · 2n · n · ln (2) + 954 · 2n + 948 · 2n ln (2) .

It is easy to see that for n ≥ 11, the derivative is negative, as follows: the first
term in the first line, −3792 · 24n ln (2), dominates the third term in the same
line. The difference 1440 ·24n ·n · ln (2)−240 · ln (2) 25n is negative for all n ≥ 5.
For n ≥ 11, the second term in the second line, −1026 ·23n ·n · ln (2), dominates
the third term in the same line, +10908 · 23n ln (2). Each of the three terms
containing 2n (fourth line) is dominated by a term containing 22n (third line)
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with a minus sign. Finally, for (integer) values of n in the range 3 ≤ n ≤ 11,
direct computation verifies that R(n) − R(n + 1) > 0.

6. Concluding Remarks and Open Problems

There is more than a single notion of what an “explicit construction” means.
Possibly the most popular one is that an explicit construction is (1) deter-
ministic, and (2) it runs in polynomial time (polynomial in the size of the
object being constructed). Under this definition, by de-randomizing a random-
ized labeling of the leaves, we would get an explicit construction with quartet
distance being asymptotically 2

3

(
N
4

)
. It may require some additional work to

determine by how much the exact bound resulting from this approach exceeds
2
3

(
N
4

)
for concrete values of N . This construction is deterministic, and its run-

ning time is polynomial in the size of the resulting trees, N = 2n. Thus, this is
an explicit construction by the definition above. Furthermore, it is applicable
to any two trees (not just complete, balanced binary trees), and any size N
(not just a power of 2). On the other hand, it is hard to dispute that (for com-
plete, balanced binary trees) our construction is much simpler, and arguably
more elegant, than what the de-randomization yields.

A “strongly explicit construction” enables one to determine, given the
specification of an entry in the object, the contents of this entry, in time that
is polynomial in the length of the description of the entry (as opposed to
the size of the complete object). This is applicable to a variety of objects, e.g.,
graphs, matrices, and codes [8]. In our context, a strongly explicit construction
should be able to determine, in time polynomial in n (and not in 2n) the label
of a leaf, given the description of this leaf. Furthermore, given the labels of
four leaves, we should be able to determine the induced quartet topologies for
the two trees.

The standard de-randomized construction is not strongly explicit. Essen-
tially, it mimics the randomized construction, where one first assigns labels to
all leaves, and then can determine the labels of specific leaves or the topolo-
gies of specific quartets. By way of contrast, our prefix–suffix construction is
strongly explicit. Assuming we use the standard labeling of the complete, bal-
anced binary trees by the prefix order, then the labeling of, say, 0111 in the
prefix tree will be 0111, which is the rightmost leaf on the major left subtree.
In the suffix tree, it will be placed on the one left to the rightmost leaf, the
one labeled by 1110 in the prefix order (we simply reverse the binary string
to move from the prefix to the suffix order). Thus, determining the location is
done in linear time, using a trivially simple algorithm.

Turning to quartets given four labels, in the prefix order the two labels
with the longest common prefix will be together, and dually for the suffix
order. Thus, determining the prefix and the suffix quartet topologies is also
done, given the four labels, by a trivial linear time algorithm. See the following
figure, for labels of length n = 4.
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0111

0110

1001

1000

The prefix order

0110

1000

0111

1001

The suffix order

As noted above, our construction and proof are applicable only to the
complete, balanced binary trees on N = 2n leaves. It will be interesting to
extend these results to other tree topologies, and also values of N that are
not exact powers of 2. We note that the tree topology may have a substantial
impact on the feasibility of a proof. For example, Alon et al. [1] have obtained
a (0.69 + o(1)) · (

N
4

)
upper bound on the normalized quartet distance of gen-

eral binary trees (for large enough N), but a better (2/3 + o(1)) · (
N
4

)
upper

bound for caterpillar trees. Finally, it will be interesting to prove or refute the
conjecture that for large enough n, the largest quartet distance on trees with
N = 2n leaves is obtained by the suffix and prefix trees.
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