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Abstract. In this paper, elaborating on the link between semifields of dimension n over their
left nucleus and Fs-linear sets of rank en disjoint from the secant variety Ω(Sn,n) of the Segre
variety Sn,n of PG

(

n2−1, q
)

, q= se, we extend some operations on semifield whose definition
relies on dualising the relevant linear set.
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1. Introduction

Linear sets are the natural generalization of the notion of subgeometry of a projective
geometry. We briefly recall the definitions.

Let PG
(

k−1, q t
)

= PG
(

V, Fq t
)

be the projective geometry of the Fq t -subspaces
of V , where V is a vector space of rank k over the Galois field Fq t of order q t . A
set L of points of PG

(

k−1, q t
)

is an Fq-linear set of PG
(

k−1, q t
)

if there exists a
subsetW ofV,which is an Fq-vector subspace ofV, such that a point of PG

(

k−1, q t
)

belongs to L if and only if it is defined by a vector of W . We will write L = L(W ).
IfW has rank m as vector space over Fq we say that L(W ) has rank m, and we will
write rkFqL = m. If L(W ) has rank k and 〈W 〉q t = V , then L(W ) � PG(W, Fq) =

PG(k−1, q) is said to be a subgeometry of PG
(

V, Fq t
)

= PG
(

k−1, q t
)

.
A finite semifield is a finite division algebra in which multiplication is not nec-

essarily associative and throughout this paper the term semifield will be always used
to denote a finite semifield (see, e.g., [11, Chapter 6] for definitions and notations on
finite semifields). Every field is a semifield and the term proper semifield will mean
a semifield which is not isotopic to a field. The left nucleus Nl and the center K of
∗ This work was supported by the Research Project of MIUR (Italian Ministry for University and
Research): “Strutture Geometriche, Combinatoria e loro Applicazioni” and by the Research group
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1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00026-017-0362-0&domain=pdf


630� G. Lunardon et al.
The Generalized Translation Dual of a Semifield 3

3e disjoint fromM. Hence, it defines a symplectic semifield of dimension 3 over its
left nucleus, called the symplectic dual of S ([17]).

The aim of this paper is to extend the construction of the translation dual by using
the link between semifields of dimension n over their left nucleus and Fs-linear sets
of rank en disjoint from the (n− 2)-secant variety Ω(Sn,n) of the Segre variety Sn,n
of PG

(

n2−1, q
)

, q= se.
We will note that Ω(Sn,n) is covered by a family T of subspaces of dimension

n2−n−1 and we prove that there is a polarity ⊥ of PG
(

n2−1, q
)

such that

T=
{

X⊥ | X ∈R
}

,

whereR is one of the two systems of Sn,n. Hence, if Γ is a linear set of rank en con-
tained in a (2n−1)-dimensional subspace T of PG

(

n2−1, q
)

, such that Γ∩T⊥ = /0, it
is possible to construct another linear set of T , say, Γ∗

T of rank en, as well. Moreover,
under some extra hypothesis, Γ∗

T defines a geometric spread set (see Theorem 4.1). If
S is the presemifield associated with Γ, the presemifield S∗T associated with Γ∗

T will
be called the generalized translation dual of S with respect to T , and the “classical”
translation dual and the symplectic dual operations fall into this new procedure for
n= 2 and n= 3, respectively.

2. Dual of Linear Sets

A (t − 1)-spread of a projective space PG(tk− 1, q) is a partition of the points of
PG(tk−1, q) into (t−1)-dimensional subspaces.

Let Ω := PG
(

k− 1, q t
)

= PG
(

V, Fq t
)

. If we regard V as a vector space over
Fq of rank kt, then PG(V, Fq) = PG(kt − 1, q). Also, each point P of Ω defines a
(t − 1)-dimensional subspace XP of PG(kt − 1, q) and D = {XP : P ∈ Ω} is a De-
sarguesian spread of PG(kt − 1, q) (see, e.g., [14]). Also, the incidence structure
Πk−1(D) := (D, L) whose points are the elements of S and whose lines are the
(2t− 1)-dimensional subspaces spanned by two elements of S is isomorphic to Ω.
Such a structure is called linear representation of Ω over Fq.

Anm-dimensionalFq-vector subspaceU ofV defines in PG(kt−1, q) an (m−1)-
dimensional projective subspaceM := PG(U, Fq) and the linear set L(U) ofΩ can be
seen as the set of points P ofΩ such that XP∩M �= /0, i.e., L(U) = {P∈Ω : XP∩M �=
/0}.

Denote by ⊥ the polarity ofΩ defined by a non-singular bilinear form<, > ofV.
If Tr is the trace of Fq t over Fq, the Fq-bilinear form Tr(< x, y>) ofV

(

regarded as a
vector space over Fq

)

defines a polarity⊥′ of PG(kt−1, q) andM⊥′
= PG

(

U⊥′
, Fq

)

denotes the polar ofM with respect to ⊥′. Then

Γ∗ := L
(

U⊥′
)

=
{

P ∈ PG
(

k−1, q t) ∣
∣ XP∩M⊥′

�= /0
}

(2.1)

is an Fq-linear set of rank kt−m of Ω. We call Γ∗ the dual of Γ with respect to ⊥
(see [21, §2]).

2 G. Lunardon et al.

a semifield S are fields contained in S as substructures (K is a subfield of Nl) and S

is a vector space over Nl and over K. Semifields are studied up to an equivalence
relation called isotopy and the dimensions of a semifield over its left nucleus and over
its center are invariant up to isotopy.

If S satisfies all the axioms for a semifield except, possibly, the existence of the
identity element for the multiplication, then it is a presemifield. In such a case the nu-
clei and the center of S can be defined as fields of linear maps contained in End(S, Fp)
(where p is the characteristic of S) (see, e.g., [19, Theorem 2.2]) and all that we stated
and defined above for semifields can be applied for presemifields.

Let S be a presemifield of dimension n over Fq, which is a subfield of the left
nucleus of S, and of dimension en over Fs (q = se), which is a subfield of the center
of S. Let P= PG

(

E, Fq
)

= PG
(

n2−1, q
)

, where E= End(S, Fq) is the vector space
of all the Fq-endomorphisms of S, we can associate with S an Fs-linear set of rank en,
of the projective space P disjoint from the variety Ω(Sn,n) of PG

(

n2−1, q
)

defined
by the non-invertible elements of E, and conversely (see [15] for n = 2 and [10] for
n≥ 2). We will call such a linear set a geometric (semifield) spread set. For a survey
on the theory of finite semifields we refer to [11].

The relationship between linear sets and semifields has been previously studied
in [15] in order to investigate the connection between semifield flocks and ovoids of
Q(4, q) introduced by Thas in [22]. Such a relation was detailed in [9], where it was
shown that the procedure of dualising the ovoid links the two sets of semifields related
to a semifield flock. In [13] it has been proven that an ovoid ofQ(4, q) associated with
a semifield flock is a translation ovoid and, conversely, that any translation ovoid of
Q(4, q) defines a semifield flock. This relationship has been used in [1] to construct
the sporadic semifield flock of order 35 from the Penttila-Williams ovoid of Q

(

4, 35
)

([20]). Finally, in [15], it has been proven that translation ovoids of the Klein quadric
Q+(5, q) and semifields of dimension 2 over their left nucleus are equivalent objects
and we can represent the translation ovoid as an Fs-linear set Γ of rank 2e of PG(3, q)
(q= se) disjoint from a hyperbolic quadricQ+(3, q). The dual of Γwith respect to the
polarity defined by Q+(3, q) is still a linear set of rank 2e disjoint from Q+(3, q) and
defines another semifield of dimension 2 over its left nucleus called the translation
dual of the starting semifield (for further details see [16]). The dual of Γ gives rise to a
semifield flock if and only if Γ is contained in a plane, i.e., if and only if the translation
ovoid is contained in Q(4, q) ([15]). Hence, Thas’ construction is a particular case of
the translation dual.

In [2, Section 6], the authors starting from a semifield S two-dimensional over its
left nucleus construct another semifield ST. In [7, Theorem 6.1] (see also [16]), it has
been proved that the construction in [2] is invariant under isotopisms. In [9, Remark
3.1] it was stated that such a semifield ST is, up to isotopisms, one of the six Knuth
derivatives of the translation dual of S. This result was also proven in [16, Theorem
2.2].

Another construction can be obtained using similar ideas. A symplectic semifield
S of dimension 3 over its left nucleus is represented by an Fs-linear set ∆ of rank 3e
disjoint from the varietyM of the secants of a Veronese surface of PG(5, q) (q= se).
When q is odd there is a polarity of PG(5, q) interchanging conic and tangent planes
ofM, and the dual of ∆ with respect to such a polarity is still an Fs-linear set of rank
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3e disjoint fromM. Hence, it defines a symplectic semifield of dimension 3 over its
left nucleus, called the symplectic dual of S ([17]).

The aim of this paper is to extend the construction of the translation dual by using
the link between semifields of dimension n over their left nucleus and Fs-linear sets
of rank en disjoint from the (n− 2)-secant variety Ω(Sn,n) of the Segre variety Sn,n
of PG

(

n2−1, q
)

, q= se.
We will note that Ω(Sn,n) is covered by a family T of subspaces of dimension

n2−n−1 and we prove that there is a polarity ⊥ of PG
(

n2−1, q
)

such that

T=
{

X⊥ | X ∈R
}

,

whereR is one of the two systems of Sn,n. Hence, if Γ is a linear set of rank en con-
tained in a (2n−1)-dimensional subspace T of PG

(

n2−1, q
)

, such that Γ∩T⊥ = /0, it
is possible to construct another linear set of T , say, Γ∗

T of rank en, as well. Moreover,
under some extra hypothesis, Γ∗

T defines a geometric spread set (see Theorem 4.1). If
S is the presemifield associated with Γ, the presemifield S∗T associated with Γ∗

T will
be called the generalized translation dual of S with respect to T , and the “classical”
translation dual and the symplectic dual operations fall into this new procedure for
n= 2 and n= 3, respectively.

2. Dual of Linear Sets

A (t − 1)-spread of a projective space PG(tk− 1, q) is a partition of the points of
PG(tk−1, q) into (t−1)-dimensional subspaces.

Let Ω := PG
(

k− 1, q t
)

= PG
(

V, Fq t
)

. If we regard V as a vector space over
Fq of rank kt, then PG(V, Fq) = PG(kt − 1, q). Also, each point P of Ω defines a
(t − 1)-dimensional subspace XP of PG(kt − 1, q) and D = {XP : P ∈ Ω} is a De-
sarguesian spread of PG(kt − 1, q) (see, e.g., [14]). Also, the incidence structure
Πk−1(D) := (D, L) whose points are the elements of S and whose lines are the
(2t− 1)-dimensional subspaces spanned by two elements of S is isomorphic to Ω.
Such a structure is called linear representation of Ω over Fq.

Anm-dimensionalFq-vector subspaceU ofV defines in PG(kt−1, q) an (m−1)-
dimensional projective subspaceM := PG(U, Fq) and the linear set L(U) ofΩ can be
seen as the set of points P ofΩ such that XP∩M �= /0, i.e., L(U) = {P∈Ω : XP∩M �=
/0}.

Denote by ⊥ the polarity ofΩ defined by a non-singular bilinear form<, > ofV.
If Tr is the trace of Fq t over Fq, the Fq-bilinear form Tr(< x, y>) ofV

(

regarded as a
vector space over Fq

)

defines a polarity⊥′ of PG(kt−1, q) andM⊥′
= PG

(

U⊥′
, Fq

)

denotes the polar ofM with respect to ⊥′. Then

Γ∗ := L
(

U⊥′
)

=
{

P ∈ PG
(

k−1, q t) ∣
∣ XP∩M⊥′

�= /0
}

(2.1)

is an Fq-linear set of rank kt−m of Ω. We call Γ∗ the dual of Γ with respect to ⊥
(see [21, §2]).
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Lemma 3.1. Let λ1, . . . , λs ∈ F∗
qn , then

i) dim〈X ′(λ1), . . . , X ′(λs)〉= sn−1 if and only if λ1, . . . , λs are Fq-independent;
ii) dim〈X(λ1), . . . , X(λs)〉= sn−1 if and only if λ1, . . . , λs are Fq-independent.

In particular, if X1, . . . , Xr ∈ Ri, i ∈ {1, 2}, with dim 〈X1, . . . , Xr〉 = rn− 1, r < n,
and Xr+1 ∈Ri, then either Xr+1 ⊂ 〈X1, . . . , Xr〉 or 〈X1, . . . , Xr〉∩Xr+1 = /0.

Proof. We first prove i). Assume dim〈X ′(λ1), . . . , X ′(λs)〉 = sn− 1 and, by way of
contradiction, suppose λ1, . . . , λs ∈ F∗

qn are Fq-dependent. Hence, up to a rearrange-
ment, there exist α2, . . . , αs ∈ Fq, which are not all zero, such that λ1 = α2λ2+ · · ·+
αsλs. In such a case, it is easy to see that X ′(λ1)∩〈X ′(λ2), . . . , X ′(λs)〉 �= /0, a contra-
diction.

Conversely, let λ1, . . . , λs be Fq-independent and, by way of contradiction, sup-
pose that dim〈X ′(λ1), . . . , X ′(λs)〉 < sn− 1. Then, up to a rearrangement, we have
X ′(λ1)∩〈X ′(λ2), . . . , X ′(λs)〉 �= /0, and hence there exist µ1 ∈F∗

qn and µ2, . . . , µs ∈Fqn

not all zero, such that

tλ1 ◦Tr ◦ tµ1 =
s

∑
i=2

(

tλi ◦Tr ◦ tµi
)

. (3.3)

It follows that

ker
(

tλ1 ◦Tr ◦ tµ1
)

⊇
s
⋂

i=2

ker
(

tλi ◦Tr ◦ tµi
)

.

If there is a ∈ ker
(

tλ1 ◦Tr ◦ tµ1
)

and a /∈
⋂s

i=2 ker
(

tλi ◦Tr ◦ tµi
)

, then, from (3.3), it
follows that λ2, . . . , λn are dependent over Fq, a contradiction. Hence,

ker
(

tλ1 ◦Tr ◦ tµ1
)

=
s
⋂

i=2

ker
(

tλi ◦Tr ◦ tµi
)

,

which means
ker

(

tλ1 ◦Tr ◦ tµ1
)

= ker
(

tλi ◦Tr ◦ µi
)

, (3.4)

for each i ∈ {2, . . . , s} such that µi �= 0. By Eq. (3.4), if µi �= 0 there exists βi ∈ Fq
such that µi = βiµ1. Substituting for µi in Eq. (3.3), we get λ1 = ∑s

i=2βiλi, i.e.,
λ1, . . . , λs are Fq-dependent, a contradiction.

Statement ii) follows from i) taking (3.2) into account. Finally, the last part of the
statement follows from i) and ii) noting that if λr+1 = ∑r

i=1βiλi, with βi ∈ Fq, then

tλr+1 ◦Tr ◦ tµ =
r

∑
i=1

βi
(

tλi ◦Tr ◦ tµ
)

,

for each µ ∈ Fqn .

Let X1, X2, . . . , Xr be elements of Ri, i ∈ {1, 2}, and let M = 〈X1, X2, . . . , Xr〉.
Since each map of Xi has rank 1, if r ≤ n− 1, each element of M has rank at most
n−1, i.e.,M ⊂Ω(Sn,n).
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3. The Segre Variety Sn,n and Polarities

The incidence-geometric description of the Segre varieties is well known, see, e.g.,
[4] and [5, Section 25.5]. Here below, following the approach used in [18, §5], we
describe the Segre variety in terms of linear maps.

Let E = End
(

Fqn , Fq
)

be the vector space of all the endomorphisms of Fqn over
Fq. The Segre Variety Sn,n of the projective space P= PG(E, Fq) = PG

(

n2− 1, q
)

is the algebraic variety defined by the elements of E of rank 1 and the (n−2)-secant
variety Ω(Sn,n) (the secant variety of Sn,n, for short) of Sn,n is the hypersurface of P
defined by the non-invertible elements of E.

If tα : x ∈ Fqn �→ αx ∈ Fqn , with α ∈ F∗
qn and Tr : x ∈ Fqn �→ x+x q+ · · ·+x q

n−1
∈

Fq, we have that
Sn,n =

{

〈tλ ◦Tr ◦ tµ〉 : λ , µ ∈ F
∗
qn
}

,

where ◦ stands for composition of maps (see, e.g., [18, Prop. 5.1]).
Moreover, for any λ ∈ F∗

qn , the (n−1)-dimensional projective subspaces of P

X(λ ) =
{

〈tα ◦Tr ◦ tλ 〉 : α ∈ F
∗
qn
}

and X ′(λ ) =
{

〈tλ ◦Tr ◦ tα〉 : α ∈ F
∗
qn
}

are the maximal subspaces contained in Sn,n andSn,n =
⋃

λ∈F∗qn
X(λ )=

⋃

λ∈F∗qn
X ′(λ ).

The setsR1 =
{

X(λ ) : λ ∈ F∗
qn
}

andR2 =
{

X ′(λ ) : λ ∈ F∗
qn
}

are the systems of
Sn,n and they satisfy the following properties: (a) the subspaces of R1 (R2, respec-
tively) are mutually disjoint; (b) if X(µ) and X ′(λ ) are (n−1)-dimensional subspaces
belonging to different systems of Sn,n, then X(µ)∩X ′(λ ) = {〈tλ ◦Tr◦ tµ〉} is a point
of P; (c) each point of Sn,n belongs to a unique element ofR1 and to a unique element
ofR2.

For each ϕ ∈ E, where ϕ(x) = ∑n−1
i=0 βix

qi , the conjugate ϕ of ϕ is defined by

ϕ(x) = ∑n−1
i=0 β

qn−i

i xq
n−i

. Precisely, ϕ̄ is the adjoint map of ϕ with respect to the
non-degenerate Fq-bilinear form of Fqn

〈x, y〉= Tr(xy). (3.1)

The map
T : ϕ ∈ E �→ ϕ ∈ E

is an involutory Fq-linear permutation of E and

X(µ)ΦT = X ′(µ), for each µ ∈ F
∗
qn , (3.2)

whereΦT denotes the collineation of P induced by T (for further details see [18, §5]).
If Γ is a geometric spread set in P defined by a presemifield S, i.e., Γ is an Fs-

linear set of P = PG
(

n2− 1, q
)

, q = se, of rank en disjoint from Ω(Sn,n), then ΓΦT

is an Fs-linear set of P of rank en and, by (3.2), it is disjoint from Ω(Sn,n), as well.
By [17, Lemma 2], it defines another presemifield St , which is the so-called transpose
of S, introduced by Knuth in [8].

Now, we will prove some results which will be useful to prove the main result of
the paper in the subsequent section.
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Lemma 3.1. Let λ1, . . . , λs ∈ F∗
qn , then

i) dim〈X ′(λ1), . . . , X ′(λs)〉= sn−1 if and only if λ1, . . . , λs are Fq-independent;
ii) dim〈X(λ1), . . . , X(λs)〉= sn−1 if and only if λ1, . . . , λs are Fq-independent.

In particular, if X1, . . . , Xr ∈ Ri, i ∈ {1, 2}, with dim 〈X1, . . . , Xr〉 = rn− 1, r < n,
and Xr+1 ∈Ri, then either Xr+1 ⊂ 〈X1, . . . , Xr〉 or 〈X1, . . . , Xr〉∩Xr+1 = /0.

Proof. We first prove i). Assume dim〈X ′(λ1), . . . , X ′(λs)〉 = sn− 1 and, by way of
contradiction, suppose λ1, . . . , λs ∈ F∗

qn are Fq-dependent. Hence, up to a rearrange-
ment, there exist α2, . . . , αs ∈ Fq, which are not all zero, such that λ1 = α2λ2+ · · ·+
αsλs. In such a case, it is easy to see that X ′(λ1)∩〈X ′(λ2), . . . , X ′(λs)〉 �= /0, a contra-
diction.

Conversely, let λ1, . . . , λs be Fq-independent and, by way of contradiction, sup-
pose that dim〈X ′(λ1), . . . , X ′(λs)〉 < sn− 1. Then, up to a rearrangement, we have
X ′(λ1)∩〈X ′(λ2), . . . , X ′(λs)〉 �= /0, and hence there exist µ1 ∈F∗

qn and µ2, . . . , µs ∈Fqn

not all zero, such that

tλ1 ◦Tr ◦ tµ1 =
s

∑
i=2

(

tλi ◦Tr ◦ tµi
)

. (3.3)

It follows that

ker
(

tλ1 ◦Tr ◦ tµ1
)

⊇
s
⋂

i=2

ker
(

tλi ◦Tr ◦ tµi
)

.

If there is a ∈ ker
(

tλ1 ◦Tr ◦ tµ1
)

and a /∈
⋂s

i=2 ker
(

tλi ◦Tr ◦ tµi
)

, then, from (3.3), it
follows that λ2, . . . , λn are dependent over Fq, a contradiction. Hence,

ker
(

tλ1 ◦Tr ◦ tµ1
)

=
s
⋂

i=2

ker
(

tλi ◦Tr ◦ tµi
)

,

which means
ker

(

tλ1 ◦Tr ◦ tµ1
)

= ker
(

tλi ◦Tr ◦ µi
)

, (3.4)

for each i ∈ {2, . . . , s} such that µi �= 0. By Eq. (3.4), if µi �= 0 there exists βi ∈ Fq
such that µi = βiµ1. Substituting for µi in Eq. (3.3), we get λ1 = ∑s

i=2βiλi, i.e.,
λ1, . . . , λs are Fq-dependent, a contradiction.

Statement ii) follows from i) taking (3.2) into account. Finally, the last part of the
statement follows from i) and ii) noting that if λr+1 = ∑r

i=1βiλi, with βi ∈ Fq, then

tλr+1 ◦Tr ◦ tµ =
r

∑
i=1

βi
(

tλi ◦Tr ◦ tµ
)

,

for each µ ∈ Fqn .

Let X1, X2, . . . , Xr be elements of Ri, i ∈ {1, 2}, and let M = 〈X1, X2, . . . , Xr〉.
Since each map of Xi has rank 1, if r ≤ n− 1, each element of M has rank at most
n−1, i.e.,M ⊂Ω(Sn,n).
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Theorem 3.3. Let Γ be an Fs-linear set of rank en of P = PG
(

n2 − 1, q
)

, q = se,
contained in a (2n−1)-dimensional subspace T of P, and let ⊥ be the polarity of P
defined by (3.5). If the following conditions are satisfied:

(P1) Γ∩T⊥ = /0;
(P2) T⊥∩Sn,n = /0;
(P3)

〈

X , T⊥
〉

∩Γ= /0, ∀X ∈Ri, for a given i ∈ {1, 2};

then, Γ∗
T = Γ∗∩T is a geometric spread set.

Proof. Suppose that (P3) holds with i = 1, being the proof analogous in the other
case. By the arguments stated above, (P1) implies that Γ∗

T = Γ∗ ∩T is an Fs-linear
set of T of rank en. Since Ω(Sn,n) =

⋃

M∈T1
M, then Γ∗

T is a geometric spread set
if and only if Γ∗

T ∩M = Γ∗ ∩T ∩M = /0 for each M ∈ T1. Let ⊥′ be the polarity of
P′ = PG(E, Fs) = PG

(

n2e− 1, s
)

induced by ⊥ as described at the end of Section
2. Note that if Y is a subspace of P = PG

(

E, Fq
)

= PG
(

n2− 1, q
)

, then Y can be
regarded as an Fs-subspace of P′ and it is easy to see that Y⊥′

= Y⊥ (see [21, p. 4]).
Now, regarding Γ∗, M, and T as Fs-subspaces of P′, we have that Γ∗ ∩T ∩M = /0
if and only if P′ =

〈

Γ,M⊥′
, T⊥′〉

=
〈

Γ,M⊥, T⊥
〉

. Since M ∈ T1, by Lemma 3.2,
M⊥ ∈ R1, and hence, by (P2), M⊥∩T⊥ = /0. Then P′ =

〈

Γ,M⊥, T⊥
〉

if and only if
〈

M⊥, T⊥
〉

∩Γ = /0 and, by (P3) and by Lemma 3.2, the latter condition is satisfied
for eachM ∈ T1.

Remark 3.4. We observe that by simply inspecting the hypotheses one can prove that
the converse of Theorem 3.3 holds true, as well. Moreover, if the subspace T is non-
singular with respect to the polarity ⊥, i.e., T ∩T⊥ = /0, then the geometric spread
set Γ∗

T and the subspace T satisfy Conditions (P1), (P2), and (P3). This means that,
in such a case, the above procedure is involutory, i.e., it can be also applied to Γ∗

T

yielding
(

Γ∗
T
)∗

T
= Γ.

4. Semifields and Polarities

Let S be a presemifield of dimension n over a subfield Fq of its left nucleus and let
Fs (q= se) be a subfield of Fq contained in the center of S. If S is a proper semifield,
then n≥ 2. Also, up to isotopy, we may assume that S=

(

Fqn ,+, �
)

, where

x� y= ϕy(x),

with ϕy ∈ E= End
(

Fqn , Fq
)

. The set

CS =
{

ϕy : x ∈ Fqn �→ x� y ∈ Fqn |y ∈ Fqn
}

⊂ E

is the semifield spread set associated with S (spread set for short): CS is an Fs-
subspace of E of rank en and each non-zero element of CS is invertible. Hence,
we can associate with S the Fs-linear set Γ(S) of rank en of the projective space
P = PG

(

E, Fq
)

= PG
(

n2 − 1, q
)

defined by the non-zero elements of CS. Such a
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Let

Ti :=
{

M = 〈X1, . . . , Xn−1〉 : X j ∈Ri and dimM = n2−n−1
}

.

Since each element of E= End
(

Fqn , Fq
)

of rank r is linear combination of r elements
of E of rank 1, by applying Lemma 3.1, we have that Ω(Sn,n) =

⋃

M∈Ti
M.

Denote by ϕa0,a1,...,an−1 the element of E defined as

ϕa0,a1,...,an−1(x) = a0x+a1xq+ · · ·+an−1xq
n−1

and let ⊥ be the polarity of P associated with the symmetric non-singular bilinear
form

b
(

ϕa0,a1,...,an−1 , ϕb0,b1,...,bn−1

)

= Tr(a0b0+a1b1+ · · ·+an−1bn−1). (3.5)

Lemma 3.2. Let ⊥ be the polarity of P defined by (3.5). Then an element X belongs
toRi, i ∈ {1, 2}, if and only if X⊥ ∈ Ti.

Proof. Taking Lemma 3.1 into account and by making direct computations it is pos-
sible to show that |Ti|= |Ri|=

qn−1
q−1 for each i ∈ {1, 2}. Hence, we may only prove

the necessary condition. Consider the case i = 1 and let X = X(λ ) ∈R1, λ �= 0. By
(3.5) we have

b(tα ◦Tr ◦ tλ , tβ ◦Tr ◦ tµ) = Tr(αβTr(λµ)),

hence if Tr(λµ) = 0 the element X(µ) ofR1 belongs to X(λ )⊥.
If {µ1, µ2, . . . , µn−1} is a basis of the Fq-subspace ker (Tr ◦ tλ ) of Fqn then, by

Lemma 3.1,
M = 〈X(µ1), X(µ2), . . . , X(µn−1)〉

has dimension n2−n−1 and it is contained in X(λ )⊥. Then X(λ )⊥ =M ∈ T1.
In a similar way we can prove the case i= 2.

Let Γ = L(U) be an Fs-linear set contained in a (2n− 1)-dimensional subspace
T = PG(W, Fq) of P= PG

(

n2−1, q
)

of rank en (q = se) such that Γ∩T⊥ = /0, i.e.,
U ∩W⊥ = {0}. The set

Γ∗
T := Γ∗∩T,

where Γ∗ is the dual of Γ with respect to ⊥ as defined in Section 2, is an Fs-linear set
of rank en as well. Indeed, Γ∗

T is defined by the Fs-subspaceU⊥′
∩W , where⊥′ is the

polarity of P′ = PG(E, Fs) = PG
(

n2e−1, s
)

induced by ⊥ as described in Section 2,
and noting thatW⊥′

=W⊥, we get

rkFsΓ
∗
T = dimFs

(

U⊥′
∩W

)

= n2e−dimFs

(

U+W⊥′
)

= n2e−dimFs

(

U+W⊥
)

= en. (3.6)

In the next theorem we will prove that the linear set Γ∗
T is a geometric spread set

contained in T , providing suitable conditions on T and Γ. Indeed,
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Theorem 3.3. Let Γ be an Fs-linear set of rank en of P = PG
(

n2 − 1, q
)

, q = se,
contained in a (2n−1)-dimensional subspace T of P, and let ⊥ be the polarity of P
defined by (3.5). If the following conditions are satisfied:

(P1) Γ∩T⊥ = /0;
(P2) T⊥∩Sn,n = /0;
(P3)

〈

X , T⊥
〉

∩Γ= /0, ∀X ∈Ri, for a given i ∈ {1, 2};

then, Γ∗
T = Γ∗∩T is a geometric spread set.

Proof. Suppose that (P3) holds with i = 1, being the proof analogous in the other
case. By the arguments stated above, (P1) implies that Γ∗

T = Γ∗ ∩T is an Fs-linear
set of T of rank en. Since Ω(Sn,n) =

⋃

M∈T1
M, then Γ∗

T is a geometric spread set
if and only if Γ∗

T ∩M = Γ∗ ∩T ∩M = /0 for each M ∈ T1. Let ⊥′ be the polarity of
P′ = PG(E, Fs) = PG

(

n2e− 1, s
)

induced by ⊥ as described at the end of Section
2. Note that if Y is a subspace of P = PG

(

E, Fq
)

= PG
(

n2− 1, q
)

, then Y can be
regarded as an Fs-subspace of P′ and it is easy to see that Y⊥′

= Y⊥ (see [21, p. 4]).
Now, regarding Γ∗, M, and T as Fs-subspaces of P′, we have that Γ∗ ∩T ∩M = /0
if and only if P′ =

〈

Γ,M⊥′
, T⊥′〉

=
〈

Γ,M⊥, T⊥
〉

. Since M ∈ T1, by Lemma 3.2,
M⊥ ∈ R1, and hence, by (P2), M⊥∩T⊥ = /0. Then P′ =

〈

Γ,M⊥, T⊥
〉

if and only if
〈

M⊥, T⊥
〉

∩Γ = /0 and, by (P3) and by Lemma 3.2, the latter condition is satisfied
for eachM ∈ T1.

Remark 3.4. We observe that by simply inspecting the hypotheses one can prove that
the converse of Theorem 3.3 holds true, as well. Moreover, if the subspace T is non-
singular with respect to the polarity ⊥, i.e., T ∩T⊥ = /0, then the geometric spread
set Γ∗

T and the subspace T satisfy Conditions (P1), (P2), and (P3). This means that,
in such a case, the above procedure is involutory, i.e., it can be also applied to Γ∗

T

yielding
(

Γ∗
T
)∗

T
= Γ.

4. Semifields and Polarities

Let S be a presemifield of dimension n over a subfield Fq of its left nucleus and let
Fs (q= se) be a subfield of Fq contained in the center of S. If S is a proper semifield,
then n≥ 2. Also, up to isotopy, we may assume that S=

(

Fqn ,+, �
)

, where

x� y= ϕy(x),

with ϕy ∈ E= End
(

Fqn , Fq
)

. The set

CS =
{

ϕy : x ∈ Fqn �→ x� y ∈ Fqn |y ∈ Fqn
}

⊂ E

is the semifield spread set associated with S (spread set for short): CS is an Fs-
subspace of E of rank en and each non-zero element of CS is invertible. Hence,
we can associate with S the Fs-linear set Γ(S) of rank en of the projective space
P = PG

(

E, Fq
)

= PG
(

n2 − 1, q
)

defined by the non-zero elements of CS. Such a
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for some α ∈ F∗
qn , and it belongs to Γ if and only if































αλ = A,

αλ qm + cq
n−t

aq
n−t

m+h = 0,

αλ qm+h
+am+h = 0,

αλ qi +ai = 0, ∀ i �= 0,m,m+h.

Combining the second and the third equations of the previous system we have

c= α q t−1λ qm+t−qm+h
,

a contradiction since N(c) �= 1. Hence, T and Γ satisfy also Condition (P3) of Theo-
rem 3.3 and

Γ∗
T = Γ∗∩T =

{〈

x ∈ Fqn �→ Bxq
m
− cB q txq

m+h
∈ Fqn

〉

: B ∈ F
∗
qn

}

is a geometric spread set. Also, it is clear that Γ∗
T defines a presemifield S∗T with

multiplication
x◦ y= yx q

m
− cyq

t
xq

m+h
,

which is isotopic to a Generalized Twisted Field G=G
(

q n, c, t, h
)

.
So, we have that starting from the Galois field F = Fqn of order q n, n > 2, we

may obtain, by means of the geometric procedure exposed in Theorem 3.3, every
Generalized Twisted Field of order q n and center Fq. We point out that apart from
the procedure recently described in [12], this does not occur in any other procedure
known giving rise to a presemifield starting from a given one (see [6, Chapter 105],
[11, Chapter 6, Section 6], and [2]).

4.1. The Generalized Translation Dual of a Semifield

We point out that Conditions (P1), (P2), and (P3) of Theorem 3.3 strongly involve
the linear set Γ. The following version of that theorem assures that the geometric
procedure can be applied to any geometric spread set contained in T , i.e., to any Fs-
linear set Γ of PG

(

n2−1, q
)

, q= se, of rank ne disjoint from the varietyΩ(Sn,n). We
stress the fact that in contrast to Theorem 3.3, the relevant conditions only concern
with the subspace T of P and the variety Sn,n. Precisely, we prove the following
theorem.

Theorem 4.1. Let T be a (2n−1)-dimensional subspace of P= PG
(

n2−1, q
)

, q=
se, satisfying the following conditions:

(T1) T ∩T⊥ = /0;
(T2) T⊥∩Sn,n = /0;
(T3)

〈

X , T⊥
〉

∩T ⊂Ω(Sn,n), ∀X ∈Ri, for a given i ∈ {1, 2}.

Then, for each Fs-linear set Γ of rank ne contained in T and disjoint from the variety
Ω(Sn,n) (i.e., a geometric spread set), the set Γ∗

T = Γ∗∩T , where Γ∗ is defined as in
(2.1), turns out to be a geometric spread set as well.

8 G. Lunardon et al.

linear set turns out to be disjoint from the variety Ω(Sn,n) of P defined by the non-
invertible elements of E and hence it is a geometric spread set. Isotopic semifields
produce in P geometric spread sets which are equivalent under the action of the sub-
group H(Sn,n) of PΓL

(

n2, q
)

fixing the systems of Sn,n, and conversely (see [15]
and [10]). On the other hand, the transpose of S corresponds to a geometric spread set
which is equivalent to Γ(S) under a collineation of G \H(Sn,n), where G = Aut(Sn,n)
([17, Lemma 2]).

We explicitly note that Theorem 3.3 relies on a linear set Γ of P and on a (2n−1)-
dimensional subspace T of P containing Γ, satisfying some suitable assumptions. In
what follows we will show with an example that when n > 2 and Γ is a geometric
spread set associated with a field, then applying Theorem 3.3 we can get geometric
spread sets whose associated presemifields are not isotopic to any Knuth derivative of
a field, this depending on a suitable choice of the subspace T satisfying the relevant
hypotheses.

To this extent recall that a Generalized Twisted Field G with center of order q is
a presemifield of typeG=G(q n, c, t, h) =

(

Fqn ,+, �
)

(q= pe, p prime, n> 2) with

x� y= yx− cy q
t
xq

h
, (4.1)

where c ∈ F
∗
qn such that N(c) �= 1 and N(·) denotes the Norm function of Fqn over Fq,

and 1≤ h, t ≤ n−1, h �= t, and gcd(n, h, t) = 1.
With this in mind, let Γ=

{〈

x ∈ Fqn �→ Ax ∈ Fqn
〉

: A∈ F∗
qn
}

be the geometric spread
set in P= PG

(

E, Fq
)

= PG
(

n2−1, q
)

, with E= End
(

Fqn , Fq
)

and n> 2, associated
with the finite field Fqn . The set Γ is called Desarguesian geometric spread set. If we
choose

T = T (c,m, h, t) =
{〈

x ∈ Fqn �→ Ax+Bx q
m
− cB qtxq

m+h
〉

∈ Fqn :

A, B ∈ Fqn , (A, B) �= (0, 0)
}

, (4.2)

where 1 ≤ m, h, t ≤ n− 1, gcd (n, h, t) = 1, h �= t, h+m �≡ 0(mod n) and such that
c ∈ F∗

qn with N(c) �= 1, straightforward computations show that

T⊥ =

{〈

x �→
n−1

∑
i=0

aixq
i
〉

: ai ∈ Fqn (not all zero) with a0 = 0

and am = cq
n−t

aq
n−t

m+h

}

,

and hence Γ∩T⊥ = T⊥∩Sn,n = /0, i.e., Conditions (P1) and (P2) of Theorem 3.3 are
satisfied. Also, for each X(λ ) ∈R1, λ ∈ F∗

qn , an element of
〈

X(λ ), T⊥
〉

is a map of
shape

ψ(x) = αλx+
n−1

∑
i=1, i�=m

(

αλ qi +ai
)

xq
i
+
(

αλ qm + cq
n−t

aq
n−t

m+h

)

xq
m
,
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for some α ∈ F∗
qn , and it belongs to Γ if and only if































αλ = A,

αλ qm + cq
n−t

aq
n−t

m+h = 0,

αλ qm+h
+am+h = 0,

αλ qi +ai = 0, ∀ i �= 0,m,m+h.

Combining the second and the third equations of the previous system we have

c= α q t−1λ qm+t−qm+h
,

a contradiction since N(c) �= 1. Hence, T and Γ satisfy also Condition (P3) of Theo-
rem 3.3 and

Γ∗
T = Γ∗∩T =

{〈

x ∈ Fqn �→ Bxq
m
− cB q txq

m+h
∈ Fqn

〉

: B ∈ F
∗
qn

}

is a geometric spread set. Also, it is clear that Γ∗
T defines a presemifield S∗T with

multiplication
x◦ y= yx q

m
− cyq

t
xq

m+h
,

which is isotopic to a Generalized Twisted Field G=G
(

q n, c, t, h
)

.
So, we have that starting from the Galois field F = Fqn of order q n, n > 2, we

may obtain, by means of the geometric procedure exposed in Theorem 3.3, every
Generalized Twisted Field of order q n and center Fq. We point out that apart from
the procedure recently described in [12], this does not occur in any other procedure
known giving rise to a presemifield starting from a given one (see [6, Chapter 105],
[11, Chapter 6, Section 6], and [2]).

4.1. The Generalized Translation Dual of a Semifield

We point out that Conditions (P1), (P2), and (P3) of Theorem 3.3 strongly involve
the linear set Γ. The following version of that theorem assures that the geometric
procedure can be applied to any geometric spread set contained in T , i.e., to any Fs-
linear set Γ of PG

(

n2−1, q
)

, q= se, of rank ne disjoint from the varietyΩ(Sn,n). We
stress the fact that in contrast to Theorem 3.3, the relevant conditions only concern
with the subspace T of P and the variety Sn,n. Precisely, we prove the following
theorem.

Theorem 4.1. Let T be a (2n−1)-dimensional subspace of P= PG
(

n2−1, q
)

, q=
se, satisfying the following conditions:

(T1) T ∩T⊥ = /0;
(T2) T⊥∩Sn,n = /0;
(T3)

〈

X , T⊥
〉

∩T ⊂Ω(Sn,n), ∀X ∈Ri, for a given i ∈ {1, 2}.

Then, for each Fs-linear set Γ of rank ne contained in T and disjoint from the variety
Ω(Sn,n) (i.e., a geometric spread set), the set Γ∗

T = Γ∗∩T , where Γ∗ is defined as in
(2.1), turns out to be a geometric spread set as well.
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⊥ is the polarity of P defined by (3.5), either fixes or interchanges the two sys-
tems of Sn,n according to Property (�ii) or Property (�i j) is satisfied, respectively.
If ϕ ′ := τ ′· ⊥′ is the collineation of P′ = PG(E, Fs) = PG

(

n2e−1, s
)

induced by ϕ ,
then

(

Γ∗′
T
)ϕ

=
(

Γτ ′ ∩T
)ϕ ′

= Γ⊥′
∩Tϕ ′

= Γ∗ ∩Tϕ = Γ∗
Tϕ , i.e., the geometric spread

set Γ∗′
T is G-equivalent to the geometric spread set Γ∗

Tϕ . In particular, if (�ii) holds,
then Γ∗′

T and Γ∗
Tϕ are H(Sn,n)-equivalent, where H(Sn,n) is the subgroup of G fix-

ing the systems of Sn,n. Finally, we observe that we can produce, by conjugation, a
range of polarities satisfying (�ii); indeed, for each ϕ ∈H(Sn,n), it is easy to see that
τ = ϕ−1 ⊥ ϕ satisfies this property.

Let Γ = Γ(S) be the geometric spread set associated with a presemifield S. In
the light of Theorem 4.1, starting from Γ, it is possible to construct other geometric
spread sets of type Γ∗

T depending on the choice of a subspace T containing Γ and
satisfying Conditions (T1), (T2), and (T3).

Now we prove that, up to the choice of the polarity, the procedure is well defined
with respect to the action of G. We need the following lemma.

Lemma 4.4. Let Γ and Γ ′ be Fs-linear sets of P = PG
(

n2− 1, q
)

(q = se) of rank
ne, G-equivalent via ϕ ∈ H(Sn,n), i.e., Γ ′ = Γϕ and let T be a (2n−1)-dimensional
subspace of P satisfying (T1), (T2), and (T3) of Theorem 4.1 relatively to Γ and with
respect to the polarity⊥. Then the subspace T ′ = Tϕ satisfies Conditions (T1), (T2),
and (T3) as well relatively to Γ ′ and with respect to the polarity τ = ϕ−1 ⊥ ϕ , and
the geometric spread sets Γ ′∗′

T ′ and Γ∗
T are G-equivalent.

Proof. The proof of the first part easily follows from the assumptions and observing
that Xϕ ∈ Ri for each X ∈ Ri and Ω(Sn,n)

ϕ = Ω(Sn,n). Also, it is clear that Γ ′∗′

T ′ =
(

Γ∗
T
)ϕ .

Now, we are able to prove the following result.

Theorem 4.5. The geometric procedure described in Theorem 4.1 is well defined up
to isotopism.

Proof. If S ′ is a presemifield isotopic to S and S∗T is the presemifield associated with
Γ∗
T , by means of the procedure described in Theorem 4.1, then by Lemma 4.4 and

Remark 4.3 there exist a (2n−1)-dimensional subspace T ′ and a polarity τ satisfying
(�ii) such that S ′∗′

T ′ is isotopic to S∗T . By Remark 4.3 the assertion follows.

Hence, it makes sense to give the following definition.

Definition 4.6. The presemifield S
∗
T associated with Γ∗

T is called a translation dual
of S or the translation dual of S with respect to T . Also, we will refer to the geometric
procedure described in Theorem 4.1 as the generalized translation dual operation of
a semifield.
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Proof. Since Γ ⊂ T , Condition (T1) trivially implies (P1); moreover, if
〈

X , T⊥
〉

∩T
is contained inΩ(Sn,n), then Γ is disjoint from

〈

X , T⊥
〉

∩T because Γ is a geometric
spread set, and hence (T3) implies (P3). By Theorem 3.3, the assertion follows.

Remark 4.2. Differently from what happens for Theorem 3.3, the converse of The-
orem 4.1 does not hold true. We may show this in the following way. Let Γ =
{〈

x ∈ Fqn �→ Ax ∈ Fqn
〉

: A ∈ F∗
qn
}

be the Desarguesian geometric spread set in
P= PG

(

E, Fq
)

= PG
(

n2−1, q
)

, with E= End
(

Fqn , Fq
)

and n> 2, associated with
the finite field Fqn . If we choose

T =
{〈

x ∈ Fqn �→ Ax+Bx q
h
∈ Fqn

〉

: A, B ∈ Fqn , (A, B) �= (0, 0)
}

,

with 1≤ h≤ n−1, then

T⊥ =

{〈

x �→
n−1

∑
i=0

aixq
i

〉

: ai ∈ Fqn (not all zero) with a0 = ah = 0

}

.

It can be easily seen that Condition (T1) holds true; also T and Γ satisfy the conditions
in Theorem 3.3. Hence,

Γ∗
T =

{〈

x ∈ Fqn �→ Bxq
h
∈ Fqn

〉

: B ∈ F
∗
qn

}

is a geometric spread set and it is clearly a Desarguesian geometric spread set, as
well. Observe, on the other hand, that for each X(λ ) ∈R1 (or, equivalently, for each
X ′(λ ) ∈R2), with λ ∈ F∗

qn , any element of
〈

X(λ ), T⊥
〉

∩T is a map of shape

ψ(x) = αλx+αλ qhxq
h
,

for some α ∈ F∗
qn and with 1 ≤ h ≤ n. Hence,

〈

X(λ ), T⊥
〉

∩ T ⊂ Ω(Sn,n) if and
only if the map ψ(x) is non-invertible and this happens if and only if the equation
y q

h−1 =−1 admits its solution in Fqn , i.e., if and only if q is even or q is odd and the
integer n

gcd(n,h) is even. This means that Condition (T3) is not always satisfied.

We want to stress the fact that the construction described in the previous theorems
can be applied to any polarity of P interchanging a family Ri with T j, for some
i, j ∈ {1, 2}. However, as we will show in the next remark, up to the action of the
automorphism group G = Aut(Sn,n) of the Segre variety Sn,n, working only with the
polarity ⊥ is not restrictive.

Remark 4.3. Let τ be any polarity of P satisfying one of the following properties:

(�ii) X ∈Ri ⇒ X τ ∈ Ti, for each X ∈Ri and for a given i ∈ {1, 2};
(�i j) X ∈Ri ⇒ X τ ∈ T j, for each X ∈Ri and for {i, j} = {1, 2}.

Let Γ be an Fs-linear set contained in a (2n− 1)-dimensional subspace T of P ful-
filling conditions of Theorem 3.3 or Theorem 4.1 with respect to the polarity τ , and
denote by Γ∗′

T the resulting geometric spread set. The collineation ϕ := τ· ⊥, where
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⊥ is the polarity of P defined by (3.5), either fixes or interchanges the two sys-
tems of Sn,n according to Property (�ii) or Property (�i j) is satisfied, respectively.
If ϕ ′ := τ ′· ⊥′ is the collineation of P′ = PG(E, Fs) = PG

(

n2e−1, s
)

induced by ϕ ,
then

(

Γ∗′
T
)ϕ

=
(

Γτ ′ ∩T
)ϕ ′

= Γ⊥′
∩Tϕ ′

= Γ∗ ∩Tϕ = Γ∗
Tϕ , i.e., the geometric spread

set Γ∗′
T is G-equivalent to the geometric spread set Γ∗

Tϕ . In particular, if (�ii) holds,
then Γ∗′

T and Γ∗
Tϕ are H(Sn,n)-equivalent, where H(Sn,n) is the subgroup of G fix-

ing the systems of Sn,n. Finally, we observe that we can produce, by conjugation, a
range of polarities satisfying (�ii); indeed, for each ϕ ∈H(Sn,n), it is easy to see that
τ = ϕ−1 ⊥ ϕ satisfies this property.

Let Γ = Γ(S) be the geometric spread set associated with a presemifield S. In
the light of Theorem 4.1, starting from Γ, it is possible to construct other geometric
spread sets of type Γ∗

T depending on the choice of a subspace T containing Γ and
satisfying Conditions (T1), (T2), and (T3).

Now we prove that, up to the choice of the polarity, the procedure is well defined
with respect to the action of G. We need the following lemma.

Lemma 4.4. Let Γ and Γ ′ be Fs-linear sets of P = PG
(

n2− 1, q
)

(q = se) of rank
ne, G-equivalent via ϕ ∈ H(Sn,n), i.e., Γ ′ = Γϕ and let T be a (2n−1)-dimensional
subspace of P satisfying (T1), (T2), and (T3) of Theorem 4.1 relatively to Γ and with
respect to the polarity⊥. Then the subspace T ′ = Tϕ satisfies Conditions (T1), (T2),
and (T3) as well relatively to Γ ′ and with respect to the polarity τ = ϕ−1 ⊥ ϕ , and
the geometric spread sets Γ ′∗′

T ′ and Γ∗
T are G-equivalent.

Proof. The proof of the first part easily follows from the assumptions and observing
that Xϕ ∈ Ri for each X ∈ Ri and Ω(Sn,n)

ϕ = Ω(Sn,n). Also, it is clear that Γ ′∗′

T ′ =
(

Γ∗
T
)ϕ .

Now, we are able to prove the following result.

Theorem 4.5. The geometric procedure described in Theorem 4.1 is well defined up
to isotopism.

Proof. If S ′ is a presemifield isotopic to S and S∗T is the presemifield associated with
Γ∗
T , by means of the procedure described in Theorem 4.1, then by Lemma 4.4 and

Remark 4.3 there exist a (2n−1)-dimensional subspace T ′ and a polarity τ satisfying
(�ii) such that S ′∗′

T ′ is isotopic to S∗T . By Remark 4.3 the assertion follows.

Hence, it makes sense to give the following definition.

Definition 4.6. The presemifield S∗T associated with Γ∗
T is called a translation dual

of S or the translation dual of S with respect to T . Also, we will refer to the geometric
procedure described in Theorem 4.1 as the generalized translation dual operation of
a semifield.
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4.2. The Classical Translation Dual

If n = 2, then P= PG(E, Fq) = PG(3, q) and the whole space P satisfies Properties
(T1) and (T2) of Theorem 4.1. Also, S2,2 is the hyperbolic quadricQ = Q+(3, q) of
P whose associated polar form is

σ(ϕa,b, ϕa′,b′) = aqa′+aa′q−bqb′−b′qb,

where ϕa,b(x) = ax+ bxq. Finally, T1 = R1 and T2 = R2 are the reguli of Q and
hence also (T3) is trivially satisfied. On the other hand, the polarity τ induced by the
quadricQ satisfies Properties (�11) and (�22) of Remark 4.3. These facts imply that, if
Γ is any geometric spread set contained in P, then the polarity⊥ defined by (3.5) and
the polarity τ yield two geometric spread sets in P, say Γ∗ an Γ∗′ , respectively. The
linear set Γ∗′ defines the “classical” translation dual of a semifield [15]. However,
by Remark 4.3, Γ∗ an Γ∗′ are equivalent under the action of the subgroup H(S2,2)
of Aut(Q) fixing the reguli, i.e., the associated presemifields are isotopic. So, if
n= 2, the construction described in Theorem 4.1 returns the classical translation dual
operation.

When n> 2 and 〈Γ〉q has dimension less than 2n−1, there are different (2n−1)-
dimensional subspaces T of P containing Γ. In such a case, starting from a geometric
spread set Γ(S), it makes sense to search for suitable subspaces T of P satisfying
conditions of Theorem 4.1. In this regard, by Remark 4.3, up to isotopisms and up to
the transpose operation, working only with the polarity ⊥ is not restrictive.

4.3. The Symplectic Dual

Let n= 3 and q odd. Let

T =
{〈

x ∈ Fq3 �→ ax+bqxq+bxq
2
∈ Fq3

〉∣

∣

∣
a, b ∈ Fq3 , (a, b) �= (0, 0)

}

be the 5-dimensional subspace of P = PG
(

E, Fq
)

= PG(8, q), where E =
End

(

Fq3 , Fq
)

, defined by the self-adjoint maps with respect to the non-degenerate
bilinear form (3.1). It is easy to verify that

T⊥ =
{〈

x ∈ Fq3 �→ β qxq−βx q
2
∈ Fq3

〉 ∣

∣

∣
β ∈ F

∗
q3

}

,

and that T⊥ ⊂ Ω(S3,3), T⊥ ∩S3,3 = /0, and T ∩T⊥ = /0. Also, direct computations
show that

〈

X(λ ), T⊥
〉

∩T =
{

〈tα ◦Tr ◦ tλ + tλ ◦Tr ◦ tα〉 : α ∈ F
∗
q3

}

and such a subspace is contained in Ω(S3,3), since ker (tα ◦ Tr ◦ tλ )∩ ker (tλ ◦Tr ◦
tα) �= {0} for each α ∈ F∗

q3 . So, by Theorem 4.1, if Γ = Γ(S) is a geometric spread
set contained in T, then Γ∗

T is a geometric spread set as well and the presemifield S∗T
arising from Γ∗

T is the symplectic dual of S as constructed in [17].
In [17, Theorem 4], the authors apply such a procedure to a Desarguesian geo-

metric spread contained in T , proving that the symplectic dual of the Galois field Fq3
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is isotopic to a Generalized Twisted Field. Also in [17] another geometric spread set
Γ contained in T when q= s2 is exhibited precisely, Γ= L(U), where

U =
{

x ∈ Fs6 �→ αx+β s2ξx s
2
+βξx s

4
∈ Fs6

∣

∣α, β ∈ Fs3

}

,

with ξ ∈ Fs2 \Fs such that ξ s = −ξ . Moreover, it is proven that Γ is a Baer sub-
geometry of P = PG

(

5, s2
)

isomorphic to PG(5, s) [17, Theorem 1] and that the
presemifield associated with Γ is isotopic to its symplectic dual

(

i.e., the presemifield
associated with Γ∗

T
)

[17, Proposition 2].
This example shows how in some cases there is not much freedom in finding an

appropriate subspace T to apply the procedure. In fact, since in the relevant case the
geometric spread set Γ is a Baer subgeometry isomorphic to PG(5, s), the subspace
T is the unique 5-dimensional subspace of P= PG

(

8, s2
)

containing it.

4.4. A Special Case

In this section we give an example of a subspace T satisfying the assumptions of
Theorem 4.1. Indeed, suppose n> 2. Let

T =
{〈

ϕa0,0,...,ah,0,...,0 : x ∈ Fqn �→ a0x+ahxq
h
∈ Fqn

〉

:

a0, ah ∈ Fqn , (a0, ah) �= (0, 0)
}

.

Then,

T⊥ =

{〈

x �→
n−1

∑
i=0

aixq
i
〉

: ai ∈ Fqn , a0 = ah = 0,

(a1, . . . , ah−1, ah+1, . . . , an−1) �= (0, . . . , 0)
}

,

and hence T ∩T⊥ = T⊥∩Sn,n = /0. Moreover, for each X(λ ) ∈R1 (or, equivalently,
for each X ′(λ ) ∈R2), with λ ∈ F∗

qn , we have that an element of
〈

X(λ ), T⊥
〉

∩T is a
map of shape

ψ(x) = αλx+αλ qhxq
h
,

for some α ∈ F∗
qn , and it belongs to Ω(Sn,n) if and only if the map ψ(x) is non-

invertible and, as observed in Remark 4.2, this happens if and only if either q is even
or q is odd and the integer n

gcd(n,h) is even. It follows that, in this case, by applying
Theorem 4.1, we can always construct the translation dual of any geometric spread
set contained in T. Precisely, if Γ= L(U) is a geometric spread set of rank ne (q= se)
contained in T such that U does not have maps of the form x �→ λxqh , for some
element λ ∈ F∗

qn , then

Γ :=
{〈

x ∈ Fqn �→ yx+ f (y)x q
h
∈ Fqn

〉∣

∣

∣
y ∈ F

∗
qn

}

,
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is isotopic to a Generalized Twisted Field. Also in [17] another geometric spread set
Γ contained in T when q= s2 is exhibited precisely, Γ= L(U), where

U =
{

x ∈ Fs6 �→ αx+β s2ξx s
2
+βξx s

4
∈ Fs6

∣

∣α, β ∈ Fs3

}

,

with ξ ∈ Fs2 \Fs such that ξ s = −ξ . Moreover, it is proven that Γ is a Baer sub-
geometry of P = PG

(

5, s2
)

isomorphic to PG(5, s) [17, Theorem 1] and that the
presemifield associated with Γ is isotopic to its symplectic dual

(

i.e., the presemifield
associated with Γ∗

T
)

[17, Proposition 2].
This example shows how in some cases there is not much freedom in finding an

appropriate subspace T to apply the procedure. In fact, since in the relevant case the
geometric spread set Γ is a Baer subgeometry isomorphic to PG(5, s), the subspace
T is the unique 5-dimensional subspace of P= PG

(

8, s2
)

containing it.

4.4. A Special Case

In this section we give an example of a subspace T satisfying the assumptions of
Theorem 4.1. Indeed, suppose n> 2. Let

T =
{〈

ϕa0,0,...,ah,0,...,0 : x ∈ Fqn �→ a0x+ahxq
h
∈ Fqn

〉

:

a0, ah ∈ Fqn , (a0, ah) �= (0, 0)
}

.

Then,

T⊥ =

{〈

x �→
n−1

∑
i=0

aixq
i
〉

: ai ∈ Fqn , a0 = ah = 0,

(a1, . . . , ah−1, ah+1, . . . , an−1) �= (0, . . . , 0)
}

,

and hence T ∩T⊥ = T⊥∩Sn,n = /0. Moreover, for each X(λ ) ∈R1 (or, equivalently,
for each X ′(λ ) ∈R2), with λ ∈ F∗

qn , we have that an element of
〈

X(λ ), T⊥
〉

∩T is a
map of shape

ψ(x) = αλx+αλ qhxq
h
,

for some α ∈ F∗
qn , and it belongs to Ω(Sn,n) if and only if the map ψ(x) is non-

invertible and, as observed in Remark 4.2, this happens if and only if either q is even
or q is odd and the integer n

gcd(n,h) is even. It follows that, in this case, by applying
Theorem 4.1, we can always construct the translation dual of any geometric spread
set contained in T. Precisely, if Γ= L(U) is a geometric spread set of rank ne (q= se)
contained in T such that U does not have maps of the form x �→ λxqh , for some
element λ ∈ F∗

qn , then

Γ :=
{〈

x ∈ Fqn �→ yx+ f (y)x q
h
∈ Fqn

〉∣

∣

∣
y ∈ F

∗
qn

}

,
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where f (y) is an Fs-linear map of Fqn . Then

Γ∗
T :=

{〈

x ∈ Fqn �→ f̄ (z)x− zx q
h
∈ Fqn

〉

| z ∈ F
∗
qn

}

,

where f̄ is the adjoint map of f as defined in (3.1). Hence, the procedure described
in Theorem 4.1 can be applied to any geometric spread set defined by monomial or
binomial functions, as the Desarguesian geometric spread set (see Remark 4.2) and
the spread set associated with a Generalized Twisted Field.

5. Final Remarks

In [2] and [10] the authors presented a geometric construction giving rise to a presemi-
field S of order qn whose center contains Fq starting from a Desarguesian n-spreadD
of a vector spaceV =V (rn, q), and two subspaces ofV satisfying suitable conditions.
This procedure is called the BEL-construction in [2].

When r = 2, the roles of such subspaces can be switched yielding another pre-
semifield which is denoted by ST. In [9, Remark 3.1] it was stated that such a pre-
semifield is, up to isotopisms, one of the six Knuth derivatives of the translation
dual of S. More precisely, in [16, Theorem 2.2], the authors prove that the classical
translation dual S⊥ of S is isotopic to

(

ST
)dtd , where d and t are the dual and the

transpose operations of Knuth, respectively. So, it makes sense to ask whether or not
the generalized translation dual and the switching operation are linked working with
semifields having dimension greater than two over their left nucleus. Although, it
must be observed that while the vector space underlying the switching operation is
endowed with a Desarguesian spread, this is not expressly required in the geometric
procedure behind the generalized translation dual presented here. For instance, with
regard to the symplectic dual operation described in Section 4.3, it is possible to see
that there is no Desarguesian spread of PG(8, q), containing one of the two systems
of the Segre variety S3,3, inducing a Desarguesian spread in the 5-dimensional sub-
space T . However, it would be interesting to study a possible link between the two
procedures such as in the classical translation dual case.
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