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1. Introduction

Let Sn denote the group of permutations on the set [n] := {1, 2, . . . , n}. Let An(t)
denote the type A Eulerian polynomial, that is,

An(t) = ∑
π∈Sn

tdes(π),

where the descent number of π ∈ Sn is defined by

des(π) = |{i ∈ [n−1] : π(i)> π(i+1)}|.

These polynomials were first introduced by Euler, although he did not define them
via descents of permutations (see [9]). The following generating function identity,
which is attributed to Euler, is an equivalent definition of these polynomials

∑
n≥0

An(t)
xn

n!
=

t−1
t− exp((t−1)x)

.
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Theorem 1.3. Let

Qn(t) =
n−1

∑
k=0

Dk(t)
(
n
k

)
(t−1)n−k−1.

For n≥ 2, we have

Dn(t) = Qn(t)+ tnQn
(
t−1)= Qn(t)+ tQ̃n(t). (1.3)

While there is a well-known generating function identity for the type D Eulerian
polynomials, we see no easy way to deduce Theorem 1.3 from this identity. Instead
we provide a combinatorial proof of Theorem 1.3.

It turns out that certain refinements of the polynomials Qn(t), tnQ
(
t−1

)
, Pn(t),

and tnP
(
t−1) were introduced by Savage and Visontai in [13], where they proved

Brenti’s [3] conjecture that the type D Eulerian polynomials have only real roots. We
discuss this connection in Section 4.

2. A Recurrence for the Eulerian Polynomials of Type B

As mentioned above, we let Bn denote the group of signed permutations. An el-
ement π ∈ Bn is a bijection on the integers [−n, n] such that π(−i) = −π(i), in
particular π(0) = 0. We will often write elements in the “window” notation, i.e.,
π = [π(1), π(2), . . . , π(n)], and we will also use cycle notation. Bn is a type B Cox-
eter group with generators τ0, τ1, . . . , τn−1 where τ0 = [−1, 2, 3, . . . , n] = (1,−1),
and τ j = ( j, j+1) for j = 1, . . . , n−1. Given π ∈ Bn, define

DESB(π) = {i ∈ [0, n−1] : π(i)> π(i+1)}

and
desB(π) = |DESB(π)|.

This definition coincides with the notion of Coxeter descent (i.e., i ∈DESB(π) if and
only if the Coxeter length of πτi is less than the Coxeter length of π). The type B
Eulerian polynomials, Bn(t), satisfy the identity [14, Prop. 7.1 (b)]

Bn(t)
(1− t)n+1 = ∑

k≥0
(2k+1)ntk,

from which one can deduce (see also [3, Theorem 3.4 (iv) with q= 1])

∑
n≥0

Bn(t)
xn

n!
=

(1− t)exp(x(1− t))
1− t exp(2x(1− t))

. (2.1)

Next we show how Theorem 1.1 can be deduced from (2.1).

First Proof of Theorem 1.1. From (2.1) we have
(

∑
n≥0

Bn(t)
xn

n!

)(
exp(−x(1− t))− t exp(x(1− t))

(1− t)

)
= 1,
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There are numerous recurrences for the type A Eulerian polynomials. For the pur-
poses of this paper we call the reader’s attention to the following recurrence which
holds for n≥ 1, and is also attributed to Euler

An(t) =
n−1

∑
k=0

Ak(t)
(
n
k

)
(t−1)n−k−1. (1.1)

The main goal of this paper is to find recurrences analogous to (1.1) for the type B
and type D Eulerian polynomials, and interpret them combinatorially.

In Section 2 we establish notation for the group of signed permutations, denoted
Bn. This is a Coxeter group of type B, and thus it has an analogous notion of descent.
We let

Bn(t) = ∑
π∈Bn

tdesB(π),

which are called the type B Eulerian polynomials. While there are several recurrences
for these polynomials (see, for example, [3, 5, 6, 14]), we give a new recurrence,
Equation (1.2) below, which we consider to be an analog of (1.1).

Theorem 1.1. Let

Pn(t) =
n−1

∑
k=0

Bk(t)
(
n
k

)
(t−1)n−k−1.

For n≥ 1 we have
Bn(t) = Pn(t)+ tnPn

(
t−1) . (1.2)

Furthermore, if we define B+
n = {π ∈ Bn : π(n)> 0}, then for n≥ 1 we have

Pn(t) = ∑
π∈B+n

tdesB(π).

Remark 1.2. Given a polynomial f (t) = ∑n
k=0 ckt

k of degree n, the reverse of f , de-
noted f̃ , is given by f̃ (t) = tn f (t−1) = ∑n

k=0 cn−kxk. Since Pn(t) has degree n− 1,
Theorem 1.1 may be restated as

Bn(t) = Pn(t)+ tP̃n(t).

The recurrence (1.2) appearing in Theorem 1.1 is new in the sense that it does
not explicitly appear in the literature. However, we will show how this recurrence
can be deduced from a well-known generating function identity. We will, in addition,
provide a combinatorial proof of Theorem 1.1. We also note that the polynomials
∑π∈B+n t

desB(π) are a natural object, and have been studied in the literature (see, for
example, [1]).

A recurrence similar to (1.2) also holds for the type D case. We begin Section 3
by establishing notation for the group of even signed permutations, denoted Dn. This
is a Coxeter group of type D, and thus has an analogous notion of descent. We let

Dn(t) = ∑
π∈Dn

tdesD(π),

which are called the type D Eulerian polynomials. Again, there are several recur-
rences for these polynomials (see, for example, [3–5,14]). Here we give a new recur-
rence, Equation (1.3) below, which is analogous to (1.1) and (1.2).
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Theorem 1.3. Let

Qn(t) =
n−1

∑
k=0

Dk(t)
(
n
k

)
(t−1)n−k−1.

For n≥ 2, we have

Dn(t) = Qn(t)+ tnQn
(
t−1)= Qn(t)+ tQ̃n(t). (1.3)

While there is a well-known generating function identity for the type D Eulerian
polynomials, we see no easy way to deduce Theorem 1.3 from this identity. Instead
we provide a combinatorial proof of Theorem 1.3.

It turns out that certain refinements of the polynomials Qn(t), tnQ
(
t−1

)
, Pn(t),

and tnP
(
t−1) were introduced by Savage and Visontai in [13], where they proved

Brenti’s [3] conjecture that the type D Eulerian polynomials have only real roots. We
discuss this connection in Section 4.

2. A Recurrence for the Eulerian Polynomials of Type B

As mentioned above, we let Bn denote the group of signed permutations. An el-
ement π ∈ Bn is a bijection on the integers [−n, n] such that π(−i) = −π(i), in
particular π(0) = 0. We will often write elements in the “window” notation, i.e.,
π = [π(1), π(2), . . . , π(n)], and we will also use cycle notation. Bn is a type B Cox-
eter group with generators τ0, τ1, . . . , τn−1 where τ0 = [−1, 2, 3, . . . , n] = (1,−1),
and τ j = ( j, j+1) for j = 1, . . . , n−1. Given π ∈ Bn, define

DESB(π) = {i ∈ [0, n−1] : π(i)> π(i+1)}

and
desB(π) = |DESB(π)|.

This definition coincides with the notion of Coxeter descent (i.e., i ∈DESB(π) if and
only if the Coxeter length of πτi is less than the Coxeter length of π). The type B
Eulerian polynomials, Bn(t), satisfy the identity [14, Prop. 7.1 (b)]

Bn(t)
(1− t)n+1 = ∑

k≥0
(2k+1)ntk,

from which one can deduce (see also [3, Theorem 3.4 (iv) with q= 1])

∑
n≥0

Bn(t)
xn

n!
=

(1− t)exp(x(1− t))
1− t exp(2x(1− t))

. (2.1)

Next we show how Theorem 1.1 can be deduced from (2.1).

First Proof of Theorem 1.1. From (2.1) we have
(

∑
n≥0

Bn(t)
xn

n!

)(
exp(−x(1− t))− t exp(x(1− t))

(1− t)

)
= 1,
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purposes in this paper, we notice that B+
n = {π ∈ Bn : maxdropB(π)≤ n−1}. Thus

∑
π∈B+n

tdesB(π) = B(n−1)
n (t).

It is proved (combinatorially) that for any nonnegative integers m and j we have [11,
Theorem 1.6]

B( j)
m+ j+1(t) =

j+1

∑
k=1

(
j+1
k

)
B( j)
m+ j+1−k(t)(t−1)k−1.

Setting m= 0 and replacing j with n−1 we obtain

B(n−1)
n (t) =

n

∑
k=1

(
n
k

)
B(n−1)
n−k (t)(t−1)k−1

=
n

∑
k=1

(
n
k

)
Bn−k(t)(t−1)k−1

=
n−1

∑
k=0

(
n
k

)
Bk(t)(t−1)n−k−1,

where the penultimate step follows from the fact that B( j)
k (t) = Bk(t) whenever k≤ j.

Lemma 2.2. Define B−
n = {π ∈ Bn : π(n)< 0}. Then for n≥ 1,

∑
π∈B−n

tdesB(π) = tnPn
(
t−1).

Proof. Define a bijection φ : B+
n → B−

n by φ(π(i)) = −π(i) for i = 1, . . . , n. Then
π(1) < 0 if and only if φ(π(1)) > 0. And for i = 1, 2, . . . , n− 1 we have π(i) >
π(i+ 1) if and only if φ(π(i)) < φ(π(i+ 1)). Thus, desB(π) + desB(φ(π)) = n.
Then,

∑
π∈B−n

tdesB(π) = ∑
π∈B+n

tdesB(φ(π)) = ∑
π∈B+n

tn−desB(π) = tn ∑
π∈B+n

t−desB(π) = tnPn
(
t−1).

Second Proof of Theorem 1.1. Using Lemmas 2.1 and 2.2, we have

Bn(t) = ∑
π∈B+n

tdesB(π)+ ∑
π∈B−n

tdesB(π) = Pn(t)+ tnPn
(
t−1).

3. A Recurrence for the Eulerian Polynomials of Type D

Let Dn denote the group of even signed permutations. We call π an even signed per-
mutation if π is a signed permutation such that there are an even number of negative
letters among π(1), π(2), . . . , π(n). Dn is a Coxeter group of type D with generators

4 M. Hyatt

(

∑
n≥0

Bn(t)
xn

n!

)(

∑
n≥0

xn

n!
(1− t)n−1 ((−1)n− t)

)
= 1,

∑
n≥0

xn

n!

n

∑
k=0

(
n
k

)
Bk(t)(1− t)n−k−1((−1)n−k− t

)
= 1.

So for n≥ 1, we have

n

∑
k=0

(
n
k

)
Bk(t)(1− t)n−k−1((−1)n−k− t

)
= 0,

which implies

Bn(t) =
n−1

∑
k=0

(
n
k

)
Bk(t)(1− t)n−k−1(t+(−1)n−k−1)

= Pn(t)+ t
n−1

∑
k=0

(
n
k

)
Bk(t)(1− t)n−k−1

= Pn(t)+ t
n−1

∑
k=0

(
n
k

)
tkBk

(
t−1) tn−k−1 (t−1−1

)n−k−1

= Pn(t)+ tnPn
(
t−1) .

The penultimate step uses the fact that Bk(t) is symmetric of degree k (see [3, Theo-
rem 2.4]).

Next we provide a combinatorial proof of Theorem 1.1. We begin with two lem-
mas, and then show they imply the theorem.

Lemma 2.1. Define B+
n = {π ∈ Bn : π(n)> 0}. Then for n≥ 1,

∑
π∈B+n

tdesB(π) = Pn(t) =
n−1

∑
k=0

(
n
k

)
Bk(t)(t−1)n−k−1.

Proof. Following previous work in [11], we say that a signed permutation π has a
drop at position i if π(i)< i. If π has a drop at position i, then we say the drop size at
position i is min{i−π(i), i}. The type B maximum drop of π , denoted maxdropB(π),
is the maximum of all drop sizes occurring in π . In other words,

maxdropB(π) :=max
{
max{i−π(i) : π(i)> 0},max{i : π(i)< 0}

}
.

We also define
B( j)
n (t) = ∑

π∈Bn
maxdropB(π)≤ j

tdesB(π).

The definition of type B maximum drop is motivated by the so-called type B bubble
sort, in that maxdropB(π) is equal to the type B bubble sort complexity of π . For our
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purposes in this paper, we notice that B+
n = {π ∈ Bn : maxdropB(π)≤ n−1}. Thus

∑
π∈B+n

tdesB(π) = B(n−1)
n (t).

It is proved (combinatorially) that for any nonnegative integers m and j we have [11,
Theorem 1.6]

B( j)
m+ j+1(t) =

j+1

∑
k=1

(
j+1
k

)
B( j)
m+ j+1−k(t)(t−1)k−1.

Setting m= 0 and replacing j with n−1 we obtain

B(n−1)
n (t) =

n

∑
k=1

(
n
k

)
B(n−1)
n−k (t)(t−1)k−1

=
n

∑
k=1

(
n
k

)
Bn−k(t)(t−1)k−1

=
n−1

∑
k=0

(
n
k

)
Bk(t)(t−1)n−k−1,

where the penultimate step follows from the fact that B( j)
k (t) = Bk(t) whenever k≤ j.

Lemma 2.2. Define B−
n = {π ∈ Bn : π(n)< 0}. Then for n≥ 1,

∑
π∈B−n

tdesB(π) = tnPn
(
t−1).

Proof. Define a bijection φ : B+
n → B−

n by φ(π(i)) = −π(i) for i = 1, . . . , n. Then
π(1) < 0 if and only if φ(π(1)) > 0. And for i = 1, 2, . . . , n− 1 we have π(i) >
π(i+ 1) if and only if φ(π(i)) < φ(π(i+ 1)). Thus, desB(π) + desB(φ(π)) = n.
Then,

∑
π∈B−n

tdesB(π) = ∑
π∈B+n

tdesB(φ(π)) = ∑
π∈B+n

tn−desB(π) = tn ∑
π∈B+n

t−desB(π) = tnPn
(
t−1).

Second Proof of Theorem 1.1. Using Lemmas 2.1 and 2.2, we have

Bn(t) = ∑
π∈B+n

tdesB(π)+ ∑
π∈B−n

tdesB(π) = Pn(t)+ tnPn
(
t−1).

3. A Recurrence for the Eulerian Polynomials of Type D

Let Dn denote the group of even signed permutations. We call π an even signed per-
mutation if π is a signed permutation such that there are an even number of negative
letters among π(1), π(2), . . . , π(n). Dn is a Coxeter group of type D with generators
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preserve the type D descent set of a word. For example, DESD([−6, 4,−2, 9, 7]) =
{0, 2, 4}= DESD([−3, 2,−1, 5, 4]).

Given S⊆ [0, n−1] andU ⊆ Dn, define

U(S) = {π ∈U : DESD(π)⊇ S},

rn(S) =max{i : [n− i, n−1]⊆ S},

with rn(S) = 0 if n− 1 /∈ S. For our purposesU will either be D+
n , which we define

by D+
n = {π ∈ Dn : π(n) > 0}, or be all of Dn. Let

([n]
j

)
denote the set of j-element

subsets of [n]. Given π ∈ D+
n (S), define a map ψ by

ψ(π) = (σ , X),

where
σ = sst([π(1), π(2), . . . , π(n− i−1)])

and
X = {π(n− i), π(n− i+1), . . ., π(n)},

where i= rn(S).
For example, consider S = {1, 6, 7} and π = [2,−3, 5, 1,−8, 7, 6, 4] ∈ D+

8 (S).
Then r8(S) = 2 and ψ(π) = (σ , X) where σ = [2,−3, 4, 1,−5] and X = {4, 6, 7}.

Lemma 3.1. Given any set S ⊆ [0, n−1], the map

ψ : D+
n (S)→ Dn−i−1(S∩ [0, n− i−2])×

(
[n]
i+1

)

is a bijection, where i= rn(S). Consequently,

|D+
n (S)|= |Dn−i−1(S∩ [0, n− i−2])|

(
n

i+1

)
.

Proof. Given π ∈ D+
n (S), let ψ(π) = (σ , X) as above. Since signed standardization

preserves type D descent set, σ ∈ Dn−i−1(S∩ [0, n− i− 2]). Since [n− i, n− 1] ⊆
DESD(π) and π(n)> 0, we have X ∈

( [n]
i+1

)
. Thus ψ is well defined.

Next we describe the inverse map. Let σ ∈Dn−i−1(T )where T = S∩ [0, n− i−2],
and let X = {x1, x2, . . . , xi+1} ∈

( [n]
i+1

)
where x1 < x2 < · · ·< xi+1. Then set

ψ−1(σ , X) = sst−1
[n]\X(σ)∗ (xi+1, xi, . . . , x1) ∈D+

n (T ∪ [n− i, n−1]),

where ∗ denotes concatenation.
For example, let n = 8 and let S = {1, 6, 7} ⊆ [0, 7]. Thus i = 2 and

T = {1}. Consider σ = [2,−3, 4, 1,−5] ∈ D5({1}) and X = {4, 6, 7}. Then
[n] \ X = {1, 2, 3, 5, 8} and sst−1

[n]\X(σ) = [2,−3, 5, 1,−8], thus ψ−1(σ , X) =

[2,−3, 5, 1,−8, 7, 6, 4] ∈ D8({1, 6, 7}).
Clearly, ψ−1(ψ(π)) = π . Since T ⊆ [0, n− i−2], we have rn(T ∪ [n− i, n−1])=

i. From this it follows that ψ
(
ψ−1(σ , X)

)
= (σ , X).

6 M. Hyatt

ε0, τ1, . . . , τn−1 where ε0 = [−2,−1, 3, 4, 5, . . . , n] = (1,−2), and τ j = ( j, j+1) for
j = 1, . . . , n−1. Given π ∈ Dn, define

DES(π) = {i ∈ [n−1] : π(i)> π(i+1)},

DESD(π) =

{
DES(π), if π(1)+π(2)> 0,

DES(π)∪{0}, if π(1)+π(2)< 0,

desD(π) = |DESD(π)|.

As in the type B case, this definition is motivated by the fact that it coincides with the
notion of type D Coxeter descent. The type D Eulerian polynomials, Dn(t), satisfy
the following generating function formula due to Brenti [3]

∑
n≥0

Dn(t)
xn

n!
=

(1− t)exp(x(1− t))− xt(1− t)exp(2x(1− t))
1− t exp(2x(1− t))

. (3.1)

Although we can obtain a recurrence from (3.1) by an approach similar to that
of the first proof of Theorem 1.1, doing so yields the following somewhat unpleasant
formula

Dn(t) =
n−1

∑
k=0

(
n
k

)
Dk(t)

×
n−k

∑
j=0

(n− k)!
j!

tn− j−k(1− t) j−1 [t(n− j− k+1) j− (n− j− k−1) j
]
.

Instead we will prove Theorem 1.3 in a manner similar to that of the second proof
of Theorem 1.1. The first step is to obtain a type D analog of Lemma 2.1, which
we accomplish by adapting the methods from [11], which in turn are extensions of
methods of Chung, Claesson, Dukes, and Graham [8].

We begin by discussing standardization of permutations. Suppose we have a finite
set C = {c1, c2, . . . , cn} ⊂ N with c1 < c2 < · · ·< cn, and a permutation π on C. The
standardization of π , denoted st(π), is the permutation in Sn obtained from π by
replacing ci with i. For example, st([4, 5, 2, 9, 7]) = [2, 3, 1, 5, 4]. Given a signed
permutation π , let |π | = [|π(1)|, |π(2)|, . . . , |π(n)|]. We call π a signed permutation
on the set C, if π is a word over Z and |π | is permutation on C. We define the signed
standardization of a signed permutation, denoted sst(π), by

sst(π)(i) =

{
st(|π |)(i), if π(i)> 0,

−st(|π |)(i), if π(i)< 0.

For example, sst([−6, 4,−2, 9, 7]) = [−3, 2,−1, 5, 4]. If the set C is fixed, then the
inverse of sst, denoted sst−1

C , is well defined. For example, if C = {2, 4, 6, 7, 9} and
π = [−3, 2,−1, 5, 4], then sst−1

C (π) = [−6, 4,−2, 9, 7]. If we extend the definition
of type D descent set for any word over Z, then it is clear that both sst and sst−1

C
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preserve the type D descent set of a word. For example, DESD([−6, 4,−2, 9, 7]) =
{0, 2, 4}= DESD([−3, 2,−1, 5, 4]).

Given S⊆ [0, n−1] andU ⊆ Dn, define

U(S) = {π ∈U : DESD(π)⊇ S},

rn(S) =max{i : [n− i, n−1]⊆ S},

with rn(S) = 0 if n− 1 /∈ S. For our purposesU will either be D+
n , which we define

by D+
n = {π ∈ Dn : π(n) > 0}, or be all of Dn. Let

([n]
j

)
denote the set of j-element

subsets of [n]. Given π ∈ D+
n (S), define a map ψ by

ψ(π) = (σ , X),

where
σ = sst([π(1), π(2), . . . , π(n− i−1)])

and
X = {π(n− i), π(n− i+1), . . ., π(n)},

where i= rn(S).
For example, consider S = {1, 6, 7} and π = [2,−3, 5, 1,−8, 7, 6, 4] ∈ D+

8 (S).
Then r8(S) = 2 and ψ(π) = (σ , X) where σ = [2,−3, 4, 1,−5] and X = {4, 6, 7}.

Lemma 3.1. Given any set S ⊆ [0, n−1], the map

ψ : D+
n (S)→ Dn−i−1(S∩ [0, n− i−2])×

(
[n]
i+1

)

is a bijection, where i= rn(S). Consequently,

|D+
n (S)|= |Dn−i−1(S∩ [0, n− i−2])|

(
n

i+1

)
.

Proof. Given π ∈ D+
n (S), let ψ(π) = (σ , X) as above. Since signed standardization

preserves type D descent set, σ ∈ Dn−i−1(S∩ [0, n− i− 2]). Since [n− i, n− 1] ⊆
DESD(π) and π(n)> 0, we have X ∈

( [n]
i+1

)
. Thus ψ is well defined.

Next we describe the inverse map. Let σ ∈Dn−i−1(T )where T = S∩ [0, n− i−2],
and let X = {x1, x2, . . . , xi+1} ∈

( [n]
i+1

)
where x1 < x2 < · · ·< xi+1. Then set

ψ−1(σ , X) = sst−1
[n]\X(σ)∗ (xi+1, xi, . . . , x1) ∈D+

n (T ∪ [n− i, n−1]),

where ∗ denotes concatenation.
For example, let n = 8 and let S = {1, 6, 7} ⊆ [0, 7]. Thus i = 2 and

T = {1}. Consider σ = [2,−3, 4, 1,−5] ∈ D5({1}) and X = {4, 6, 7}. Then
[n] \ X = {1, 2, 3, 5, 8} and sst−1

[n]\X(σ) = [2,−3, 5, 1,−8], thus ψ−1(σ , X) =

[2,−3, 5, 1,−8, 7, 6, 4] ∈ D8({1, 6, 7}).
Clearly, ψ−1(ψ(π)) = π . Since T ⊆ [0, n− i−2], we have rn(T ∪ [n− i, n−1])=

i. From this it follows that ψ
(
ψ−1(σ , X)

)
= (σ , X).
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=
n−1

∑
k=0

(
n
k

)
tn−1−kDk(t+1),

where the second equality follows from (3.2), and the last equality is obtained by
setting i= n−1− k. Finally, the lemma follows by replacing t with t−1.

Next we provide the analog of Lemma 2.2.

Lemma 3.3. Define D−
n = {π ∈Dn : π(n)< 0}. Then for n≥ 2,

∑
π∈D−

n

tdesD(π) = tnQn
(
t−1).

Proof. We want a bijection ϕ : D+
n → D−

n . Note that we cannot flip all the signs as
we did in the type B case, since we must ensure that ϕ(π) has an even number of
negative letters. So we define

ϕ(π) =

{
[−π(1),−π(2), . . . ,−π(n)], if n is even,

[π(1),−π(2),−π(3), . . . ,−π(n)], if n is odd.

We claim that desD(π)+desD(ϕ(π)) = n. The claim follows immediately if n is
even, just as in the type B case. So assume n is odd. Clearly, π(i) > π(i+ 1) if and
only if ϕ(π(i)) < ϕ(π(i+ 1)) for i = 2, 3, . . . , n− 1. To complete the proof of this
claim, we show that

|DESD(π)∩ [0, 1]|+ |DESD(ϕ(π))∩ [0, 1]|= 2.

Indeed, we have {0, 1} ⊆ DESD(π) if and only if π(1)+π(2)< 0 and π(1)< π(2),
which holds if and only if −π(2)> π(1) and −π(2)>−π(1). Thus,

0 ∈ DESD(π) and 1 ∈ DESD(π) ⇐⇒ −π(2)> |π(1)|. (3.3)

A similar analysis yields

0 /∈ DESD(π) and 1 /∈ DESD(π) ⇐⇒ π(2)> |π(1)|, (3.4)

0 ∈ DESD(π) and 1 /∈ DESD(π) ⇐⇒ −π(1)> |π(2)|, (3.5)

0 /∈ DESD(π) and 1 ∈ DESD(π) ⇐⇒ π(1)> |π(2)|. (3.6)

From (3.3)–(3.6) we deduce that |DESD(π)∩ [0, 1]|+ |DESD(ϕ(π))∩ [0, 1]| = 2,
which verifies the claim that desD(π)+desD(ϕ(π)) = n.

Therefore, we have

∑
π∈D−

n

tdesD(π) = ∑
π∈D+

n

tdesD(ϕ(π)) = ∑
π∈D+

n

tn−desD(π) = tn ∑
π∈D+

n

t−desD(π) = tnQn
(
t−1).

Proof of Theorem 1.3. Using Lemmas 3.2 and 3.3, we have (a copy of the proof of
Theorem 1.1 replacing B with D and P with Q),

Dn(t) = ∑
π∈D+

n

tdesD(π)+ ∑
π∈D−

n

tdesD(π) = Qn(t)+ tnQn
(
t−1).
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Lemma 3.2. Let D+
n = {π ∈ Dn : π(n)> 0}. Then for n≥ 2

∑
π∈D+

n

tdesD(π) = Qn(t) =
n−1

∑
k=0

(
n
k

)
Dk(t)(t−1)n−k−1.

Proof. GivenU ⊆ Dn we have

∑
π∈U

(t+1)desD(π) = ∑
π∈U

desD(π)

∑
j=0

(
desD(π)

j

)
t j

= ∑
π∈U

∑
S⊆DESD(π)

t |S|

= ∑
S⊆[0,n−1]

t |S| ∑
π∈U(S)

1

= ∑
S⊆[0,n−1]

t |S||U(S)|. (3.2)

ReplacingU with D+
n and using Lemma 3.1, we have

∑
π∈D+

n

(t+1)desD(π) = ∑
S⊆[0,n−1]

t |S||D+
n (S)|

= ∑
S⊆[0,n−1]

t |S||Dn−rn(S)−1(S∩ [0, n− rn(S)−2])|
(

n
rn(S)+1

)

=
n−1

∑
i=0

∑
S⊆[0,n−1]

rn(S)=i

t |S||Dn−i−1(S∩ [0, n− i−2])|
(

n
i+1

)

=
n−1

∑
i=0

(
n

i+1

)
t i ∑
S⊆[0,n−1]
rn(S)=i

t |S|−i|Dn−i−1(S∩ [0, n− i−2])|.

Recall that if rn(S) = i, then S⊇ [n− i, n−1] and n− i−1 /∈ S. Therefore, each such
S can be expressed as S= T ∪ [n− i, n−1] for some T ⊆ [0, n− i−2]. Thus,

∑
π∈D+

n

(t+1)desD(π) =
n−1

∑
i=0

(
n

i+1

)
t i ∑
T⊆[0,n−i−2]

t |T ||Dn−i−1(T )|

=
n−1

∑
i=0

(
n

i+1

)
t i ∑
π∈Dn−i−1

(t+1)desD(π)

=
n−1

∑
i=0

(
n

i+1

)
t iDn−i−1(t+1)
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=
n−1

∑
k=0

(
n
k

)
tn−1−kDk(t+1),

where the second equality follows from (3.2), and the last equality is obtained by
setting i= n−1− k. Finally, the lemma follows by replacing t with t−1.

Next we provide the analog of Lemma 2.2.

Lemma 3.3. Define D−
n = {π ∈Dn : π(n)< 0}. Then for n≥ 2,

∑
π∈D−

n

tdesD(π) = tnQn
(
t−1).

Proof. We want a bijection ϕ : D+
n → D−

n . Note that we cannot flip all the signs as
we did in the type B case, since we must ensure that ϕ(π) has an even number of
negative letters. So we define

ϕ(π) =

{
[−π(1),−π(2), . . . ,−π(n)], if n is even,

[π(1),−π(2),−π(3), . . . ,−π(n)], if n is odd.

We claim that desD(π)+desD(ϕ(π)) = n. The claim follows immediately if n is
even, just as in the type B case. So assume n is odd. Clearly, π(i) > π(i+ 1) if and
only if ϕ(π(i)) < ϕ(π(i+ 1)) for i = 2, 3, . . . , n− 1. To complete the proof of this
claim, we show that

|DESD(π)∩ [0, 1]|+ |DESD(ϕ(π))∩ [0, 1]|= 2.

Indeed, we have {0, 1} ⊆ DESD(π) if and only if π(1)+π(2)< 0 and π(1)< π(2),
which holds if and only if −π(2)> π(1) and −π(2)>−π(1). Thus,

0 ∈ DESD(π) and 1 ∈ DESD(π) ⇐⇒ −π(2)> |π(1)|. (3.3)

A similar analysis yields

0 /∈ DESD(π) and 1 /∈ DESD(π) ⇐⇒ π(2)> |π(1)|, (3.4)

0 ∈ DESD(π) and 1 /∈ DESD(π) ⇐⇒ −π(1)> |π(2)|, (3.5)

0 /∈ DESD(π) and 1 ∈ DESD(π) ⇐⇒ π(1)> |π(2)|. (3.6)

From (3.3)–(3.6) we deduce that |DESD(π)∩ [0, 1]|+ |DESD(ϕ(π))∩ [0, 1]| = 2,
which verifies the claim that desD(π)+desD(ϕ(π)) = n.

Therefore, we have

∑
π∈D−

n

tdesD(π) = ∑
π∈D+

n

tdesD(ϕ(π)) = ∑
π∈D+

n

tn−desD(π) = tn ∑
π∈D+

n

t−desD(π) = tnQn
(
t−1).

Proof of Theorem 1.3. Using Lemmas 3.2 and 3.3, we have (a copy of the proof of
Theorem 1.1 replacing B with D and P with Q),

Dn(t) = ∑
π∈D+

n

tdesD(π)+ ∑
π∈D−

n

tdesD(π) = Qn(t)+ tnQn
(
t−1).
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Using the previous theorem, Savage and Visontai proved the following result,
which is essential to their work in [13].

Theorem 4.5. ([13, Theorem 2.3]) Let f1, . . . , fk ∈R[t] be a sequence of polynomials
with positive leading coefficients such that for all 1≤ i≤ j ≤ k we have

(a) fi(t) and f j(t) are compatible, and
(b) t fi(t) and f j(t) are compatible.

Given a sequence of integers 0≤ λ0 ≤ λ1 ≤ ·· · ≤ λm ≤ k, define

gp(t) =
λp−1

∑
r=0

t fr(t)+
k

∑
r=λp

fp(t),

for 1≤ p ≤ m. Then for all 1≤ i≤ j ≤ m, we have

(a’) gi(t) and g j(t) are compatible, and
(b’) tgi(t) and g j(t) are compatible.

The following lemma is useful in connection with the previous theorem (see [15,
Lemma 3.4] and [13, Lemma 2.5]).

Lemma 4.6. Let f , g ∈ R[t] be polynomials with nonnegative coefficients. Then, the
following two statements are equivalent:

(i) f (t) and g(t) are compatible, and t f (t) and g(t) are compatible.
(ii) f interlaces g.

In their proof that the type D Eulerian polynomials have only real roots, Savage
and Visontai used ascent sets of inversion sequences to construct a set of polynomials
Tn,k(t) for 0≤ k≤ 2n−1, and they used Theorem 4.5 to show that these polynomials
are compatible. For n ≥ 2, the involution on Bn which changes the sign of the letter
whose absolute value is one, is an involution which preserves type D descents (see
[13, Lemma 3.9]). One can combine this fact along with [13, Theorem 3.12] to show
that these polynomials may also be interpreted as follows (see [2] for a treatment of
this topic that avoids inversion sequences).

Tn,k(t) =





2 ∑
π∈Dn

π(n)=n−k

tdesD(π), for 0≤ k ≤ n−1,

2 ∑
π∈Dn

π(n)=n−1−k

tdesD(π), for n≤ k ≤ 2n−1.

In the proof of [13, Theorem 3.15], the authors establish that for all 0≤ i< j≤ 2n−1
the polynomials Tn, i(t) and Tn, j(t) are compatible, and the polynomials tTn, i(t) and
Tn, j(t) are also compatible, which implies the following.

10 M. Hyatt

4. Real-Rootedness of Eulerian Polynomials

In examining the polynomials Pn(t) and Qn(t) for small values of n, we observed that
Pn(t) and tnPn

(
t−1) have interlacing roots (see Definition 4.2 below), and that Qn(t)

and tnQn
(
t−1) also have interlacing roots. This led to the following conjecture.

Conjecture 4.1. (i) For n ≥ 1, the polynomial Qn(t) has only real roots, and thus
tnQn

(
t−1) also has only real roots. Moreover Qn(t) and tnQn

(
t−1) have inter-

lacing roots.
(ii) For n≥ 2, the polynomial Pn(t) has only real roots, and thus tnPn

(
t−1) also has

only real roots. Moreover Pn(t) and tnPn
(
t−1) have interlacing roots.

In this section, we confirm this conjecture by explaining its connection to poly-
nomials studied by Savage and Visontai [13]. An alternate proof of this conjecture
was given by Yang and Zhang [17] using the Hermite-Biehler theorem, and a result
of Borcea and Brändén on Hurwitz stability.

First we begin with some background on the real-rootedness of Eulerian polyno-
mials. A result first proved by Frobenius [10] is that the type A Eulerian polynomials
have only real roots. Brenti [3] proved that the Eulerian polynomials of type B and
of the exceptional finite Coxeter groups have only real roots. Brenti also conjectured
that for every finite Coxeter group, the correspondingEulerian polynomials have only
real roots. This conjecture was settled by Savage and Visontai [13] who showed that
the type D Eulerian polynomials do have only real roots. A q-analog of this result
was proved by Yang and Zhang [16]. The proof in [13] includes an extension of tech-
niques involving compatible polynomials. The notion of compatible polynomials was
introduced by Chudnovsky and Seymour [7], and is related to the idea of interlacing
roots, which we define next.

Definition 4.2. Let f be a polynomial with real roots α1 ≥ α2 ≥ ·· · ≥ αdeg f , and let
g be a polynomial with real roots β1 ≥ β2 ≥ ·· · ≥ βdegg. We say that f interlaces g if

· · · ≤ α2 ≤ β2 ≤ α1 ≤ β1.

Note that in this case we must have deg f ≤ degg≤ 1+deg f . If f interlaces g or
if g interlaces f , then we also say that f and g have interlacing roots. The following
remarkable theorem is due to Obreschkoff.

Theorem 4.3. ([12]) Let f , g∈R[t] with deg f ≤ degg≤ 1+deg f . Then f interlaces
g if and only if c1 f + c2g has only real roots for all c1, c2 ∈ R.

We turn our attention now to compatible polynomials. Call a set of polynomials
f1, . . . , fk ∈R[t], compatible if for all nonnegative numbers c1, . . . , ck the polynomial
∑k
i=1 ci fi(t) has only real roots. Call a set of polynomials f1, . . . , fk ∈ R[t], pairwise

compatible if for all i, j ∈ [k] the polynomials fi and f j are compatible. For polyno-
mials with positive leading coefficients, Chudnovsky and Seymour showed that these
two notions are equivalent.

Theorem 4.4. ([7, 2.2]) Let f1, . . . , fk ∈R[t] be a set of pairwise compatible polyno-
mials with positive leading coefficients. Then f1, . . . , fk are compatible.
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Using the previous theorem, Savage and Visontai proved the following result,
which is essential to their work in [13].

Theorem 4.5. ([13, Theorem 2.3]) Let f1, . . . , fk ∈R[t] be a sequence of polynomials
with positive leading coefficients such that for all 1≤ i≤ j ≤ k we have

(a) fi(t) and f j(t) are compatible, and
(b) t fi(t) and f j(t) are compatible.

Given a sequence of integers 0≤ λ0 ≤ λ1 ≤ ·· · ≤ λm ≤ k, define

gp(t) =
λp−1

∑
r=0

t fr(t)+
k

∑
r=λp

fp(t),

for 1≤ p ≤ m. Then for all 1≤ i≤ j ≤ m, we have

(a’) gi(t) and g j(t) are compatible, and
(b’) tgi(t) and g j(t) are compatible.

The following lemma is useful in connection with the previous theorem (see [15,
Lemma 3.4] and [13, Lemma 2.5]).

Lemma 4.6. Let f , g ∈ R[t] be polynomials with nonnegative coefficients. Then, the
following two statements are equivalent:

(i) f (t) and g(t) are compatible, and t f (t) and g(t) are compatible.
(ii) f interlaces g.

In their proof that the type D Eulerian polynomials have only real roots, Savage
and Visontai used ascent sets of inversion sequences to construct a set of polynomials
Tn,k(t) for 0≤ k≤ 2n−1, and they used Theorem 4.5 to show that these polynomials
are compatible. For n ≥ 2, the involution on Bn which changes the sign of the letter
whose absolute value is one, is an involution which preserves type D descents (see
[13, Lemma 3.9]). One can combine this fact along with [13, Theorem 3.12] to show
that these polynomials may also be interpreted as follows (see [2] for a treatment of
this topic that avoids inversion sequences).

Tn,k(t) =





2 ∑
π∈Dn

π(n)=n−k

tdesD(π), for 0≤ k ≤ n−1,

2 ∑
π∈Dn

π(n)=n−1−k

tdesD(π), for n≤ k ≤ 2n−1.

In the proof of [13, Theorem 3.15], the authors establish that for all 0≤ i< j≤ 2n−1
the polynomials Tn, i(t) and Tn, j(t) are compatible, and the polynomials tTn, i(t) and
Tn, j(t) are also compatible, which implies the following.
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Theorem 4.7. ([13]) For n≥ 4, the set of polynomials

Tn,0(t), Tn,1(t), . . . , Tn,2n−1(t)

are compatible, and the set of polynomials

tTn,0(t), tTn,1(t), . . . , tTn,n−1(t), Tn,n(t), Tn,n+1(t), . . . , Tn,2n−1(t)

are also compatible.

Corollary 4.8. For n≥ 2, the polynomial Qn(t) interlaces tnQn
(
t−1).

Proof. For values of n less than 4, this can be checked directly. For n≥ 4, by Theorem
4.7 we have that for all c1, c2 ≥ 0 the polynomial

c1
2

n−1

∑
k=0

Tn,k(t)+
c2
2

2n−1

∑
k=n

Tn,k(t) = c1Qn(t)+ c2tnQ
(
t−1)

has only real roots, and the polynomial

c1
2

n−1

∑
k=0

tTn,k(t)+
c2
2

2n−1

∑
k=n

Tn,k(t) = c1tQn(t)+ c2tnQ
(
t−1)

has only real roots. By Lemma 4.6, Qn(t) interlaces tnQn
(
t−1).

In [13, Corollory 3.13] the authors remark that [13, Theorem 3.12] can be used
to show that Bn(t) has only real roots. Indeed, for 0 ≤ k ≤ 2n− 1 one can use [13,
Theorem 3.12] to show that the following s-Eulerian polynomials can be interpreted
as follows (again, see [2] for a treatment that avoids inversion sequences).

E(2,4,...,2n)
n,k (t) =






∑
π∈Bn

π(n)=n−k

tdesB(π), for 0≤ k ≤ n−1,

∑
π∈Bn

π(n)=n−1−k

tdesB(π), for n≤ k ≤ 2n−1.

For simplicity of notation, we define Bn,k(t) = E(2,4,...,2n)
n,k (t).

In their proof of [13, Theorem 1.1], the authors show that for all 0 ≤ i < j < sn
the polynomials E(s)

n, i (t) and E
(s)
n, j(t) are compatible, and the polynomials tE (s)

n, i (t) and

E(s)
n, j(t) are also compatible. A special case is the following.

Theorem 4.9. ([13]) For n≥ 1, the set of polynomials

Bn,0(t), Bn,1(t), . . . , Bn,2n−1(t)

are compatible, and the set of polynomials

tBn,0(t), tBn,1(t), . . . , tBn,n−1(t), Bn,n(t), Bn,n+1(t), . . . , Bn,2n−1(t)

are also compatible.

In a manner analogous to Corollary 4.8, the previous theorem implies the follow-
ing corollary.

Corollary 4.10. For n≥ 1 the polynomial Pn(t) interlaces tnPn
(
t−1).
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10. Frobenius, G.: Über die Bernoullischen Zahlen and die Eulerschen polynome. Sitzungs-
ber. Königlich Preußischen Akad. Wiss. 1910, 809–847 (1910)

11. Hyatt, M.: Descent polynomials for k bubble-sortable permutations of type B. European
J. Combin. 34(7), 1177–1191 (2013)

12. Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB
Deutscher Verlag der Wissenschaften, Berlin (1963)

13. Savage, C.D., Visontai, M.: The s-Eulerian polynomials have only real roots. Trans. Amer.
Math. Soc. 367(2), 1441–1466 (2015)

14. Stembridge, J.R.: Some permutation representations of Weyl groups associated with the
cohomology of toric varieties. Adv. Math. 106(2), 244–301 (1994)

15. Wagner, D.G.: Zeros of reliability polynomials and f -vectors of matroids. Combin.
Probab. Comput. 9(2), 167–190 (2000)

16. Yang, A.L.B., Zhang, P.B.: Mutual interlacing and Eulerian-like polynomials for Weyl
groups. Preprint, arXiv:1401.6273 (2014)

17. Yang, A.L.B., Zhang, P.B.: The real-rootedness of Eulerian polynomials via the Hermite-
Biehler theorem. Discrete Math. Theor. Comput. Sci. Proc. FPSAC’15, 465–474 (2015)


	Recurrences for Eulerian Polynomials ofType B and Type D
	Abstract
	1. Introduction
	2. A Recurrence for the Eulerian Polynomials of Type B
	3. A Recurrence for the Eulerian Polynomials of Type D
	4. Real-Rootedness of Eulerian Polynomials
	References




