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Abstract. Let P ⊂ Rd and Q⊂ Re be integral convex polytopes of dimension d and e which
contain the origin of Rd and Re, respectively. We say that an integral convex polytope P ⊂Rd

possesses the integer decomposition property if, for each n≥ 1 and for each γ ∈ nP∩Zd , there
exist γ(1), . . . , γ(n) belonging to P ∩Zd such that γ = γ(1)+ · · ·+ γ(n). In the present paper,
under some assumptions, the necessary and sufficient condition for the free sum of P andQ to
possess the integer decomposition property will be presented.
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1. Introduction

A convex polytope is called integral if all of its vertices have integer coordinates. For
an integral convex polytope P ⊂ Rd , let Z

(

P ∩Zd
)

be the lattice generated by the
integer points belonging to P ∩Zd , i.e., Z

(

P ∩Zd
)

=
{

∑v∈P∩Zd zvv : zv ∈ Z
}

.
LetP ⊂Rd andQ⊂Re be convex polytopes and suppose that 0d ∈P and 0e ∈Q,

where 0d ∈Rd denotes the origin of Rd and 0e ∈Re denotes that of Re. We introduce
the canonical injections µ : Rd → Rd+e by setting µ(α) = (α, 0e) ∈ Rd+e with α ∈
Rd and ν : Re → Rd+e by setting ν(β ) = (0d , β ) ∈ Rd+e with β ∈ Re. In particular,
µ(0d) = ν(0e) = 0d+e, where 0d+e denotes the origin of Rd+e. Then µ(P) and ν(Q)
are convex polytopes of Rd+e with µ(P)∩ν(Q) = 0d+e ∈ Rd+e. The free sum of P
andQ is the convex hull of the set µ(P)∪ν(Q) in Rd+e. It is written as P⊕Q. One
has dim(P ⊕Q) = dimP+dimQ.

For a convex polytope P ⊂ Rd and for each integer n ≥ 1, we write nP for the
convex polytope {nα : α ∈P}⊂Rd . We say that an integral convex polytopeP ⊂Rd
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2. When Does Equation (1.1)Hold?

Let V (P) be the set of vertices of P and let V (Q) be that of Q. First, for W ⊂
V (P)\{0d}, let

int(W ) = (conv(W ∪{0d})\ ∂ conv(W ∪{0d}))∩Zd ,

where ∂ denotes the relative boundary. ForW ⊂V (Q)\{0e}, int(W ) is also defined
in the same way. Next, we define

W(P) = {W ⊂V (P)\{0d} : W is linearly independent and int(W ) �= /0} .

In a similar way, we also define W(Q). Note that the conditionW(P) = /0 is equiv-
alent to the condition that P contains no integer point in the relative interior of any
face containing the origin. Last, for anyW = {w1, . . . , wm} ∈ W(P)

(

similarly, for
anyW ∈W(Q)

)

, let

min(W ) =min

{

m

∑
i=1

ri :
m

∑
i=1

riwi ∈ int(W )

}

.

Then 0<min(W )< 1.

Proposition 2.1. Let P ⊂ Rd and Q ⊂ Re be integral convex polytopes containing
0d and 0e, respectively. Then the free sum P ⊕Q satisfies Equation (1.1) if and only
if

• W(P) = /0 orW(Q) = /0, or
• W(P) �= /0, W(Q) �= /0, and min(F)+min(G) > 1 for all F ∈W(P) and G ∈
W(Q).

Proof. “Only if” Assume that there exist F ∈ W(P) and G ∈ W(Q) such that
min(F) +min(G) ≤ 1. Then each of F and G is linearly independent. Let F =
{v1, . . . , vn} and let G= {w1, . . . , wm}. Then there are 0< r1, . . . , rn < 1, 0< s1, . . . ,
sm < 1 such that ∑n

i=1 rivi ∈ int(F) and ∑m
i=1 siwi ∈ int(G), where 0< ∑n

i=1 ri < 1 and
0< ∑m

i=1 si < 1 with ∑n
i=1 ri+∑m

i=1 si ≤ 1. Let us consider

α =
n

∑
i=1

riµ(vi)+
m

∑
i=1

siν(wi) ∈ Rd+e.

Since ∑n
i=1 rivi ∈ Zd , we have ∑n

i=1 riµ(vi) ∈ Zd+e. Similarly, ∑m
i=1 siν(wi) ∈ Zd+e.

Thus, α ∈ Zd+e. Moreover, since ∑n
i=1 ri+∑m

i=1 si ≤ 1, we have α ∈ P ⊕Q. Hence,
α ∈ (P⊕Q)∩Zd+e. On the other hand, since ∑n

i=1 rivi �= 0d and ∑m
i=1 siwi �= 0e, we

see that α �∈ µ(P ∩Zd)∪ν(Q∩Ze). These mean that Equation (1.1) is not satisfied.

“If” Assume that (1.1) is not satisfied. Since the inclusion (P ⊕Q) ∩ Zd+e ⊃
µ
(

P ∩Zd
)

∪ν(Q∩Ze) is always satisfied, we may assume that there is α belonging
to (P⊕Q)∩Zd+e \ µ

(

P ∩Zd
)

∪ν(Q∩Ze). Then α can be written as

α =
n

∑
i=1

riµ(vi)+
m

∑
i=1

siν(wi),
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possesses the integer decomposition property (also known as integrally closed) if, for
each n ≥ 1 and for each γ ∈ nP ∩Zd , there exist γ (1), . . . , γ(n) belonging to P ∩Zd

such that γ = γ (1)+ · · ·+ γ(n).
Let P ⊂ Rd and Q ⊂ Re be convex polytopes containing the origin (of Rd or

Re). It is then easy to see that if the free sum of P and Q possesses the integer
decomposition property, then each of P and Q possesses the integer decomposition
property. On the other hand, the converse is not true in general. (See Example 1.3.)
The purpose of the present paper is to show the following

Theorem 1.1. Let P ⊂ Rd and Q ⊂ Re be integral convex polytopes of dimension
d and dimension e containing 0d and 0e, respectively. Suppose that P and Q satisfy
Z
(

P ∩Zd
)

= Zd , Z(Q∩Ze) = Ze and

(P⊕Q)∩Zd+e = µ
(

P ∩Zd)∪ν (Q∩Ze) . (1.1)

Then the free sum P ⊕Q possesses the integer decomposition property if and only if
the following two conditions are satisfied:

• each of P andQ possesses the integer decomposition property;
• either P or Q satisfies that the defining hyperplane of each facet is of the form
∑ f
i=1 aizi = b, where each ai is an integer, b ∈ {0, 1}, and f ∈ {d, e}.

An integral convex polytope P ⊂ Rd is called a (0, 1)-polytope if each vertex of
P belongs to {0, 1}d . It then follows that Equation (1.1) is always satisfied if eitherP
orQ is a (0, 1)-polytope. As an immediate corollary of Theorem 1.1, we also obtain
the following.

Corollary 1.2. Let P ⊂ Rd be a (0, 1)-polytope of dimension d containing 0d and
Q⊂Re an integral convex polytope of dimension e containing 0e. Suppose thatP and
Q satisfy Z(P ∩Zd) = Zd and Z(Q∩Ze) = Ze. Then the free sum P ⊕Q possesses
the integer decomposition property if and only if the following two conditions are
satisfied:

• each of P andQ possesses the integer decomposition property;
• either P or Q satisfies that the defining hyperplane of each facet is of the form
∑ f
i=1 aizi = b, where each ai is an integer, b ∈ {0, 1}, and f ∈ {d, e}.

Example 1.3. Even if P and Q possess the integer decomposition property, the free
sum P ⊕Q may fail to possess the integer decomposition property. For example,
let P ⊂ R3 be the (0, 1)-polytope with vertices (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1),
and (1, 0, 0). Then P possesses the integer decomposition property, but the free sum
P⊕P fails to possess the integer decomposition property. In fact, z1+ z2+ z3 = 2 is
the defining hyperplane of a facet of P .

The structure of the present paper is as follows. In Section 2, we will consider the
condition for P andQ to satisfy Equation (1.1). In Section 3, a proof of Theorem 1.1
will be given.
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sm < 1 such that ∑n
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i=1 siwi ∈ int(G), where 0< ∑n

i=1 ri < 1 and
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i=1 si < 1 with ∑n
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i=1 si ≤ 1. Let us consider

α =
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∑
i=1

siν(wi) ∈ Rd+e.

Since ∑n
i=1 rivi ∈ Zd , we have ∑n
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i=1 siν(wi) ∈ Zd+e.

Thus, α ∈ Zd+e. Moreover, since ∑n
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α ∈ (P⊕Q)∩Zd+e. On the other hand, since ∑n

i=1 rivi �= 0d and ∑m
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“If” Assume that (1.1) is not satisfied. Since the inclusion (P ⊕Q) ∩ Zd+e ⊃
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∑
i=1
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It then follows that δn = 0 for n> d. The polynomial

δ (P) =
d

∑
n=0

δnλ n

is called the δ -polynomial of P .
Let K

[

t1, t−1
1 , . . . , td , t−1

d , s
]

denote the Laurent polynomial ring in d + 1 vari-
ables over a field K. If α = (α1, . . . , αd) ∈ P ∩Zd , then we write uα for the Lau-
rent monomial tα1

1 · · · tαd
d ∈ K

[

t1, t−1
1 , . . . , td , t−1

d

]

. The toric ring of A is the subring
K[A] of K

[

t1, t−1
1 , . . . , td , t−1

d , s
]

that is generated by those Laurent monomials uαs
with α ∈ P ∩Zd . Let K

[

{xα}α∈P∩Zd
]

be the polynomial ring in |P ∩Zd | variables
over K with each degxα = 1. We then define the surjective ring homomorphism
π : K

[

{xα}α∈P∩Zd
]

→ K[A] by setting π(xα) = uαs for each α ∈ P ∩Zd .
Finally, the Hilbert function of the toric ring K[A] of the configurationA arising

from an integral convex polytope P ⊂ Rd of dimension d is introduced. We write
(K[A])n for the subspace of K[A] spanned by those Laurent monomials of the form

(

uα(1)s
)(

uα(2)s
)

· · ·
(

uα(n)s
)

,

with each α(i) ∈ P ∩Zd . In particular, (K[A])0 = K and (K[A])1 = ∑α∈P∩Zd Kuαs.
The Hilbert function of K[A] is the numerical function

H(K[A], n) = dimK(K[A])n, n= 0, 1, 2, . . . .

Thus, in particular, H(K[A], 0) = 1 and H(K[A], 1) = |P ∩Zd |. We then define the
integers h0, h1, h2, . . . by the formula

(1−λ )d+1

[

∞

∑
n=0

H(K[A], n)λ n

]

=
∞

∑
n=0

hnλ n.

A basic fact [1, Theorem 11.1] of Hilbert functions guarantees that hn = 0 for n� 0.
We say that the polynomial

h(K[A]) =
∞

∑
n=0

hnλ n

is the h-polynomial of K[A].

Lemma 3.1. Let P ⊂ Rd be an integral convex polytope of dimension d and A ⊂
Zd+1 the configuration arising from P . Suppose that P satisfies Z(P ∩Zd) = Zd .
Then the following conditions are equivalent:

(i) P possesses the integer decomposition property;
(ii) A is normal;
(iii) δ (P) = h(K[A]).

Proof. It follows that P possesses the integer decomposition property if and only if,
for α ∈ nP ∩Zd , one has (α, n) ∈ Z≥0A. Since Z(P ∩Zd) =Zd , i.e., ZA= Zd+1, it
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where v1, . . . , vn ∈ V (P) \ {0d}, w1, . . . , wm ∈ V (Q) \ {0e}, 0 ≤ r1, . . . , rn ≤ 1, 0 ≤
s1, . . . , sm ≤ 1 and ∑n

i=1 ri+∑m
i=1 si ≤ 1. By Carathéodory’s Theorem (cf. [5, Corol-

lary 7.1i]), we can choose µ(v1), . . . , µ(vn), ν(w1), . . . , ν(wm) as linearly indepen-
dent vectors of Rd+e, that is, v1, . . . , vn are linearly independent in Rd and so are
w1, . . . , wm in Re. Moreover, if ∑n

i=1 ri = 0, then α ∈ ν(Q∩Ze), a contradiction.
Similarly, if ∑m

i=1 si = 0, then α ∈ µ(P ∩Ze), a contradiction. Thus, we also assume
∑n
i=1 ri > 0 and ∑m

i=1 si > 0.
We consider v = ∑n

i=1 rivi ∈ Zd . Since ∑n
i=1 ri > 0, ∑m

i=1 si > 0, and ∑n
i=1 ri +

∑m
i=1 si ≤ 1, we have 0 < ∑n

i=1 ri < 1. Thus, v ∈ P ∩Zd . Let vi1 , . . . , vig be all of vi’s
such that ri > 0 and let F = {vi1 , . . . , vig}. Then F is also linearly independent and
v ∈ int(F). Hence, F ∈ W(P). Similarly, let w j1 , . . . , w jh be all of wi’s such that
si > 0 and let G=

{

w j1 , . . . , w jh

}

. Then G ∈W(Q). Now we see

min(F)+min(G)≤
g

∑
k=1

rik +
h

∑
k=1

s jk =
n

∑
i=1

ri+
m

∑
i=1

si ≤ 1,

as required.

Example 2.2. (a) Let P ⊂Rd be a (0, 1)-polytope. Then we easily see thatW(P) =
/0. Thus, if P or Q is a (0, 1)-polytope in Proposition 2.1, then Equation (1.1)
always holds.

(b) LetP = conv({(0, 0), (1, 0), (1, 2)})⊂R2 and letQ= conv({0, 2})⊂R1. Then
W(Q) �= /0 butW(P) = /0. Thus, Equation (1.1) holds.

(c) Let P = Q = conv({(0, 0), (2, 1), (1, 2)}) ⊂ R2 and consider W = {(2, 1),
(1, 2)}. Then we see that W(P) = {W}. On the other hand, we also have
min(W ) = 2/3. Thus, Equation (1.1) holds.

3. Proof of Theorem 1.1

Let P ⊂ Rd be an integral convex polytope of dimension d. A configuration arising
from P is the finite set A=

{

(α, 1) ∈ Zd+1 : α ∈ P ∩Zd
}

. We say that A is normal
if

Z≥0A= ZA∩Q≥0A,

whereZ≥0 is the set of nonnegative integers andQ≥0 is the set of nonnegative rational
numbers.

We recall the definition of the Ehrhart polynomial. Let P ⊂ Rd be an integral
convex polytope of dimension d and, for each integer n ≥ 1, write i(P , n) for the
number of integer points belonging to nP , i.e., i(P , n) = |nP ∩Zd |. It is known
that i(P , n) is a polynomial in n of degree d with i(P , 0) = 1. We call i(P , n) the
Ehrhart polynomial of P . See [4, Chapter IX] for details. We then define the integers
δ0, δ1, δ2, . . . by the formula

(1−λ )d+1

[

1+
∞

∑
n=1

i(P , n)λ n

]

=
∞

∑
n=0

δnλ n.
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It then follows that δn = 0 for n> d. The polynomial
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(1−λ )d+1

[

∞

∑
n=0

H(K[A], n)λ n

]

=
∞

∑
n=0

hnλ n.
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Zd+1 the configuration arising from P . Suppose that P satisfies Z(P ∩Zd) = Zd .
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Furthermore, since Equation (1.1) is satisfied, it follows from Lemma 3.2 that

h(K[A⊕B]) = h(K[A])h(K[B]), (3.3)

whereA⊕B⊂Zd+e+1 denotes the configuration arising fromP⊕Q⊂Rd+e. Hence,
by (3.1), (3.2), and (3.3), we obtain

δ (P⊕Q) = h(K[A⊕B]).

Therefore, from Lemma 3.1, we conclude that P ⊕Q possesses the integer decom-
position property.

On the other hand, suppose that P⊕Q possesses the integer decomposition prop-
erty. Then it is easy to see that each of P andQ possesses the integer decomposition
property. Moreover, since P ⊕Q ⊂ Rd+e satisfies (1.1), the equality δ (P ⊕Q) =
δ (P)δ (Q) holds by Lemma 3.2. Therefore, by Theorem 3.3, either P or Q satisfies
the condition on its facets described in Theorem 1.1, as required.

References

1. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley,
Reading (1969)

2. Beck, M., Jayawant, P., McAllister, T.B.: Lattice-point generating functions for free sums
of convex sets. J. Combin. Theory Ser. A 120, 1246–1262 (2013)

3. Bruns, W., Gubeladze, J.: Polytopes, Rings and K-Theory. Springer-Verlag, Heidelberg
(2009)

4. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Glebe
(1992)

5. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester
(1986)

6 T. Hibi and A. Higashitani

follows thatA is normal if and only if Z≥0A=Zd+1∩Q≥0A. Moreover, for α ∈Qd ,
one has α ∈ nP if and only if (α, n) ∈Q≥0A. Hence, (i)⇔ (ii) follows.

In general, one has i(P , n) ≥ H(K[A], n) for n ∈ Z≥0. Furthermore, it follows
that i(P , n) = H(K[A], n) for all n ∈ Z≥0 if and only if P possesses the integer de-
composition property. Hence (i)⇔ (iii) follows.

Lemma 3.2. Let P ⊂ Rd and Q ⊂ Re be integral convex polytopes of dimension d
and e that contain the origin of Rd andRe, respectively. LetA⊂Zd+1 and B ⊂ Ze+1

be the configurations arising from P andQ, respectively. LetA⊕B⊂Zd+e+1 denote
the configuration arising from the free sum P⊕Q⊂ Rd+e. Suppose that

(P⊕Q)∩Zd+e = µ
(

P ∩Zd)∪ν(Q∩Ze).

Then
h(K[A⊕B]) = h(K[A])h(K[B]).

Furthermore, if P⊕Q possesses the integer decomposition property, then

δ (P⊕Q) = δ (P)δ (Q).

Proof. Let K[A] ⊂ K
[

t1, t−1
1 , . . . , td , t−1

d , s
]

and K[B] ⊂ K
[

t ′1, t ′
−1
1 , . . . , t ′e, t ′

−1
e , s′

]

.
Then K[A⊕B] = (K[A]⊗K[B])/(s− s′). Hence, h(K[A⊕B]) = h(K[A]⊗K[B]) =
h(K[A])h(K[B]), as desired.

If, furthermore, P ⊕Q possesses the integer decomposition property, then each
of P and Q possesses the integer decomposition property. Lemma 3.1 then says that
δ (P ⊕Q) = h(K[A⊕B]), δ (P) = h(K[A]), and δ (Q) = h(K[B]). Hence, δ (P ⊕
Q) = δ (P)δ (Q), as required.

We also recall the following theorem.

Theorem 3.3. ([2, Theorem 1.4]) Let P ⊂ Rd and Q⊂ Re be integral convex poly-
topes containing the origin (of Rd or Re). Then the equality δ (P⊕Q) = δ (P)δ (Q)
holds if and only if either P or Q satisfies that the defining hyperplane of each facet
is of the form ∑ f

i=1 aizi = b, where each ai is an integer, b ∈ {0, 1}, and f ∈ {d, e}.

We are now in the position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Assume that each of P and Q possesses the integer decom-
position property and either P or Q satisfies the condition on its facets described in
Theorem 1.1. It then follows from Theorem 3.3 that the condition on the facets is
equivalent to satisfying that

δ (P⊕Q) = δ (P)δ (Q). (3.1)

Moreover, since each of P and Q possesses the integer decomposition property, we
have the equalities δ (P) = h(K[A]) and δ (Q) = h(K[B]) by Lemma 3.1. In particu-
lar, one has

δ (P)δ (Q) = h(K[A])h(K[B]). (3.2)
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Furthermore, since Equation (1.1) is satisfied, it follows from Lemma 3.2 that

h(K[A⊕B]) = h(K[A])h(K[B]), (3.3)

whereA⊕B⊂Zd+e+1 denotes the configuration arising fromP⊕Q⊂Rd+e. Hence,
by (3.1), (3.2), and (3.3), we obtain

δ (P⊕Q) = h(K[A⊕B]).

Therefore, from Lemma 3.1, we conclude that P ⊕Q possesses the integer decom-
position property.

On the other hand, suppose that P⊕Q possesses the integer decomposition prop-
erty. Then it is easy to see that each of P andQ possesses the integer decomposition
property. Moreover, since P ⊕Q ⊂ Rd+e satisfies (1.1), the equality δ (P ⊕Q) =
δ (P)δ (Q) holds by Lemma 3.2. Therefore, by Theorem 3.3, either P or Q satisfies
the condition on its facets described in Theorem 1.1, as required.
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