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Abstract. A sequence of coefficients that appeared in the evaluation of a rational integral has
been shown to be unimodal. The original proof is based on a inequality for hypergeometric
functions. A generalization is presented.
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1. Introduction

A sequence of numbers {ak : 0 ≤ k ≤ n} is called unimodal if there is an index k∗

such that ak−1 ≤ ak for 1≤ k≤ k∗ and ak−1 ≥ ak for k∗+1≤ k≤ n. The prototypical
example of unimodal sequences is ak =

(n
k

)
. A polynomial P(x) is called unimodal if

its sequence of coefficients is unimodal.
A simple criteria for unimodality of a polynomial was established in [4]:

Theorem 1.1. If P(x) is a polynomial with positive nondecreasing coefficients, then
P(x+1) is unimodal.

The original motivation for this result was the question of unimodality of the
polynomial

Pm(a) =
m

∑
�=0

d�(m)a� (1.1)

with

d�(m) = 2−2m
m

∑
k=�

2k
(
2m−2k
m− k

)(
m+ k
m

)(
k
�

)

. (1.2)

This example appeared in the evaluation of the formula
∫ ∞

0

dx
(x4+2ax2+1)m+1 =

π
2

Pm(a)
[2(a+1)]m+1/2 (1.3)
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in the form
�m(x)− �m−1(x)> rm(x)− rm−1(x). (2.2)

The expansion of the terms in the previous inequality becomes nicer if written as

Lm(x) := �m(x)− rm(x)> �m−1(x)− rm−1(x) = Lm−1(x).

Using any of the packages [14,25] dealing with symbolic summation and holonomic
closure properties that are available nowadays, it is easy to discover (and thus prove)
a second order recurrence satisfied by Lm(x). In theory, this would make this in-
equality accessible to the automatic inequality prover developed by Gerhold and
Kauers [18, 20, 21]. These methods need as input only a defining recurrence and
sufficiently many initial values. This method uses as an essential tool Cylindrical Al-
gebraic Decomposition [8,15,16] (CAD), which was introduced to solve the problem
of quantifier elimination over the field of real numbers. Given a quantified logical for-
mula of polynomial equalities and inequalities, it computes an equivalent, quantifier-
free formula. If the given formula does not contain any free variables, then the output
is one of the logical constants true or false. The input class can be generalized to ra-
tional or algebraic functions, since these kinds of functions can be expressed in terms
of polynomial equalities. For a recent overview on how and when to apply CAD
see [22].

The run-time and memory requirements of CAD computations depend doubly
exponential (in the worst case) on the number of variables and the degrees of the
appearing polynomials. For the inequality discussed here, the calculations did not
terminate within a reasonable amount of time. The recurrence is linear and only of
order two, but the polynomial coefficients have degree 16 in m and degrees 9, 10 in x.
This might explain the lack of termination in a reasonable time. Besides the computa-
tional complexity, this may also be because the method of Gerhold and Kauers is not
an algorithm in the strict sense, since termination is not guaranteed for an arbitrary
input [24,28]. Despite this fact, this procedure has been applied successfully in prov-
ing different non-trivial inequalities, e.g., on orthogonal polynomials [1, 19, 27]. For
the inequality at hand the approach does not seem to succeed and hence a different
line of computer-assisted proof that also exploits CAD has been chosen.

The series expansion of Lm(x) can be computed as follows:

Lm(x) = ∑
k≥0

(( 3
2

)

k−3
(1
2

)

k

) (−m−2)k
(−4m−4)kk!

(4x)k

=−2+∑
k≥2

(−m−2)k
( 1
2

)

k
(−4m−4)kk!

(k−1)22k+1xk =−2+∑
k≥2

c(m, k)xk,

with coefficients

c(m, k) =
(−m−2)k

( 1
2

)

k
(−4m−4)kk!

(k−1)22k+1.

Here (a)k = a(a+1) · · ·(a+ k−1) denotes the Pochhammer symbol (or rising facto-
rial). Note that the sums above are finite (and thus the Lm(x) are polynomials) because
of the factor (−m−2)k in the numerator.
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given in [5]. A variety of proofs of (1.3) can be found in [3] and properties of the
coefficients {d�(m)} have been reviewed in [26].

A property stronger than unimodality is that of log-concavity: a sequence of posi-
tive numbers {ak : 0≤ k≤ n} is called log-concave if a2k ≥ ak−1ak+1 for 1≤ k≤ n−1.
As before, a polynomial is called log-concave if its sequence of coefficients is log-
concave. The log-concavity of Pm(a)was first established by Kauers and Paule in [23]
using computer algebra, in particular algorithms for automatically deriving recur-
rences for multiple sums and Cylindrical Algebraic Decomposition (CAD). A variety
of classical techniques have been used in this problem by Chen et al. in [10–13].

The original proof of unimodality for Pm(a) in [6] was based on the monotonicity
of

T (m) =
m+1

∑
r=2

(
2r
r

)(
m+1
r

)
(r−1)
2r
(4m

r

) . (1.4)

This proof was revisited in [2] and the hypergeometric representation

T (m) = 1− 1F2

( 1
2 ,−1−m
−4m

∣
∣
∣
∣
2
)

+
m+1
4m 1F2

( 3
2 ,−m
1−4m

∣
∣
∣
∣
2
)

(1.5)

was used to give a new proof of the monotonicity of T (m) and also to establish the
value lim

m→∞
T (m) = 2−

√
2.

The monotonicity of T (m) yields a curious inequality, which is transformed via
contiguous identities for hypergeometric functions to the form

2F1
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∣
∣
∣
∣
2
)

− 2F1
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> 3
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∣
2
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− 2F1

( 1
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∣
∣
∣
∣
2
)]

.

The goal of this note is to prove the generalization of the previous inequality conjec-
tured in [2]. The main result is stated next.

Theorem 1.2. The inequality

2F1
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∣
∣
∣
∣
4x
)
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> 3
[

2F1

( 1
2 ,−m−2
−4m−4

∣
∣
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)

− 2F1
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−4m

∣
∣
∣
∣
4x
)]

holds for x≥ 1
2 .

2. An Automatic Proof

This section provides an automatic proof of Theorem 1.2. The main result is first
rewritten using

�m(x) = 2F1

( 3
2 ,−m−2
−4m−4

∣
∣
∣
∣
4x
)

and rm(x) = 3 2F1

( 1
2 ,−m−2
−4m−4

∣
∣
∣
∣
4x
)

, (2.1)
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=−2+
3(m+2)x2

4m+3
+

10m(m+2)x3

(2m+1)(4m+3)
+

105(m−1)m(m+2)x4

2(2m+1)(4m+1)(4m+3)

+
63(m−2)(m−1)(m+2)x5

(2m+1)(4m+1)(4m+3)
+

1155(m−3)(m−2)(m−1)(m+2)x6

4(2m+1)(4m−1)(4m+1)(4m+3)
.

The following CAD computation quickly verifies that Tm+1(x)−Tm(x)> 0 holds for
m≥ 7 and x≥ 1

2 .

In[4]:=Resolve[ForAll[{m,x},m≥7&& x≥ 1
2 ,T[m,x]−T[m−1,x]>0],{},Reals]

Out[4]=True

The summary of the computations carried out so far is this: for m ≤ 7, CAD shows
that Lm(x)> Lm−1(x). For m≥ 7 and x≥ 1

2 , we have

Lm(x)−Lm−1(x) = Tm(x)−Tm−1(x)

+
m+1

∑
k=7

(ρ(m, k)−1)c(m−1, k)xk
︸ ︷︷ ︸

≥0

+c(m+2,m+2)xm+2
︸ ︷︷ ︸

≥0

≥ Tm(x)−Tm−1(x)

> 0,

where for the penultimate estimate we use that the shift quotient ρ(m, k) ≥ 1 for
m, k ≥ 7 as shown above. This completes the proof.

3. A Different Approach

Using automated guessing it is possible to derive a second order ordinary differential
equation satisfied by y(x) = Lm(x) that (once found) is easy to check. This procedure
is described here and is used to established the inequality in Theorem 1.2 for x ≥ 1.
This is not the optimal range, but the techniques employed here are simpler.

The equation obtained for y(x) = Lm(x) is

x(3x−2)(4x−1)y′′(x)−
(
12mx2−20mx+8m+6x2−11x+8

)
y′(x)−6(m+2)xy(x)

= 0.

The same technique is then used to find (and subsequently prove) the mixed differ-
ence-differential relation

d(m, x)Lm+1(x) = c1(m, x)L′m(x)+ c0(m, x)Lm(x), (3.1)

with

d(m, x) = 2(m+2)(2m+3)(4m+5)(4m+7)
(
16m2−104m+425

)

× (1−4x)2(3x−2)(6x+7),
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It is easy to see that for k ≥ 2 and any m≥ 2 these coefficients are non-negative.
The only negative contributions stem from the Pochhammer symbols in the numerator
and denominator with the same number of factors. The coefficients c(m, 1) vanish
and the constant coefficients c(m, 0) = −2 for all m. Hence, the forward difference
considered here may be written as

Lm(x)−Lm−1(x) =
m+1

∑
k=2

(
c(m, k)

c(m−1, k)
−1

)

c(m−1, k)xk+ c(m,m+2)xm+2,

with the shift quotient ρ(m, k) = c(m, k)/c(m−1, k) given by

ρ(m, k) =
(m+2)(−k+4m+1)(−k+4m+2)(−k+4m+3)(−k+4m+4)

8(m+1)(2m+1)(4m+1)(4m+3)(−k+m+2)
.

This shift quotient is a rational function, hence it is suitable as input for a CAD
computation. Since x ≥ 1

2 , and c(m, m+ 2)> 0 for m ≥ 0, it would be sufficient to
prove that ρ(m, k)≥ 1 for allm, k. This is not the case, but for k,m≥ 7 CAD quickly
shows that the shift quotient is bounded from below by one:

In[1]:=Resolve[ForAll[{m, k},m≥ 7&&7≤ k≤ n+1,ρ [m, k]≥ 1], {},Reals]
Out[1]=True

These simple observations gave rise to the idea to truncate Lm(x)−Lm−1(x) at a
fixed level that is provably positive and then to show that the tail of the expansion of
Lm(x)−Lm−1(x) is non-negative. All these steps can be carried out using CAD. The
outline of the proof is as follows:

(1) Prove that Lm(x)−Lm−1(x)> 0 for m≤ 6.
(2) Prove that the truncated version of the inequality with k running from 2 to 6 is

positive for all m≥ 7.
(3) Prove that the tails are non-negative.

The first cases for m≤ 6 are checked independently using CAD. Note that for m= 1
the inequality is strict only for x > 1

2

(
L1( 12 ) = 0

)
. In the problem considered here,

the Mathematica implementation of CAD [29] has been used, but certainly any other
computer algebra system capable of executing CAD [7,9,17] would be able to handle
the given inequalities. In Mathematica, the commands can be executed as follows
(
where L[m, x] = Lm(x)

)
.

In[2]:=Resolve[ForAll[x,x> 1
2 ,L[1,x]−L[0,x]>0],{},Reals]

Out[2]=True

In[3]:=Table[Resolve[ForAll[x,x≥ 1
2 ,L[m,x]−L[m−1,x]>0],{},Reals],{m,2,6}]

Out[3]={True,True,True,True,True}

In the second step we consider the truncated power series that is a polynomial in
m and x of fixed degree,

Tm(x) =−2+
6

∑
k=2

c(m, k)xk
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c1(m, x) =
(
16m2−104m+425

)
x(6x+7)

(
16m3 (81x4−165x3+107x2−25x+2

)

+24m2(270x4−548x3+368x2−87x+7
)

+m
(
10656x4−21585x3+15052x2−3605x+292

)

+ 3
(
1920x4−3889x3+2824x2−686x+56

))
,

c0(m, x) = (m+2)
(
16m2−104m+425

)
(6x+7)

(
64m3(1−4x)2(3x−2)

+24m2(27x4+566x3−671x2+228x−24
)

+m
(
1944x4+19953x3−23920x2+8132x−856

)

+3
(
480x4+3249x3−3914x2+1330x−140

))
.

Using CAD and these equations it is possible to show that Tm(x)≥ 0 form≥ 3 and x≥
1, and that Lm(x)≥ 0 for m≤ 7 and x≥ 1. Since

Lm(x) = Tm(x)+∑
k≥7

c(m, k)xk

with non-negative coefficients c(m, k), it follows that Lm(x) ≥ 0 for all x ≥ 1. The
coefficients of L′m(x) are all non-negative (the constant coefficient −2 vanishes), and
hence also L′m(x)≥ 0 for all m, k ≥ 2 and x> 0. The relation (3.1) then yields

Lm+1(x)−Lm(x) =
c1(m, x)
d(m, x)

L′m(x)+
c0(m, x)−d(m, x)

d(m, x)
Lm(x).

A routine use of CAD shows the rational function coefficients on the right-hand side
above are positive for x≥ 1. This completes the proof.
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nique (1998)

15. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. Lecture Notes
in Comput. Sci., Vol. 33, pp. 134–183. Springer, Berlin (1975)

16. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimi-
nation. J. Symbolic Comput. 12(3), 299–328 (1991)

17. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. Sigsam Bul-
letin 31(2), 2–9 (1997)

18. Gerhold, S., Kauers, M.: A procedure for proving special function inequalities involving
a discrete parameter. In: Kauers, M. (ed.) Proceedings of ISSAC’05, pp. 156–162. ACM
New York, NY (2005)

19. Gerhold, S., Kauers, M.: A computer proof of Turán’s inequality. J. Inequal. Pure Appl.
Math. JIPAM. 7(2), Art. 42 (2006)

20. Kauers, M.: SumCracker: a package for manipulating symbolic sums and related objects.
J. Symbolic Comput. 41(9), 1039–1057 (2006)

21. Kauers, M.: Computer algebra and special function inequalities. In: Amdeberhan, T.,
Moll, V.H. (eds.) Tapas in Experimental Mathematics, pp. 215–235. Amer. Math. Soc.,
Providence, RI (2008)

22. Kauers, M.: How to use cylindrical algebraic decomposition. Sém. Lothar. Combin. 65,
Art. B65a, 1–16 (2011)

23. Kauers, M., Paule, P.: A computer proof of Moll’s log-concavity conjecture. Proc. Amer.
Math. Soc. 135(12), 3847–3856 (2007)

24. Kauers, M., Pillwein, V.: When can we detect that a P-finite sequence is positive? In: Watt,
S. (ed.) Proceedings of the 2010 International Symposium on Symbolic and Algebraic
Computation, pp. 195–202. ACM, New York (2010)

25. Koutschan, C.: HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Re-
port Series, University of Linz, Austria (2010)

26. Manna, D., Moll, V.: A remarkable sequence of integers. Expo. Math. 27(4), 289–312
(2009)

27. Pillwein, V.: Positivity of certain sums over Jacobi kernel polynomials. Adv. Appl. Math.
41(3), 365–377 (2008)

28. Pillwein, V.: Termination conditions for positivity proving procedures. In: Kauers, M.
(ed.) Proceedings of the 38th International Symposium on Symbolic and Algebraic Com-
putation, pp. 315–321. ACM, New York (2013)



72 A. Dixit, V.H. Moll, and V. Pillwein
8 A. Dixit, V.H. Moll, and V. Pillwein
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